@langchain/google-cloud-sql-pg 0.0.2 → 1.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/CHANGELOG.md +26 -0
  2. package/LICENSE +6 -6
  3. package/README.md +1 -1
  4. package/dist/_virtual/rolldown_runtime.cjs +25 -0
  5. package/dist/chat_message_history.cjs +104 -137
  6. package/dist/chat_message_history.cjs.map +1 -0
  7. package/dist/chat_message_history.d.cts +57 -0
  8. package/dist/chat_message_history.d.ts +53 -43
  9. package/dist/chat_message_history.js +103 -133
  10. package/dist/chat_message_history.js.map +1 -0
  11. package/dist/engine.cjs +188 -242
  12. package/dist/engine.cjs.map +1 -0
  13. package/dist/engine.d.cts +138 -0
  14. package/dist/engine.d.ts +102 -80
  15. package/dist/engine.js +186 -234
  16. package/dist/engine.js.map +1 -0
  17. package/dist/index.cjs +21 -20
  18. package/dist/index.d.cts +6 -0
  19. package/dist/index.d.ts +6 -4
  20. package/dist/index.js +7 -4
  21. package/dist/indexes.cjs +96 -168
  22. package/dist/indexes.cjs.map +1 -0
  23. package/dist/indexes.d.cts +68 -0
  24. package/dist/indexes.d.ts +50 -47
  25. package/dist/indexes.js +90 -161
  26. package/dist/indexes.js.map +1 -0
  27. package/dist/loader.cjs +159 -242
  28. package/dist/loader.cjs.map +1 -0
  29. package/dist/loader.d.cts +101 -0
  30. package/dist/loader.d.ts +40 -26
  31. package/dist/loader.js +157 -237
  32. package/dist/loader.js.map +1 -0
  33. package/dist/utils/utils.cjs +36 -65
  34. package/dist/utils/utils.cjs.map +1 -0
  35. package/dist/utils/utils.js +36 -62
  36. package/dist/utils/utils.js.map +1 -0
  37. package/dist/vectorstore.cjs +438 -593
  38. package/dist/vectorstore.cjs.map +1 -0
  39. package/dist/vectorstore.d.cts +300 -0
  40. package/dist/vectorstore.d.ts +147 -130
  41. package/dist/vectorstore.js +436 -588
  42. package/dist/vectorstore.js.map +1 -0
  43. package/package.json +41 -48
  44. package/dist/utils/utils.d.ts +0 -22
  45. package/index.cjs +0 -1
  46. package/index.d.cts +0 -1
  47. package/index.d.ts +0 -1
  48. package/index.js +0 -1
@@ -0,0 +1 @@
1
+ {"version":3,"file":"vectorstore.cjs","names":["VectorStore","embeddings: EmbeddingsInterface","dbConfig: VSArgs","engine: PostgresEngine","tableName: string","DEFAULT_DISTANCE_STRATEGY","columns: { [key: string]: string }","allMetadataColumns: string[]","texts: string[]","metadatas: object[] | object","dbConfig: dbConfigArgs","documents: Document[]","Document","docs: Document[]","vectors: number[][]","options?: { ids?: string[] }","ids: string[]","metadatas: Record<string, string>[]","customZip","values: { [key: string]: string | string[] }","params: { ids?: string[] }","embedding: number[]","k: number","filter?: this[\"FilterType\"]","documentsWithScores: [Document, number][]","k?: number | undefined","filter?: this[\"FilterType\"] | undefined","query: string","options: MaxMarginalRelevanceSearchOptions<this[\"FilterType\"]>","docsList: Document[]","row: { [x: string]: string }","index: BaseIndex","name?: string","concurrently: boolean","DEFAULT_INDEX_NAME_SUFFIX","indexName?: string"],"sources":["../src/vectorstore.ts"],"sourcesContent":["import { EmbeddingsInterface } from \"@langchain/core/embeddings\";\nimport {\n MaxMarginalRelevanceSearchOptions,\n VectorStore,\n} from \"@langchain/core/vectorstores\";\nimport { Document } from \"@langchain/core/documents\";\nimport { v4 as uuidv4 } from \"uuid\";\nimport { maximalMarginalRelevance } from \"@langchain/core/utils/math\";\nimport {\n BaseIndex,\n DEFAULT_DISTANCE_STRATEGY,\n DEFAULT_INDEX_NAME_SUFFIX,\n DistanceStrategy,\n QueryOptions,\n} from \"./indexes.js\";\nimport PostgresEngine from \"./engine.js\";\nimport { customZip } from \"./utils/utils.js\";\n\nexport interface PostgresVectorStoreArgs {\n schemaName?: string;\n contentColumn?: string;\n embeddingColumn?: string;\n metadataColumns?: Array<string>;\n idColumn?: string;\n distanceStrategy?: DistanceStrategy;\n k?: number;\n fetchK?: number;\n lambdaMult?: number;\n ignoreMetadataColumns?: Array<string>;\n metadataJsonColumn?: string;\n indexQueryOptions?: QueryOptions;\n}\n\nexport interface dbConfigArgs {\n engine: PostgresEngine;\n tableName: string;\n dbConfig?: PostgresVectorStoreArgs;\n}\n\ninterface VSArgs {\n engine: PostgresEngine;\n tableName: string;\n schemaName: string;\n contentColumn: string;\n embeddingColumn: string;\n metadataColumns: Array<string>;\n idColumn: string;\n distanceStrategy: DistanceStrategy;\n k: number;\n fetchK: number;\n lambdaMult: number;\n metadataJsonColumn: string;\n indexQueryOptions?: QueryOptions;\n}\n\n/**\n * Google Cloud SQL for PostgreSQL vector store integration.