@langchain/google-cloud-sql-pg 1.0.5 → 1.0.6-dev-1765432861398
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/chat_message_history.d.cts.map +1 -0
- package/dist/chat_message_history.d.ts.map +1 -0
- package/dist/engine.d.cts +0 -1
- package/dist/engine.d.cts.map +1 -0
- package/dist/engine.d.ts +0 -1
- package/dist/engine.d.ts.map +1 -0
- package/dist/indexes.d.cts.map +1 -0
- package/dist/indexes.d.ts.map +1 -0
- package/dist/loader.d.cts +0 -1
- package/dist/loader.d.cts.map +1 -0
- package/dist/loader.d.ts +0 -1
- package/dist/loader.d.ts.map +1 -0
- package/dist/vectorstore.d.cts.map +1 -0
- package/dist/vectorstore.d.ts.map +1 -0
- package/package.json +7 -6
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"chat_message_history.d.cts","names":["BaseChatMessageHistory","BaseMessage","PostgresEngine","PostgresChatMessageHistoryInput","PostgresChatMessageHistory","engine","sessionId","tableName","schemaName","Promise"],"sources":["../src/chat_message_history.d.ts"],"sourcesContent":["import { BaseChatMessageHistory } from \"@langchain/core/chat_history\";\nimport { BaseMessage } from \"@langchain/core/messages\";\nimport PostgresEngine from \"./engine.js\";\nexport interface PostgresChatMessageHistoryInput {\n engine: PostgresEngine;\n sessionId: string;\n tableName: string;\n schemaName: string;\n}\nexport declare class PostgresChatMessageHistory extends BaseChatMessageHistory {\n lc_namespace: string[];\n engine: PostgresEngine;\n sessionId: string;\n tableName: string;\n schemaName: string;\n constructor({ engine, sessionId, tableName, schemaName }: PostgresChatMessageHistoryInput);\n /**\n * Create a new PostgresChatMessageHistory instance.\n *\n * @param {PostgresEngine} engine Postgres engine instance to use.\n * @param {string} sessionId Retrieve the table content with this session ID.\n * @param {string} tableName Table name that stores that chat message history. Parameter is not escaped. Do not use with end user input.\n * @param {string} schemaName Schema name for the chat message history table. Default: \"public\". Parameter is not escaped. Do not use with end user input.\n * @returns PostgresChatMessageHistory instance.\n */\n static initialize(engine: PostgresEngine, sessionId: string, tableName: string, schemaName?: string): Promise<PostgresChatMessageHistory>;\n addUserMessage(message: string): Promise<void>;\n addAIChatMessage(message: string): Promise<void>;\n /**\n * Returns a list of messages stored in the store.\n */\n getMessages(): Promise<BaseMessage[]>;\n /**\n * Add a message object to the store.\n * @param {BaseMessage} message Message to be added to the store\n */\n addMessage(message: BaseMessage): Promise<void>;\n /**\n * Add a list of messages object to the store.\n * @param {Array<BaseMessage>} messages List of messages to be added to the store\n */\n addMessages(messages: BaseMessage[]): Promise<void>;\n /**\n * Remove all messages from the store.\n */\n clear(): Promise<void>;\n}\n//# sourceMappingURL=chat_message_history.d.ts.map"],"mappings":";;;;;UAGiBG,+BAAAA;UACLD;EADKC,SAAAA,EAAAA,MAAAA;EAMIC,SAAAA,EAAAA,MAAAA;EAETF,UAAAA,EAAAA,MAAAA;;AAIcI,cANLF,0BAAAA,SAAmCJ,sBAAAA,CAM9BM;EAAWC,YAAAA,EAAAA,MAAAA,EAAAA;EAAWC,MAAAA,EAJpCN,cAIoCM;EAAcL,SAAAA,EAAAA,MAAAA;EAUhCD,SAAAA,EAAAA,MAAAA;EAAoFE,UAAAA,EAAAA,MAAAA;EAARK,WAAAA,CAAAA;IAAAA,MAAAA;IAAAA,SAAAA;IAAAA,SAAAA;IAAAA;EAAAA,CAAAA,EAV5CN,+BAU4CM;EACrEA;;;;;;;;;EAjBmBT,OAAAA,UAAAA,CAAAA,MAAAA,EAgB1BE,cAhB0BF,EAAAA,SAAAA,EAAAA,MAAAA,EAAAA,SAAAA,EAAAA,MAAAA,EAAAA,UAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAgBkDS,OAhBlDT,CAgB0DI,0BAhB1DJ,CAAAA;EAAsB,cAAA,CAAA,OAAA,EAAA,MAAA,CAAA,EAiBzCS,OAjByC,CAAA,IAAA,CAAA;qCAkBvCA;;;;iBAIpBA,QAAQR;;;;;sBAKHA,cAAcQ;;;;;wBAKZR,gBAAgBQ;;;;WAI7BA"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"chat_message_history.d.ts","names":["BaseChatMessageHistory","BaseMessage","PostgresEngine","PostgresChatMessageHistoryInput","PostgresChatMessageHistory","engine","sessionId","tableName","schemaName","Promise"],"sources":["../src/chat_message_history.d.ts"],"sourcesContent":["import { BaseChatMessageHistory } from \"@langchain/core/chat_history\";\nimport { BaseMessage } from \"@langchain/core/messages\";\nimport PostgresEngine from \"./engine.js\";\nexport interface PostgresChatMessageHistoryInput {\n engine: PostgresEngine;\n sessionId: string;\n tableName: string;\n schemaName: string;\n}\nexport declare class PostgresChatMessageHistory extends BaseChatMessageHistory {\n lc_namespace: string[];\n engine: PostgresEngine;\n sessionId: string;\n tableName: string;\n schemaName: string;\n constructor({ engine, sessionId, tableName, schemaName }: PostgresChatMessageHistoryInput);\n /**\n * Create a new PostgresChatMessageHistory instance.\n *\n * @param {PostgresEngine} engine Postgres engine instance to use.\n * @param {string} sessionId Retrieve the table content with this session ID.\n * @param {string} tableName Table name that stores that chat message history. Parameter is not escaped. Do not use with end user input.\n * @param {string} schemaName Schema name for the chat message history table. Default: \"public\". Parameter is not escaped. Do not use with end user input.\n * @returns PostgresChatMessageHistory instance.\n */\n static initialize(engine: PostgresEngine, sessionId: string, tableName: string, schemaName?: string): Promise<PostgresChatMessageHistory>;\n addUserMessage(message: string): Promise<void>;\n addAIChatMessage(message: string): Promise<void>;\n /**\n * Returns a list of messages stored in the store.\n */\n getMessages(): Promise<BaseMessage[]>;\n /**\n * Add a message object to the store.\n * @param {BaseMessage} message Message to be added to the store\n */\n addMessage(message: BaseMessage): Promise<void>;\n /**\n * Add a list of messages object to the store.\n * @param {Array<BaseMessage>} messages List of messages to be added to the store\n */\n addMessages(messages: BaseMessage[]): Promise<void>;\n /**\n * Remove all messages from the store.\n */\n clear(): Promise<void>;\n}\n//# sourceMappingURL=chat_message_history.d.ts.map"],"mappings":";;;;;UAGiBG,+BAAAA;UACLD;EADKC,SAAAA,EAAAA,MAAAA;EAMIC,SAAAA,EAAAA,MAAAA;EAETF,UAAAA,EAAAA,MAAAA;;AAIcI,cANLF,0BAAAA,SAAmCJ,sBAAAA,CAM9BM;EAAWC,YAAAA,EAAAA,MAAAA,EAAAA;EAAWC,MAAAA,EAJpCN,cAIoCM;EAAcL,SAAAA,EAAAA,MAAAA;EAUhCD,SAAAA,EAAAA,MAAAA;EAAoFE,UAAAA,EAAAA,MAAAA;EAARK,WAAAA,CAAAA;IAAAA,MAAAA;IAAAA,SAAAA;IAAAA,SAAAA;IAAAA;EAAAA,CAAAA,EAV5CN,+BAU4CM;EACrEA;;;;;;;;;EAjBmBT,OAAAA,UAAAA,CAAAA,MAAAA,EAgB1BE,cAhB0BF,EAAAA,SAAAA,EAAAA,MAAAA,EAAAA,SAAAA,EAAAA,MAAAA,EAAAA,UAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAgBkDS,OAhBlDT,CAgB0DI,0BAhB1DJ,CAAAA;EAAsB,cAAA,CAAA,OAAA,EAAA,MAAA,CAAA,EAiBzCS,OAjByC,CAAA,IAAA,CAAA;qCAkBvCA;;;;iBAIpBA,QAAQR;;;;;sBAKHA,cAAcQ;;;;;wBAKZR,gBAAgBQ;;;;WAI7BA"}
|
package/dist/engine.d.cts
