@langchain/core 1.1.10 → 1.1.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +6 -0
- package/dist/documents/document.cjs.map +1 -1
- package/dist/documents/document.js.map +1 -1
- package/dist/documents/transformers.cjs.map +1 -1
- package/dist/documents/transformers.js.map +1 -1
- package/dist/example_selectors/conditional.cjs.map +1 -1
- package/dist/example_selectors/conditional.js.map +1 -1
- package/dist/example_selectors/semantic_similarity.cjs.map +1 -1
- package/dist/example_selectors/semantic_similarity.js.map +1 -1
- package/dist/language_models/base.cjs.map +1 -1
- package/dist/language_models/base.js.map +1 -1
- package/dist/language_models/chat_models.cjs.map +1 -1
- package/dist/language_models/chat_models.js.map +1 -1
- package/dist/language_models/llms.cjs.map +1 -1
- package/dist/language_models/llms.js.map +1 -1
- package/dist/load/import_map.cjs +11 -11
- package/dist/load/import_map.cjs.map +1 -1
- package/dist/load/import_map.js +11 -11
- package/dist/load/import_map.js.map +1 -1
- package/dist/load/index.cjs.map +1 -1
- package/dist/load/index.js.map +1 -1
- package/dist/load/serializable.cjs +3 -3
- package/dist/load/serializable.cjs.map +1 -1
- package/dist/load/serializable.js +3 -3
- package/dist/load/serializable.js.map +1 -1
- package/dist/load/validation.cjs +13 -7
- package/dist/load/validation.cjs.map +1 -1
- package/dist/load/validation.js +13 -7
- package/dist/load/validation.js.map +1 -1
- package/dist/messages/ai.cjs.map +1 -1
- package/dist/messages/ai.js.map +1 -1
- package/dist/messages/base.cjs.map +1 -1
- package/dist/messages/base.js.map +1 -1
- package/dist/messages/chat.cjs.map +1 -1
- package/dist/messages/chat.js.map +1 -1
- package/dist/messages/content/data.cjs.map +1 -1
- package/dist/messages/content/data.js.map +1 -1
- package/dist/messages/content/index.cjs.map +1 -1
- package/dist/messages/content/index.js.map +1 -1
- package/dist/messages/content/tools.cjs.map +1 -1
- package/dist/messages/content/tools.js.map +1 -1
- package/dist/messages/function.cjs.map +1 -1
- package/dist/messages/function.js.map +1 -1
- package/dist/messages/human.cjs.map +1 -1
- package/dist/messages/human.js.map +1 -1
- package/dist/messages/message.cjs.map +1 -1
- package/dist/messages/message.js.map +1 -1
- package/dist/messages/modifier.cjs.map +1 -1
- package/dist/messages/modifier.js.map +1 -1
- package/dist/messages/system.cjs.map +1 -1
- package/dist/messages/system.js.map +1 -1
- package/dist/messages/tool.cjs.map +1 -1
- package/dist/messages/tool.js.map +1 -1
- package/dist/messages/utils.cjs.map +1 -1
- package/dist/messages/utils.js.map +1 -1
- package/dist/output_parsers/base.cjs.map +1 -1
- package/dist/output_parsers/base.js.map +1 -1
- package/dist/output_parsers/index.cjs +1 -1
- package/dist/output_parsers/index.js +1 -1
- package/dist/output_parsers/json.cjs.map +1 -1
- package/dist/output_parsers/json.js.map +1 -1
- package/dist/output_parsers/openai_functions/json_output_functions_parsers.cjs.map +1 -1
- package/dist/output_parsers/openai_functions/json_output_functions_parsers.js.map +1 -1
- package/dist/output_parsers/openai_tools/json_output_tools_parsers.cjs.map +1 -1
- package/dist/output_parsers/openai_tools/json_output_tools_parsers.js.map +1 -1
- package/dist/output_parsers/structured.cjs.map +1 -1
- package/dist/output_parsers/structured.js.map +1 -1
- package/dist/output_parsers/transform.cjs.map +1 -1
- package/dist/output_parsers/transform.js.map +1 -1
- package/dist/prompts/base.cjs.map +1 -1
- package/dist/prompts/base.js.map +1 -1
- package/dist/prompts/chat.cjs.map +1 -1
- package/dist/prompts/chat.js.map +1 -1
- package/dist/prompts/dict.cjs.map +1 -1
- package/dist/prompts/dict.js.map +1 -1
- package/dist/prompts/few_shot.cjs.map +1 -1
- package/dist/prompts/few_shot.js.map +1 -1
- package/dist/prompts/image.cjs.map +1 -1
- package/dist/prompts/image.js.map +1 -1
- package/dist/prompts/pipeline.cjs.map +1 -1
- package/dist/prompts/pipeline.js.map +1 -1
- package/dist/prompts/prompt.cjs.map +1 -1
- package/dist/prompts/prompt.js.map +1 -1
- package/dist/prompts/string.cjs.map +1 -1
- package/dist/prompts/string.js.map +1 -1
- package/dist/prompts/structured.cjs.map +1 -1
- package/dist/prompts/structured.js.map +1 -1
- package/dist/prompts/template.cjs +1 -4
- package/dist/prompts/template.cjs.map +1 -1
- package/dist/prompts/template.js +1 -4
- package/dist/prompts/template.js.map +1 -1
- package/dist/retrievers/index.cjs.map +1 -1
- package/dist/retrievers/index.js.map +1 -1
- package/dist/runnables/base.cjs.map +1 -1
- package/dist/runnables/base.js.map +1 -1
- package/dist/runnables/branch.cjs.map +1 -1
- package/dist/runnables/branch.js.map +1 -1
- package/dist/runnables/history.cjs.map +1 -1
- package/dist/runnables/history.js.map +1 -1
- package/dist/runnables/passthrough.cjs.map +1 -1
- package/dist/runnables/passthrough.js.map +1 -1
- package/dist/runnables/router.cjs.map +1 -1
- package/dist/runnables/router.js.map +1 -1
- package/dist/singletons/callbacks.cjs.map +1 -1
- package/dist/singletons/callbacks.js.map +1 -1
- package/dist/stores.d.cts.map +1 -1
- package/dist/structured_query/base.cjs.map +1 -1
- package/dist/structured_query/base.js.map +1 -1
- package/dist/structured_query/ir.cjs.map +1 -1
- package/dist/structured_query/ir.js.map +1 -1
- package/dist/tools/index.cjs.map +1 -1
- package/dist/tools/index.js.map +1 -1
- package/dist/tools/types.cjs.map +1 -1
- package/dist/tools/types.js.map +1 -1
- package/dist/utils/async_caller.cjs.map +1 -1
- package/dist/utils/async_caller.js.map +1 -1
- package/dist/utils/stream.cjs.map +1 -1
- package/dist/utils/stream.js.map +1 -1
- package/dist/utils/testing/chat_models.cjs.map +1 -1
- package/dist/utils/testing/chat_models.js.map +1 -1
- package/dist/utils/testing/tools.cjs.map +1 -1
- package/dist/utils/testing/tools.js.map +1 -1
- package/dist/utils/types/zod.cjs.map +1 -1
- package/dist/utils/types/zod.js.map +1 -1
- package/dist/vectorstores.cjs.map +1 -1
- package/dist/vectorstores.js.map +1 -1
- package/package.json +2 -2
package/CHANGELOG.md
CHANGED
|
@@ -1,5 +1,11 @@
|
|
|
1
1
|
# @langchain/core
|
|
2
2
|
|
|
3
|
+
## 1.1.11
|
|
4
|
+
|
|
5
|
+
### Patch Changes
|
|
6
|
+
|
|
7
|
+
- [#9753](https://github.com/langchain-ai/langchainjs/pull/9753) [`a46a249`](https://github.com/langchain-ai/langchainjs/commit/a46a24983fd0fea649d950725a2673b3c435275f) Thanks [@christian-bromann](https://github.com/christian-bromann)! - fix(core): allow shared object references in serialization
|
|
8
|
+
|
|
3
9
|
## 1.1.10
|
|
4
10
|
|
|
5
11
|
### Patch Changes
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"document.cjs","names":["fields: DocumentInput<Metadata>"],"sources":["../../src/documents/document.ts"],"sourcesContent":["export interface DocumentInput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any
|
|
1
|
+
{"version":3,"file":"document.cjs","names":["fields: DocumentInput<Metadata>"],"sources":["../../src/documents/document.ts"],"sourcesContent":["export interface DocumentInput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n> {\n pageContent: string;\n\n metadata?: Metadata;\n\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n}\n\nexport interface DocumentInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n> {\n pageContent: string;\n\n metadata: Metadata;\n\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n}\n\n/**\n * Interface for interacting with a document.\n */\nexport class Document<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n >\n implements DocumentInput, DocumentInterface\n{\n pageContent: string;\n\n metadata: Metadata;\n\n // The ID field is optional at the moment.\n // It will likely become required in a future major release after\n // it has been adopted by enough vectorstore implementations.\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n\n constructor(fields: DocumentInput<Metadata>) {\n this.pageContent =\n fields.pageContent !== undefined ? fields.pageContent.toString() : \"\";\n this.metadata = fields.metadata ?? ({} as Metadata);\n this.id = fields.id;\n }\n}\n"],"mappings":";;;;;AAqCA,IAAa,WAAb,MAKA;CACE;CAEA;;;;;;;CAWA;CAEA,YAAYA,QAAiC;EAC3C,KAAK,cACH,OAAO,gBAAgB,SAAY,OAAO,YAAY,UAAU,GAAG;EACrE,KAAK,WAAW,OAAO,YAAa,CAAE;EACtC,KAAK,KAAK,OAAO;CAClB;AACF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"document.js","names":["fields: DocumentInput<Metadata>"],"sources":["../../src/documents/document.ts"],"sourcesContent":["export interface DocumentInput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any
|
|
1
|
+
{"version":3,"file":"document.js","names":["fields: DocumentInput<Metadata>"],"sources":["../../src/documents/document.ts"],"sourcesContent":["export interface DocumentInput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n> {\n pageContent: string;\n\n metadata?: Metadata;\n\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n}\n\nexport interface DocumentInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n> {\n pageContent: string;\n\n metadata: Metadata;\n\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n}\n\n/**\n * Interface for interacting with a document.\n */\nexport class Document<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n Metadata extends Record<string, any> = Record<string, any>,\n >\n implements DocumentInput, DocumentInterface\n{\n pageContent: string;\n\n metadata: Metadata;\n\n // The ID field is optional at the moment.\n // It will likely become required in a future major release after\n // it has been adopted by enough vectorstore implementations.\n /**\n * An optional identifier for the document.\n *\n * Ideally this should be unique across the document collection and formatted\n * as a UUID, but this will not be enforced.\n */\n id?: string;\n\n constructor(fields: DocumentInput<Metadata>) {\n this.pageContent =\n fields.pageContent !== undefined ? fields.pageContent.toString() : \"\";\n this.metadata = fields.metadata ?? ({} as Metadata);\n this.id = fields.id;\n }\n}\n"],"mappings":";;;;AAqCA,IAAa,WAAb,MAKA;CACE;CAEA;;;;;;;CAWA;CAEA,YAAYA,QAAiC;EAC3C,KAAK,cACH,OAAO,gBAAgB,SAAY,OAAO,YAAY,UAAU,GAAG;EACrE,KAAK,WAAW,OAAO,YAAa,CAAE;EACtC,KAAK,KAAK,OAAO;CAClB;AACF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"transformers.cjs","names":["Runnable","input: RunInput","_options?: BaseCallbackConfig","documents: DocumentInterface[]"],"sources":["../../src/documents/transformers.ts"],"sourcesContent":["import { Runnable } from \"../runnables/base.js\";\nimport type { BaseCallbackConfig } from \"../callbacks/manager.js\";\nimport type { DocumentInterface } from \"./document.js\";\n\n/**\n * Abstract base class for document transformation systems.\n *\n * A document transformation system takes an array of Documents and returns an\n * array of transformed Documents. These arrays do not necessarily have to have\n * the same length.\n *\n * One example of this is a text splitter that splits a large document into\n * many smaller documents.\n */\nexport abstract class BaseDocumentTransformer<\n RunInput extends DocumentInterface[] = DocumentInterface[],\n RunOutput extends DocumentInterface[] = DocumentInterface[]
|
|
1
|
+