\n *\n * Setup:\n * Install `@langchain/google-cloud-sql-pg`\n *\n * ```bash\n * npm install @langchain/google-cloud-sql-pg\n * ```\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { Column, PostgresEngine, PostgresEngineArgs, PostgresVectorStore, VectorStoreTableArgs } from \"@langchain/google-cloud-sql-pg\";\n * // Or other embeddings\n * import { OpenAIEmbeddings } from '@langchain/openai';\n *\n *\n * const embeddings = new OpenAIEmbeddings({\n * model: \"text-embedding-3-small\",\n * });\n *\n * const pgArgs: PostgresEngineArgs = {\n * user: \"db-user\",\n * password: \"password\"\n * }\n * // Create a shared connection pool\n * const engine: PostgresEngine = await PostgresEngine.fromInstance(\n * \"project-id\",\n * \"region\",\n * \"instance-name\",\n * \"database-name\",\n * pgArgs\n * );\n * // (Optional) Specify metadata columns for filtering\n * // All other metadata will be added to JSON\n * const vectorStoreTableArgs: VectorStoreTableArgs = {\n * metadataColumns: [new Column(\"baz\", \"TEXT\")],\n * };\n * // Create a vector store table\n * await engine.initVectorstoreTable(\"my-table\", 768, vectorStoreTableArgs);\n * // Customize the vector store\n * const pvectorArgs: PostgresVectorStoreArgs = {\n * idColumn: \"ID_COLUMN\",\n * contentColumn: \"CONTENT_COLUMN\",\n * embeddingColumn: \"EMBEDDING_COLUMN\",\n * metadataColumns: [\"baz\"]\n * }\n *\n * const vectorStore = await PostgresVectorStore.initialize(engine, embeddingService, \"my-table\", pvectorArgs);\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Add documents</strong></summary>\n *\n * ```typescript\n * import type { Document } from '@langchain/core/documents';\n *\n * const document1 = { pageContent: \"foo\", metadata: { baz: \"bar\" } };\n * const document2 = { pageContent: \"thud\", metadata: { bar: \"baz\" } };\n * const document3 = { pageContent: \"i will be deleted :(\", metadata: {} };\n *\n * const documents: Document[] = [document1, document2, document3];\n * const ids = [\"1\", \"2\", \"3\"];\n * await vectorStore.addDocuments(documents, { ids });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Delete documents</strong></summary>\n *\n * ```typescript\n * await vectorStore.delete({ ids: [\"3\"] });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Similarity search</strong></summary>\n *\n * ```typescript\n * const results = await vectorStore.similaritySearch(\"thud\", 1);\n * for (const doc of results) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:thud [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with filter</strong></summary>\n *\n * ```typescript\n * const resultsWithFilter = await vectorStore.similaritySearch(\"thud\", 1, \"baz = 'bar'\");\n *\n * for (const doc of resultsWithFilter) {\n * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:foo [{\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n *\n * <details>\n * <summary><strong>Similarity search with score</strong></summary>\n *\n * ```typescript\n * const resultsWithScore = await vectorStore.similaritySearchWithScore(\"qux\", 1);\n * for (const [doc, score] of resultsWithScore) {\n * console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);\n * }\n * // Output:[SIM=0.000000] qux [{\"bar\":\"baz\",\"baz\":\"bar\"}]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>As a retriever</strong></summary>\n *\n * ```typescript\n * const retriever = vectorStore.asRetriever({\n * searchType: \"mmr\", // Leave blank for standard similarity search\n * k: 1,\n * });\n * const resultAsRetriever = await retriever.invoke(\"thud\");\n * console.log(resultAsRetriever);\n *\n * // Output: [Document({ metadata: { \"baz\":\"bar\" }, pageContent: \"thud\" })]\n * ```\n * </details>\n *\n * <br />\n */\nexport class PostgresVectorStore extends VectorStore {\n declare FilterType: string;\n\n engine: PostgresEngine;\n\n embeddings: EmbeddingsInterface;\n\n tableName: string;\n\n schemaName: string;\n\n contentColumn: string;\n\n embeddingColumn: string;\n\n metadataColumns: Array<string>;\n\n idColumn: string;\n\n metadataJsonColumn: string;\n\n distanceStrategy: DistanceStrategy;\n\n k: number;\n\n fetchK: number;\n\n lambdaMult: number;\n\n indexQueryOptions: QueryOptions | undefined;\n\n /**\n * Initializes a new vector store with embeddings and database configuration.\n *\n * @param embeddings - Instance of `EmbeddingsInterface` used to embed queries.\n * @param dbConfig - Configuration settings for the database or storage system.\n */\n constructor(embeddings: EmbeddingsInterface, dbConfig: VSArgs) {\n super(embeddings, dbConfig);\n this.embeddings = embeddings;\n this.engine = dbConfig.engine;\n this.tableName = dbConfig.tableName;\n this.schemaName = dbConfig.schemaName;\n this.contentColumn = dbConfig.contentColumn;\n this.embeddingColumn = dbConfig.embeddingColumn;\n this.metadataColumns = dbConfig.metadataColumns\n ? dbConfig.metadataColumns\n : [];\n this.idColumn = dbConfig.idColumn;\n this.metadataJsonColumn = dbConfig.metadataJsonColumn;\n this.distanceStrategy = dbConfig.distanceStrategy;\n this.k = dbConfig.k;\n this.fetchK = dbConfig.fetchK;\n this.lambdaMult = dbConfig.lambdaMult;\n this.indexQueryOptions = dbConfig.indexQueryOptions;\n }\n\n /**\n * Create a new PostgresVectorStore instance.\n * @param {PostgresEngine} engine Required - Connection pool engine for managing connections to Cloud SQL for PostgreSQL database.\n * @param {Embeddings} embeddings Required - Text embedding model to use.\n * @param {string} tableName Required - Name of an existing table or table to be created.\n * @param {string} schemaName Database schema name of the table. Defaults to \"public\".\n * @param {string} contentColumn Column that represent a Document's page_content. Defaults to \"content\".\n * @param {string} embeddingColumn Column for embedding vectors. The embedding is generated from the document value. Defaults to \"embedding\".\n * @param {Array<string>} metadataColumns Column(s) that represent a document's metadata.