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"engine.d.cts","names":["Connector","IpAddressTypes","knex","PostgresEngineArgs","VectorStoreTableArgs","Column","PostgresEngine","Knex","ipType","user","password","iamAccountEmail","Promise","StaticConnectionConfig","PoolConfig","schemaName","contentColumn","embeddingColumn","embeddingColumnType","metadataColumns","metadataJsonColumn","idColumn","overwriteExisting","storeMetadata","Raw","default"],"sources":["../src/engine.d.ts"],"sourcesContent":["import { Connector, IpAddressTypes } from \"@google-cloud/cloud-sql-connector\";\nimport knex from \"knex\";\nexport interface PostgresEngineArgs {\n ipType?: IpAddressTypes;\n user?: string;\n password?: string;\n iamAccountEmail?: string;\n}\nexport interface VectorStoreTableArgs {\n schemaName?: string;\n contentColumn?: string;\n embeddingColumn?: string;\n embeddingColumnType?: \"vector\" | \"halfvec\" | \"bit\" | \"sparsevec\";\n metadataColumns?: Column[];\n metadataJsonColumn?: string;\n idColumn?: string | Column;\n overwriteExisting?: boolean;\n storeMetadata?: boolean;\n}\nexport declare class Column {\n name: string;\n dataType: string;\n nullable: boolean;\n constructor(name: string, dataType: string, nullable?: boolean);\n private postInitilization;\n}\n/**\n * Cloud SQL shared connection pool\n *\n * Setup:\n * Install `@langchain/google-cloud-sql-pg`\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { Column, PostgresEngine, PostgresEngineArgs } from \"@langchain/google-cloud-sql-pg\";\n *\n * const pgArgs: PostgresEngineArgs = {\n * user: \"db-user\",\n * password: \"password\"\n *}\n *\n * const engine: PostgresEngine = await PostgresEngine.fromInstance(\n * \"project-id\",\n * \"region\",\n * \"instance-name\",\n * \"database-name\",\n * pgArgs\n * );\n * ```\n * </details>\n *\n * <br />\n *\n */\nexport declare class PostgresEngine {\n private static _createKey;\n pool: knex.Knex;\n static connector: Connector;\n constructor(key: symbol, pool: knex.Knex);\n /**\n * @param projectId Required - GCP Project ID\n * @param region Required - Postgres Instance Region\n * @param instance Required - Postgres Instance name\n * @param database Required - Database name\n * @param ipType Optional - IP address type. Defaults to IPAddressType.PUBLIC\n * @param user Optional - Postgres user name. Defaults to undefined\n * @param password Optional - Postgres user password. Defaults to undefined\n * @param iamAccountEmail Optional - IAM service account email. Defaults to undefined\n * @returns PostgresEngine instance\n */\n static fromInstance(projectId: string, region: string, instance: string, database: string, { ipType, user, password, iamAccountEmail }?: PostgresEngineArgs): Promise<PostgresEngine>;\n /**\n * Create a PostgresEngine instance from an Knex instance.\n *\n * @param engine knex instance\n * @returns PostgresEngine instance from a knex instance\n */\n static fromPool(engine: knex.Knex): Promise<PostgresEngine>;\n /**\n * Create a PostgresEngine instance from arguments.\n *\n * @param url URL use to connect to a database\n * @param poolConfig Optional - Configuration pool to use in the Knex configuration\n * @returns PostgresEngine instance\n */\n static fromConnectionString(url: string | knex.Knex.StaticConnectionConfig, poolConfig?: knex.Knex.PoolConfig): Promise<PostgresEngine>;\n /**\n * Create a table for saving of vectors to be used with PostgresVectorStore.\n *\n * @param tableName Postgres database table name. Parameter is not escaped. Do not use with end user input.\n * @param vectorSize Vector size for the embedding model to be used.\n * @param schemaName The schema name to store Postgres database table. Default: \"public\". Parameter is not escaped. Do not use with end user input.\n * @param contentColumn Name of the column to store document content. Default: \"content\".\n * @param embeddingColumn Name of the column to store vector embeddings. Default: \"embedding\".\n * @param embeddingColumnType Type of the embedding column (\"vector\" | \"halfvec\" | \"bit\" | \"sparsevec\"). Default: \"vector\". More info on HNSW-supported types: https://github.com/pgvector/pgvector#hnsw\n * @param metadataColumns Optional - A list of Columns to create for custom metadata. Default: [].\n * @param metadataJsonColumn Optional - The column to store extra metadata in JSON format. Default: \"langchain_metadata\".\n * @param idColumn Optional - Column to store ids. Default: \"langchain_id\" column name with data type UUID.\n * @param overwriteExisting Whether to drop existing table. Default: False.\n * @param storeMetadata Whether to store metadata in the table. Default: True.\n */\n initVectorstoreTable(tableName: string, vectorSize: number, { schemaName, contentColumn, embeddingColumn, embeddingColumnType, metadataColumns, metadataJsonColumn, idColumn, overwriteExisting, storeMetadata }?: VectorStoreTableArgs): Promise<void>;\n /**\n * Create a Cloud SQL table to store chat history.\n *\n * @param tableName Table name to store chat history\n * @param schemaName Schema name to store chat history table\n */\n initChatHistoryTable(tableName: string, schemaName?: string): Promise<void>;\n /**\n * Dispose of connection pool\n */\n closeConnection(): Promise<void>;\n testConnection(): knex.Knex.Raw<any>;\n}\nexport default PostgresEngine;\n//# sourceMappingURL=engine.d.ts.map"],"mappings":";;;;UAEiBG,kBAAAA;WACJF;EADIE,IAAAA,CAAAA,EAAAA,MAAAA;EAMAC,QAAAA,CAAAA,EAAAA,MAAAA;EAWIC,eAAM,CAAA,EAAA,MAAA;AAqC3B;AAEeE,UAlDEH,oBAAAA,CAkDFG;EACOP,UAAAA,CAAAA,EAAAA,MAAAA;EACaE,aAAKK,CAAAA,EAAAA,MAAAA;EAYyDC,eAAAA,CAAAA,EAAAA,MAAAA;EAAQC,mBAAAA,CAAAA,EAAAA,QAAAA,GAAAA,SAAAA,GAAAA,KAAAA,GAAAA,WAAAA;EAAMC,eAAAA,CAAAA,EA3DzFL,MA2DyFK,EAAAA;EAAUC,kBAAAA,CAAAA,EAAAA,MAAAA;EAAoBR,QAAAA,CAAAA,EAAAA,MAAAA,GAzDrHE,MAyDqHF;EAA6BG,iBAAAA,CAAAA,EAAAA,OAAAA;EAARM,aAAAA,CAAAA,EAAAA,OAAAA;;AAOlHN,cA5D3BD,MAAAA,CA4D2BC;EAARM,IAAAA,EAAAA,MAAAA;EAQMV,QAAUW,EAAAA,MAAAA;EAAqCX,QAAUY,EAAAA,OAAAA;EAAqBR,WAAAA,CAAAA,IAAAA,EAAAA,MAAAA,EAAAA,QAAAA,EAAAA,MAAAA,EAAAA,QAAAA,CAAAA,EAAAA,OAAAA;EAARM,QAAAA,iBAAAA;;;;;;;;;;;;;;;AA4BjF;;;;;;;;;;;;;;;;;cA3DdN,cAAAA;;QAEXJ,IAAAA,CAAKK;oBACOP;iCACaE,IAAAA,CAAKK;;;;;;;;;;;;;;;;;MAYqGJ,qBAAqBS,QAAQN;;;;;;;0BAO9IJ,IAAAA,CAAKK,OAAOK,QAAQN;;;;;;;;4CAQFJ,IAAAA,CAAKK,IAAAA,CAAKM,qCAAqCX,IAAAA,CAAKK,IAAAA,CAAKO,aAAaF,QAAQN;;;;;;;;;;;;;;;;;;;;;;;;;;MAgB2FF,uBAAuBQ;;;;;;;gEAO5KA;;;;qBAI3CA;oBACDV,IAAAA,CAAKK,IAAAA,CAAKiB"}
|
package/dist/engine.d.ts
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"engine.d.ts","names":["Connector","IpAddressTypes","knex","PostgresEngineArgs","VectorStoreTableArgs","Column","PostgresEngine","Knex","ipType","user","password","iamAccountEmail","Promise","StaticConnectionConfig","PoolConfig","schemaName","contentColumn","embeddingColumn","embeddingColumnType","metadataColumns","metadataJsonColumn","idColumn","overwriteExisting","storeMetadata","Raw","default"],"sources":["../src/engine.d.ts"],"sourcesContent":["import { Connector, IpAddressTypes } from \"@google-cloud/cloud-sql-connector\";\nimport knex from \"knex\";\nexport interface PostgresEngineArgs {\n ipType?: IpAddressTypes;\n user?: string;\n password?: string;\n iamAccountEmail?: string;\n}\nexport interface VectorStoreTableArgs {\n schemaName?: string;\n contentColumn?: string;\n embeddingColumn?: string;\n embeddingColumnType?: \"vector\" | \"halfvec\" | \"bit\" | \"sparsevec\";\n metadataColumns?: Column[];\n metadataJsonColumn?: string;\n idColumn?: string | Column;\n overwriteExisting?: boolean;\n storeMetadata?: boolean;\n}\nexport declare class Column {\n name: string;\n dataType: string;\n nullable: boolean;\n constructor(name: string, dataType: string, nullable?: boolean);\n private postInitilization;\n}\n/**\n * Cloud SQL shared connection pool\n *\n * Setup:\n * Install `@langchain/google-cloud-sql-pg`\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { Column, PostgresEngine, PostgresEngineArgs } from \"@langchain/google-cloud-sql-pg\";\n *\n * const pgArgs: PostgresEngineArgs = {\n * user: \"db-user\",\n * password: \"password\"\n *}\n *\n * const engine: PostgresEngine = await PostgresEngine.fromInstance(\n * \"project-id\",\n * \"region\",\n * \"instance-name\",\n * \"database-name\",\n * pgArgs\n * );\n * ```\n * </details>\n *\n * <br />\n *\n */\nexport declare class PostgresEngine {\n private static _createKey;\n pool: knex.Knex;\n static connector: Connector;\n constructor(key: symbol, pool: knex.Knex);\n /**\n * @param projectId Required - GCP Project ID\n * @param region Required - Postgres Instance Region\n * @param instance Required - Postgres Instance name\n * @param database Required - Database name\n * @param ipType Optional - IP address type. Defaults to IPAddressType.PUBLIC\n * @param user Optional - Postgres user name. Defaults to undefined\n * @param password Optional - Postgres user password. Defaults to undefined\n * @param iamAccountEmail Optional - IAM service account email. Defaults to undefined\n * @returns PostgresEngine instance\n */\n static fromInstance(projectId: string, region: string, instance: string, database: string, { ipType, user, password, iamAccountEmail }?: PostgresEngineArgs): Promise<PostgresEngine>;\n /**\n * Create a PostgresEngine instance from an Knex instance.\n *\n * @param engine knex instance\n * @returns PostgresEngine instance from a knex instance\n */\n static fromPool(engine: knex.Knex): Promise<PostgresEngine>;\n /**\n * Create a PostgresEngine instance from arguments.\n *\n * @param url URL use to connect to a database\n * @param poolConfig Optional - Configuration pool to use in the Knex configuration\n * @returns PostgresEngine instance\n */\n static fromConnectionString(url: string | knex.Knex.StaticConnectionConfig, poolConfig?: knex.Knex.PoolConfig): Promise<PostgresEngine>;\n /**\n * Create a table for saving of vectors to be used with PostgresVectorStore.\n *\n * @param tableName Postgres database table name. Parameter is not escaped. Do not use with end user input.\n * @param vectorSize Vector size for the embedding model to be used.\n * @param schemaName The schema name to store Postgres database table. Default: \"public\". Parameter is not escaped. Do not use with end user input.\n * @param contentColumn Name of the column to store document content. Default: \"content\".\n * @param embeddingColumn Name of the column to store vector embeddings. Default: \"embedding\".\n * @param embeddingColumnType Type of the embedding column (\"vector\" | \"halfvec\" | \"bit\" | \"sparsevec\"). Default: \"vector\". More info on HNSW-supported types: https://github.com/pgvector/pgvector#hnsw\n * @param metadataColumns Optional - A list of Columns to create for custom metadata. Default: [].\n * @param metadataJsonColumn Optional - The column to store extra metadata in JSON format. Default: \"langchain_metadata\".\n * @param idColumn Optional - Column to store ids. Default: \"langchain_id\" column name with data type UUID.\n * @param overwriteExisting Whether to drop existing table. Default: False.\n * @param storeMetadata Whether to store metadata in the table. Default: True.\n */\n initVectorstoreTable(tableName: string, vectorSize: number, { schemaName, contentColumn, embeddingColumn, embeddingColumnType, metadataColumns, metadataJsonColumn, idColumn, overwriteExisting, storeMetadata }?: VectorStoreTableArgs): Promise<void>;\n /**\n * Create a Cloud SQL table to store chat history.\n *\n * @param tableName Table name to store chat history\n * @param schemaName Schema name to store chat history table\n */\n initChatHistoryTable(tableName: string, schemaName?: string): Promise<void>;\n /**\n * Dispose of connection pool\n */\n closeConnection(): Promise<void>;\n testConnection(): knex.Knex.Raw<any>;\n}\nexport default PostgresEngine;\n//# sourceMappingURL=engine.d.ts.map"],"mappings":";;;;UAEiBG,kBAAAA;WACJF;EADIE,IAAAA,CAAAA,EAAAA,MAAAA;EAMAC,QAAAA,CAAAA,EAAAA,MAAAA;EAWIC,eAAM,CAAA,EAAA,MAAA;AAqC3B;AAEeE,UAlDEH,oBAAAA,CAkDFG;EACOP,UAAAA,CAAAA,EAAAA,MAAAA;EACaE,aAAKK,CAAAA,EAAAA,MAAAA;EAYyDC,eAAAA,CAAAA,EAAAA,MAAAA;EAAQC,mBAAAA,CAAAA,EAAAA,QAAAA,GAAAA,SAAAA,GAAAA,KAAAA,GAAAA,WAAAA;EAAMC,eAAAA,CAAAA,EA3DzFL,MA2DyFK,EAAAA;EAAUC,kBAAAA,CAAAA,EAAAA,MAAAA;EAAoBR,QAAAA,CAAAA,EAAAA,MAAAA,GAzDrHE,MAyDqHF;EAA6BG,iBAAAA,CAAAA,EAAAA,OAAAA;EAARM,aAAAA,CAAAA,EAAAA,OAAAA;;AAOlHN,cA5D3BD,MAAAA,CA4D2BC;EAARM,IAAAA,EAAAA,MAAAA;EAQMV,QAAUW,EAAAA,MAAAA;EAAqCX,QAAUY,EAAAA,OAAAA;EAAqBR,WAAAA,CAAAA,IAAAA,EAAAA,MAAAA,EAAAA,QAAAA,EAAAA,MAAAA,EAAAA,QAAAA,CAAAA,EAAAA,OAAAA;EAARM,QAAAA,iBAAAA;;;;;;;;;;;;;;;AA4BjF;;;;;;;;;;;;;;;;;cA3DdN,cAAAA;;QAEXJ,IAAAA,CAAKK;oBACOP;iCACaE,IAAAA,CAAKK;;;;;;;;;;;;;;;;;MAYqGJ,qBAAqBS,QAAQN;;;;;;;0BAO9IJ,IAAAA,CAAKK,OAAOK,QAAQN;;;;;;;;4CAQFJ,IAAAA,CAAKK,IAAAA,CAAKM,qCAAqCX,IAAAA,CAAKK,IAAAA,CAAKO,aAAaF,QAAQN;;;;;;;;;;;;;;;;;;;;;;;;;;MAgB2FF,uBAAuBQ;;;;;;;gEAO5KA;;;;qBAI3CA;oBACDV,IAAAA,CAAKK,IAAAA,CAAKiB"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"indexes.d.cts","names":["StrategyMixin","DistanceStrategy","DEFAULT_DISTANCE_STRATEGY","DEFAULT_INDEX_NAME_SUFFIX","BaseIndexArgs","BaseIndex","ExactNearestNeighbor","HNSWIndex","IVFFlatIndex","QueryOptions","HNSWQueryOptions","IVFFlatQueryOptions"],"sources":["../src/indexes.d.ts"],"sourcesContent":["declare class StrategyMixin {\n operator: string;\n searchFunction: string;\n indexFunction: string;\n constructor(operator: string, searchFunction: string, indexFunction: string);\n}\n/**\n * Enumerator of the Distance strategies.\n */\nexport declare class DistanceStrategy extends StrategyMixin {\n static EUCLIDEAN: StrategyMixin;\n static COSINE_DISTANCE: StrategyMixin;\n static INNER_PRODUCT: StrategyMixin;\n}\nexport declare const DEFAULT_DISTANCE_STRATEGY: StrategyMixin;\nexport declare const DEFAULT_INDEX_NAME_SUFFIX: string;\nexport interface BaseIndexArgs {\n name?: string;\n distanceStrategy?: DistanceStrategy;\n partialIndexes?: string[];\n}\nexport declare abstract class BaseIndex {\n name?: string;\n indexType: string;\n distanceStrategy: DistanceStrategy;\n partialIndexes?: string[];\n constructor(name?: string, indexType?: string, distanceStrategy?: DistanceStrategy, partialIndexes?: string[]);\n /**\n * Set index query options for vector store initialization.\n */\n abstract indexOptions(): string;\n}\nexport declare class ExactNearestNeighbor extends BaseIndex {\n constructor(baseArgs?: BaseIndexArgs);\n indexOptions(): string;\n}\nexport declare class HNSWIndex extends BaseIndex {\n m: number;\n efConstruction: number;\n constructor(baseArgs?: BaseIndexArgs, m?: number, efConstruction?: number);\n indexOptions(): string;\n}\nexport declare class IVFFlatIndex extends BaseIndex {\n lists: number;\n constructor(baseArgs: BaseIndexArgs, lists?: number);\n indexOptions(): string;\n}\n/**\n * Convert index attributes to string.\n * Must be implemented by subclasses.