{"version":3,"file":"transformers.cjs","names":["Runnable","input: RunInput","_options?: BaseCallbackConfig","documents: DocumentInterface[]"],"sources":["../../src/documents/transformers.ts"],"sourcesContent":["import { Runnable } from \"../runnables/base.js\";\nimport type { BaseCallbackConfig } from \"../callbacks/manager.js\";\nimport type { DocumentInterface } from \"./document.js\";\n\n/**\n * Abstract base class for document transformation systems.\n *\n * A document transformation system takes an array of Documents and returns an\n * array of transformed Documents. These arrays do not necessarily have to have\n * the same length.\n *\n * One example of this is a text splitter that splits a large document into\n * many smaller documents.\n */\nexport abstract class BaseDocumentTransformer<\n RunInput extends DocumentInterface[] = DocumentInterface[],\n RunOutput extends DocumentInterface[] = DocumentInterface[],\n> extends Runnable<RunInput, RunOutput> {\n lc_namespace = [\"langchain_core\", \"documents\", \"transformers\"];\n\n /**\n * Transform a list of documents.\n * @param documents A sequence of documents to be transformed.\n * @returns A list of transformed documents.\n */\n abstract transformDocuments(documents: RunInput): Promise<RunOutput>;\n\n /**\n * Method to invoke the document transformation. This method calls the\n * transformDocuments method with the provided input.\n * @param input The input documents to be transformed.\n * @param _options Optional configuration object to customize the behavior of callbacks.\n * @returns A Promise that resolves to the transformed documents.\n */\n invoke(input: RunInput, _options?: BaseCallbackConfig): Promise<RunOutput> {\n return this.transformDocuments(input);\n }\n}\n\n/**\n * Class for document transformers that return exactly one transformed document\n * for each input document.\n */\nexport abstract class MappingDocumentTransformer extends BaseDocumentTransformer {\n async transformDocuments(\n documents: DocumentInterface[]\n ): Promise<DocumentInterface[]> {\n const newDocuments = [];\n for (const document of documents) {\n const transformedDocument = await this._transformDocument(document);\n newDocuments.push(transformedDocument);\n }\n return newDocuments;\n }\n\n abstract _transformDocument(\n document: DocumentInterface\n ): Promise<DocumentInterface>;\n}\n"],"mappings":";;;;;;;;;;;;;AAcA,IAAsB,0BAAtB,cAGUA,sBAA8B;CACtC,eAAe;EAAC;EAAkB;EAAa;CAAe;;;;;;;;CAgB9D,OAAOC,OAAiBC,UAAmD;AACzE,SAAO,KAAK,mBAAmB,MAAM;CACtC;AACF;;;;;AAMD,IAAsB,6BAAtB,cAAyD,wBAAwB;CAC/E,MAAM,mBACJC,WAC8B;EAC9B,MAAM,eAAe,CAAE;AACvB,OAAK,MAAM,YAAY,WAAW;GAChC,MAAM,sBAAsB,MAAM,KAAK,mBAAmB,SAAS;GACnE,aAAa,KAAK,oBAAoB;EACvC;AACD,SAAO;CACR;AAKF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"transformers.js","names":["input: RunInput","_options?: BaseCallbackConfig","documents: DocumentInterface[]"],"sources":["../../src/documents/transformers.ts"],"sourcesContent":["import { Runnable } from \"../runnables/base.js\";\nimport type { BaseCallbackConfig } from \"../callbacks/manager.js\";\nimport type { DocumentInterface } from \"./document.js\";\n\n/**\n * Abstract base class for document transformation systems.\n *\n * A document transformation system takes an array of Documents and returns an\n * array of transformed Documents. These arrays do not necessarily have to have\n * the same length.\n *\n * One example of this is a text splitter that splits a large document into\n * many smaller documents.\n */\nexport abstract class BaseDocumentTransformer<\n RunInput extends DocumentInterface[] = DocumentInterface[],\n RunOutput extends DocumentInterface[] = DocumentInterface[]
|
|
1
|
+
{"version":3,"file":"transformers.js","names":["input: RunInput","_options?: BaseCallbackConfig","documents: DocumentInterface[]"],"sources":["../../src/documents/transformers.ts"],"sourcesContent":["import { Runnable } from \"../runnables/base.js\";\nimport type { BaseCallbackConfig } from \"../callbacks/manager.js\";\nimport type { DocumentInterface } from \"./document.js\";\n\n/**\n * Abstract base class for document transformation systems.\n *\n * A document transformation system takes an array of Documents and returns an\n * array of transformed Documents. These arrays do not necessarily have to have\n * the same length.\n *\n * One example of this is a text splitter that splits a large document into\n * many smaller documents.\n */\nexport abstract class BaseDocumentTransformer<\n RunInput extends DocumentInterface[] = DocumentInterface[],\n RunOutput extends DocumentInterface[] = DocumentInterface[],\n> extends Runnable<RunInput, RunOutput> {\n lc_namespace = [\"langchain_core\", \"documents\", \"transformers\"];\n\n /**\n * Transform a list of documents.\n * @param documents A sequence of documents to be transformed.\n * @returns A list of transformed documents.\n */\n abstract transformDocuments(documents: RunInput): Promise<RunOutput>;\n\n /**\n * Method to invoke the document transformation. This method calls the\n * transformDocuments method with the provided input.\n * @param input The input documents to be transformed.\n * @param _options Optional configuration object to customize the behavior of callbacks.\n * @returns A Promise that resolves to the transformed documents.\n */\n invoke(input: RunInput, _options?: BaseCallbackConfig): Promise<RunOutput> {\n return this.transformDocuments(input);\n }\n}\n\n/**\n * Class for document transformers that return exactly one transformed document\n * for each input document.\n */\nexport abstract class MappingDocumentTransformer extends BaseDocumentTransformer {\n async transformDocuments(\n documents: DocumentInterface[]\n ): Promise<DocumentInterface[]> {\n const newDocuments = [];\n for (const document of documents) {\n const transformedDocument = await this._transformDocument(document);\n newDocuments.push(transformedDocument);\n }\n return newDocuments;\n }\n\n abstract _transformDocument(\n document: DocumentInterface\n ): Promise<DocumentInterface>;\n}\n"],"mappings":";;;;;;;;;;;;;AAcA,IAAsB,0BAAtB,cAGU,SAA8B;CACtC,eAAe;EAAC;EAAkB;EAAa;CAAe;;;;;;;;CAgB9D,OAAOA,OAAiBC,UAAmD;AACzE,SAAO,KAAK,mBAAmB,MAAM;CACtC;AACF;;;;;AAMD,IAAsB,6BAAtB,cAAyD,wBAAwB;CAC/E,MAAM,mBACJC,WAC8B;EAC9B,MAAM,eAAe,CAAE;AACvB,OAAK,MAAM,YAAY,WAAW;GAChC,MAAM,sBAAsB,MAAM,KAAK,mBAAmB,SAAS;GACnE,aAAa,KAAK,oBAAoB;EACvC;AACD,SAAO;CACR;AAKF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"conditional.cjs","names":["llm: BaseLanguageModelInterface","options?: BaseGetPromptAsyncOptions","default_prompt: BasePromptTemplate","conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate
|
|
1
|
+
{"version":3,"file":"conditional.cjs","names":["llm: BaseLanguageModelInterface","options?: BaseGetPromptAsyncOptions","default_prompt: BasePromptTemplate","conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n >"],"sources":["../../src/example_selectors/conditional.ts"],"sourcesContent":["import type { BaseChatModel } from \"../language_models/chat_models.js\";\nimport type { BasePromptTemplate } from \"../prompts/base.js\";\nimport type { BaseLanguageModelInterface } from \"../language_models/base.js\";\nimport type { BaseLLM } from \"../language_models/llms.js\";\nimport type { PartialValues } from \"../utils/types/index.js\";\n\nexport type BaseGetPromptAsyncOptions = {\n partialVariables?: PartialValues;\n};\n\n/**\n * Abstract class that defines the interface for selecting a prompt for a\n * given language model.\n */\nexport abstract class BasePromptSelector {\n /**\n * Abstract method that must be implemented by any class that extends\n * `BasePromptSelector`. It takes a language model as an argument and\n * returns a prompt template.\n * @param llm The language model for which to get a prompt.\n * @returns A prompt template.\n */\n abstract getPrompt(llm: BaseLanguageModelInterface): BasePromptTemplate;\n\n /**\n * Asynchronous version of `getPrompt` that also accepts an options object\n * for partial variables.\n * @param llm The language model for which to get a prompt.\n * @param options Optional object for partial variables.\n * @returns A Promise that resolves to a prompt template.\n */\n async getPromptAsync(\n llm: BaseLanguageModelInterface,\n options?: BaseGetPromptAsyncOptions\n ): Promise<BasePromptTemplate> {\n const prompt = this.getPrompt(llm);\n return prompt.partial(options?.partialVariables ?? {});\n }\n}\n\n/**\n * Concrete implementation of `BasePromptSelector` that selects a prompt\n * based on a set of conditions. It has a default prompt that it returns\n * if none of the conditions are met.\n */\nexport class ConditionalPromptSelector extends BasePromptSelector {\n defaultPrompt: BasePromptTemplate;\n\n conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n >;\n\n constructor(\n default_prompt: BasePromptTemplate,\n conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n > = []\n ) {\n super();\n this.defaultPrompt = default_prompt;\n this.conditionals = conditionals;\n }\n\n /**\n * Method that selects a prompt based on a set of conditions. If none of\n * the conditions are met, it returns the default prompt.\n * @param llm The language model for which to get a prompt.\n * @returns A prompt template.\n */\n getPrompt(llm: BaseLanguageModelInterface): BasePromptTemplate {\n for (const [condition, prompt] of this.conditionals) {\n if (condition(llm)) {\n return prompt;\n }\n }\n return this.defaultPrompt;\n }\n}\n\n/**\n * Type guard function that checks if a given language model is of type\n * `BaseLLM`.\n */\nexport function isLLM(llm: BaseLanguageModelInterface): llm is BaseLLM {\n return llm._modelType() === \"base_llm\";\n}\n\n/**\n * Type guard function that checks if a given language model is of type\n * `BaseChatModel`.\n */\nexport function isChatModel(\n llm: BaseLanguageModelInterface\n): llm is BaseChatModel {\n return llm._modelType() === \"base_chat_model\";\n}\n"],"mappings":";;;;;;AAcA,IAAsB,qBAAtB,MAAyC;;;;;;;;CAiBvC,MAAM,eACJA,KACAC,SAC6B;EAC7B,MAAM,SAAS,KAAK,UAAU,IAAI;AAClC,SAAO,OAAO,QAAQ,SAAS,oBAAoB,CAAE,EAAC;CACvD;AACF;;;;;;AAOD,IAAa,4BAAb,cAA+C,mBAAmB;CAChE;CAEA;CAOA,YACEC,gBACAC,eAKI,CAAE,GACN;EACA,OAAO;EACP,KAAK,gBAAgB;EACrB,KAAK,eAAe;CACrB;;;;;;;CAQD,UAAUH,KAAqD;AAC7D,OAAK,MAAM,CAAC,WAAW,OAAO,IAAI,KAAK,aACrC,KAAI,UAAU,IAAI,CAChB,QAAO;AAGX,SAAO,KAAK;CACb;AACF;;;;;AAMD,SAAgB,MAAMA,KAAiD;AACrE,QAAO,IAAI,YAAY,KAAK;AAC7B;;;;;AAMD,SAAgB,YACdA,KACsB;AACtB,QAAO,IAAI,YAAY,KAAK;AAC7B"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"conditional.js","names":["llm: BaseLanguageModelInterface","options?: BaseGetPromptAsyncOptions","default_prompt: BasePromptTemplate","conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate
|
|
1
|
+
{"version":3,"file":"conditional.js","names":["llm: BaseLanguageModelInterface","options?: BaseGetPromptAsyncOptions","default_prompt: BasePromptTemplate","conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n >"],"sources":["../../src/example_selectors/conditional.ts"],"sourcesContent":["import type { BaseChatModel } from \"../language_models/chat_models.js\";\nimport type { BasePromptTemplate } from \"../prompts/base.js\";\nimport type { BaseLanguageModelInterface } from \"../language_models/base.js\";\nimport type { BaseLLM } from \"../language_models/llms.js\";\nimport type { PartialValues } from \"../utils/types/index.js\";\n\nexport type BaseGetPromptAsyncOptions = {\n partialVariables?: PartialValues;\n};\n\n/**\n * Abstract class that defines the interface for selecting a prompt for a\n * given language model.\n */\nexport abstract class BasePromptSelector {\n /**\n * Abstract method that must be implemented by any class that extends\n * `BasePromptSelector`. It takes a language model as an argument and\n * returns a prompt template.\n * @param llm The language model for which to get a prompt.\n * @returns A prompt template.\n */\n abstract getPrompt(llm: BaseLanguageModelInterface): BasePromptTemplate;\n\n /**\n * Asynchronous version of `getPrompt` that also accepts an options object\n * for partial variables.\n * @param llm The language model for which to get a prompt.\n * @param options Optional object for partial variables.\n * @returns A Promise that resolves to a prompt template.\n */\n async getPromptAsync(\n llm: BaseLanguageModelInterface,\n options?: BaseGetPromptAsyncOptions\n ): Promise<BasePromptTemplate> {\n const prompt = this.getPrompt(llm);\n return prompt.partial(options?.partialVariables ?? {});\n }\n}\n\n/**\n * Concrete implementation of `BasePromptSelector` that selects a prompt\n * based on a set of conditions. It has a default prompt that it returns\n * if none of the conditions are met.\n */\nexport class ConditionalPromptSelector extends BasePromptSelector {\n defaultPrompt: BasePromptTemplate;\n\n conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n >;\n\n constructor(\n default_prompt: BasePromptTemplate,\n conditionals: Array<\n [\n condition: (llm: BaseLanguageModelInterface) => boolean,\n prompt: BasePromptTemplate,\n ]\n > = []\n ) {\n super();\n this.defaultPrompt = default_prompt;\n this.conditionals = conditionals;\n }\n\n /**\n * Method that selects a prompt based on a set of conditions. If none of\n * the conditions are met, it returns the default prompt.\n * @param llm The language model for which to get a prompt.\n * @returns A prompt template.\n */\n getPrompt(llm: BaseLanguageModelInterface): BasePromptTemplate {\n for (const [condition, prompt] of this.conditionals) {\n if (condition(llm)) {\n return prompt;\n }\n }\n return this.defaultPrompt;\n }\n}\n\n/**\n * Type guard function that checks if a given language model is of type\n * `BaseLLM`.\n */\nexport function isLLM(llm: BaseLanguageModelInterface): llm is BaseLLM {\n return llm._modelType() === \"base_llm\";\n}\n\n/**\n * Type guard function that checks if a given language model is of type\n * `BaseChatModel`.\n */\nexport function isChatModel(\n llm: BaseLanguageModelInterface\n): llm is BaseChatModel {\n return llm._modelType() === \"base_chat_model\";\n}\n"],"mappings":";;;;;AAcA,IAAsB,qBAAtB,MAAyC;;;;;;;;CAiBvC,MAAM,eACJA,KACAC,SAC6B;EAC7B,MAAM,SAAS,KAAK,UAAU,IAAI;AAClC,SAAO,OAAO,QAAQ,SAAS,oBAAoB,CAAE,EAAC;CACvD;AACF;;;;;;AAOD,IAAa,4BAAb,cAA+C,mBAAmB;CAChE;CAEA;CAOA,YACEC,gBACAC,eAKI,CAAE,GACN;EACA,OAAO;EACP,KAAK,gBAAgB;EACrB,KAAK,eAAe;CACrB;;;;;;;CAQD,UAAUH,KAAqD;AAC7D,OAAK,MAAM,CAAC,WAAW,OAAO,IAAI,KAAK,aACrC,KAAI,UAAU,IAAI,CAChB,QAAO;AAGX,SAAO,KAAK;CACb;AACF;;;;;AAMD,SAAgB,MAAMA,KAAiD;AACrE,QAAO,IAAI,YAAY,KAAK;AAC7B;;;;;AAMD,SAAgB,YACdA,KACsB;AACtB,QAAO,IAAI,YAAY,KAAK;AAC7B"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"semantic_similarity.cjs","names":["values: Record<string, T>","BaseExampleSelector","data: SemanticSimilarityExampleSelectorInput<V>","example: Example","Document","inputVariables: Record<string, T>","examples: Record<string, string>[]","embeddings: Embeddings","vectorStoreCls: C","options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3]"],"sources":["../../src/example_selectors/semantic_similarity.ts"],"sourcesContent":["import type { Embeddings } from \"../embeddings.js\";\nimport type {\n VectorStoreInterface,\n VectorStoreRetrieverInterface,\n VectorStore,\n} from \"../vectorstores.js\";\nimport type { Example } from \"../prompts/base.js\";\nimport { Document } from \"../documents/document.js\";\nimport { BaseExampleSelector } from \"./base.js\";\n\nfunction sortedValues<T>(values: Record<string, T>): T[] {\n return Object.keys(values)\n .sort()\n .map((key) => values[key]);\n}\n\n/**\n * Interface for the input data of the SemanticSimilarityExampleSelector\n * class.\n */\nexport type SemanticSimilarityExampleSelectorInput<\n V extends VectorStoreInterface = VectorStoreInterface