\n * @param {Array<string>} ignoreMetadataColumns Optional - Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns.\n * @param {string} idColumn Column that represents the Document's id. Defaults to \"langchain_id\".\n * @param {string} metadataJsonColumn Optional - Column to store metadata as JSON. Defaults to \"langchain_metadata\".\n * @param {DistanceStrategy} distanceStrategy Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE.\n * @param {number} k Number of Documents to return from search. Defaults to 4.\n * @param {number} fetchK Number of Documents to fetch to pass to MMR algorithm.\n * @param {number} lambdaMult Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.\n * @param {QueryOptions} indexQueryOptions Optional - Index query option.\n * @returns PostgresVectorStore instance.\n */\n static async initialize(\n engine: PostgresEngine,\n embeddings: EmbeddingsInterface,\n tableName: string,\n {\n schemaName = \"public\",\n contentColumn = \"content\",\n embeddingColumn = \"embedding\",\n metadataColumns = [],\n ignoreMetadataColumns,\n idColumn = \"langchain_id\",\n metadataJsonColumn = \"langchain_metadata\",\n distanceStrategy = DEFAULT_DISTANCE_STRATEGY,\n k = 4,\n fetchK = 20,\n lambdaMult = 0.5,\n indexQueryOptions,\n }: PostgresVectorStoreArgs = {}\n ): Promise<PostgresVectorStore> {\n if (metadataColumns !== undefined && ignoreMetadataColumns !== undefined) {\n throw Error(\n \"Can not use both metadata_columns and ignore_metadata_columns.\"\n );\n }\n\n const { rows } = await engine.pool.raw(\n `SELECT column_name, data_type FROM information_schema.columns WHERE table_name = '${tableName}' AND table_schema = '${schemaName}'`\n );\n const columns: { [key: string]: string } = {};\n\n for (const index in rows) {\n if (rows[index]) {\n const row = rows[index];\n columns[row.column_name] = row.data_type;\n }\n }\n\n if (!Object.prototype.hasOwnProperty.call(columns, idColumn)) {\n throw Error(`Id column: ${idColumn}, does not exist.`);\n }\n\n if (!Object.prototype.hasOwnProperty.call(columns, contentColumn)) {\n throw Error(`Content column: ${contentColumn}, does not exist.`);\n }\n\n const contentType = columns[contentColumn];\n\n if (contentType !== \"text\" && !contentType.includes(\"char\")) {\n throw Error(\n `Content column: ${contentColumn}, is type: ${contentType}. It must be a type of character string.`\n );\n }\n\n if (!Object.prototype.hasOwnProperty.call(columns, embeddingColumn)) {\n throw Error(`Embedding column: ${embeddingColumn}, does not exist.`);\n }\n\n if (columns[embeddingColumn] !== \"USER-DEFINED\") {\n throw Error(\n `Embedding column: ${embeddingColumn} is not of type Vector.`\n );\n }\n\n const jsonColumn = Object.prototype.hasOwnProperty.call(\n columns,\n metadataJsonColumn\n )\n ? metadataJsonColumn\n : \"\";\n\n for (const column of metadataColumns) {\n if (!Object.prototype.hasOwnProperty.call(columns, column)) {\n throw Error(`Metadata column: ${column}, does not exist.`);\n }\n }\n\n const allColumns = columns;\n let allMetadataColumns: string[] = [];\n if (\n ignoreMetadataColumns !== undefined &&\n ignoreMetadataColumns.length > 0\n ) {\n for (const column of ignoreMetadataColumns) {\n delete allColumns[column];\n }\n\n delete allColumns[idColumn];\n delete allColumns[contentColumn];\n delete allColumns[embeddingColumn];\n allMetadataColumns = Object.keys(allColumns);\n } else {\n for (const column of metadataColumns) {\n if (Object.prototype.hasOwnProperty.call(allColumns, column)) {\n allMetadataColumns.push(column);\n }\n }\n }\n return new PostgresVectorStore(embeddings, {\n engine,\n tableName,\n schemaName,\n contentColumn,\n embeddingColumn,\n metadataColumns: allMetadataColumns,\n idColumn,\n metadataJsonColumn: jsonColumn,\n distanceStrategy,\n k,\n fetchK,\n lambdaMult,\n indexQueryOptions,\n });\n }\n\n static async fromTexts(\n texts: string[],\n metadatas: object[] | object,\n embeddings: EmbeddingsInterface,\n dbConfig: dbConfigArgs\n ): Promise<VectorStore> {\n const documents: Document[] = [];\n\n for (let i = 0; i < texts.length; i += 1) {\n const doc = new Document({\n pageContent: texts[i],\n metadata: Array.isArray(metadatas) ? metadatas[i] : metadatas,\n });\n documents.push(doc);\n }\n\n return PostgresVectorStore.fromDocuments(documents, embeddings, dbConfig);\n }\n\n static async fromDocuments(\n docs: Document[],\n embeddings: EmbeddingsInterface,\n dbConfig: dbConfigArgs\n ): Promise<VectorStore> {\n const { engine } = dbConfig;\n const { tableName } = dbConfig;\n const config = dbConfig.dbConfig;\n const vectorStore = await this.initialize(\n engine,\n embeddings,\n tableName,\n config\n );\n\n await vectorStore.addDocuments(docs);\n\n return vectorStore;\n }\n\n async addVectors(\n vectors: number[][],\n documents: Document[],\n options?: { ids?: string[] }\n ): Promise<string[] | void> {\n let ids: string[] = [];\n const metadatas: Record<string, string>[] = [];\n\n if (vectors.length !== documents.length) {\n throw new Error(\n \"The number of vectors must match the number of documents provided.\"\n );\n }\n\n if (options?.ids) {\n ids = options.ids;\n } else {\n documents.forEach((document) => {\n if (document.id !== undefined) {\n ids.push(document.id);\n } else {\n ids.push(uuidv4());\n }\n });\n }\n\n if (options && options.ids && options.ids.length !