\n */\nexport declare abstract class QueryOptions {\n abstract to_string(): string;\n}\nexport declare class HNSWQueryOptions extends QueryOptions {\n efSearch: number;\n constructor(efSearch?: number);\n to_string(): string;\n}\nexport declare class IVFFlatQueryOptions extends QueryOptions {\n readonly probes: number;\n constructor(probes?: number);\n to_string(): string;\n}\nexport {};\n//# sourceMappingURL=indexes.d.ts.map"],"mappings":";cAAcA,aAAAA;EAAAA,QAAAA,EAAAA,MAAa;EASNC,cAAAA,EAAAA,MAAgB;EACfD,aAAAA,EAAAA,MAAAA;EACMA,WAAAA,CAAAA,QAAAA,EAAAA,MAAAA,EAAAA,cAAAA,EAAAA,MAAAA,EAAAA,aAAAA,EAAAA,MAAAA;;;AAF+B;AAK3D;AACqBG,cANAF,gBAAAA,SAAyBD,aAAAA,CAMQ;EACrCI,OAAAA,SAAa,EANRJ,aAQCC;EAGOI,OAAAA,eAAS,EAVXL,aAaNC;EAQDK,OAAAA,aAAAA,EApBKN,aAqBCI;AAG3B;AAMqBI,cA5BAN,yBA4BqBG,EA5BML,aA4BG;AASrBS,cApCTN,yBAoCqB,EAAA,MAAA;AAGrBO,UAtCJN,aAAAA,CAsCoB;EAKhBO,IAAAA,CAAAA,EAAAA,MAAAA;qBAzCEV;;;uBAGOI,SAAAA;;;oBAGRJ;;oEAEgDA;;;;;;cAMjDK,oBAAAA,SAA6BD,SAAS;yBAChCD;;;cAGNG,SAAAA,SAAkBF,SAAS;;;yBAGrBD;;;cAGNI,YAAAA,SAAqBH,SAAS;;wBAEzBD;;;;;;;uBAOIK,YAAAA;;;cAGTC,gBAAAA,SAAyBD,YAAY;;;;;cAKrCE,mBAAAA,SAA4BF,YAAY"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"indexes.d.ts","names":["StrategyMixin","DistanceStrategy","DEFAULT_DISTANCE_STRATEGY","DEFAULT_INDEX_NAME_SUFFIX","BaseIndexArgs","BaseIndex","ExactNearestNeighbor","HNSWIndex","IVFFlatIndex","QueryOptions","HNSWQueryOptions","IVFFlatQueryOptions"],"sources":["../src/indexes.d.ts"],"sourcesContent":["declare class StrategyMixin {\n operator: string;\n searchFunction: string;\n indexFunction: string;\n constructor(operator: string, searchFunction: string, indexFunction: string);\n}\n/**\n * Enumerator of the Distance strategies.\n */\nexport declare class DistanceStrategy extends StrategyMixin {\n static EUCLIDEAN: StrategyMixin;\n static COSINE_DISTANCE: StrategyMixin;\n static INNER_PRODUCT: StrategyMixin;\n}\nexport declare const DEFAULT_DISTANCE_STRATEGY: StrategyMixin;\nexport declare const DEFAULT_INDEX_NAME_SUFFIX: string;\nexport interface BaseIndexArgs {\n name?: string;\n distanceStrategy?: DistanceStrategy;\n partialIndexes?: string[];\n}\nexport declare abstract class BaseIndex {\n name?: string;\n indexType: string;\n distanceStrategy: DistanceStrategy;\n partialIndexes?: string[];\n constructor(name?: string, indexType?: string, distanceStrategy?: DistanceStrategy, partialIndexes?: string[]);\n /**\n * Set index query options for vector store initialization.\n */\n abstract indexOptions(): string;\n}\nexport declare class ExactNearestNeighbor extends BaseIndex {\n constructor(baseArgs?: BaseIndexArgs);\n indexOptions(): string;\n}\nexport declare class HNSWIndex extends BaseIndex {\n m: number;\n efConstruction: number;\n constructor(baseArgs?: BaseIndexArgs, m?: number, efConstruction?: number);\n indexOptions(): string;\n}\nexport declare class IVFFlatIndex extends BaseIndex {\n lists: number;\n constructor(baseArgs: BaseIndexArgs, lists?: number);\n indexOptions(): string;\n}\n/**\n * Convert index attributes to string.\n * Must be implemented by subclasses.\n */\nexport declare abstract class QueryOptions {\n abstract to_string(): string;\n}\nexport declare class HNSWQueryOptions extends QueryOptions {\n efSearch: number;\n constructor(efSearch?: number);\n to_string(): string;\n}\nexport declare class IVFFlatQueryOptions extends QueryOptions {\n readonly probes: number;\n constructor(probes?: number);\n to_string(): string;\n}\nexport {};\n//# sourceMappingURL=indexes.d.ts.map"],"mappings":";cAAcA,aAAAA;EAAAA,QAAAA,EAAAA,MAAa;EASNC,cAAAA,EAAAA,MAAgB;EACfD,aAAAA,EAAAA,MAAAA;EACMA,WAAAA,CAAAA,QAAAA,EAAAA,MAAAA,EAAAA,cAAAA,EAAAA,MAAAA,EAAAA,aAAAA,EAAAA,MAAAA;;;AAF+B;AAK3D;AACqBG,cANAF,gBAAAA,SAAyBD,aAAAA,CAMQ;EACrCI,OAAAA,SAAa,EANRJ,aAQCC;EAGOI,OAAAA,eAAS,EAVXL,aAaNC;EAQDK,OAAAA,aAAAA,EApBKN,aAqBCI;AAG3B;AAMqBI,cA5BAN,yBA4BqBG,EA5BML,aA4BG;AASrBS,cApCTN,yBAoCqB,EAAA,MAAA;AAGrBO,UAtCJN,aAAAA,CAsCoB;EAKhBO,IAAAA,CAAAA,EAAAA,MAAAA;qBAzCEV;;;uBAGOI,SAAAA;;;oBAGRJ;;oEAEgDA;;;;;;cAMjDK,oBAAAA,SAA6BD,SAAS;yBAChCD;;;cAGNG,SAAAA,SAAkBF,SAAS;;;yBAGrBD;;;cAGNI,YAAAA,SAAqBH,SAAS;;wBAEzBD;;;;;;;uBAOIK,YAAAA;;;cAGTC,gBAAAA,SAAyBD,YAAY;;;;;cAKrCE,mBAAAA,SAA4BF,YAAY"}
|
package/dist/loader.d.cts
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"loader.d.cts","names":["Document","BaseDocumentLoader","PostgresEngine","Row","PostgresLoaderOptions","PostgresLoader","schemaName","tableName","contentColumns","metadataColumns","format","query","formatter","metadataJsonColumn","Promise","AsyncGenerator"],"sources":["../src/loader.d.ts"],"sourcesContent":["import { Document } from \"@langchain/core/documents\";\nimport { BaseDocumentLoader } from \"@langchain/core/document_loaders/base\";\nimport PostgresEngine from \"./engine.js\";\ntype Row = {\n [key: string]: string;\n};\nexport interface PostgresLoaderOptions {\n tableName?: string;\n schemaName?: string;\n contentColumns?: string[];\n metadataColumns?: string[];\n format?: \"text\" | \"json\" | \"yaml\" | \"csv\";\n formatter?: (row: Row, contentColumns: string[]) => string;\n query?: string;\n metadataJsonColumn?: string | null;\n}\n/**\n * Google Cloud SQL for PostgreSQL vector store integration.\n *\n * Setup:\n * Install`@langchain/google-cloud-sql-pg`\n *\n * ```bash\n * npm install @langchain/google-cloud-sql-pg\n * ```\n *\n * <details open >\n * <summary><strong>Use with Table Name < /strong></summary >\n *\n * ```typescript\n * import { PostgresEngine, PostgresLoader } from \"@langchain/google-cloud-sql-pg\";\n *\n * const documentLoaderArgs: PostgresLoaderOptions = {\n * tableName: \"test_table_custom\",\n * contentColumns: [ \"fruit_name\", \"variety\"],\n * metadataColumns: [\"fruit_id\", \"quantity_in_stock\", \"price_per_unit\", \"organic\"],\n * format: \"text\"\n * };\n *\n * const documentLoaderInstance = await PostgresLoader.initialize(PEInstance, documentLoaderArgs);\n *\n * const documents = await documentLoaderInstance.load();\n * ```\n * </details>\n *\n * <br />\n *\n * <details open >\n * <summary><strong>Use with Query < /strong></summary >\n *\n * ```typescript\n * import { PostgresEngine, PostgresLoader } from \"@langchain/google-cloud-sql-pg\";\n *\n * const documentLoaderArgs: PostgresLoaderOptions = {\n * query: \"SELECT * FROM my_table WHERE organic = true;\",\n * contentColumns: [ \"fruit_name\", \"variety\"],\n * metadataColumns: [\"fruit_id\", \"quantity_in_stock\", \"price_per_unit\", \"organic\"],\n * format: \"text\"\n * };\n *\n * const documentLoaderInstance = await PostgresLoader.initialize(PEInstance, documentLoaderArgs);\n *\n * for await (const doc of documentLoaderInstance.lazyLoad()) {\n * console.log(doc);\n * break; // break based on required condition\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class PostgresLoader extends BaseDocumentLoader {\n private engine;\n tableName?: string;\n schemaName?: string;\n contentColumns?: string[];\n metadataColumns?: string[];\n format?: \"text\" | \"json\" | \"yaml\" | \"csv\";\n formatter?: (row: Row, contentColumns: string[]) => string;\n query?: string;\n metadataJsonColumn?: string | null;\n constructor(engine: PostgresEngine, options: PostgresLoaderOptions);\n static initialize(engine: PostgresEngine, { schemaName, tableName, contentColumns, metadataColumns, format, query, formatter, metadataJsonColumn }: PostgresLoaderOptions): Promise<PostgresLoader>;\n load(): Promise<Document[]>;\n lazyLoad(): AsyncGenerator<Document>;\n}\nexport {};\n//# sourceMappingURL=loader.d.ts.map"],"mappings":";;;;;KAGKG,GAAAA;;AADoC,CAAA;AAIxBC,UAAAA,qBAAAA,CAAqB;EAiEjBC,SAAAA,CAAAA,EAAAA,MAAc;EAObF,UAAAA,CAAAA,EAAAA,MAAAA;EAGED,cAAAA,CAAAA,EAAAA,MAAAA,EAAAA;EAAyBE,eAAAA,CAAAA,EAAAA,MAAAA,EAAAA;EACnBF,MAAAA,CAAAA,EAAAA,MAAAA,GAAAA,MAAAA,GAAAA,MAAAA,GAAAA,KAAAA;EAAkBI,SAAAA,CAAAA,EAAAA,CAAAA,GAAAA,EAtE1BH,GAsE0BG,EAAAA,cAAAA,EAAAA,MAAAA,EAAAA,EAAAA,GAAAA,MAAAA;EAAYC,KAAAA,CAAAA,EAAAA,MAAAA;EAAWC,kBAAAA,CAAAA,EAAAA,MAAAA,GAAAA,IAAAA;;;;;;;;;;;;;;AAXT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cAAzCH,cAAAA,SAAuBJ,kBAAAA;;;;;;;oBAOtBE;;;sBAGED,yBAAyBE;4BACnBF;;;;;;;;;KAA0HE,wBAAwBU,QAAQT;UAC5KS,QAAQd;cACJe,eAAef"}