|
|
1
|
+
{"version":3,"file":"semantic_similarity.cjs","names":["values: Record<string, T>","BaseExampleSelector","data: SemanticSimilarityExampleSelectorInput<V>","example: Example","Document","inputVariables: Record<string, T>","examples: Record<string, string>[]","embeddings: Embeddings","vectorStoreCls: C","options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3]"],"sources":["../../src/example_selectors/semantic_similarity.ts"],"sourcesContent":["import type { Embeddings } from \"../embeddings.js\";\nimport type {\n VectorStoreInterface,\n VectorStoreRetrieverInterface,\n VectorStore,\n} from \"../vectorstores.js\";\nimport type { Example } from \"../prompts/base.js\";\nimport { Document } from \"../documents/document.js\";\nimport { BaseExampleSelector } from \"./base.js\";\n\nfunction sortedValues<T>(values: Record<string, T>): T[] {\n return Object.keys(values)\n .sort()\n .map((key) => values[key]);\n}\n\n/**\n * Interface for the input data of the SemanticSimilarityExampleSelector\n * class.\n */\nexport type SemanticSimilarityExampleSelectorInput<\n V extends VectorStoreInterface = VectorStoreInterface,\n> =\n | {\n vectorStore: V;\n k?: number;\n filter?: V[\"FilterType\"];\n exampleKeys?: string[];\n inputKeys?: string[];\n vectorStoreRetriever?: never;\n }\n | {\n vectorStoreRetriever: VectorStoreRetrieverInterface<V>;\n exampleKeys?: string[];\n inputKeys?: string[];\n vectorStore?: never;\n k?: never;\n filter?: never;\n };\n\n/**\n * Class that selects examples based on semantic similarity. It extends\n * the BaseExampleSelector class.\n * @example\n * ```typescript\n * const exampleSelector = await SemanticSimilarityExampleSelector.fromExamples(\n * [\n * { input: \"happy\", output: \"sad\" },\n * { input: \"tall\", output: \"short\" },\n * { input: \"energetic\", output: \"lethargic\" },\n * { input: \"sunny\", output: \"gloomy\" },\n * { input: \"windy\", output: \"calm\" },\n * ],\n * new OpenAIEmbeddings(),\n * HNSWLib,\n * { k: 1 },\n * );\n * const dynamicPrompt = new FewShotPromptTemplate({\n * exampleSelector,\n * examplePrompt: PromptTemplate.fromTemplate(\n * \"Input: {input}\\nOutput: {output}\",\n * ),\n * prefix: \"Give the antonym of every input\",\n * suffix: \"Input: {adjective}\\nOutput:\",\n * inputVariables: [\"adjective\"],\n * });\n * console.log(await dynamicPrompt.format({ adjective: \"rainy\" }));\n * ```\n */\nexport class SemanticSimilarityExampleSelector<\n V extends VectorStoreInterface = VectorStoreInterface,\n> extends BaseExampleSelector {\n vectorStoreRetriever: VectorStoreRetrieverInterface<V>;\n\n exampleKeys?: string[];\n\n inputKeys?: string[];\n\n constructor(data: SemanticSimilarityExampleSelectorInput<V>) {\n super(data);\n this.exampleKeys = data.exampleKeys;\n this.inputKeys = data.inputKeys;\n if (data.vectorStore !== undefined) {\n this.vectorStoreRetriever = data.vectorStore.asRetriever({\n k: data.k ?? 4,\n filter: data.filter,\n });\n } else if (data.vectorStoreRetriever) {\n this.vectorStoreRetriever = data.vectorStoreRetriever;\n } else {\n throw new Error(\n `You must specify one of \"vectorStore\" and \"vectorStoreRetriever\".`\n );\n }\n }\n\n /**\n * Method that adds a new example to the vectorStore. The example is\n * converted to a string and added to the vectorStore as a document.\n * @param example The example to be added to the vectorStore.\n * @returns Promise that resolves when the example has been added to the vectorStore.\n */\n async addExample(example: Example): Promise<void> {\n const inputKeys = this.inputKeys ?? Object.keys(example);\n const stringExample = sortedValues(\n inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {} as Example\n )\n ).join(\" \");\n\n await this.vectorStoreRetriever.addDocuments([\n new Document({\n pageContent: stringExample,\n metadata: example,\n }),\n ]);\n }\n\n /**\n * Method that selects which examples to use based on semantic similarity.\n * It performs a similarity search in the vectorStore using the input\n * variables and returns the examples with the highest similarity.\n * @param inputVariables The input variables used for the similarity search.\n * @returns Promise that resolves with an array of the selected examples.\n */\n async selectExamples<T>(\n inputVariables: Record<string, T>\n ): Promise<Example[]> {\n const inputKeys = this.inputKeys ?? Object.keys(inputVariables);\n const query = sortedValues(\n inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: inputVariables[key] }),\n {} as Record<string, T>\n )\n ).join(\" \");\n\n const exampleDocs = await this.vectorStoreRetriever.invoke(query);\n\n const examples = exampleDocs.map((doc) => doc.metadata);\n if (this.exampleKeys) {\n // If example keys are provided, filter examples to those keys.\n return examples.map((example) =>\n (this.exampleKeys as string[]).reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {}\n )\n );\n }\n return examples;\n }\n\n /**\n * Static method that creates a new instance of\n * SemanticSimilarityExampleSelector. It takes a list of examples, an\n * instance of Embeddings, a VectorStore class, and an options object as\n * parameters. It converts the examples to strings, creates a VectorStore\n * from the strings and the embeddings, and returns a new\n * SemanticSimilarityExampleSelector with the created VectorStore and the\n * options provided.\n * @param examples The list of examples to be used.\n * @param embeddings The instance of Embeddings to be used.\n * @param vectorStoreCls The VectorStore class to be used.\n * @param options The options object for the SemanticSimilarityExampleSelector.\n * @returns Promise that resolves with a new instance of SemanticSimilarityExampleSelector.\n */\n static async fromExamples<C extends typeof VectorStore>(\n examples: Record<string, string>[],\n embeddings: Embeddings,\n vectorStoreCls: C,\n options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3] = {}\n ): Promise<SemanticSimilarityExampleSelector> {\n const inputKeys = options.inputKeys ?? null;\n const stringExamples = examples.map((example) =>\n sortedValues(\n inputKeys\n ? inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {} as Record<string, string>\n )\n : example\n ).join(\" \")\n );\n\n const vectorStore = await vectorStoreCls.fromTexts(\n stringExamples,\n examples, // metadatas\n embeddings,\n options\n );\n\n return new SemanticSimilarityExampleSelector({\n vectorStore,\n k: options.k ?? 4,\n exampleKeys: options.exampleKeys,\n inputKeys: options.inputKeys,\n });\n }\n}\n"],"mappings":";;;;AAUA,SAAS,aAAgBA,QAAgC;AACvD,QAAO,OAAO,KAAK,OAAO,CACvB,MAAM,CACN,IAAI,CAAC,QAAQ,OAAO,KAAK;AAC7B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAuDD,IAAa,oCAAb,MAAa,0CAEHC,iCAAoB;CAC5B;CAEA;CAEA;CAEA,YAAYC,MAAiD;EAC3D,MAAM,KAAK;EACX,KAAK,cAAc,KAAK;EACxB,KAAK,YAAY,KAAK;AACtB,MAAI,KAAK,gBAAgB,QACvB,KAAK,uBAAuB,KAAK,YAAY,YAAY;GACvD,GAAG,KAAK,KAAK;GACb,QAAQ,KAAK;EACd,EAAC;WACO,KAAK,sBACd,KAAK,uBAAuB,KAAK;MAEjC,OAAM,IAAI,MACR,CAAC,iEAAiE,CAAC;CAGxE;;;;;;;CAQD,MAAM,WAAWC,SAAiC;EAChD,MAAM,YAAY,KAAK,aAAa,OAAO,KAAK,QAAQ;EACxD,MAAM,gBAAgB,aACpB,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,CACF,CAAC,KAAK,IAAI;EAEX,MAAM,KAAK,qBAAqB,aAAa,CAC3C,IAAIC,0BAAS;GACX,aAAa;GACb,UAAU;EACX,EACF,EAAC;CACH;;;;;;;;CASD,MAAM,eACJC,gBACoB;EACpB,MAAM,YAAY,KAAK,aAAa,OAAO,KAAK,eAAe;EAC/D,MAAM,QAAQ,aACZ,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,eAAe;EAAM,IACrD,CAAE,EACH,CACF,CAAC,KAAK,IAAI;EAEX,MAAM,cAAc,MAAM,KAAK,qBAAqB,OAAO,MAAM;EAEjE,MAAM,WAAW,YAAY,IAAI,CAAC,QAAQ,IAAI,SAAS;AACvD,MAAI,KAAK,YAEP,QAAO,SAAS,IAAI,CAAC,YAClB,KAAK,YAAyB,OAC7B,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,CACF;AAEH,SAAO;CACR;;;;;;;;;;;;;;;CAgBD,aAAa,aACXC,UACAC,YACAC,gBACAC,UAGoC,CAAE,GACM;EAC5C,MAAM,YAAY,QAAQ,aAAa;EACvC,MAAM,iBAAiB,SAAS,IAAI,CAAC,YACnC,aACE,YACI,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,GACD,QACL,CAAC,KAAK,IAAI,CACZ;EAED,MAAM,cAAc,MAAM,eAAe,UACvC,gBACA,UACA,YACA,QACD;AAED,SAAO,IAAI,kCAAkC;GAC3C;GACA,GAAG,QAAQ,KAAK;GAChB,aAAa,QAAQ;GACrB,WAAW,QAAQ;EACpB;CACF;AACF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"semantic_similarity.js","names":["values: Record<string, T>","data: SemanticSimilarityExampleSelectorInput<V>","example: Example","inputVariables: Record<string, T>","examples: Record<string, string>[]","embeddings: Embeddings","vectorStoreCls: C","options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3]"],"sources":["../../src/example_selectors/semantic_similarity.ts"],"sourcesContent":["import type { Embeddings } from \"../embeddings.js\";\nimport type {\n VectorStoreInterface,\n VectorStoreRetrieverInterface,\n VectorStore,\n} from \"../vectorstores.js\";\nimport type { Example } from \"../prompts/base.js\";\nimport { Document } from \"../documents/document.js\";\nimport { BaseExampleSelector } from \"./base.js\";\n\nfunction sortedValues<T>(values: Record<string, T>): T[] {\n return Object.keys(values)\n .sort()\n .map((key) => values[key]);\n}\n\n/**\n * Interface for the input data of the SemanticSimilarityExampleSelector\n * class.\n */\nexport type SemanticSimilarityExampleSelectorInput<\n V extends VectorStoreInterface = VectorStoreInterface
|
|
1
|
+
{"version":3,"file":"semantic_similarity.js","names":["values: Record<string, T>","data: SemanticSimilarityExampleSelectorInput<V>","example: Example","inputVariables: Record<string, T>","examples: Record<string, string>[]","embeddings: Embeddings","vectorStoreCls: C","options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3]"],"sources":["../../src/example_selectors/semantic_similarity.ts"],"sourcesContent":["import type { Embeddings } from \"../embeddings.js\";\nimport type {\n VectorStoreInterface,\n VectorStoreRetrieverInterface,\n VectorStore,\n} from \"../vectorstores.js\";\nimport type { Example } from \"../prompts/base.js\";\nimport { Document } from \"../documents/document.js\";\nimport { BaseExampleSelector } from \"./base.js\";\n\nfunction sortedValues<T>(values: Record<string, T>): T[] {\n return Object.keys(values)\n .sort()\n .map((key) => values[key]);\n}\n\n/**\n * Interface for the input data of the SemanticSimilarityExampleSelector\n * class.\n */\nexport type SemanticSimilarityExampleSelectorInput<\n V extends VectorStoreInterface = VectorStoreInterface,\n> =\n | {\n vectorStore: V;\n k?: number;\n filter?: V[\"FilterType\"];\n exampleKeys?: string[];\n inputKeys?: string[];\n vectorStoreRetriever?: never;\n }\n | {\n vectorStoreRetriever: VectorStoreRetrieverInterface<V>;\n exampleKeys?: string[];\n inputKeys?: string[];\n vectorStore?: never;\n k?: never;\n filter?: never;\n };\n\n/**\n * Class that selects examples based on semantic similarity. It extends\n * the BaseExampleSelector class.