== documents.length) {\n throw new Error(\n \"The number of ids must match the number of documents provided.\"\n );\n }\n\n documents.forEach((document) => {\n metadatas.push(document.metadata);\n });\n\n const tuples = customZip(ids, documents, vectors, metadatas);\n\n // Insert embeddings\n for (const [id, document, embedding, metadata] of tuples) {\n const metadataColNames =\n this.metadataColumns.length > 0\n ? `, \"${this.metadataColumns.join('\",\"')}\"`\n : \"\";\n\n let stmt = `INSERT INTO \"${this.schemaName}\".\"${this.tableName}\"(\"${this.idColumn}\", \"${this.contentColumn}\", \"${this.embeddingColumn}\" ${metadataColNames}`;\n const values: { [key: string]: string | string[] } = {\n id,\n content: document.pageContent,\n embedding: `[${embedding.toString()}]`,\n };\n let valuesStmt = \" VALUES (:id, :content, :embedding\";\n\n // Add metadata\n const extra = metadata;\n for (const metadataColumn of this.metadataColumns) {\n if (Object.prototype.hasOwnProperty.call(metadata, metadataColumn)) {\n valuesStmt += `, :${metadataColumn}`;\n values[metadataColumn] = metadata[metadataColumn];\n delete extra[metadataColumn];\n } else {\n valuesStmt += \" ,null\";\n }\n }\n\n // Add JSON column and/or close statement\n stmt += this.metadataJsonColumn ? `, ${this.metadataJsonColumn})` : \")\";\n if (this.metadataJsonColumn) {\n valuesStmt += \", :extra)\";\n Object.assign(values, { extra: JSON.stringify(extra) });\n } else {\n valuesStmt += \")\";\n }\n\n const query = stmt + valuesStmt;\n await this.engine.pool.raw(query, values);\n }\n\n return options?.ids;\n }\n\n _vectorstoreType(): string {\n return \"cloudsqlpostgresql\";\n }\n\n /**\n * Adds documents to the vector store, embedding them first through the\n * `embeddings` instance.\n *\n * @param documents - Array of documents to embed and add.\n * @param options - Optional configuration for embedding and storing documents.\n * @returns A promise resolving to an array of document IDs or void, based on implementation.\n * @abstract\n */\n async addDocuments(\n documents: Document[],\n options?: { ids?: string[] }\n ): Promise<string[] | void> {\n const texts = [];\n\n for (const doc of documents) {\n texts.push(doc.pageContent);\n }\n\n const embeddings = await this.embeddings.embedDocuments(texts);\n const results = await this.addVectors(embeddings, documents, options);\n\n return results;\n }\n\n /**\n * Deletes documents from the vector store based on the specified ids.\n *\n * @param params - Flexible key-value pairs defining conditions for document deletion.\n * @param ids - Optional: Property of {params} that contains the array of ids to be deleted\n * @returns A promise that resolves once the deletion is complete.\n */\n async delete(params: { ids?: string[] }): Promise<void> {\n if (params.ids === undefined) return;\n const idList = params.ids.map((id) => `'${id}'`).join(\", \");\n const query = `DELETE FROM \"${this.schemaName}\".\"${this.tableName}\" WHERE \"${this.idColumn}\" in (${idList})`;\n await this.engine.pool.raw(query);\n }\n\n async similaritySearchVectorWithScore(\n embedding: number[],\n k: number,\n filter?: this[\"FilterType\"]\n ): Promise<[Document, number][]> {\n const results = await this.queryCollection(embedding, k, filter);\n const documentsWithScores: [Document, number][] = [];\n\n for (const row of results) {\n const metadata =\n this.metadataJsonColumn && row[this.metadataJsonColumn]\n ? row[this.metadataJsonColumn]\n : {};\n\n for (const col of this.metadataColumns) {\n metadata[col] = row[col];\n }\n\n documentsWithScores.push([\n new Document({ pageContent: row[this.contentColumn], metadata }),\n row.distance,\n ]);\n }\n\n return documentsWithScores;\n }\n\n private async queryCollection(\n embedding: number[],\n k?: number | undefined,\n filter?: this[\"FilterType\"] | undefined\n ) {\n const fetchK = k ?? this.k;\n const { operator } = this.distanceStrategy;\n const { searchFunction } = this.distanceStrategy;\n const _filter = filter !== undefined ? `WHERE ${filter}` : \"\";\n const metadataColNames =\n this.metadataColumns.length > 0\n ? `, \"${this.metadataColumns.join('\",\"')}\"`\n : \"\";\n const metadataJsonColName = this.metadataJsonColumn\n ? `, \"${this.metadataJsonColumn}\"`\n : \"\";\n\n const query = `SELECT \"${this.idColumn}\", \"${this.contentColumn}\", \"${this.embeddingColumn}\" ${metadataColNames} ${metadataJsonColName}, ${searchFunction}(\"${this.embeddingColumn}\", '[${embedding}]') as distance FROM \"${this.schemaName}\".\"${this.tableName}\" ${_filter} ORDER BY \"${this.embeddingColumn}\" ${operator} '[${embedding}]' LIMIT ${fetchK};`;\n\n if (this.indexQueryOptions) {\n await this.engine.pool.raw(\n `SET LOCAL ${this.indexQueryOptions.to_string()}`\n );\n }\n\n const { rows } = await this.engine.pool.raw(query);\n\n return rows;\n }\n\n async maxMarginalRelevanceSearch(\n query: string,\n options: MaxMarginalRelevanceSearchOptions<this[\"FilterType\"]>\n ): Promise<Document[]> {\n const vector = await this.embeddings.embedQuery(query);\n const results = await this.queryCollection(\n vector,\n options?.k,\n options?.filter\n );\n const k = options?.k ? options.k : this.k;\n const documentsWithScores: [Document, number][] = [];\n let docsList: Document[] = [];\n\n const embeddingList = results.map((row: { [x: string]: string }) =>\n JSON.parse(row[this.embeddingColumn])\n );\n