|
package/dist/loader.d.ts
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"loader.d.ts","names":["Document","BaseDocumentLoader","PostgresEngine","Row","PostgresLoaderOptions","PostgresLoader","schemaName","tableName","contentColumns","metadataColumns","format","query","formatter","metadataJsonColumn","Promise","AsyncGenerator"],"sources":["../src/loader.d.ts"],"sourcesContent":["import { Document } from \"@langchain/core/documents\";\nimport { BaseDocumentLoader } from \"@langchain/core/document_loaders/base\";\nimport PostgresEngine from \"./engine.js\";\ntype Row = {\n [key: string]: string;\n};\nexport interface PostgresLoaderOptions {\n tableName?: string;\n schemaName?: string;\n contentColumns?: string[];\n metadataColumns?: string[];\n format?: \"text\" | \"json\" | \"yaml\" | \"csv\";\n formatter?: (row: Row, contentColumns: string[]) => string;\n query?: string;\n metadataJsonColumn?: string | null;\n}\n/**\n * Google Cloud SQL for PostgreSQL vector store integration.\n *\n * Setup:\n * Install`@langchain/google-cloud-sql-pg`\n *\n * ```bash\n * npm install @langchain/google-cloud-sql-pg\n * ```\n *\n * <details open >\n * <summary><strong>Use with Table Name < /strong></summary >\n *\n * ```typescript\n * import { PostgresEngine, PostgresLoader } from \"@langchain/google-cloud-sql-pg\";\n *\n * const documentLoaderArgs: PostgresLoaderOptions = {\n * tableName: \"test_table_custom\",\n * contentColumns: [ \"fruit_name\", \"variety\"],\n * metadataColumns: [\"fruit_id\", \"quantity_in_stock\", \"price_per_unit\", \"organic\"],\n * format: \"text\"\n * };\n *\n * const documentLoaderInstance = await PostgresLoader.initialize(PEInstance, documentLoaderArgs);\n *\n * const documents = await documentLoaderInstance.load();\n * ```\n * </details>\n *\n * <br />\n *\n * <details open >\n * <summary><strong>Use with Query < /strong></summary >\n *\n * ```typescript\n * import { PostgresEngine, PostgresLoader } from \"@langchain/google-cloud-sql-pg\";\n *\n * const documentLoaderArgs: PostgresLoaderOptions = {\n * query: \"SELECT * FROM my_table WHERE organic = true;\",\n * contentColumns: [ \"fruit_name\", \"variety\"],\n * metadataColumns: [\"fruit_id\", \"quantity_in_stock\", \"price_per_unit\", \"organic\"],\n * format: \"text\"\n * };\n *\n * const documentLoaderInstance = await PostgresLoader.initialize(PEInstance, documentLoaderArgs);\n *\n * for await (const doc of documentLoaderInstance.lazyLoad()) {\n * console.log(doc);\n * break; // break based on required condition\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class PostgresLoader extends BaseDocumentLoader {\n private engine;\n tableName?: string;\n schemaName?: string;\n contentColumns?: string[];\n metadataColumns?: string[];\n format?: \"text\" | \"json\" | \"yaml\" | \"csv\";\n formatter?: (row: Row, contentColumns: string[]) => string;\n query?: string;\n metadataJsonColumn?: string | null;\n constructor(engine: PostgresEngine, options: PostgresLoaderOptions);\n static initialize(engine: PostgresEngine, { schemaName, tableName, contentColumns, metadataColumns, format, query, formatter, metadataJsonColumn }: PostgresLoaderOptions): Promise<PostgresLoader>;\n load(): Promise<Document[]>;\n lazyLoad(): AsyncGenerator<Document>;\n}\nexport {};\n//# sourceMappingURL=loader.d.ts.map"],"mappings":";;;;;KAGKG,GAAAA;;AADoC,CAAA;AAIxBC,UAAAA,qBAAAA,CAAqB;EAiEjBC,SAAAA,CAAAA,EAAAA,MAAc;EAObF,UAAAA,CAAAA,EAAAA,MAAAA;EAGED,cAAAA,CAAAA,EAAAA,MAAAA,EAAAA;EAAyBE,eAAAA,CAAAA,EAAAA,MAAAA,EAAAA;EACnBF,MAAAA,CAAAA,EAAAA,MAAAA,GAAAA,MAAAA,GAAAA,MAAAA,GAAAA,KAAAA;EAAkBI,SAAAA,CAAAA,EAAAA,CAAAA,GAAAA,EAtE1BH,GAsE0BG,EAAAA,cAAAA,EAAAA,MAAAA,EAAAA,EAAAA,GAAAA,MAAAA;EAAYC,KAAAA,CAAAA,EAAAA,MAAAA;EAAWC,kBAAAA,CAAAA,EAAAA,MAAAA,GAAAA,IAAAA;;;;;;;;;;;;;;AAXT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cAAzCH,cAAAA,SAAuBJ,kBAAAA;;;;;;;oBAOtBE;;;sBAGED,yBAAyBE;4BACnBF;;;;;;;;;KAA0HE,wBAAwBU,QAAQT;UAC5KS,QAAQd;cACJe,eAAef"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"vectorstore.d.cts","names":["EmbeddingsInterface","MaxMarginalRelevanceSearchOptions","VectorStore","Document","BaseIndex","DistanceStrategy","QueryOptions","PostgresEngine","PostgresVectorStoreArgs","Array","dbConfigArgs","VSArgs","PostgresVectorStore","schemaName","contentColumn","embeddingColumn","metadataColumns","ignoreMetadataColumns","idColumn","metadataJsonColumn","distanceStrategy","k","fetchK","lambdaMult","indexQueryOptions","Promise","default"],"sources":["../src/vectorstore.d.ts"],"sourcesContent":["import { EmbeddingsInterface } from \"@langchain/core/embeddings\";\nimport { MaxMarginalRelevanceSearchOptions, VectorStore } from \"@langchain/core/vectorstores\";\nimport { Document } from \"@langchain/core/documents\";\nimport { BaseIndex, DistanceStrategy, QueryOptions } from \"./indexes.js\";\nimport PostgresEngine from \"./engine.js\";\nexport interface PostgresVectorStoreArgs {\n schemaName?: string;\n contentColumn?: string;\n embeddingColumn?: string;\n metadataColumns?: Array<string>;\n idColumn?: string;\n distanceStrategy?: DistanceStrategy;\n k?: number;\n fetchK?: number;\n lambdaMult?: number;\n ignoreMetadataColumns?: Array<string>;\n metadataJsonColumn?: string;\n indexQueryOptions?: QueryOptions;\n}\nexport interface dbConfigArgs {\n engine: PostgresEngine;\n tableName: string;\n dbConfig?: PostgresVectorStoreArgs;\n}\ninterface VSArgs {\n engine: PostgresEngine;\n tableName: string;\n schemaName: string;\n contentColumn: string;\n embeddingColumn: string;\n metadataColumns: Array<string>;\n idColumn: string;\n distanceStrategy: DistanceStrategy;\n k: number;\n fetchK: number;\n lambdaMult: number;\n metadataJsonColumn: string;\n indexQueryOptions?: QueryOptions;\n}\n/**\n * Google Cloud SQL for PostgreSQL vector store integration.\n *\n * Setup:\n * Install `@langchain/google-cloud-sql-pg`\n *\n * ```bash\n * npm install @langchain/google-cloud-sql-pg\n * ```\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { Column, PostgresEngine, PostgresEngineArgs, PostgresVectorStore, VectorStoreTableArgs } from \"@langchain/google-cloud-sql-pg\";\n * // Or other embeddings\n * import { OpenAIEmbeddings } from '@langchain/openai';\n *\n *\n * const embeddings = new OpenAIEmbeddings({\n * model: \"text-embedding-3-small\",\n * });\n *\n * const pgArgs: PostgresEngineArgs = {\n * user: \"db-user\",\n * password: \"password\"\n * }\n * // Create a shared connection pool\n * const engine: PostgresEngine = await PostgresEngine.fromInstance(\n * \"project-id\",\n * \"region\",\n * \"instance-name\",\n * \"database-name\",\n * pgArgs\n * );\n * // (Optional) Specify metadata columns for filtering\n * // All other metadata will be added to JSON\n * const vectorStoreTableArgs: VectorStoreTableArgs = {\n * metadataColumns: [new Column(\"baz\", \"TEXT\")],\n * };\n * // Create a vector store table\n * await engine.initVectorstoreTable(\"my-table\", 768, vectorStoreTableArgs);\n * // Customize the vector store\n * const pvectorArgs: PostgresVectorStoreArgs = {\n * idColumn: \"ID_COLUMN\",\n * contentColumn: \"CONTENT_COLUMN\",\n * embeddingColumn: \"EMBEDDING_COLUMN\",\n * metadataColumns: [\"baz\"]\n * }\n *\n * const vectorStore = await PostgresVectorStore.initialize(engine, embeddingService, \"my-table\", pvectorArgs);\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Add documents</strong></summary>\n *\n * ```typescript\n * import type { Document } from '@langchain/core/documents';\n *\n * const document1 = { pageContent: \"foo\", metadata: { baz: \"bar\" } };\n * const document2 = { pageContent: \"thud\", metadata: { bar: \"baz\" } };\n * const document3 = { pageContent: \"i will be deleted :(\", metadata: {} };\n *\n * const documents: Document[] = [document1, document2, document3];\n * const ids = [\"1\", \"2\", \"3\"];\n * await vectorStore.addDocuments(documents, { ids });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Delete documents</strong></summary>\n *\n * ```typescript\n * await vectorStore.delete({ ids: [\"3\"] });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Similarity search</strong></summary>\n *\n * ```typescript\n * const results = await vectorStore.similaritySearch(\"thud\", 1);\n * for (const doc of results) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:thud [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with filter</strong></summary>\n *\n * ```typescript\n * const resultsWithFilter = await vectorStore.similaritySearch(\"thud\", 1, \"baz = 'bar'\");\n *\n * for (const doc of resultsWithFilter) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:foo [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with score</strong></summary>\n *\n * ```typescript\n * const resultsWithScore = await vectorStore.similaritySearchWithScore(\"qux\", 1);\n * for (const [doc, score] of resultsWithScore) {\n * console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:[SIM=0.000000] qux [{\"bar\":\"baz\",\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>As a retriever</strong></summary>\n *\n * ```typescript\n * const retriever = vectorStore.asRetriever({\n * searchType: \"mmr\", // Leave blank for standard similarity search\n * k: 1,\n * });\n * const resultAsRetriever = await retriever.invoke(\"thud\");\n * console.log(resultAsRetriever);\n *\n * // Output: [Document({ metadata: { \"baz\":\"bar\" }, pageContent: \"thud\" })]\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class PostgresVectorStore extends VectorStore {\n FilterType: string;\n engine: PostgresEngine;\n embeddings: EmbeddingsInterface;\n tableName: string;\n schemaName: string;\n contentColumn: string;\n embeddingColumn: string;\n metadataColumns: Array<string>;\n idColumn: string;\n metadataJsonColumn: string;\n distanceStrategy: DistanceStrategy;\n k: number;\n fetchK: number;\n lambdaMult: number;\n indexQueryOptions: QueryOptions | undefined;\n /**\n * Initializes a new vector store with embeddings and database configuration.\n *\n * @param embeddings - Instance of `EmbeddingsInterface` used to embed queries.\n * @param dbConfig - Configuration settings for the database or storage system.\n */\n constructor(embeddings: EmbeddingsInterface, dbConfig: VSArgs);\n /**\n * Create a new PostgresVectorStore instance.\n * @param {PostgresEngine} engine Required - Connection pool engine for managing connections to Cloud SQL for PostgreSQL database.\n * @param {Embeddings} embeddings Required - Text embedding model to use.\n * @param {string} tableName Required - Name of an existing table or table to be created.\n * @param {string} schemaName Database schema name of the table. Defaults to \"public\".\n * @param {string} contentColumn Column that represent a Document's page_content. Defaults to \"content\".\n * @param {string} embeddingColumn Column for embedding vectors. The embedding is generated from the document value. Defaults to \"embedding\".\n * @param {Array<string>} metadataColumns Column(s) that represent a document's metadata.\n * @param {Array<string>} ignoreMetadataColumns Optional - Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns.\n * @param {string} idColumn Column that represents the Document's id. Defaults to \"langchain_id\".\n * @param {string} metadataJsonColumn Optional - Column to store metadata as JSON. Defaults to \"langchain_metadata\".\n * @param {DistanceStrategy} distanceStrategy Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE.\n * @param {number} k Number of Documents to return from search. Defaults to 4.\n * @param {number} fetchK Number of Documents to fetch to pass to MMR algorithm.\n * @param {number} lambdaMult Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.\n * @param {QueryOptions} indexQueryOptions Optional - Index query option.\n * @returns PostgresVectorStore instance.\n */\n static initialize(engine: PostgresEngine, embeddings: EmbeddingsInterface, tableName: string, { schemaName, contentColumn, embeddingColumn, metadataColumns, ignoreMetadataColumns, idColumn, metadataJsonColumn, distanceStrategy, k, fetchK, lambdaMult, indexQueryOptions }?: PostgresVectorStoreArgs): Promise<PostgresVectorStore>;\n static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;\n static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;\n addVectors(vectors: number[][], documents: Document[], options?: {\n ids?: string[];\n }): Promise<string[] | void>;\n _vectorstoreType(): string;\n /**\n * Adds documents to the vector store, embedding them first through the\n * `embeddings` instance.\n *\n * @param documents - Array of documents to embed and add.\n * @param options - Optional configuration for embedding and storing documents.\n * @returns A promise resolving to an array of document IDs or void, based on implementation.\n * @abstract\n */\n addDocuments(documents: Document[], options?: {\n ids?: string[];\n }): Promise<string[] | void>;\n /**\n * Deletes documents from the vector store based on the specified ids.\n *\n * @param params - Flexible key-value pairs defining conditions for document deletion.\n * @param ids - Optional: Property of {params} that contains the array of ids to be deleted\n * @returns A promise that resolves once the deletion is complete.\n */\n delete(params: {\n ids?: string[];\n }): Promise<void>;\n similaritySearchVectorWithScore(embedding: number[], k: number, filter?: this[\"FilterType\"]): Promise<[Document, number][]>;\n private queryCollection;\n maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this[\"FilterType\"]>): Promise<Document[]>;\n /**\n * Create an index on the vector store table\n * @param {BaseIndex} index\n * @param {string} name Optional\n * @param {boolean} concurrently Optional\n */\n applyVectorIndex(index: BaseIndex, name?: string, concurrently?: boolean): Promise<void>;\n /**\n * Check if index exists in the table.