\n * @example\n * ```typescript\n * const exampleSelector = await SemanticSimilarityExampleSelector.fromExamples(\n * [\n * { input: \"happy\", output: \"sad\" },\n * { input: \"tall\", output: \"short\" },\n * { input: \"energetic\", output: \"lethargic\" },\n * { input: \"sunny\", output: \"gloomy\" },\n * { input: \"windy\", output: \"calm\" },\n * ],\n * new OpenAIEmbeddings(),\n * HNSWLib,\n * { k: 1 },\n * );\n * const dynamicPrompt = new FewShotPromptTemplate({\n * exampleSelector,\n * examplePrompt: PromptTemplate.fromTemplate(\n * \"Input: {input}\\nOutput: {output}\",\n * ),\n * prefix: \"Give the antonym of every input\",\n * suffix: \"Input: {adjective}\\nOutput:\",\n * inputVariables: [\"adjective\"],\n * });\n * console.log(await dynamicPrompt.format({ adjective: \"rainy\" }));\n * ```\n */\nexport class SemanticSimilarityExampleSelector<\n V extends VectorStoreInterface = VectorStoreInterface,\n> extends BaseExampleSelector {\n vectorStoreRetriever: VectorStoreRetrieverInterface<V>;\n\n exampleKeys?: string[];\n\n inputKeys?: string[];\n\n constructor(data: SemanticSimilarityExampleSelectorInput<V>) {\n super(data);\n this.exampleKeys = data.exampleKeys;\n this.inputKeys = data.inputKeys;\n if (data.vectorStore !== undefined) {\n this.vectorStoreRetriever = data.vectorStore.asRetriever({\n k: data.k ?? 4,\n filter: data.filter,\n });\n } else if (data.vectorStoreRetriever) {\n this.vectorStoreRetriever = data.vectorStoreRetriever;\n } else {\n throw new Error(\n `You must specify one of \"vectorStore\" and \"vectorStoreRetriever\".`\n );\n }\n }\n\n /**\n * Method that adds a new example to the vectorStore. The example is\n * converted to a string and added to the vectorStore as a document.\n * @param example The example to be added to the vectorStore.\n * @returns Promise that resolves when the example has been added to the vectorStore.\n */\n async addExample(example: Example): Promise<void> {\n const inputKeys = this.inputKeys ?? Object.keys(example);\n const stringExample = sortedValues(\n inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {} as Example\n )\n ).join(\" \");\n\n await this.vectorStoreRetriever.addDocuments([\n new Document({\n pageContent: stringExample,\n metadata: example,\n }),\n ]);\n }\n\n /**\n * Method that selects which examples to use based on semantic similarity.\n * It performs a similarity search in the vectorStore using the input\n * variables and returns the examples with the highest similarity.\n * @param inputVariables The input variables used for the similarity search.\n * @returns Promise that resolves with an array of the selected examples.\n */\n async selectExamples<T>(\n inputVariables: Record<string, T>\n ): Promise<Example[]> {\n const inputKeys = this.inputKeys ?? Object.keys(inputVariables);\n const query = sortedValues(\n inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: inputVariables[key] }),\n {} as Record<string, T>\n )\n ).join(\" \");\n\n const exampleDocs = await this.vectorStoreRetriever.invoke(query);\n\n const examples = exampleDocs.map((doc) => doc.metadata);\n if (this.exampleKeys) {\n // If example keys are provided, filter examples to those keys.\n return examples.map((example) =>\n (this.exampleKeys as string[]).reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {}\n )\n );\n }\n return examples;\n }\n\n /**\n * Static method that creates a new instance of\n * SemanticSimilarityExampleSelector. It takes a list of examples, an\n * instance of Embeddings, a VectorStore class, and an options object as\n * parameters. It converts the examples to strings, creates a VectorStore\n * from the strings and the embeddings, and returns a new\n * SemanticSimilarityExampleSelector with the created VectorStore and the\n * options provided.\n * @param examples The list of examples to be used.\n * @param embeddings The instance of Embeddings to be used.\n * @param vectorStoreCls The VectorStore class to be used.\n * @param options The options object for the SemanticSimilarityExampleSelector.\n * @returns Promise that resolves with a new instance of SemanticSimilarityExampleSelector.\n */\n static async fromExamples<C extends typeof VectorStore>(\n examples: Record<string, string>[],\n embeddings: Embeddings,\n vectorStoreCls: C,\n options: {\n k?: number;\n inputKeys?: string[];\n } & Parameters<C[\"fromTexts\"]>[3] = {}\n ): Promise<SemanticSimilarityExampleSelector> {\n const inputKeys = options.inputKeys ?? null;\n const stringExamples = examples.map((example) =>\n sortedValues(\n inputKeys\n ? inputKeys.reduce(\n (acc, key) => ({ ...acc, [key]: example[key] }),\n {} as Record<string, string>\n )\n : example\n ).join(\" \")\n );\n\n const vectorStore = await vectorStoreCls.fromTexts(\n stringExamples,\n examples, // metadatas\n embeddings,\n options\n );\n\n return new SemanticSimilarityExampleSelector({\n vectorStore,\n k: options.k ?? 4,\n exampleKeys: options.exampleKeys,\n inputKeys: options.inputKeys,\n });\n }\n}\n"],"mappings":";;;;AAUA,SAAS,aAAgBA,QAAgC;AACvD,QAAO,OAAO,KAAK,OAAO,CACvB,MAAM,CACN,IAAI,CAAC,QAAQ,OAAO,KAAK;AAC7B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAuDD,IAAa,oCAAb,MAAa,0CAEH,oBAAoB;CAC5B;CAEA;CAEA;CAEA,YAAYC,MAAiD;EAC3D,MAAM,KAAK;EACX,KAAK,cAAc,KAAK;EACxB,KAAK,YAAY,KAAK;AACtB,MAAI,KAAK,gBAAgB,QACvB,KAAK,uBAAuB,KAAK,YAAY,YAAY;GACvD,GAAG,KAAK,KAAK;GACb,QAAQ,KAAK;EACd,EAAC;WACO,KAAK,sBACd,KAAK,uBAAuB,KAAK;MAEjC,OAAM,IAAI,MACR,CAAC,iEAAiE,CAAC;CAGxE;;;;;;;CAQD,MAAM,WAAWC,SAAiC;EAChD,MAAM,YAAY,KAAK,aAAa,OAAO,KAAK,QAAQ;EACxD,MAAM,gBAAgB,aACpB,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,CACF,CAAC,KAAK,IAAI;EAEX,MAAM,KAAK,qBAAqB,aAAa,CAC3C,IAAI,SAAS;GACX,aAAa;GACb,UAAU;EACX,EACF,EAAC;CACH;;;;;;;;CASD,MAAM,eACJC,gBACoB;EACpB,MAAM,YAAY,KAAK,aAAa,OAAO,KAAK,eAAe;EAC/D,MAAM,QAAQ,aACZ,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,eAAe;EAAM,IACrD,CAAE,EACH,CACF,CAAC,KAAK,IAAI;EAEX,MAAM,cAAc,MAAM,KAAK,qBAAqB,OAAO,MAAM;EAEjE,MAAM,WAAW,YAAY,IAAI,CAAC,QAAQ,IAAI,SAAS;AACvD,MAAI,KAAK,YAEP,QAAO,SAAS,IAAI,CAAC,YAClB,KAAK,YAAyB,OAC7B,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,CACF;AAEH,SAAO;CACR;;;;;;;;;;;;;;;CAgBD,aAAa,aACXC,UACAC,YACAC,gBACAC,UAGoC,CAAE,GACM;EAC5C,MAAM,YAAY,QAAQ,aAAa;EACvC,MAAM,iBAAiB,SAAS,IAAI,CAAC,YACnC,aACE,YACI,UAAU,OACR,CAAC,KAAK,SAAS;GAAE,GAAG;IAAM,MAAM,QAAQ;EAAM,IAC9C,CAAE,EACH,GACD,QACL,CAAC,KAAK,IAAI,CACZ;EAED,MAAM,cAAc,MAAM,eAAe,UACvC,gBACA,UACA,YACA,QACD;AAED,SAAO,IAAI,kCAAkC;GAC3C;GACA,GAAG,QAAQ,KAAK;GAChB,aAAa,QAAQ;GACrB,WAAW,QAAQ;EACpB;CACF;AACF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"base.cjs","names":["modelName: string","modelName?: string","tool: unknown","encodingForModel","Runnable","params: BaseLangChainParams","InMemoryCache","AsyncCaller","content: MessageContent","textContent: string","input: BaseLanguageModelInput","StringPromptValue","ChatPromptValue","coerceMessageLikeToMessage","params: Record<string, any>","_data: SerializedLLM"],"sources":["../../src/language_models/base.ts"],"sourcesContent":["import type { Tiktoken, TiktokenModel } from \"js-tiktoken/lite\";\nimport type { ZodType as ZodTypeV3 } from \"zod/v3\";\nimport type { $ZodType as ZodTypeV4 } from \"zod/v4/core\";\n\nimport { type BaseCache, InMemoryCache } from \"../caches/index.js\";\nimport {\n type BasePromptValueInterface,\n StringPromptValue,\n ChatPromptValue,\n} from \"../prompt_values.js\";\nimport {\n type BaseMessage,\n type BaseMessageLike,\n type MessageContent,\n} from \"../messages/base.js\";\nimport { coerceMessageLikeToMessage } from \"../messages/utils.js\";\nimport { type LLMResult } from \"../outputs.js\";\nimport { CallbackManager, Callbacks } from \"../callbacks/manager.js\";\nimport { AsyncCaller, AsyncCallerParams } from \"../utils/async_caller.js\";\nimport { encodingForModel } from \"../utils/tiktoken.js\";\nimport { Runnable, type RunnableInterface } from \"../runnables/base.js\";\nimport { RunnableConfig } from \"../runnables/config.js\";\nimport { JSONSchema } from \"../utils/json_schema.js\";\nimport {\n InferInteropZodOutput,\n InteropZodObject,\n InteropZodType,\n} from \"../utils/types/zod.js\";\nimport { ModelProfile } from \"./profile.js\";\n\n// https://www.npmjs.com/package/js-tiktoken\n\nexport const getModelNameForTiktoken = (modelName: string): TiktokenModel => {\n if (modelName.startsWith(\"gpt-5\")) {\n return \"gpt-5\" as TiktokenModel;\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-16k\")) {\n return \"gpt-3.5-turbo-16k\";\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-\")) {\n return \"gpt-3.5-turbo\";\n }\n\n if (modelName.startsWith(\"gpt-4-32k\")) {\n return \"gpt-4-32k\";\n }\n\n if (modelName.startsWith(\"gpt-4-\")) {\n return \"gpt-4\";\n }\n\n if (modelName.startsWith(\"gpt-4o\")) {\n return \"gpt-4o\";\n }\n\n return modelName as TiktokenModel;\n};\n\nexport const getEmbeddingContextSize = (modelName?: string): number => {\n switch (modelName) {\n case \"text-embedding-ada-002\":\n return 8191;\n default:\n return 2046;\n }\n};\n\n/**\n * Get the context window size (max input tokens) for a given model.\n *\n * Context window sizes are sourced from official model documentation:\n * - OpenAI: https://platform.openai.com/docs/models\n * - Anthropic: https://docs.anthropic.com/claude/docs/models-overview\n * - Google: https://ai.google.dev/gemini/docs/models/gemini\n *\n * @param modelName - The name of the model\n * @returns The context window size in tokens\n */\nexport const getModelContextSize = (modelName: string): number => {\n const normalizedName = getModelNameForTiktoken(modelName) as string;\n\n switch (normalizedName) {\n // GPT-5 series\n case \"gpt-5\":\n case \"gpt-5-turbo\":\n case \"gpt-5-turbo-preview\":\n return 400000;\n\n // GPT-4o series\n case \"gpt-4o\":\n case \"gpt-4o-mini\":\n case \"gpt-4o-2024-05-13\":\n case \"gpt-4o-2024-08-06\":\n return 128000;\n\n // GPT-4 Turbo series\n case \"gpt-4-turbo\":\n case \"gpt-4-turbo-preview\":\n case \"gpt-4-turbo-2024-04-09\":\n case \"gpt-4-0125-preview\":\n case \"gpt-4-1106-preview\":\n return 128000;\n\n // GPT-4 series\n case \"gpt-4-32k\":\n case \"gpt-4-32k-0314\":\n case \"gpt-4-32k-0613\":\n return 32768;\n case \"gpt-4\":\n case \"gpt-4-0314\":\n case \"gpt-4-0613\":\n return 8192;\n\n // GPT-3.5 Turbo series\n case \"gpt-3.5-turbo-16k\":\n case \"gpt-3.5-turbo-16k-0613\":\n return 16384;\n case \"gpt-3.5-turbo\":\n case \"gpt-3.5-turbo-0301\":\n case \"gpt-3.5-turbo-0613\":\n case \"gpt-3.5-turbo-1106\":\n case \"gpt-3.5-turbo-0125\":\n return 4096;\n\n // Legacy GPT-3 models\n case \"text-davinci-003\":\n case \"text-davinci-002\":\n return 4097;\n case \"text-davinci-001\":\n return 2049;\n case \"text-curie-001\":\n case \"text-babbage-001\":\n case \"text-ada-001\":\n return 2048;\n\n // Code models\n case \"code-davinci-002\":\n case \"code-davinci-001\":\n return 8000;\n case \"code-cushman-001\":\n return 2048;\n\n // Claude models (Anthropic)\n case \"claude-3-5-sonnet-20241022\":\n case \"claude-3-5-sonnet-20240620\":\n case \"claude-3-opus-20240229\":\n case \"claude-3-sonnet-20240229\":\n case \"claude-3-haiku-20240307\":\n case \"claude-2.1\":\n return 200000;\n case \"claude-2.0\":\n case \"claude-instant-1.2\":\n return 100000;\n\n // Gemini models (Google)\n case \"gemini-1.5-pro\":\n case \"gemini-1.5-pro-latest\":\n case \"gemini-1.5-flash\":\n case \"gemini-1.5-flash-latest\":\n return 1000000; // 1M tokens\n case \"gemini-pro\":\n case \"gemini-pro-vision\":\n return 32768;\n\n default:\n return 4097;\n }\n};\n\n/**\n * Whether or not the input matches the OpenAI tool definition.\n * @param {unknown} tool The input to check.\n * @returns {boolean} Whether the input is an OpenAI tool definition.\n */\nexport function isOpenAITool(tool: unknown): tool is ToolDefinition {\n if (typeof tool !== \"object\" || !tool) return false;\n if (\n \"type\" in tool &&\n tool.type === \"function\" &&\n \"function\" in tool &&\n typeof tool.function === \"object\" &&\n tool.function &&\n \"name\" in tool.function &&\n \"parameters\" in tool.function\n ) {\n return true;\n }\n return false;\n}\n\ninterface CalculateMaxTokenProps {\n prompt: string;\n modelName: TiktokenModel;\n}\n\nexport const calculateMaxTokens = async ({\n prompt,\n modelName,\n}: CalculateMaxTokenProps) => {\n let numTokens;\n\n try {\n numTokens = (\n await encodingForModel(getModelNameForTiktoken(modelName))\n ).encode(prompt).length;\n } catch {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\"\n );\n\n // fallback to approximate calculation if tiktoken is not available\n // each token is ~4 characters: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them#\n numTokens = Math.ceil(prompt.length / 4);\n }\n\n const maxTokens = getModelContextSize(modelName);\n return maxTokens - numTokens;\n};\n\nconst getVerbosity = () => false;\n\nexport type SerializedLLM = {\n _model: string;\n _type: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n} & Record<string, any>;\n\nexport interface BaseLangChainParams {\n verbose?: boolean;\n callbacks?: Callbacks;\n tags?: string[];\n metadata?: Record<string, unknown>;\n}\n\n/**\n * Base class for language models, chains, tools.