const mmrSelected = maximalMarginalRelevance(\n vector,\n embeddingList,\n options?.lambda,\n k\n );\n\n for (const row of results) {\n const metadata =\n this.metadataJsonColumn && row[this.metadataJsonColumn]\n ? row[this.metadataJsonColumn]\n : {};\n for (const col of this.metadataColumns) {\n metadata[col] = row[col];\n }\n documentsWithScores.push([\n new Document({\n pageContent: row[this.contentColumn],\n metadata,\n }),\n row.distance,\n ]);\n }\n\n docsList = documentsWithScores\n .filter((_, i) => mmrSelected.includes(i))\n .map(([doc, _]) => doc);\n\n return docsList;\n }\n\n /**\n * Create an index on the vector store table\n * @param {BaseIndex} index\n * @param {string} name Optional\n * @param {boolean} concurrently Optional\n */\n async applyVectorIndex(\n index: BaseIndex,\n name?: string,\n concurrently: boolean = false\n ): Promise<void> {\n if (index.constructor.name === \"ExactNearestNeighbor\") {\n await this.dropVectorIndex();\n return;\n }\n\n const filter =\n index.partialIndexes && index.partialIndexes?.length > 0\n ? `WHERE (${index.partialIndexes})`\n : \"\";\n const params = `WITH ${index.indexOptions()}`;\n const funct = index.distanceStrategy.indexFunction;\n\n let indexName = name;\n if (!indexName) {\n if (!index.name) {\n indexName = this.tableName + DEFAULT_INDEX_NAME_SUFFIX;\n } else {\n indexName = index.name;\n }\n }\n\n const stmt = `CREATE INDEX ${\n concurrently ? \"CONCURRENTLY\" : \"\"\n } ${indexName} ON \"${this.schemaName}\".\"${this.tableName}\" USING ${\n index.indexType\n } (${this.embeddingColumn} ${funct}) ${params} ${filter};`;\n\n await this.engine.pool.raw(stmt);\n }\n\n /**\n * Check if index exists in the table.\n * @param {string} indexName Optional - index name\n */\n async isValidIndex(indexName?: string): Promise<boolean> {\n const idxName = indexName || this.tableName + DEFAULT_INDEX_NAME_SUFFIX;\n const stmt = `SELECT tablename, indexname\n FROM pg_indexes\n WHERE tablename = '${this.tableName}' AND schemaname = '${this.schemaName}' AND indexname = '${idxName}';`;\n const { rows } = await this.engine.pool.raw(stmt);\n\n return rows.length === 1;\n }\n\n /**\n * Drop the vector index\n * @param {string} indexName Optional - index name\n */\n async dropVectorIndex(indexName?: string): Promise<void> {\n const idxName = indexName || this.tableName + DEFAULT_INDEX_NAME_SUFFIX;\n const query = `DROP INDEX IF EXISTS ${idxName};`;\n await this.engine.pool.raw(query);\n }\n\n /**\n * Re-index the vector store table\n * @param {string} indexName Optional - index name\n */\n async reIndex(indexName?: string) {\n const idxName = indexName || this.tableName + DEFAULT_INDEX_NAME_SUFFIX;\n const query = `REINDEX INDEX ${idxName};`;\n await this.engine.pool.raw(query);\n }\n}\n\nexport default PostgresVectorStore;\n"],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAyMA,IAAa,sBAAb,MAAa,4BAA4BA,0CAAY;CAGnD;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;;;;;;;CAQA,YAAYC,YAAiCC,UAAkB;EAC7D,MAAM,YAAY,SAAS;EAC3B,KAAK,aAAa;EAClB,KAAK,SAAS,SAAS;EACvB,KAAK,YAAY,SAAS;EAC1B,KAAK,aAAa,SAAS;EAC3B,KAAK,gBAAgB,SAAS;EAC9B,KAAK,kBAAkB,SAAS;EAChC,KAAK,kBAAkB,SAAS,kBAC5B,SAAS,kBACT,CAAE;EACN,KAAK,WAAW,SAAS;EACzB,KAAK,qBAAqB,SAAS;EACnC,KAAK,mBAAmB,SAAS;EACjC,KAAK,IAAI,SAAS;EAClB,KAAK,SAAS,SAAS;EACvB,KAAK,aAAa,SAAS;EAC3B,KAAK,oBAAoB,SAAS;CACnC;;;;;;;;;;;;;;;;;;;;CAqBD,aAAa,WACXC,QACAF,YACAG,WACA,EACE,aAAa,UACb,gBAAgB,WAChB,kBAAkB,aAClB,kBAAkB,CAAE,GACpB,uBACA,WAAW,gBACX,qBAAqB,sBACrB,mBAAmBC,2CACnB,IAAI,GACJ,SAAS,IACT,aAAa,IACb,mBACwB,GAAG,CAAE,GACD;AAC9B,MAAI,oBAAoB,UAAa,0BAA0B,OAC7D,OAAM,MACJ,iEACD;EAGH,MAAM,EAAE,MAAM,GAAG,MAAM,OAAO,KAAK,IACjC,CAAC,kFAAkF,EAAE,UAAU,sBAAsB,EAAE,WAAW,CAAC,CAAC,CACrI;EACD,MAAMC,UAAqC,CAAE;AAE7C,OAAK,MAAM,SAAS,KAClB,KAAI,KAAK,QAAQ;GACf,MAAM,MAAM,KAAK;GACjB,QAAQ,IAAI,eAAe,IAAI;EAChC;AAGH,MAAI,CAAC,OAAO,UAAU,eAAe,KAAK,SAAS,SAAS,CAC1D,OAAM,MAAM,CAAC,WAAW,EAAE,SAAS,iBAAiB,CAAC,CAAC;AAGxD,MAAI,CAAC,OAAO,UAAU,eAAe,KAAK,SAAS,cAAc,CAC/D,OAAM,MAAM,CAAC,gBAAgB,EAAE,cAAc,iBAAiB,CAAC,CAAC;EAGlE,MAAM,cAAc,QAAQ;AAE5B,MAAI,gBAAgB,UAAU,CAAC,YAAY,SAAS,OAAO,CACzD,OAAM,MACJ,CAAC,gBAAgB,EAAE,cAAc,WAAW,EAAE,YAAY,wCAAwC,CAAC,CACpG;AAGH,MAAI,CAAC,OAAO,UAAU,eAAe,KAAK,SAAS,gBAAgB,CACjE,OAAM,MAAM,CAAC,kBAAkB,EAAE,gBAAgB,iBAAiB,CAAC,CAAC;AAGtE,MAAI,QAAQ,qBAAqB,eAC/B,OAAM,MACJ,CAAC,kBAAkB,EAAE,gBAAgB,uBAAuB,CAAC,CAC9D;EAGH,MAAM,aAAa,OAAO,UAAU,eAAe,KACjD,SACA,mBACD,GACG,qBACA;AAEJ,OAAK,MAAM,UAAU,gBACnB,KAAI,CAAC,OAAO,UAAU,eAAe,KAAK,SAAS,OAAO,CACxD,OAAM,MAAM,CAAC,iBAAiB,EAAE,OAAO,iBAAiB,CAAC,CAAC;EAI9D,MAAM,aAAa;EACnB,IAAIC,qBAA+B,CAAE;AACrC,MACE,0BAA0B,UAC1B,sBAAsB,SAAS,GAC/B;AACA,QAAK,MAAM,UAAU,uBACnB,OAAO,WAAW;GAGpB,OAAO,WAAW;GAClB,OAAO,WAAW;GAClB,OAAO,WAAW;GAClB,qBAAqB,OAAO,KAAK,WAAW;EAC7C,MACC,MAAK,MAAM,UAAU,gBACnB,KAAI,OAAO,UAAU,eAAe,KAAK,YAAY,OAAO,EAC1D,mBAAmB,KAAK,OAAO;AAIrC,SAAO,IAAI,oBAAoB,YAAY;GACzC;GACA;GACA;GACA;GACA;GACA,iBAAiB;GACjB;GACA,oBAAoB;GACpB;GACA;GACA;GACA;GACA;EACD;CACF;CAED,aAAa,UACXC,OACAC,WACAR,YACAS,UACsB;EACtB,MAAMC,YAAwB,CAAE;AAEhC,OAAK,IAAI,IAAI,GAAG,IAAI,MAAM,QAAQ,KAAK,GAAG;GACxC,MAAM,MAAM,IAAIC,oCAAS;IACvB,aAAa,MAAM;IACnB,UAAU,MAAM,QAAQ,UAAU,GAAG,UAAU,KAAK;GACrD;GACD,UAAU,KAAK,IAAI;EACpB;AAED,SAAO,oBAAoB,cAAc,WAAW,YAAY,SAAS;CAC1E;CAED,aAAa,cACXC,MACAZ,YACAS,UACsB;EACtB,MAAM,EAAE,QAAQ,GAAG;EACnB,MAAM,EAAE,WAAW,GAAG;EACtB,MAAM,SAAS,SAAS;EACxB,MAAM,cAAc,MAAM,KAAK,WAC7B,QACA,YACA,WACA,OACD;EAED,MAAM,YAAY,aAAa,KAAK;AAEpC,SAAO;CACR;CAED,MAAM,WACJI,SACAH,WACAI,SAC0B;EAC1B,IAAIC,MAAgB,CAAE;EACtB,MAAMC,YAAsC,CAAE;AAE9C,MAAI,QAAQ,WAAW,UAAU,OAC/B,OAAM,IAAI,MACR;AAIJ,MAAI,SAAS,KACX,MAAM,QAAQ;OAEd,UAAU,QAAQ,CAAC,aAAa;AAC9B,OAAI,SAAS,OAAO,QAClB,IAAI,KAAK,SAAS,GAAG;QAErB,IAAI,mBAAa,CAAC;EAErB,EAAC;AAGJ,MAAI,WAAW,QAAQ,OAAO,QAAQ,IAAI,WAAW,UAAU,OAC7D,OAAM,IAAI,MACR;EAIJ,UAAU,QAAQ,CAAC,aAAa;GAC9B,UAAU,KAAK,SAAS,SAAS;EAClC,EAAC;EAEF,MAAM,SAASC,wBAAU,KAAK,WAAW,SAAS,UAAU;AAG5D,OAAK,MAAM,CAAC,IAAI,UAAU,WAAW,SAAS,IAAI,QAAQ;GACxD,MAAM,mBACJ,KAAK,gBAAgB,SAAS,IAC1B,CAAC,GAAG,EAAE,KAAK,gBAAgB,KAAK,QAAM,CAAC,CAAC,CAAC,GACzC;GAEN,IAAI,OAAO,CAAC,aAAa,EAAE,KAAK,WAAW,GAAG,EAAE,KAAK,UAAU,GAAG,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,cAAc,IAAI,EAAE,KAAK,gBAAgB,EAAE,EAAE,kBAAkB;GAC5J,MAAMC,SAA+C;IACnD;IACA,SAAS,SAAS;IAClB,WAAW,CAAC,CAAC,EAAE,UAAU,UAAU,CAAC,CAAC,CAAC;GACvC;GACD,IAAI,aAAa;GAGjB,MAAM,QAAQ;AACd,QAAK,MAAM,kBAAkB,KAAK,gBAChC,KAAI,OAAO,UAAU,eAAe,KAAK,UAAU,eAAe,EAAE;IAClE,cAAc,CAAC,GAAG,EAAE,gBAAgB;IACpC,OAAO,kBAAkB,SAAS;IAClC,OAAO,MAAM;GACd,OACC,cAAc;GAKlB,QAAQ,KAAK,qBAAqB,CAAC,EAAE,EAAE,KAAK,mBAAmB,CAAC,CAAC,GAAG;AACpE,OAAI,KAAK,oBAAoB;IAC3B,cAAc;IACd,OAAO,OAAO,QAAQ,EAAE,OAAO,KAAK,UAAU,MAAM,CAAE,EAAC;GACxD,OACC,cAAc;GAGhB,MAAM,QAAQ,OAAO;GACrB,MAAM,KAAK,OAAO,KAAK,IAAI,OAAO,OAAO;EAC1C;AAED,SAAO,SAAS;CACjB;CAED,mBAA2B;AACzB,SAAO;CACR;;;;;;;;;;CAWD,MAAM,aACJR,WACAI,SAC0B;EAC1B,MAAM,QAAQ,CAAE;AAEhB,OAAK,MAAM,OAAO,WAChB,MAAM,KAAK,IAAI,YAAY;EAG7B,MAAM,aAAa,MAAM,KAAK,WAAW,eAAe,MAAM;EAC9D,MAAM,UAAU,MAAM,KAAK,WAAW,YAAY,WAAW,QAAQ;AAErE,SAAO;CACR;;;;;;;;CASD,MAAM,OAAOK,QAA2C;AACtD,MAAI,OAAO,QAAQ,OAAW;EAC9B,MAAM,SAAS,OAAO,IAAI,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,KAAK,KAAK;EAC3D,MAAM,QAAQ,CAAC,aAAa,EAAE,KAAK,WAAW,GAAG,EAAE,KAAK,UAAU,SAAS,EAAE,KAAK,SAAS,MAAM,EAAE,OAAO,CAAC,CAAC;EAC5G,MAAM,KAAK,OAAO,KAAK,IAAI,MAAM;CAClC;CAED,MAAM,gCACJC,WACAC,GACAC,QAC+B;EAC/B,MAAM,UAAU,MAAM,KAAK,gBAAgB,WAAW,GAAG,OAAO;EAChE,MAAMC,sBAA4C,CAAE;AAEpD,OAAK,MAAM,OAAO,SAAS;GACzB,MAAM,WACJ,KAAK,sBAAsB,IAAI,KAAK,sBAChC,IAAI,KAAK,sBACT,CAAE;AAER,QAAK,MAAM,OAAO,KAAK,iBACrB,SAAS,OAAO,IAAI;GAGtB,oBAAoB,KAAK,CACvB,IAAIZ,oCAAS;IAAE,aAAa,IAAI,KAAK;IAAgB;GAAU,IAC/D,IAAI,QACL,EAAC;EACH;AAED,SAAO;CACR;CAED,MAAc,gBACZS,WACAI,GACAC,QACA;EACA,MAAM,SAAS,KAAK,KAAK;EACzB,MAAM,EAAE,UAAU,GAAG,KAAK;EAC1B,MAAM,EAAE,gBAAgB,GAAG,KAAK;EAChC,MAAM,UAAU,WAAW,SAAY,CAAC,MAAM,EAAE,QAAQ,GAAG;EAC3D,MAAM,mBACJ,KAAK,gBAAgB,SAAS,IAC1B,CAAC,GAAG,EAAE,KAAK,gBAAgB,KAAK,QAAM,CAAC,CAAC,CAAC,GACzC;EACN,MAAM,sBAAsB,KAAK,qBAC7B,CAAC,GAAG,EAAE,KAAK,mBAAmB,CAAC,CAAC,GAChC;EAEJ,MAAM,QAAQ,CAAC,QAAQ,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,cAAc,IAAI,EAAE,KAAK,gBAAgB,EAAE,EAAE,iBAAiB,CAAC,EAAE,oBAAoB,EAAE,EAAE,eAAe,EAAE,EAAE,KAAK,gBAAgB,KAAK,EAAE,UAAU,sBAAsB,EAAE,KAAK,WAAW,GAAG,EAAE,KAAK,UAAU,EAAE,EAAE,QAAQ,WAAW,EAAE,KAAK,gBAAgB,EAAE,EAAE,SAAS,GAAG,EAAE,UAAU,SAAS,EAAE,OAAO,CAAC,CAAC;AAE9V,MAAI,KAAK,mBACP,MAAM,KAAK,OAAO,KAAK,IACrB,CAAC,UAAU,EAAE,KAAK,kBAAkB,WAAW,EAAE,CAClD;EAGH,MAAM,EAAE,MAAM,GAAG,MAAM,KAAK,OAAO,KAAK,IAAI,MAAM;AAElD,SAAO;CACR;CAED,MAAM,2BACJC,OACAC,SACqB;EACrB,MAAM,SAAS,MAAM,KAAK,WAAW,WAAW,MAAM;EACtD,MAAM,UAAU,MAAM,KAAK,gBACzB,QACA,SAAS,GACT,SAAS,OACV;EACD,MAAM,IAAI,SAAS,IAAI,QAAQ,IAAI,KAAK;EACxC,MAAMJ,sBAA4C,CAAE;EACpD,IAAIK,WAAuB,CAAE;EAE7B,MAAM,gBAAgB,QAAQ,IAAI,CAACC,QACjC,KAAK,MAAM,IAAI,KAAK,iBAAiB,CACtC;EACD,MAAM,wEACJ,QACA,eACA,SAAS,QACT,EACD;AAED,OAAK,MAAM,OAAO,SAAS;GACzB,MAAM,WACJ,KAAK,sBAAsB,IAAI,KAAK,sBAChC,IAAI,KAAK,sBACT,CAAE;AACR,QAAK,MAAM,OAAO,KAAK,iBACrB,SAAS,OAAO,IAAI;GAEtB,oBAAoB,KAAK,CACvB,IAAIlB,oCAAS;IACX,aAAa,IAAI,KAAK;IACtB;GACD,IACD,IAAI,QACL,EAAC;EACH;EAED,WAAW,oBACR,OAAO,CAAC,GAAG,MAAM,YAAY,SAAS,EAAE,CAAC,CACzC,IAAI,CAAC,CAAC,KAAK,EAAE,KAAK,IAAI;AAEzB,SAAO;CACR;;;;;;;CAQD,MAAM,iBACJmB,OACAC,MACAC,eAAwB,OACT;AACf,MAAI,MAAM,YAAY,SAAS,wBAAwB;GACrD,MAAM,KAAK,iBAAiB;AAC5B;EACD;EAED,MAAM,SACJ,MAAM,kBAAkB,MAAM,gBAAgB,SAAS,IACnD,CAAC,OAAO,EAAE,MAAM,eAAe,CAAC,CAAC,GACjC;EACN,MAAM,SAAS,CAAC,KAAK,EAAE,MAAM,cAAc,EAAE;EAC7C,MAAM,QAAQ,MAAM,iBAAiB;EAErC,IAAI,YAAY;AAChB,MAAI,CAAC,UACH,KAAI,CAAC,MAAM,MACT,YAAY,KAAK,YAAYC;OAE7B,YAAY,MAAM;EAItB,MAAM,OAAO,CAAC,aAAa,EACzB,eAAe,iBAAiB,GACjC,CAAC,EAAE,UAAU,KAAK,EAAE,KAAK,WAAW,GAAG,EAAE,KAAK,UAAU,QAAQ,EAC/D,MAAM,UACP,EAAE,EAAE,KAAK,gBAAgB,CAAC,EAAE,MAAM,EAAE,EAAE,OAAO,CAAC,EAAE,OAAO,CAAC,CAAC;EAE1D,MAAM,KAAK,OAAO,KAAK,IAAI,KAAK;CACjC;;;;;CAMD,MAAM,aAAaC,WAAsC;EACvD,MAAM,UAAU,aAAa,KAAK,YAAYD;EAC9C,MAAM,OAAO,CAAC;;qCAEmB,EAAE,KAAK,UAAU,oBAAoB,EAAE,KAAK,WAAW,mBAAmB,EAAE,QAAQ,EAAE,CAAC;EACxH,MAAM,EAAE,MAAM,GAAG,MAAM,KAAK,OAAO,KAAK,IAAI,KAAK;AAEjD,SAAO,KAAK,WAAW;CACxB;;;;;CAMD,MAAM,gBAAgBC,WAAmC;EACvD,MAAM,UAAU,aAAa,KAAK,YAAYD;EAC9C,MAAM,QAAQ,CAAC,qBAAqB,EAAE,QAAQ,CAAC,CAAC;EAChD,MAAM,KAAK,OAAO,KAAK,IAAI,MAAM;CAClC;;;;;CAMD,MAAM,QAAQC,WAAoB;EAChC,MAAM,UAAU,aAAa,KAAK,YAAYD;EAC9C,MAAM,QAAQ,CAAC,cAAc,EAAE,QAAQ,CAAC,CAAC;EACzC,MAAM,KAAK,OAAO,KAAK,IAAI,MAAM;CAClC;AACF"}
@@ -0,0 +1,300 @@
1
+ import { PostgresEngine } from "./engine.cjs";
2
+ import { BaseIndex, DistanceStrategy, QueryOptions } from "./indexes.cjs";
3
+ import { EmbeddingsInterface } from "@langchain/core/embeddings";
4
+ import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores";
5
+ import { Document } from "@langchain/core/documents";
6
+
7
+ //#region src/vectorstore.d.ts
8
+ interface PostgresVectorStoreArgs {
9
+ schemaName?: string;
10