\n * @param {string} indexName Optional - index name\n */\n isValidIndex(indexName?: string): Promise<boolean>;\n /**\n * Drop the vector index\n * @param {string} indexName Optional - index name\n */\n dropVectorIndex(indexName?: string): Promise<void>;\n /**\n * Re-index the vector store table\n * @param {string} indexName Optional - index name\n */\n reIndex(indexName?: string): Promise<void>;\n}\nexport default PostgresVectorStore;\n//# sourceMappingURL=vectorstore.d.ts.map"],"mappings":";;;;;;;UAKiBQ,uBAAAA;;EAAAA,aAAAA,CAAAA,EAAAA,MAAAA;EAIKC,eAAAA,CAAAA,EAAAA,MAAAA;EAECJ,eAAAA,CAAAA,EAFDI,KAECJ,CAAAA,MAAAA,CAAAA;EAIKI,QAAAA,CAAAA,EAAAA,MAAAA;EAEJH,gBAAAA,CAAAA,EANDD,gBAMCC;EAAY,CAAA,CAAA,EAAA,MAAA;EAEnBI,MAAAA,CAAAA,EAAAA,MAAY;EAKnBC,UAAM,CAAA,EAAA,MAAA;EACJJ,qBAAAA,CAAAA,EAVgBE,KAUhBF,CAAAA,MAAAA,CAAAA;EAKSE,kBAAAA,CAAAA,EAAAA,MAAAA;EAECJ,iBAAAA,CAAAA,EAfEC,YAeFD;;AAKc,UAlBnBK,YAAAA,CAkBmB;EAoJfE,MAAAA,EArKTL,cAqK4B;EAE5BA,SAAAA,EAAAA,MAAAA;EACIP,QAAAA,CAAAA,EAtKDQ,uBAsKCR;;UApKNW,MAAAA,CA4KYN;EAICC,MAAAA,EA/KXC,cA+KWD;EAOKN,SAAAA,EAAAA,MAAAA;EAA+BW,UAAAA,EAAAA,MAAAA;EAoB7BJ,aAAAA,EAAAA,MAAAA;EAA4BP,eAAAA,EAAAA,MAAAA;EAA0Ca,eAAAA,EArM/EJ,KAqM+EI,CAAAA,MAAAA,CAAAA;EAAYC,QAAAA,EAAAA,MAAAA;EAAeC,gBAAAA,EAnMzGV,gBAmMyGU;EAAiBC,CAAAA,EAAAA,MAAAA;EAAiBC,MAAAA,EAAAA,MAAAA;EAAuBC,UAAAA,EAAAA,MAAAA;EAAUC,kBAAAA,EAAAA,MAAAA;EAAoBC,iBAAAA,CAAAA,EA9L9Ld,YA8L8Lc;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AA1C1J;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cAAvCR,mBAAAA,SAA4BV,WAAAA;;UAErCK;cACIP;;;;;mBAKKS;;;oBAGCJ;;;;qBAICC;;;;;;;0BAOKN,+BAA+BW;;;;;;;;;;;;;;;;;;;;4BAoB7BJ,4BAA4BP;;;;;;;;;;;;;MAA2NQ,0BAA0BiB,QAAQb;8EACvOZ,+BAA+BU,eAAee,QAAQvB;6BACvGC,wBAAwBH,+BAA+BU,eAAee,QAAQvB;6CAC9DC;;MAEvCsB;;;;;;;;;;;0BAWoBtB;;MAEpBsB;;;;;;;;;;MAUAA;gGAC0FA,SAAStB;;qDAEpDF,wDAAwDwB,QAAQtB;;;;;;;0BAO3FC,mDAAmDqB;;;;;oCAKzCA;;;;;uCAKGA;;;;;+BAKRA"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"vectorstore.d.ts","names":["EmbeddingsInterface","MaxMarginalRelevanceSearchOptions","VectorStore","Document","BaseIndex","DistanceStrategy","QueryOptions","PostgresEngine","PostgresVectorStoreArgs","Array","dbConfigArgs","VSArgs","PostgresVectorStore","schemaName","contentColumn","embeddingColumn","metadataColumns","ignoreMetadataColumns","idColumn","metadataJsonColumn","distanceStrategy","k","fetchK","lambdaMult","indexQueryOptions","Promise","default"],"sources":["../src/vectorstore.d.ts"],"sourcesContent":["import { EmbeddingsInterface } from \"@langchain/core/embeddings\";\nimport { MaxMarginalRelevanceSearchOptions, VectorStore } from \"@langchain/core/vectorstores\";\nimport { Document } from \"@langchain/core/documents\";\nimport { BaseIndex, DistanceStrategy, QueryOptions } from \"./indexes.js\";\nimport PostgresEngine from \"./engine.js\";\nexport interface PostgresVectorStoreArgs {\n schemaName?: string;\n contentColumn?: string;\n embeddingColumn?: string;\n metadataColumns?: Array<string>;\n idColumn?: string;\n distanceStrategy?: DistanceStrategy;\n k?: number;\n fetchK?: number;\n lambdaMult?: number;\n ignoreMetadataColumns?: Array<string>;\n metadataJsonColumn?: string;\n indexQueryOptions?: QueryOptions;\n}\nexport interface dbConfigArgs {\n engine: PostgresEngine;\n tableName: string;\n dbConfig?: PostgresVectorStoreArgs;\n}\ninterface VSArgs {\n engine: PostgresEngine;\n tableName: string;\n schemaName: string;\n contentColumn: string;\n embeddingColumn: string;\n metadataColumns: Array<string>;\n idColumn: string;\n distanceStrategy: DistanceStrategy;\n k: number;\n fetchK: number;\n lambdaMult: number;\n metadataJsonColumn: string;\n indexQueryOptions?: QueryOptions;\n}\n/**\n * Google Cloud SQL for PostgreSQL vector store integration.\n *\n * Setup:\n * Install `@langchain/google-cloud-sql-pg`\n *\n * ```bash\n * npm install @langchain/google-cloud-sql-pg\n * ```\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { Column, PostgresEngine, PostgresEngineArgs, PostgresVectorStore, VectorStoreTableArgs } from \"@langchain/google-cloud-sql-pg\";\n * // Or other embeddings\n * import { OpenAIEmbeddings } from '@langchain/openai';\n *\n *\n * const embeddings = new OpenAIEmbeddings({\n * model: \"text-embedding-3-small\",\n * });\n *\n * const pgArgs: PostgresEngineArgs = {\n * user: \"db-user\",\n * password: \"password\"\n * }\n * // Create a shared connection pool\n * const engine: PostgresEngine = await PostgresEngine.fromInstance(\n * \"project-id\",\n * \"region\",\n * \"instance-name\",\n * \"database-name\",\n * pgArgs\n * );\n * // (Optional) Specify metadata columns for filtering\n * // All other metadata will be added to JSON\n * const vectorStoreTableArgs: VectorStoreTableArgs = {\n * metadataColumns: [new Column(\"baz\", \"TEXT\")],\n * };\n * // Create a vector store table\n * await engine.initVectorstoreTable(\"my-table\", 768, vectorStoreTableArgs);\n * // Customize the vector store\n * const pvectorArgs: PostgresVectorStoreArgs = {\n * idColumn: \"ID_COLUMN\",\n * contentColumn: \"CONTENT_COLUMN\",\n * embeddingColumn: \"EMBEDDING_COLUMN\",\n * metadataColumns: [\"baz\"]\n * }\n *\n * const vectorStore = await PostgresVectorStore.initialize(engine, embeddingService, \"my-table\", pvectorArgs);\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Add documents</strong></summary>\n *\n * ```typescript\n * import type { Document } from '@langchain/core/documents';\n *\n * const document1 = { pageContent: \"foo\", metadata: { baz: \"bar\" } };\n * const document2 = { pageContent: \"thud\", metadata: { bar: \"baz\" } };\n * const document3 = { pageContent: \"i will be deleted :(\", metadata: {} };\n *\n * const documents: Document[] = [document1, document2, document3];\n * const ids = [\"1\", \"2\", \"3\"];\n * await vectorStore.addDocuments(documents, { ids });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Delete documents</strong></summary>\n *\n * ```typescript\n * await vectorStore.delete({ ids: [\"3\"] });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Similarity search</strong></summary>\n *\n * ```typescript\n * const results = await vectorStore.similaritySearch(\"thud\", 1);\n * for (const doc of results) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:thud [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with filter</strong></summary>\n *\n * ```typescript\n * const resultsWithFilter = await vectorStore.similaritySearch(\"thud\", 1, \"baz = 'bar'\");\n *\n * for (const doc of resultsWithFilter) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:foo [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with score</strong></summary>\n *\n * ```typescript\n * const resultsWithScore = await vectorStore.similaritySearchWithScore(\"qux\", 1);\n * for (const [doc, score] of resultsWithScore) {\n * console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:[SIM=0.000000] qux [{\"bar\":\"baz\",\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>As a retriever</strong></summary>\n *\n * ```typescript\n * const retriever = vectorStore.asRetriever({\n * searchType: \"mmr\", // Leave blank for standard similarity search\n * k: 1,\n * });\n * const resultAsRetriever = await retriever.invoke(\"thud\");\n * console.log(resultAsRetriever);\n *\n * // Output: [Document({ metadata: { \"baz\":\"bar\" }, pageContent: \"thud\" })]\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class PostgresVectorStore extends VectorStore {\n FilterType: string;\n engine: PostgresEngine;\n embeddings: EmbeddingsInterface;\n tableName: string;\n schemaName: string;\n contentColumn: string;\n embeddingColumn: string;\n metadataColumns: Array<string>;\n idColumn: string;\n metadataJsonColumn: string;\n distanceStrategy: DistanceStrategy;\n k: number;\n fetchK: number;\n lambdaMult: number;\n indexQueryOptions: QueryOptions | undefined;\n /**\n * Initializes a new vector store with embeddings and database configuration.