\n */\nexport abstract class BaseLangChain<\n RunInput,\n RunOutput,\n CallOptions extends RunnableConfig = RunnableConfig\n >\n extends Runnable<RunInput, RunOutput, CallOptions>\n implements BaseLangChainParams\n{\n /**\n * Whether to print out response text.\n */\n verbose: boolean;\n\n callbacks?: Callbacks;\n\n tags?: string[];\n\n metadata?: Record<string, unknown>;\n\n get lc_attributes(): { [key: string]: undefined } | undefined {\n return {\n callbacks: undefined,\n verbose: undefined,\n };\n }\n\n constructor(params: BaseLangChainParams) {\n super(params);\n this.verbose = params.verbose ?? getVerbosity();\n this.callbacks = params.callbacks;\n this.tags = params.tags ?? [];\n this.metadata = params.metadata ?? {};\n }\n}\n\n/**\n * Base interface for language model parameters.\n * A subclass of {@link BaseLanguageModel} should have a constructor that\n * takes in a parameter that extends this interface.\n */\nexport interface BaseLanguageModelParams\n extends AsyncCallerParams,\n BaseLangChainParams {\n /**\n * @deprecated Use `callbacks` instead\n */\n callbackManager?: CallbackManager;\n\n cache?: BaseCache | boolean;\n}\n\nexport interface BaseLanguageModelTracingCallOptions {\n /**\n * Describes the format of structured outputs.\n * This should be provided if an output is considered to be structured\n */\n ls_structured_output_format?: {\n /**\n * An object containing the method used for structured output (e.g., \"jsonMode\").\n */\n kwargs: { method: string };\n /**\n * The JSON schema describing the expected output structure.\n */\n schema?: JSONSchema;\n };\n}\n\nexport interface BaseLanguageModelCallOptions\n extends RunnableConfig,\n BaseLanguageModelTracingCallOptions {\n /**\n * Stop tokens to use for this call.\n * If not provided, the default stop tokens for the model will be used.\n */\n stop?: string[];\n}\n\nexport interface FunctionDefinition {\n /**\n * The name of the function to be called. Must be a-z, A-Z, 0-9, or contain\n * underscores and dashes, with a maximum length of 64.\n */\n name: string;\n\n /**\n * The parameters the functions accepts, described as a JSON Schema object. See the\n * [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for\n * examples, and the\n * [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for\n * documentation about the format.\n *\n * To describe a function that accepts no parameters, provide the value\n * `{\"type\": \"object\", \"properties\": {}}`.\n */\n parameters: Record<string, unknown> | JSONSchema;\n\n /**\n * A description of what the function does, used by the model to choose when and\n * how to call the function.\n */\n description?: string;\n}\n\nexport interface ToolDefinition {\n type: \"function\";\n function: FunctionDefinition;\n}\n\nexport type FunctionCallOption = {\n name: string;\n};\n\nexport interface BaseFunctionCallOptions extends BaseLanguageModelCallOptions {\n function_call?: FunctionCallOption;\n functions?: FunctionDefinition[];\n}\n\nexport type BaseLanguageModelInput =\n | BasePromptValueInterface\n | string\n | BaseMessageLike[];\n\nexport type StructuredOutputType = InferInteropZodOutput<InteropZodObject>;\n\nexport type StructuredOutputMethodOptions<IncludeRaw extends boolean = false> =\n {\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\" | \"jsonSchema\" | string;\n includeRaw?: IncludeRaw;\n /** Whether to use strict mode. Currently only supported by OpenAI models. */\n strict?: boolean;\n };\n\n/** @deprecated Use StructuredOutputMethodOptions instead */\nexport type StructuredOutputMethodParams<\n RunOutput,\n IncludeRaw extends boolean = false\n> = {\n /** @deprecated Pass schema in as the first argument */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n schema: InteropZodType<RunOutput> | Record<string, any>;\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\";\n includeRaw?: IncludeRaw;\n};\n\nexport interface BaseLanguageModelInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions\n> extends RunnableInterface<BaseLanguageModelInput, RunOutput, CallOptions> {\n get callKeys(): string[];\n\n generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n _modelType(): string;\n\n _llmType(): string;\n\n getNumTokens(content: MessageContent): Promise<number>;\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any>;\n\n serialize(): SerializedLLM;\n}\n\nexport type LanguageModelOutput = BaseMessage | string;\n\nexport type LanguageModelLike = Runnable<\n BaseLanguageModelInput,\n LanguageModelOutput\n>;\n\n/**\n * Base class for language models.\n */\nexport abstract class BaseLanguageModel<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions\n >\n extends BaseLangChain<BaseLanguageModelInput, RunOutput, CallOptions>\n implements\n BaseLanguageModelParams,\n BaseLanguageModelInterface<RunOutput, CallOptions>\n{\n /**\n * Keys that the language model accepts as call options.\n */\n get callKeys(): string[] {\n return [\"stop\", \"timeout\", \"signal\", \"tags\", \"metadata\", \"callbacks\"];\n }\n\n /**\n * The async caller should be used by subclasses to make any async calls,\n * which will thus benefit from the concurrency and retry logic.\n */\n caller: AsyncCaller;\n\n cache?: BaseCache;\n\n constructor({\n callbacks,\n callbackManager,\n ...params\n }: BaseLanguageModelParams) {\n const { cache, ...rest } = params;\n super({\n callbacks: callbacks ?? callbackManager,\n ...rest,\n });\n if (typeof cache === \"object\") {\n this.cache = cache;\n } else if (cache) {\n this.cache = InMemoryCache.global();\n } else {\n this.cache = undefined;\n }\n this.caller = new AsyncCaller(params ?? {});\n }\n\n abstract generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n abstract _modelType(): string;\n\n abstract _llmType(): string;\n\n private _encoding?: Tiktoken;\n\n /**\n * Get the number of tokens in the content.\n * @param content The content to get the number of tokens for.\n * @returns The number of tokens in the content.\n */\n async getNumTokens(content: MessageContent) {\n // Extract text content from MessageContent\n let textContent: string;\n if (typeof content === \"string\") {\n textContent = content;\n } else {\n /**\n * Content is an array of ContentBlock\n *\n * ToDo(@christian-bromann): This is a temporary fix to get the number of tokens for the content.\n * We need to find a better way to do this.\n * @see https://github.com/langchain-ai/langchainjs/pull/8341#pullrequestreview-2933713116\n */\n textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (item.type === \"text\" && \"text\" in item) return item.text;\n return \"\";\n })\n .join(\"\");\n }\n\n // fallback to approximate calculation if tiktoken is not available\n let numTokens = Math.ceil(textContent.length / 4);\n\n if (!this._encoding) {\n try {\n this._encoding = await encodingForModel(\n \"modelName\" in this\n ? getModelNameForTiktoken(this.modelName as string)\n : \"gpt2\"\n );\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n if (this._encoding) {\n try {\n numTokens = this._encoding.encode(textContent).length;\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n return numTokens;\n }\n\n protected static _convertInputToPromptValue(\n input: BaseLanguageModelInput\n ): BasePromptValueInterface {\n if (typeof input === \"string\") {\n return new StringPromptValue(input);\n } else if (Array.isArray(input)) {\n return new ChatPromptValue(input.map(coerceMessageLikeToMessage));\n } else {\n return input;\n }\n }\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any> {\n return {};\n }\n\n /**\n * Create a unique cache key for a specific call to a specific language model.\n * @param callOptions Call options for the model\n * @returns A unique cache key.\n */\n _getSerializedCacheKeyParametersForCall(\n // TODO: Fix when we remove the RunnableLambda backwards compatibility shim.\n { config, ...callOptions }: CallOptions & { config?: RunnableConfig }\n ): string {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const params: Record<string, any> = {\n ...this._identifyingParams(),\n ...callOptions,\n _type: this._llmType(),\n _model: this._modelType(),\n };\n const filteredEntries = Object.entries(params).filter(\n ([_, value]) => value !== undefined\n );\n const serializedEntries = filteredEntries\n .map(([key, value]) => `${key}:${JSON.stringify(value)}`)\n .sort()\n .join(\",\");\n return serializedEntries;\n }\n\n /**\n * @deprecated\n * Return a json-like object representing this LLM.\n */\n serialize(): SerializedLLM {\n return {\n ...this._identifyingParams(),\n _type: this._llmType(),\n _model: this._modelType(),\n };\n }\n\n /**\n * @deprecated\n * Load an LLM from a json-like object describing it.\n */\n static async deserialize(_data: SerializedLLM): Promise<BaseLanguageModel> {\n throw new Error(\"Use .toJSON() instead\");\n }\n\n /**\n * Return profiling information for the model.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n */\n get profile(): ModelProfile {\n return {};\n }\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n /**\n * Model wrapper that returns outputs formatted to match the given schema.\n *\n * @template {BaseLanguageModelInput} RunInput The input type for the Runnable, expected to be the same input for the LLM.\n * @template {Record<string, any>} RunOutput The output type for the Runnable, expected to be a Zod schema object for structured output validation.\n *\n * @param {InteropZodType<RunOutput>} schema The schema for the structured output. Either as a Zod schema or a valid JSON schema object.\n * If a Zod schema is passed, the returned attributes will be validated, whereas with JSON schema they will not be.\n * @param {string} name The name of the function to call.\n * @param {\"functionCalling\" | \"jsonMode\"} [method=functionCalling] The method to use for getting the structured output. Defaults to \"functionCalling\".\n * @param {boolean | undefined} [includeRaw=false] Whether to include the raw output in the result. Defaults to false.\n * @returns {Runnable<RunInput, RunOutput> | Runnable<RunInput, { raw: BaseMessage; parsed: RunOutput }>} A new runnable that calls the LLM with structured output.\n */\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n {\n raw: BaseMessage;\n parsed: RunOutput;\n }\n >;\n}\n\n/**\n * Shared interface for token usage\n * return type from LLM calls.\n */\nexport interface TokenUsage {\n completionTokens?: number;\n promptTokens?: number;\n totalTokens?: number;\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAgCA,MAAa,0BAA0B,CAACA,cAAqC;AAC3E,KAAI,UAAU,WAAW,QAAQ,CAC/B,QAAO;AAGT,KAAI,UAAU,WAAW,oBAAoB,CAC3C,QAAO;AAGT,KAAI,UAAU,WAAW,iBAAiB,CACxC,QAAO;AAGT,KAAI,UAAU,WAAW,YAAY,CACnC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,QAAO;AACR;AAED,MAAa,0BAA0B,CAACC,cAA+B;AACrE,SAAQ,WAAR;EACE,KAAK,yBACH,QAAO;EACT,QACE,QAAO;CACV;AACF;;;;;;;;;;;;AAaD,MAAa,sBAAsB,CAACD,cAA8B;CAChE,MAAM,iBAAiB,wBAAwB,UAAU;AAEzD,SAAQ,gBAAR;EAEE,KAAK;EACL,KAAK;EACL,KAAK,sBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,oBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK,iBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EAGT,KAAK;EACL,KAAK,yBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,eACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EACT,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,0BACH,QAAO;EACT,KAAK;EACL,KAAK,oBACH,QAAO;EAET,QACE,QAAO;CACV;AACF;;;;;;AAOD,SAAgB,aAAaE,MAAuC;AAClE,KAAI,OAAO,SAAS,YAAY,CAAC,KAAM,QAAO;AAC9C,KACE,UAAU,QACV,KAAK,SAAS,cACd,cAAc,QACd,OAAO,KAAK,aAAa,YACzB,KAAK,YACL,UAAU,KAAK,YACf,gBAAgB,KAAK,SAErB,QAAO;AAET,QAAO;AACR;AAOD,MAAa,qBAAqB,OAAO,EACvC,QACA,WACuB,KAAK;CAC5B,IAAI;AAEJ,KAAI;EACF,aACE,MAAMC,wCAAiB,wBAAwB,UAAU,CAAC,EAC1D,OAAO,OAAO,CAAC;CAClB,QAAO;EACN,QAAQ,KACN,0EACD;EAID,YAAY,KAAK,KAAK,OAAO,SAAS,EAAE;CACzC;CAED,MAAM,YAAY,oBAAoB,UAAU;AAChD,QAAO,YAAY;AACpB;AAED,MAAM,eAAe,MAAM;;;;AAkB3B,IAAsB,gBAAtB,cAKUC,sBAEV;;;;CAIE;CAEA;CAEA;CAEA;CAEA,IAAI,gBAA0D;AAC5D,SAAO;GACL,WAAW;GACX,SAAS;EACV;CACF;CAED,YAAYC,QAA6B;EACvC,MAAM,OAAO;EACb,KAAK,UAAU,OAAO,WAAW,cAAc;EAC/C,KAAK,YAAY,OAAO;EACxB,KAAK,OAAO,OAAO,QAAQ,CAAE;EAC7B,KAAK,WAAW,OAAO,YAAY,CAAE;CACtC;AACF;;;;AAwJD,IAAsB,oBAAtB,cAKU,cAIV;;;;CAIE,IAAI,WAAqB;AACvB,SAAO;GAAC;GAAQ;GAAW;GAAU;GAAQ;GAAY;EAAY;CACtE;;;;;CAMD;CAEA;CAEA,YAAY,EACV,WACA,gBACA,GAAG,QACqB,EAAE;EAC1B,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAC3B,MAAM;GACJ,WAAW,aAAa;GACxB,GAAG;EACJ,EAAC;AACF,MAAI,OAAO,UAAU,UACnB,KAAK,QAAQ;WACJ,OACT,KAAK,QAAQC,mCAAc,QAAQ;OAEnC,KAAK,QAAQ;EAEf,KAAK,SAAS,IAAIC,uCAAY,UAAU,CAAE;CAC3C;CAYD,AAAQ;;;;;;CAOR,MAAM,aAAaC,SAAyB;EAE1C,IAAIC;AACJ,MAAI,OAAO,YAAY,UACrB,cAAc;;;;;;;;;EASd,cAAc,QACX,IAAI,CAAC,SAAS;AACb,OAAI,OAAO,SAAS,SAAU,QAAO;AACrC,OAAI,KAAK,SAAS,UAAU,UAAU,KAAM,QAAO,KAAK;AACxD,UAAO;EACR,EAAC,CACD,KAAK,GAAG;EAIb,IAAI,YAAY,KAAK,KAAK,YAAY,SAAS,EAAE;AAEjD,MAAI,CAAC,KAAK,UACR,KAAI;GACF,KAAK,YAAY,MAAMN,wCACrB,eAAe,OACX,wBAAwB,KAAK,UAAoB,GACjD,OACL;EACF,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,MAAI,KAAK,UACP,KAAI;GACF,YAAY,KAAK,UAAU,OAAO,YAAY,CAAC;EAChD,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,SAAO;CACR;CAED,OAAiB,2BACfO,OAC0B;AAC1B,MAAI,OAAO,UAAU,SACnB,QAAO,IAAIC,wCAAkB;WACpB,MAAM,QAAQ,MAAM,CAC7B,QAAO,IAAIC,sCAAgB,MAAM,IAAIC,yCAA2B;MAEhE,QAAO;CAEV;;;;CAMD,qBAA0C;AACxC,SAAO,CAAE;CACV;;;;;;CAOD,wCAEE,EAAE,OAAQ,GAAG,aAAwD,EAC7D;EAER,MAAMC,SAA8B;GAClC,GAAG,KAAK,oBAAoB;GAC5B,GAAG;GACH,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;EACD,MAAM,kBAAkB,OAAO,QAAQ,OAAO,CAAC,OAC7C,CAAC,CAAC,GAAG,MAAM,KAAK,UAAU,OAC3B;EACD,MAAM,oBAAoB,gBACvB,IAAI,CAAC,CAAC,KAAK,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE,CAAC,CACxD,MAAM,CACN,KAAK,IAAI;AACZ,SAAO;CACR;;;;;CAMD,YAA2B;AACzB,SAAO;GACL,GAAG,KAAK,oBAAoB;GAC5B,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;CACF;;;;;CAMD,aAAa,YAAYC,OAAkD;AACzE,QAAM,IAAI,MAAM;CACjB;;;;;;CAOD,IAAI,UAAwB;AAC1B,SAAO,CAAE;CACV;AA6EF"}
|
|
1
|
+
{"version":3,"file":"base.cjs","names":["modelName: string","modelName?: string","tool: unknown","encodingForModel","Runnable","params: BaseLangChainParams","InMemoryCache","AsyncCaller","content: MessageContent","textContent: string","input: BaseLanguageModelInput","StringPromptValue","ChatPromptValue","coerceMessageLikeToMessage","params: Record<string, any>","_data: SerializedLLM"],"sources":["../../src/language_models/base.ts"],"sourcesContent":["import type { Tiktoken, TiktokenModel } from \"js-tiktoken/lite\";\nimport type { ZodType as ZodTypeV3 } from \"zod/v3\";\nimport type { $ZodType as ZodTypeV4 } from \"zod/v4/core\";\n\nimport { type BaseCache, InMemoryCache } from \"../caches/index.js\";\nimport {\n type BasePromptValueInterface,\n StringPromptValue,\n ChatPromptValue,\n} from \"../prompt_values.js\";\nimport {\n type BaseMessage,\n type BaseMessageLike,\n type MessageContent,\n} from \"../messages/base.js\";\nimport { coerceMessageLikeToMessage } from \"../messages/utils.js\";\nimport { type LLMResult } from \"../outputs.js\";\nimport { CallbackManager, Callbacks } from \"../callbacks/manager.js\";\nimport { AsyncCaller, AsyncCallerParams } from \"../utils/async_caller.js\";\nimport { encodingForModel } from \"../utils/tiktoken.js\";\nimport { Runnable, type RunnableInterface } from \"../runnables/base.js\";\nimport { RunnableConfig } from \"../runnables/config.js\";\nimport { JSONSchema } from \"../utils/json_schema.js\";\nimport {\n InferInteropZodOutput,\n InteropZodObject,\n InteropZodType,\n} from \"../utils/types/zod.js\";\nimport { ModelProfile } from \"./profile.js\";\n\n// https://www.npmjs.com/package/js-tiktoken\n\nexport const getModelNameForTiktoken = (modelName: string): TiktokenModel => {\n if (modelName.startsWith(\"gpt-5\")) {\n return \"gpt-5\" as TiktokenModel;\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-16k\")) {\n return \"gpt-3.5-turbo-16k\";\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-\")) {\n return \"gpt-3.5-turbo\";\n }\n\n if (modelName.startsWith(\"gpt-4-32k\")) {\n return \"gpt-4-32k\";\n }\n\n if (modelName.startsWith(\"gpt-4-\")) {\n return \"gpt-4\";\n }\n\n if (modelName.startsWith(\"gpt-4o\")) {\n return \"gpt-4o\";\n }\n\n return modelName as TiktokenModel;\n};\n\nexport const getEmbeddingContextSize = (modelName?: string): number => {\n switch (modelName) {\n case \"text-embedding-ada-002\":\n return 8191;\n default:\n return 2046;\n }\n};\n\n/**\n * Get the context window size (max input tokens) for a given model.\n *\n * Context window sizes are sourced from official model documentation:\n * - OpenAI: https://platform.openai.com/docs/models\n * - Anthropic: https://docs.anthropic.com/claude/docs/models-overview\n * - Google: https://ai.google.dev/gemini/docs/models/gemini\n *\n * @param modelName - The name of the model\n * @returns The context window size in tokens\n */\nexport const getModelContextSize = (modelName: string): number => {\n const normalizedName = getModelNameForTiktoken(modelName) as string;\n\n switch (normalizedName) {\n // GPT-5 series\n case \"gpt-5\":\n case \"gpt-5-turbo\":\n case \"gpt-5-turbo-preview\":\n return 400000;\n\n // GPT-4o series\n case \"gpt-4o\":\n case \"gpt-4o-mini\":\n case \"gpt-4o-2024-05-13\":\n case \"gpt-4o-2024-08-06\":\n return 128000;\n\n // GPT-4 Turbo series\n case \"gpt-4-turbo\":\n case \"gpt-4-turbo-preview\":\n case \"gpt-4-turbo-2024-04-09\":\n case \"gpt-4-0125-preview\":\n case \"gpt-4-1106-preview\":\n return 128000;\n\n // GPT-4 series\n case \"gpt-4-32k\":\n case \"gpt-4-32k-0314\":\n case \"gpt-4-32k-0613\":\n return 32768;\n case \"gpt-4\":\n case \"gpt-4-0314\":\n case \"gpt-4-0613\":\n return 8192;\n\n // GPT-3.5 Turbo series\n case \"gpt-3.5-turbo-16k\":\n case \"gpt-3.5-turbo-16k-0613\":\n return 16384;\n case \"gpt-3.5-turbo\":\n case \"gpt-3.5-turbo-0301\":\n case \"gpt-3.5-turbo-0613\":\n case \"gpt-3.5-turbo-1106\":\n case \"gpt-3.5-turbo-0125\":\n return 4096;\n\n // Legacy GPT-3 models\n case \"text-davinci-003\":\n case \"text-davinci-002\":\n return 4097;\n case \"text-davinci-001\":\n return 2049;\n case \"text-curie-001\":\n case \"text-babbage-001\":\n case \"text-ada-001\":\n return 2048;\n\n // Code models\n case \"code-davinci-002\":\n case \"code-davinci-001\":\n return 8000;\n case \"code-cushman-001\":\n return 2048;\n\n // Claude models (Anthropic)\n case \"claude-3-5-sonnet-20241022\":\n case \"claude-3-5-sonnet-20240620\":\n case \"claude-3-opus-20240229\":\n case \"claude-3-sonnet-20240229\":\n case \"claude-3-haiku-20240307\":\n case \"claude-2.1\":\n return 200000;\n case \"claude-2.0\":\n case \"claude-instant-1.2\":\n return 100000;\n\n // Gemini models (Google)\n case \"gemini-1.5-pro\":\n case \"gemini-1.5-pro-latest\":\n case \"gemini-1.5-flash\":\n case \"gemini-1.5-flash-latest\":\n return 1000000; // 1M tokens\n case \"gemini-pro\":\n case \"gemini-pro-vision\":\n return 32768;\n\n default:\n return 4097;\n }\n};\n\n/**\n * Whether or not the input matches the OpenAI tool definition.\n * @param {unknown} tool The input to check.\n * @returns {boolean} Whether the input is an OpenAI tool definition.\n */\nexport function isOpenAITool(tool: unknown): tool is ToolDefinition {\n if (typeof tool !== \"object\" || !tool) return false;\n if (\n \"type\" in tool &&\n tool.type === \"function\" &&\n \"function\" in tool &&\n typeof tool.function === \"object\" &&\n tool.function &&\n \"name\" in tool.function &&\n \"parameters\" in tool.function\n ) {\n return true;\n }\n return false;\n}\n\ninterface CalculateMaxTokenProps {\n prompt: string;\n modelName: TiktokenModel;\n}\n\nexport const calculateMaxTokens = async ({\n prompt,\n modelName,\n}: CalculateMaxTokenProps) => {\n let numTokens;\n\n try {\n numTokens = (\n await encodingForModel(getModelNameForTiktoken(modelName))\n ).encode(prompt).length;\n } catch {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\"\n );\n\n // fallback to approximate calculation if tiktoken is not available\n // each token is ~4 characters: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them#\n numTokens = Math.ceil(prompt.length / 4);\n }\n\n const maxTokens = getModelContextSize(modelName);\n return maxTokens - numTokens;\n};\n\nconst getVerbosity = () => false;\n\nexport type SerializedLLM = {\n _model: string;\n _type: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n} & Record<string, any>;\n\nexport interface BaseLangChainParams {\n verbose?: boolean;\n callbacks?: Callbacks;\n tags?: string[];\n metadata?: Record<string, unknown>;\n}\n\n/**\n * Base class for language models, chains, tools.\n */\nexport abstract class BaseLangChain<\n RunInput,\n RunOutput,\n CallOptions extends RunnableConfig = RunnableConfig,\n >\n extends Runnable<RunInput, RunOutput, CallOptions>\n implements BaseLangChainParams\n{\n /**\n * Whether to print out response text.\n */\n verbose: boolean;\n\n callbacks?: Callbacks;\n\n tags?: string[];\n\n metadata?: Record<string, unknown>;\n\n get lc_attributes(): { [key: string]: undefined } | undefined {\n return {\n callbacks: undefined,\n verbose: undefined,\n };\n }\n\n constructor(params: BaseLangChainParams) {\n super(params);\n this.verbose = params.verbose ?? getVerbosity();\n this.callbacks = params.callbacks;\n this.tags = params.tags ?? [];\n this.metadata = params.metadata ?? {};\n }\n}\n\n/**\n * Base interface for language model parameters.\n * A subclass of {@link BaseLanguageModel} should have a constructor that\n * takes in a parameter that extends this interface.\n */\nexport interface BaseLanguageModelParams\n extends AsyncCallerParams,\n BaseLangChainParams {\n /**\n * @deprecated Use `callbacks` instead\n */\n callbackManager?: CallbackManager;\n\n cache?: BaseCache | boolean;\n}\n\nexport interface BaseLanguageModelTracingCallOptions {\n /**\n * Describes the format of structured outputs.\n * This should be provided if an output is considered to be structured\n */\n ls_structured_output_format?: {\n /**\n * An object containing the method used for structured output (e.g., \"jsonMode\").\n */\n kwargs: { method: string };\n /**\n * The JSON schema describing the expected output structure.\n */\n schema?: JSONSchema;\n };\n}\n\nexport interface BaseLanguageModelCallOptions\n extends RunnableConfig,\n BaseLanguageModelTracingCallOptions {\n /**\n * Stop tokens to use for this call.\n * If not provided, the default stop tokens for the model will be used.\n */\n stop?: string[];\n}\n\nexport interface FunctionDefinition {\n /**\n * The name of the function to be called. Must be a-z, A-Z, 0-9, or contain\n * underscores and dashes, with a maximum length of 64.\n */\n name: string;\n\n /**\n * The parameters the functions accepts, described as a JSON Schema object. See the\n * [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for\n * examples, and the\n * [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for\n * documentation about the format.\n *\n * To describe a function that accepts no parameters, provide the value\n * `{\"type\": \"object\", \"properties\": {}}`.\n */\n parameters: Record<string, unknown> | JSONSchema;\n\n /**\n * A description of what the function does, used by the model to choose when and\n * how to call the function.\n */\n description?: string;\n}\n\nexport interface ToolDefinition {\n type: \"function\";\n function: FunctionDefinition;\n}\n\nexport type FunctionCallOption = {\n name: string;\n};\n\nexport interface BaseFunctionCallOptions extends BaseLanguageModelCallOptions {\n function_call?: FunctionCallOption;\n functions?: FunctionDefinition[];\n}\n\nexport type BaseLanguageModelInput =\n | BasePromptValueInterface\n | string\n | BaseMessageLike[];\n\nexport type StructuredOutputType = InferInteropZodOutput<InteropZodObject>;\n\nexport type StructuredOutputMethodOptions<IncludeRaw extends boolean = false> =\n {\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\" | \"jsonSchema\" | string;\n includeRaw?: IncludeRaw;\n /** Whether to use strict mode. Currently only supported by OpenAI models. */\n strict?: boolean;\n };\n\n/** @deprecated Use StructuredOutputMethodOptions instead */\nexport type StructuredOutputMethodParams<\n RunOutput,\n IncludeRaw extends boolean = false,\n> = {\n /** @deprecated Pass schema in as the first argument */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n schema: InteropZodType<RunOutput> | Record<string, any>;\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\";\n includeRaw?: IncludeRaw;\n};\n\nexport interface BaseLanguageModelInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends\n BaseLanguageModelCallOptions = BaseLanguageModelCallOptions,\n> extends RunnableInterface<BaseLanguageModelInput, RunOutput, CallOptions> {\n get callKeys(): string[];\n\n generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n _modelType(): string;\n\n _llmType(): string;\n\n getNumTokens(content: MessageContent): Promise<number>;\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any>;\n\n serialize(): SerializedLLM;\n}\n\nexport type LanguageModelOutput = BaseMessage | string;\n\nexport type LanguageModelLike = Runnable<\n BaseLanguageModelInput,\n LanguageModelOutput\n>;\n\n/**\n * Base class for language models.\n */\nexport abstract class BaseLanguageModel<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends\n BaseLanguageModelCallOptions = BaseLanguageModelCallOptions,\n >\n extends BaseLangChain<BaseLanguageModelInput, RunOutput, CallOptions>\n implements\n BaseLanguageModelParams,\n BaseLanguageModelInterface<RunOutput, CallOptions>\n{\n /**\n * Keys that the language model accepts as call options.