+ contentColumn?: string;
11
+ embeddingColumn?: string;
12
+ metadataColumns?: Array<string>;
13
+ idColumn?: string;
14
+ distanceStrategy?: DistanceStrategy;
15
+ k?: number;
16
+ fetchK?: number;
17
+ lambdaMult?: number;
18
+ ignoreMetadataColumns?: Array<string>;
19
+ metadataJsonColumn?: string;
20
+ indexQueryOptions?: QueryOptions;
21
+ }
22
+ interface dbConfigArgs {
23
+ engine: PostgresEngine;
24
+ tableName: string;
25
+ dbConfig?: PostgresVectorStoreArgs;
26
+ }
27
+ interface VSArgs {
28
+ engine: PostgresEngine;
29
+ tableName: string;
30
+ schemaName: string;
31
+ contentColumn: string;
32
+ embeddingColumn: string;
33
+ metadataColumns: Array<string>;
34
+ idColumn: string;
35
+ distanceStrategy: DistanceStrategy;
36
+ k: number;
37
+ fetchK: number;
38
+ lambdaMult: number;
39
+ metadataJsonColumn: string;
40
+ indexQueryOptions?: QueryOptions;
41
+ }
42
+ /**
43
+ * Google Cloud SQL for PostgreSQL vector store integration.
44
+ *
45
+ * Setup:
46
+ * Install `@langchain/google-cloud-sql-pg`
47
+ *
48
+ * ```bash
49
+ * npm install @langchain/google-cloud-sql-pg
50
+ * ```
51
+ *
52
+ * <details open>
53
+ * <summary><strong>Instantiate</strong></summary>
54
+ *
55
+ * ```typescript
56
+ * import { Column, PostgresEngine, PostgresEngineArgs, PostgresVectorStore, VectorStoreTableArgs } from "@langchain/google-cloud-sql-pg";
57
+ * // Or other embeddings
58
+ * import { OpenAIEmbeddings } from '@langchain/openai';
59
+ *
60
+ *
61
+ * const embeddings = new OpenAIEmbeddings({
62
+ * model: "text-embedding-3-small",
63
+ * });
64
+ *
65
+ * const pgArgs: PostgresEngineArgs = {
66
+ * user: "db-user",
67
+ * password: "password"
68
+ * }
69
+ * // Create a shared connection pool
70
+ * const engine: PostgresEngine = await PostgresEngine.fromInstance(
71
+ * "project-id",
72
+ * "region",
73
+ * "instance-name",
74
+ * "database-name",
75
+ * pgArgs
76
+ * );
77
+ * // (Optional) Specify metadata columns for filtering
78
+ * // All other metadata will be added to JSON
79
+ * const vectorStoreTableArgs: VectorStoreTableArgs = {
80
+ * metadataColumns: [new Column("baz", "TEXT")],
81
+ * };
82
+ * // Create a vector store table
83
+ * await engine.initVectorstoreTable("my-table", 768, vectorStoreTableArgs);
84
+ * // Customize the vector store
85
+ * const pvectorArgs: PostgresVectorStoreArgs = {
86
+ * idColumn: "ID_COLUMN",
87
+ * contentColumn: "CONTENT_COLUMN",
88
+ * embeddingColumn: "EMBEDDING_COLUMN",
89
+ * metadataColumns: ["baz"]
90
+ * }
91
+ *
92
+ * const vectorStore = await PostgresVectorStore.initialize(engine, embeddingService, "my-table", pvectorArgs);
93
+ * ```
94
+ * </details>
95
+ *
96
+ * <br />
97
+ *
98
+ * <details>
99
+ * <summary><strong>Add documents</strong></summary>
100
+ *
101
+ * ```typescript
102
+ * import type { Document } from '@langchain/core/documents';
103
+ *
104
+ * const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
105
+ * const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
106
+ * const document3 = { pageContent: "i will be deleted :(", metadata: {} };
107
+ *
108
+ * const documents: Document[] = [document1, document2, document3];
109
+ * const ids = ["1", "2", "3"];
110
+ * await vectorStore.addDocuments(documents, { ids });
111
+ * ```
112
+ * </details>
113
+ *
114
+ * <br />
115
+ *
116
+ * <details>
117
+ * <summary><strong>Delete documents</strong></summary>
118
+ *
119
+ * ```typescript
120
+ * await vectorStore.delete({ ids: ["3"] });
121
+ * ```
122
+ * </details>
123
+ *
124
+ * <br />
125
+ *
126
+ * <details>
127
+ * <summary><strong>Similarity search</strong></summary>
128
+ *
129
+ * ```typescript
130
+ * const results = await vectorStore.similaritySearch("thud", 1);
131
+ * for (const doc of results) {
132
+ * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
133
+ * }
134
+ * // Output:thud [{"baz":"bar"}]
135
+ * ```
136
+ * </details>
137
+ *
138
+ * <br />
139
+ *
140
+ *
141
+ * <details>
142
+ * <summary><strong>Similarity search with filter</strong></summary>
143
+ *
144
+ * ```typescript
145
+ * const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, "baz = 'bar'");
146
+ *
147
+ * for (const doc of resultsWithFilter) {
148
+ * console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
149
+ * }
150
+ * // Output:foo [{"baz":"bar"}]
151
+ * ```
152
+ * </details>
153
+ *
154
+ * <br />
155
+ *
156
+ *
157
+ * <details>
158
+ * <summary><strong>Similarity search with score</strong></summary>
159
+ *
160
+ * ```typescript
161
+ * const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
162
+ * for (const [doc, score] of resultsWithScore) {
163
+ * console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
164
+ * }
165
+ * // Output:[SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
166
+ * ```
167
+ * </details>
168
+ *
169
+ * <br />
170
+ *
171
+ * <details>
172
+ * <summary><strong>As a retriever</strong></summary>
173
+ *
174
+ * ```typescript
175
+ * const retriever = vectorStore.asRetriever({
176
+ * searchType: "mmr", // Leave blank for standard similarity search
177
+ * k: 1,
178
+ * });
179
+ * const resultAsRetriever = await retriever.invoke("thud");
180
+ * console.log(resultAsRetriever);
181
+ *
182
+ * // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
183
+ * ```
184
+ * </details>
185
+ *
186
+ * <br />
187
+ */