\n *\n * @param embeddings - Instance of `EmbeddingsInterface` used to embed queries.\n * @param dbConfig - Configuration settings for the database or storage system.\n */\n constructor(embeddings: EmbeddingsInterface, dbConfig: VSArgs);\n /**\n * Create a new PostgresVectorStore instance.\n * @param {PostgresEngine} engine Required - Connection pool engine for managing connections to Cloud SQL for PostgreSQL database.\n * @param {Embeddings} embeddings Required - Text embedding model to use.\n * @param {string} tableName Required - Name of an existing table or table to be created.\n * @param {string} schemaName Database schema name of the table. Defaults to \"public\".\n * @param {string} contentColumn Column that represent a Document's page_content. Defaults to \"content\".\n * @param {string} embeddingColumn Column for embedding vectors. The embedding is generated from the document value. Defaults to \"embedding\".\n * @param {Array<string>} metadataColumns Column(s) that represent a document's metadata.\n * @param {Array<string>} ignoreMetadataColumns Optional - Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns.\n * @param {string} idColumn Column that represents the Document's id. Defaults to \"langchain_id\".\n * @param {string} metadataJsonColumn Optional - Column to store metadata as JSON. Defaults to \"langchain_metadata\".\n * @param {DistanceStrategy} distanceStrategy Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE.\n * @param {number} k Number of Documents to return from search. Defaults to 4.\n * @param {number} fetchK Number of Documents to fetch to pass to MMR algorithm.\n * @param {number} lambdaMult Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.\n * @param {QueryOptions} indexQueryOptions Optional - Index query option.\n * @returns PostgresVectorStore instance.\n */\n static initialize(engine: PostgresEngine, embeddings: EmbeddingsInterface, tableName: string, { schemaName, contentColumn, embeddingColumn, metadataColumns, ignoreMetadataColumns, idColumn, metadataJsonColumn, distanceStrategy, k, fetchK, lambdaMult, indexQueryOptions }?: PostgresVectorStoreArgs): Promise<PostgresVectorStore>;\n static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;\n static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;\n addVectors(vectors: number[][], documents: Document[], options?: {\n ids?: string[];\n }): Promise<string[] | void>;\n _vectorstoreType(): string;\n /**\n * Adds documents to the vector store, embedding them first through the\n * `embeddings` instance.\n *\n * @param documents - Array of documents to embed and add.\n * @param options - Optional configuration for embedding and storing documents.\n * @returns A promise resolving to an array of document IDs or void, based on implementation.\n * @abstract\n */\n addDocuments(documents: Document[], options?: {\n ids?: string[];\n }): Promise<string[] | void>;\n /**\n * Deletes documents from the vector store based on the specified ids.\n *\n * @param params - Flexible key-value pairs defining conditions for document deletion.\n * @param ids - Optional: Property of {params} that contains the array of ids to be deleted\n * @returns A promise that resolves once the deletion is complete.\n */\n delete(params: {\n ids?: string[];\n }): Promise<void>;\n similaritySearchVectorWithScore(embedding: number[], k: number, filter?: this[\"FilterType\"]): Promise<[Document, number][]>;\n private queryCollection;\n maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this[\"FilterType\"]>): Promise<Document[]>;\n /**\n * Create an index on the vector store table\n * @param {BaseIndex} index\n * @param {string} name Optional\n * @param {boolean} concurrently Optional\n */\n applyVectorIndex(index: BaseIndex, name?: string, concurrently?: boolean): Promise<void>;\n /**\n * Check if index exists in the table.\n * @param {string} indexName Optional - index name\n */\n isValidIndex(indexName?: string): Promise<boolean>;\n /**\n * Drop the vector index\n * @param {string} indexName Optional - index name\n */\n dropVectorIndex(indexName?: string): Promise<void>;\n /**\n * Re-index the vector store table\n * @param {string} indexName Optional - index name\n */\n reIndex(indexName?: string): Promise<void>;\n}\nexport default PostgresVectorStore;\n//# sourceMappingURL=vectorstore.d.ts.map"],"mappings":";;;;;;;UAKiBQ,uBAAAA;;EAAAA,aAAAA,CAAAA,EAAAA,MAAAA;EAIKC,eAAAA,CAAAA,EAAAA,MAAAA;EAECJ,eAAAA,CAAAA,EAFDI,KAECJ,CAAAA,MAAAA,CAAAA;EAIKI,QAAAA,CAAAA,EAAAA,MAAAA;EAEJH,gBAAAA,CAAAA,EANDD,gBAMCC;EAAY,CAAA,CAAA,EAAA,MAAA;EAEnBI,MAAAA,CAAAA,EAAAA,MAAY;EAKnBC,UAAM,CAAA,EAAA,MAAA;EACJJ,qBAAAA,CAAAA,EAVgBE,KAUhBF,CAAAA,MAAAA,CAAAA;EAKSE,kBAAAA,CAAAA,EAAAA,MAAAA;EAECJ,iBAAAA,CAAAA,EAfEC,YAeFD;;AAKc,UAlBnBK,YAAAA,CAkBmB;EAoJfE,MAAAA,EArKTL,cAqK4B;EAE5BA,SAAAA,EAAAA,MAAAA;EACIP,QAAAA,CAAAA,EAtKDQ,uBAsKCR;;UApKNW,MAAAA,CA4KYN;EAICC,MAAAA,EA/KXC,cA+KWD;EAOKN,SAAAA,EAAAA,MAAAA;EAA+BW,UAAAA,EAAAA,MAAAA;EAoB7BJ,aAAAA,EAAAA,MAAAA;EAA4BP,eAAAA,EAAAA,MAAAA;EAA0Ca,eAAAA,EArM/EJ,KAqM+EI,CAAAA,MAAAA,CAAAA;EAAYC,QAAAA,EAAAA,MAAAA;EAAeC,gBAAAA,EAnMzGV,gBAmMyGU;EAAiBC,CAAAA,EAAAA,MAAAA;EAAiBC,MAAAA,EAAAA,MAAAA;EAAuBC,UAAAA,EAAAA,MAAAA;EAAUC,kBAAAA,EAAAA,MAAAA;EAAoBC,iBAAAA,CAAAA,EA9L9Ld,YA8L8Lc;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AA1C1J;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cAAvCR,mBAAAA,SAA4BV,WAAAA;;UAErCK;cACIP;;;;;mBAKKS;;;oBAGCJ;;;;qBAICC;;;;;;;0BAOKN,+BAA+BW;;;;;;;;;;;;;;;;;;;;4BAoB7BJ,4BAA4BP;;;;;;;;;;;;;MAA2NQ,0BAA0BiB,QAAQb;8EACvOZ,+BAA+BU,eAAee,QAAQvB;6BACvGC,wBAAwBH,+BAA+BU,eAAee,QAAQvB;6CAC9DC;;MAEvCsB;;;;;;;;;;;0BAWoBtB;;MAEpBsB;;;;;;;;;;MAUAA;gGAC0FA,SAAStB;;qDAEpDF,wDAAwDwB,QAAQtB;;;;;;;0BAO3FC,mDAAmDqB;;;;;oCAKzCA;;;;;uCAKGA;;;;;+BAKRA"}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@langchain/google-cloud-sql-pg",
|
|
3
|
-
"version": "1.0.
|
|
3
|
+
"version": "1.0.6-dev-1765432861398",
|
|
4
4
|
"description": "LangChain.js integrations for Google Cloud SQL for PostgreSQL",
|
|
5
5
|
"author": "Google LLC",
|
|
6
6
|
"license": "MIT",
|
|
@@ -18,7 +18,7 @@
|
|
|
18
18
|
"google-auth-library": "^9.15.0",
|
|
19
19
|
"knex": "^3.1.0",
|
|
20
20
|
"uuid": "^11.0.5",
|
|
21
|
-
"@langchain/core": "1.1.
|
|
21
|
+
"@langchain/core": "1.1.5-dev-1765432861398"
|
|
22
22
|
},
|
|
23
23
|
"devDependencies": {
|
|
24
24
|
"@jest/globals": "^29.5.0",
|
|
@@ -38,8 +38,9 @@
|
|
|
38
38
|
"testcontainers": "^10.23.0",
|
|
39
39
|
"ts-jest": "^29.1.0",
|
|
40
40
|
"typescript": "~5.8.3",
|
|
41
|
-
"@langchain/core": "1.1.
|
|
42
|
-
"@langchain/eslint": "0.1.1"
|
|
41
|
+
"@langchain/core": "1.1.5-dev-1765432861398",
|
|
42
|
+
"@langchain/eslint": "0.1.1",
|
|
43
|
+
"@langchain/tsconfig": "0.0.1"
|
|
43
44
|
},
|
|
44
45
|
"publishConfig": {
|
|
45
46
|
"access": "public"
|
|
@@ -79,7 +80,7 @@
|
|
|
79
80
|
"test:watch": "NODE_OPTIONS=--experimental-vm-modules jest --watch --testPathIgnorePatterns=\\.int\\.test.ts",
|
|
80
81
|
"test:single": "NODE_OPTIONS=--experimental-vm-modules pnpm run jest --config jest.config.cjs --testTimeout 100000",
|
|
81
82
|
"test:int": "NODE_OPTIONS=--experimental-vm-modules jest --testPathPattern=\\.int\\.test.ts --testTimeout 100000 --maxWorkers=50%",
|
|
82
|
-
"format": "prettier --
|
|
83
|
-
"format:check": "prettier --
|
|
83
|
+
"format": "prettier --write \"src\"",
|
|
84
|
+
"format:check": "prettier --check \"src\""
|
|
84
85
|
}
|
|
85
86
|
}
|