\n */\n get callKeys(): string[] {\n return [\"stop\", \"timeout\", \"signal\", \"tags\", \"metadata\", \"callbacks\"];\n }\n\n /**\n * The async caller should be used by subclasses to make any async calls,\n * which will thus benefit from the concurrency and retry logic.\n */\n caller: AsyncCaller;\n\n cache?: BaseCache;\n\n constructor({\n callbacks,\n callbackManager,\n ...params\n }: BaseLanguageModelParams) {\n const { cache, ...rest } = params;\n super({\n callbacks: callbacks ?? callbackManager,\n ...rest,\n });\n if (typeof cache === \"object\") {\n this.cache = cache;\n } else if (cache) {\n this.cache = InMemoryCache.global();\n } else {\n this.cache = undefined;\n }\n this.caller = new AsyncCaller(params ?? {});\n }\n\n abstract generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n abstract _modelType(): string;\n\n abstract _llmType(): string;\n\n private _encoding?: Tiktoken;\n\n /**\n * Get the number of tokens in the content.\n * @param content The content to get the number of tokens for.\n * @returns The number of tokens in the content.\n */\n async getNumTokens(content: MessageContent) {\n // Extract text content from MessageContent\n let textContent: string;\n if (typeof content === \"string\") {\n textContent = content;\n } else {\n /**\n * Content is an array of ContentBlock\n *\n * ToDo(@christian-bromann): This is a temporary fix to get the number of tokens for the content.\n * We need to find a better way to do this.\n * @see https://github.com/langchain-ai/langchainjs/pull/8341#pullrequestreview-2933713116\n */\n textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (item.type === \"text\" && \"text\" in item) return item.text;\n return \"\";\n })\n .join(\"\");\n }\n\n // fallback to approximate calculation if tiktoken is not available\n let numTokens = Math.ceil(textContent.length / 4);\n\n if (!this._encoding) {\n try {\n this._encoding = await encodingForModel(\n \"modelName\" in this\n ? getModelNameForTiktoken(this.modelName as string)\n : \"gpt2\"\n );\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n if (this._encoding) {\n try {\n numTokens = this._encoding.encode(textContent).length;\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n return numTokens;\n }\n\n protected static _convertInputToPromptValue(\n input: BaseLanguageModelInput\n ): BasePromptValueInterface {\n if (typeof input === \"string\") {\n return new StringPromptValue(input);\n } else if (Array.isArray(input)) {\n return new ChatPromptValue(input.map(coerceMessageLikeToMessage));\n } else {\n return input;\n }\n }\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any> {\n return {};\n }\n\n /**\n * Create a unique cache key for a specific call to a specific language model.\n * @param callOptions Call options for the model\n * @returns A unique cache key.\n */\n _getSerializedCacheKeyParametersForCall(\n // TODO: Fix when we remove the RunnableLambda backwards compatibility shim.\n { config, ...callOptions }: CallOptions & { config?: RunnableConfig }\n ): string {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const params: Record<string, any> = {\n ...this._identifyingParams(),\n ...callOptions,\n _type: this._llmType(),\n _model: this._modelType(),\n };\n const filteredEntries = Object.entries(params).filter(\n ([_, value]) => value !== undefined\n );\n const serializedEntries = filteredEntries\n .map(([key, value]) => `${key}:${JSON.stringify(value)}`)\n .sort()\n .join(\",\");\n return serializedEntries;\n }\n\n /**\n * @deprecated\n * Return a json-like object representing this LLM.\n */\n serialize(): SerializedLLM {\n return {\n ...this._identifyingParams(),\n _type: this._llmType(),\n _model: this._modelType(),\n };\n }\n\n /**\n * @deprecated\n * Load an LLM from a json-like object describing it.\n */\n static async deserialize(_data: SerializedLLM): Promise<BaseLanguageModel> {\n throw new Error(\"Use .toJSON() instead\");\n }\n\n /**\n * Return profiling information for the model.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n */\n get profile(): ModelProfile {\n return {};\n }\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n /**\n * Model wrapper that returns outputs formatted to match the given schema.\n *\n * @template {BaseLanguageModelInput} RunInput The input type for the Runnable, expected to be the same input for the LLM.\n * @template {Record<string, any>} RunOutput The output type for the Runnable, expected to be a Zod schema object for structured output validation.\n *\n * @param {InteropZodType<RunOutput>} schema The schema for the structured output. Either as a Zod schema or a valid JSON schema object.\n * If a Zod schema is passed, the returned attributes will be validated, whereas with JSON schema they will not be.\n * @param {string} name The name of the function to call.\n * @param {\"functionCalling\" | \"jsonMode\"} [method=functionCalling] The method to use for getting the structured output. Defaults to \"functionCalling\".\n * @param {boolean | undefined} [includeRaw=false] Whether to include the raw output in the result. Defaults to false.\n * @returns {Runnable<RunInput, RunOutput> | Runnable<RunInput, { raw: BaseMessage; parsed: RunOutput }>} A new runnable that calls the LLM with structured output.\n */\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n {\n raw: BaseMessage;\n parsed: RunOutput;\n }\n >;\n}\n\n/**\n * Shared interface for token usage\n * return type from LLM calls.\n */\nexport interface TokenUsage {\n completionTokens?: number;\n promptTokens?: number;\n totalTokens?: number;\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAgCA,MAAa,0BAA0B,CAACA,cAAqC;AAC3E,KAAI,UAAU,WAAW,QAAQ,CAC/B,QAAO;AAGT,KAAI,UAAU,WAAW,oBAAoB,CAC3C,QAAO;AAGT,KAAI,UAAU,WAAW,iBAAiB,CACxC,QAAO;AAGT,KAAI,UAAU,WAAW,YAAY,CACnC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,QAAO;AACR;AAED,MAAa,0BAA0B,CAACC,cAA+B;AACrE,SAAQ,WAAR;EACE,KAAK,yBACH,QAAO;EACT,QACE,QAAO;CACV;AACF;;;;;;;;;;;;AAaD,MAAa,sBAAsB,CAACD,cAA8B;CAChE,MAAM,iBAAiB,wBAAwB,UAAU;AAEzD,SAAQ,gBAAR;EAEE,KAAK;EACL,KAAK;EACL,KAAK,sBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,oBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK,iBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EAGT,KAAK;EACL,KAAK,yBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,eACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EACT,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,0BACH,QAAO;EACT,KAAK;EACL,KAAK,oBACH,QAAO;EAET,QACE,QAAO;CACV;AACF;;;;;;AAOD,SAAgB,aAAaE,MAAuC;AAClE,KAAI,OAAO,SAAS,YAAY,CAAC,KAAM,QAAO;AAC9C,KACE,UAAU,QACV,KAAK,SAAS,cACd,cAAc,QACd,OAAO,KAAK,aAAa,YACzB,KAAK,YACL,UAAU,KAAK,YACf,gBAAgB,KAAK,SAErB,QAAO;AAET,QAAO;AACR;AAOD,MAAa,qBAAqB,OAAO,EACvC,QACA,WACuB,KAAK;CAC5B,IAAI;AAEJ,KAAI;EACF,aACE,MAAMC,wCAAiB,wBAAwB,UAAU,CAAC,EAC1D,OAAO,OAAO,CAAC;CAClB,QAAO;EACN,QAAQ,KACN,0EACD;EAID,YAAY,KAAK,KAAK,OAAO,SAAS,EAAE;CACzC;CAED,MAAM,YAAY,oBAAoB,UAAU;AAChD,QAAO,YAAY;AACpB;AAED,MAAM,eAAe,MAAM;;;;AAkB3B,IAAsB,gBAAtB,cAKUC,sBAEV;;;;CAIE;CAEA;CAEA;CAEA;CAEA,IAAI,gBAA0D;AAC5D,SAAO;GACL,WAAW;GACX,SAAS;EACV;CACF;CAED,YAAYC,QAA6B;EACvC,MAAM,OAAO;EACb,KAAK,UAAU,OAAO,WAAW,cAAc;EAC/C,KAAK,YAAY,OAAO;EACxB,KAAK,OAAO,OAAO,QAAQ,CAAE;EAC7B,KAAK,WAAW,OAAO,YAAY,CAAE;CACtC;AACF;;;;AAyJD,IAAsB,oBAAtB,cAMU,cAIV;;;;CAIE,IAAI,WAAqB;AACvB,SAAO;GAAC;GAAQ;GAAW;GAAU;GAAQ;GAAY;EAAY;CACtE;;;;;CAMD;CAEA;CAEA,YAAY,EACV,WACA,gBACA,GAAG,QACqB,EAAE;EAC1B,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAC3B,MAAM;GACJ,WAAW,aAAa;GACxB,GAAG;EACJ,EAAC;AACF,MAAI,OAAO,UAAU,UACnB,KAAK,QAAQ;WACJ,OACT,KAAK,QAAQC,mCAAc,QAAQ;OAEnC,KAAK,QAAQ;EAEf,KAAK,SAAS,IAAIC,uCAAY,UAAU,CAAE;CAC3C;CAYD,AAAQ;;;;;;CAOR,MAAM,aAAaC,SAAyB;EAE1C,IAAIC;AACJ,MAAI,OAAO,YAAY,UACrB,cAAc;;;;;;;;;EASd,cAAc,QACX,IAAI,CAAC,SAAS;AACb,OAAI,OAAO,SAAS,SAAU,QAAO;AACrC,OAAI,KAAK,SAAS,UAAU,UAAU,KAAM,QAAO,KAAK;AACxD,UAAO;EACR,EAAC,CACD,KAAK,GAAG;EAIb,IAAI,YAAY,KAAK,KAAK,YAAY,SAAS,EAAE;AAEjD,MAAI,CAAC,KAAK,UACR,KAAI;GACF,KAAK,YAAY,MAAMN,wCACrB,eAAe,OACX,wBAAwB,KAAK,UAAoB,GACjD,OACL;EACF,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,MAAI,KAAK,UACP,KAAI;GACF,YAAY,KAAK,UAAU,OAAO,YAAY,CAAC;EAChD,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,SAAO;CACR;CAED,OAAiB,2BACfO,OAC0B;AAC1B,MAAI,OAAO,UAAU,SACnB,QAAO,IAAIC,wCAAkB;WACpB,MAAM,QAAQ,MAAM,CAC7B,QAAO,IAAIC,sCAAgB,MAAM,IAAIC,yCAA2B;MAEhE,QAAO;CAEV;;;;CAMD,qBAA0C;AACxC,SAAO,CAAE;CACV;;;;;;CAOD,wCAEE,EAAE,OAAQ,GAAG,aAAwD,EAC7D;EAER,MAAMC,SAA8B;GAClC,GAAG,KAAK,oBAAoB;GAC5B,GAAG;GACH,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;EACD,MAAM,kBAAkB,OAAO,QAAQ,OAAO,CAAC,OAC7C,CAAC,CAAC,GAAG,MAAM,KAAK,UAAU,OAC3B;EACD,MAAM,oBAAoB,gBACvB,IAAI,CAAC,CAAC,KAAK,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE,CAAC,CACxD,MAAM,CACN,KAAK,IAAI;AACZ,SAAO;CACR;;;;;CAMD,YAA2B;AACzB,SAAO;GACL,GAAG,KAAK,oBAAoB;GAC5B,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;CACF;;;;;CAMD,aAAa,YAAYC,OAAkD;AACzE,QAAM,IAAI,MAAM;CACjB;;;;;;CAOD,IAAI,UAAwB;AAC1B,SAAO,CAAE;CACV;AA6EF"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"base.js","names":["modelName: string","modelName?: string","tool: unknown","params: BaseLangChainParams","content: MessageContent","textContent: string","input: BaseLanguageModelInput","params: Record<string, any>","_data: SerializedLLM"],"sources":["../../src/language_models/base.ts"],"sourcesContent":["import type { Tiktoken, TiktokenModel } from \"js-tiktoken/lite\";\nimport type { ZodType as ZodTypeV3 } from \"zod/v3\";\nimport type { $ZodType as ZodTypeV4 } from \"zod/v4/core\";\n\nimport { type BaseCache, InMemoryCache } from \"../caches/index.js\";\nimport {\n type BasePromptValueInterface,\n StringPromptValue,\n ChatPromptValue,\n} from \"../prompt_values.js\";\nimport {\n type BaseMessage,\n type BaseMessageLike,\n type MessageContent,\n} from \"../messages/base.js\";\nimport { coerceMessageLikeToMessage } from \"../messages/utils.js\";\nimport { type LLMResult } from \"../outputs.js\";\nimport { CallbackManager, Callbacks } from \"../callbacks/manager.js\";\nimport { AsyncCaller, AsyncCallerParams } from \"../utils/async_caller.js\";\nimport { encodingForModel } from \"../utils/tiktoken.js\";\nimport { Runnable, type RunnableInterface } from \"../runnables/base.js\";\nimport { RunnableConfig } from \"../runnables/config.js\";\nimport { JSONSchema } from \"../utils/json_schema.js\";\nimport {\n InferInteropZodOutput,\n InteropZodObject,\n InteropZodType,\n} from \"../utils/types/zod.js\";\nimport { ModelProfile } from \"./profile.js\";\n\n// https://www.npmjs.com/package/js-tiktoken\n\nexport const getModelNameForTiktoken = (modelName: string): TiktokenModel => {\n if (modelName.startsWith(\"gpt-5\")) {\n return \"gpt-5\" as TiktokenModel;\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-16k\")) {\n return \"gpt-3.5-turbo-16k\";\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-\")) {\n return \"gpt-3.5-turbo\";\n }\n\n if (modelName.startsWith(\"gpt-4-32k\")) {\n return \"gpt-4-32k\";\n }\n\n if (modelName.startsWith(\"gpt-4-\")) {\n return \"gpt-4\";\n }\n\n if (modelName.startsWith(\"gpt-4o\")) {\n return \"gpt-4o\";\n }\n\n return modelName as TiktokenModel;\n};\n\nexport const getEmbeddingContextSize = (modelName?: string): number => {\n switch (modelName) {\n case \"text-embedding-ada-002\":\n return 8191;\n default:\n return 2046;\n }\n};\n\n/**\n * Get the context window size (max input tokens) for a given model.\n *\n * Context window sizes are sourced from official model documentation:\n * - OpenAI: https://platform.openai.com/docs/models\n * - Anthropic: https://docs.anthropic.com/claude/docs/models-overview\n * - Google: https://ai.google.dev/gemini/docs/models/gemini\n *\n * @param modelName - The name of the model\n * @returns The context window size in tokens\n */\nexport const getModelContextSize = (modelName: string): number => {\n const normalizedName = getModelNameForTiktoken(modelName) as string;\n\n switch (normalizedName) {\n // GPT-5 series\n case \"gpt-5\":\n case \"gpt-5-turbo\":\n case \"gpt-5-turbo-preview\":\n return 400000;\n\n // GPT-4o series\n case \"gpt-4o\":\n case \"gpt-4o-mini\":\n case \"gpt-4o-2024-05-13\":\n case \"gpt-4o-2024-08-06\":\n return 128000;\n\n // GPT-4 Turbo series\n case \"gpt-4-turbo\":\n case \"gpt-4-turbo-preview\":\n case \"gpt-4-turbo-2024-04-09\":\n case \"gpt-4-0125-preview\":\n case \"gpt-4-1106-preview\":\n return 128000;\n\n // GPT-4 series\n case \"gpt-4-32k\":\n case \"gpt-4-32k-0314\":\n case \"gpt-4-32k-0613\":\n return 32768;\n case \"gpt-4\":\n case \"gpt-4-0314\":\n case \"gpt-4-0613\":\n return 8192;\n\n // GPT-3.5 Turbo series\n case \"gpt-3.5-turbo-16k\":\n case \"gpt-3.5-turbo-16k-0613\":\n return 16384;\n case \"gpt-3.5-turbo\":\n case \"gpt-3.5-turbo-0301\":\n case \"gpt-3.5-turbo-0613\":\n case \"gpt-3.5-turbo-1106\":\n case \"gpt-3.5-turbo-0125\":\n return 4096;\n\n // Legacy GPT-3 models\n case \"text-davinci-003\":\n case \"text-davinci-002\":\n return 4097;\n case \"text-davinci-001\":\n return 2049;\n case \"text-curie-001\":\n case \"text-babbage-001\":\n case \"text-ada-001\":\n return 2048;\n\n // Code models\n case \"code-davinci-002\":\n case \"code-davinci-001\":\n return 8000;\n case \"code-cushman-001\":\n return 2048;\n\n // Claude models (Anthropic)\n case \"claude-3-5-sonnet-20241022\":\n case \"claude-3-5-sonnet-20240620\":\n case \"claude-3-opus-20240229\":\n case \"claude-3-sonnet-20240229\":\n case \"claude-3-haiku-20240307\":\n case \"claude-2.1\":\n return 200000;\n case \"claude-2.0\":\n case \"claude-instant-1.2\":\n return 100000;\n\n // Gemini models (Google)\n case \"gemini-1.5-pro\":\n case \"gemini-1.5-pro-latest\":\n case \"gemini-1.5-flash\":\n case \"gemini-1.5-flash-latest\":\n return 1000000; // 1M tokens\n case \"gemini-pro\":\n case \"gemini-pro-vision\":\n return 32768;\n\n default:\n return 4097;\n }\n};\n\n/**\n * Whether or not the input matches the OpenAI tool definition.