188
+ declare class PostgresVectorStore extends VectorStore {
189
+ FilterType: string;
190
+ engine: PostgresEngine;
191
+ embeddings: EmbeddingsInterface;
192
+ tableName: string;
193
+ schemaName: string;
194
+ contentColumn: string;
195
+ embeddingColumn: string;
196
+ metadataColumns: Array<string>;
197
+ idColumn: string;
198
+ metadataJsonColumn: string;
199
+ distanceStrategy: DistanceStrategy;
200
+ k: number;
201
+ fetchK: number;
202
+ lambdaMult: number;
203
+ indexQueryOptions: QueryOptions | undefined;
204
+ /**
205
+ * Initializes a new vector store with embeddings and database configuration.
206
+ *
207
+ * @param embeddings - Instance of `EmbeddingsInterface` used to embed queries.
208
+ * @param dbConfig - Configuration settings for the database or storage system.
209
+ */
210
+ constructor(embeddings: EmbeddingsInterface, dbConfig: VSArgs);
211
+ /**
212
+ * Create a new PostgresVectorStore instance.
213
+ * @param {PostgresEngine} engine Required - Connection pool engine for managing connections to Cloud SQL for PostgreSQL database.
214
+ * @param {Embeddings} embeddings Required - Text embedding model to use.
215
+ * @param {string} tableName Required - Name of an existing table or table to be created.
216
+ * @param {string} schemaName Database schema name of the table. Defaults to "public".
217
+ * @param {string} contentColumn Column that represent a Document's page_content. Defaults to "content".
218
+ * @param {string} embeddingColumn Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding".
219
+ * @param {Array<string>} metadataColumns Column(s) that represent a document's metadata.
220
+ * @param {Array<string>} ignoreMetadataColumns Optional - Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns.
221
+ * @param {string} idColumn Column that represents the Document's id. Defaults to "langchain_id".
222
+ * @param {string} metadataJsonColumn Optional - Column to store metadata as JSON. Defaults to "langchain_metadata".
223
+ * @param {DistanceStrategy} distanceStrategy Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE.
224
+ * @param {number} k Number of Documents to return from search. Defaults to 4.
225
+ * @param {number} fetchK Number of Documents to fetch to pass to MMR algorithm.
226
+ * @param {number} lambdaMult Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
227
+ * @param {QueryOptions} indexQueryOptions Optional - Index query option.
228
+ * @returns PostgresVectorStore instance.
229
+ */
230
+ static initialize(engine: PostgresEngine, embeddings: EmbeddingsInterface, tableName: string, {
231
+ schemaName,
232
+ contentColumn,
233
+ embeddingColumn,
234
+ metadataColumns,
235
+ ignoreMetadataColumns,
236
+ idColumn,
237
+ metadataJsonColumn,
238
+ distanceStrategy,
239
+ k,
240
+ fetchK,
241
+ lambdaMult,
242
+ indexQueryOptions
243
+ }?: PostgresVectorStoreArgs): Promise<PostgresVectorStore>;
244
+ static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;
245
+ static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: dbConfigArgs): Promise<VectorStore>;
246
+ addVectors(vectors: number[][], documents: Document[], options?: {
247
+ ids?: string[];
248
+ }): Promise<string[] | void>;
249
+ _vectorstoreType(): string;
250
+ /**
251
+ * Adds documents to the vector store, embedding them first through the
252
+ * `embeddings` instance.
253
+ *
254
+ * @param documents - Array of documents to embed and add.
255
+ * @param options - Optional configuration for embedding and storing documents.
256
+ * @returns A promise resolving to an array of document IDs or void, based on implementation.
257
+ * @abstract
258
+ */
259
+ addDocuments(documents: Document[], options?: {
260
+ ids?: string[];
261
+ }): Promise<string[] | void>;
262
+ /**
263
+ * Deletes documents from the vector store based on the specified ids.
264
+ *
265
+ * @param params - Flexible key-value pairs defining conditions for document deletion.
266
+ * @param ids - Optional: Property of {params} that contains the array of ids to be deleted
267
+ * @returns A promise that resolves once the deletion is complete.
268
+ */
269
+ delete(params: {
270
+ ids?: string[];
271
+ }): Promise<void>;
272
+ similaritySearchVectorWithScore(embedding: number[], k: number, filter?: this["FilterType"]): Promise<[Document, number][]>;
273
+ private queryCollection;
274
+ maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
275
+ /**
276
+ * Create an index on the vector store table
277
+ * @param {BaseIndex} index
278
+ * @param {string} name Optional
279
+ * @param {boolean} concurrently Optional
280
+ */
281
+ applyVectorIndex(index: BaseIndex, name?: string, concurrently?: boolean): Promise<void>;
282
+ /**
283
+ * Check if index exists in the table.
284
+ * @param {string} indexName Optional - index name
285
+ */
286
+ isValidIndex(indexName?: string): Promise<boolean>;
287
+ /**
288
+ * Drop the vector index
289
+ * @param {string} indexName Optional - index name
290
+ */
291
+ dropVectorIndex(indexName?: string): Promise<void>;
292
+ /**
293
+ * Re-index the vector store table
294
+ * @param {string} indexName Optional - index name
295
+ */
296
+ reIndex(indexName?: string): Promise<void>;
297
+ }
298
+ //#endregion
299
+ export { PostgresVectorStore, PostgresVectorStoreArgs, dbConfigArgs };
300
+ //# sourceMappingURL=vectorstore.d.cts.map