\n * @param {unknown} tool The input to check.\n * @returns {boolean} Whether the input is an OpenAI tool definition.\n */\nexport function isOpenAITool(tool: unknown): tool is ToolDefinition {\n if (typeof tool !== \"object\" || !tool) return false;\n if (\n \"type\" in tool &&\n tool.type === \"function\" &&\n \"function\" in tool &&\n typeof tool.function === \"object\" &&\n tool.function &&\n \"name\" in tool.function &&\n \"parameters\" in tool.function\n ) {\n return true;\n }\n return false;\n}\n\ninterface CalculateMaxTokenProps {\n prompt: string;\n modelName: TiktokenModel;\n}\n\nexport const calculateMaxTokens = async ({\n prompt,\n modelName,\n}: CalculateMaxTokenProps) => {\n let numTokens;\n\n try {\n numTokens = (\n await encodingForModel(getModelNameForTiktoken(modelName))\n ).encode(prompt).length;\n } catch {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\"\n );\n\n // fallback to approximate calculation if tiktoken is not available\n // each token is ~4 characters: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them#\n numTokens = Math.ceil(prompt.length / 4);\n }\n\n const maxTokens = getModelContextSize(modelName);\n return maxTokens - numTokens;\n};\n\nconst getVerbosity = () => false;\n\nexport type SerializedLLM = {\n _model: string;\n _type: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n} & Record<string, any>;\n\nexport interface BaseLangChainParams {\n verbose?: boolean;\n callbacks?: Callbacks;\n tags?: string[];\n metadata?: Record<string, unknown>;\n}\n\n/**\n * Base class for language models, chains, tools.\n */\nexport abstract class BaseLangChain<\n RunInput,\n RunOutput,\n CallOptions extends RunnableConfig = RunnableConfig\n >\n extends Runnable<RunInput, RunOutput, CallOptions>\n implements BaseLangChainParams\n{\n /**\n * Whether to print out response text.\n */\n verbose: boolean;\n\n callbacks?: Callbacks;\n\n tags?: string[];\n\n metadata?: Record<string, unknown>;\n\n get lc_attributes(): { [key: string]: undefined } | undefined {\n return {\n callbacks: undefined,\n verbose: undefined,\n };\n }\n\n constructor(params: BaseLangChainParams) {\n super(params);\n this.verbose = params.verbose ?? getVerbosity();\n this.callbacks = params.callbacks;\n this.tags = params.tags ?? [];\n this.metadata = params.metadata ?? {};\n }\n}\n\n/**\n * Base interface for language model parameters.\n * A subclass of {@link BaseLanguageModel} should have a constructor that\n * takes in a parameter that extends this interface.\n */\nexport interface BaseLanguageModelParams\n extends AsyncCallerParams,\n BaseLangChainParams {\n /**\n * @deprecated Use `callbacks` instead\n */\n callbackManager?: CallbackManager;\n\n cache?: BaseCache | boolean;\n}\n\nexport interface BaseLanguageModelTracingCallOptions {\n /**\n * Describes the format of structured outputs.\n * This should be provided if an output is considered to be structured\n */\n ls_structured_output_format?: {\n /**\n * An object containing the method used for structured output (e.g., \"jsonMode\").\n */\n kwargs: { method: string };\n /**\n * The JSON schema describing the expected output structure.\n */\n schema?: JSONSchema;\n };\n}\n\nexport interface BaseLanguageModelCallOptions\n extends RunnableConfig,\n BaseLanguageModelTracingCallOptions {\n /**\n * Stop tokens to use for this call.\n * If not provided, the default stop tokens for the model will be used.\n */\n stop?: string[];\n}\n\nexport interface FunctionDefinition {\n /**\n * The name of the function to be called. Must be a-z, A-Z, 0-9, or contain\n * underscores and dashes, with a maximum length of 64.\n */\n name: string;\n\n /**\n * The parameters the functions accepts, described as a JSON Schema object. See the\n * [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for\n * examples, and the\n * [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for\n * documentation about the format.\n *\n * To describe a function that accepts no parameters, provide the value\n * `{\"type\": \"object\", \"properties\": {}}`.\n */\n parameters: Record<string, unknown> | JSONSchema;\n\n /**\n * A description of what the function does, used by the model to choose when and\n * how to call the function.\n */\n description?: string;\n}\n\nexport interface ToolDefinition {\n type: \"function\";\n function: FunctionDefinition;\n}\n\nexport type FunctionCallOption = {\n name: string;\n};\n\nexport interface BaseFunctionCallOptions extends BaseLanguageModelCallOptions {\n function_call?: FunctionCallOption;\n functions?: FunctionDefinition[];\n}\n\nexport type BaseLanguageModelInput =\n | BasePromptValueInterface\n | string\n | BaseMessageLike[];\n\nexport type StructuredOutputType = InferInteropZodOutput<InteropZodObject>;\n\nexport type StructuredOutputMethodOptions<IncludeRaw extends boolean = false> =\n {\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\" | \"jsonSchema\" | string;\n includeRaw?: IncludeRaw;\n /** Whether to use strict mode. Currently only supported by OpenAI models. */\n strict?: boolean;\n };\n\n/** @deprecated Use StructuredOutputMethodOptions instead */\nexport type StructuredOutputMethodParams<\n RunOutput,\n IncludeRaw extends boolean = false\n> = {\n /** @deprecated Pass schema in as the first argument */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n schema: InteropZodType<RunOutput> | Record<string, any>;\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\";\n includeRaw?: IncludeRaw;\n};\n\nexport interface BaseLanguageModelInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions\n> extends RunnableInterface<BaseLanguageModelInput, RunOutput, CallOptions> {\n get callKeys(): string[];\n\n generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n _modelType(): string;\n\n _llmType(): string;\n\n getNumTokens(content: MessageContent): Promise<number>;\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any>;\n\n serialize(): SerializedLLM;\n}\n\nexport type LanguageModelOutput = BaseMessage | string;\n\nexport type LanguageModelLike = Runnable<\n BaseLanguageModelInput,\n LanguageModelOutput\n>;\n\n/**\n * Base class for language models.\n */\nexport abstract class BaseLanguageModel<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions\n >\n extends BaseLangChain<BaseLanguageModelInput, RunOutput, CallOptions>\n implements\n BaseLanguageModelParams,\n BaseLanguageModelInterface<RunOutput, CallOptions>\n{\n /**\n * Keys that the language model accepts as call options.\n */\n get callKeys(): string[] {\n return [\"stop\", \"timeout\", \"signal\", \"tags\", \"metadata\", \"callbacks\"];\n }\n\n /**\n * The async caller should be used by subclasses to make any async calls,\n * which will thus benefit from the concurrency and retry logic.\n */\n caller: AsyncCaller;\n\n cache?: BaseCache;\n\n constructor({\n callbacks,\n callbackManager,\n ...params\n }: BaseLanguageModelParams) {\n const { cache, ...rest } = params;\n super({\n callbacks: callbacks ?? callbackManager,\n ...rest,\n });\n if (typeof cache === \"object\") {\n this.cache = cache;\n } else if (cache) {\n this.cache = InMemoryCache.global();\n } else {\n this.cache = undefined;\n }\n this.caller = new AsyncCaller(params ?? {});\n }\n\n abstract generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n abstract _modelType(): string;\n\n abstract _llmType(): string;\n\n private _encoding?: Tiktoken;\n\n /**\n * Get the number of tokens in the content.\n * @param content The content to get the number of tokens for.\n * @returns The number of tokens in the content.\n */\n async getNumTokens(content: MessageContent) {\n // Extract text content from MessageContent\n let textContent: string;\n if (typeof content === \"string\") {\n textContent = content;\n } else {\n /**\n * Content is an array of ContentBlock\n *\n * ToDo(@christian-bromann): This is a temporary fix to get the number of tokens for the content.\n * We need to find a better way to do this.\n * @see https://github.com/langchain-ai/langchainjs/pull/8341#pullrequestreview-2933713116\n */\n textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (item.type === \"text\" && \"text\" in item) return item.text;\n return \"\";\n })\n .join(\"\");\n }\n\n // fallback to approximate calculation if tiktoken is not available\n let numTokens = Math.ceil(textContent.length / 4);\n\n if (!this._encoding) {\n try {\n this._encoding = await encodingForModel(\n \"modelName\" in this\n ? getModelNameForTiktoken(this.modelName as string)\n : \"gpt2\"\n );\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n if (this._encoding) {\n try {\n numTokens = this._encoding.encode(textContent).length;\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n return numTokens;\n }\n\n protected static _convertInputToPromptValue(\n input: BaseLanguageModelInput\n ): BasePromptValueInterface {\n if (typeof input === \"string\") {\n return new StringPromptValue(input);\n } else if (Array.isArray(input)) {\n return new ChatPromptValue(input.map(coerceMessageLikeToMessage));\n } else {\n return input;\n }\n }\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any> {\n return {};\n }\n\n /**\n * Create a unique cache key for a specific call to a specific language model.\n * @param callOptions Call options for the model\n * @returns A unique cache key.\n */\n _getSerializedCacheKeyParametersForCall(\n // TODO: Fix when we remove the RunnableLambda backwards compatibility shim.\n { config, ...callOptions }: CallOptions & { config?: RunnableConfig }\n ): string {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const params: Record<string, any> = {\n ...this._identifyingParams(),\n ...callOptions,\n _type: this._llmType(),\n _model: this._modelType(),\n };\n const filteredEntries = Object.entries(params).filter(\n ([_, value]) => value !== undefined\n );\n const serializedEntries = filteredEntries\n .map(([key, value]) => `${key}:${JSON.stringify(value)}`)\n .sort()\n .join(\",\");\n return serializedEntries;\n }\n\n /**\n * @deprecated\n * Return a json-like object representing this LLM.\n */\n serialize(): SerializedLLM {\n return {\n ...this._identifyingParams(),\n _type: this._llmType(),\n _model: this._modelType(),\n };\n }\n\n /**\n * @deprecated\n * Load an LLM from a json-like object describing it.\n */\n static async deserialize(_data: SerializedLLM): Promise<BaseLanguageModel> {\n throw new Error(\"Use .toJSON() instead\");\n }\n\n /**\n * Return profiling information for the model.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n */\n get profile(): ModelProfile {\n return {};\n }\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n /**\n * Model wrapper that returns outputs formatted to match the given schema.\n *\n * @template {BaseLanguageModelInput} RunInput The input type for the Runnable, expected to be the same input for the LLM.\n * @template {Record<string, any>} RunOutput The output type for the Runnable, expected to be a Zod schema object for structured output validation.\n *\n * @param {InteropZodType<RunOutput>} schema The schema for the structured output. Either as a Zod schema or a valid JSON schema object.\n * If a Zod schema is passed, the returned attributes will be validated, whereas with JSON schema they will not be.\n * @param {string} name The name of the function to call.\n * @param {\"functionCalling\" | \"jsonMode\"} [method=functionCalling] The method to use for getting the structured output. Defaults to \"functionCalling\".\n * @param {boolean | undefined} [includeRaw=false] Whether to include the raw output in the result. Defaults to false.\n * @returns {Runnable<RunInput, RunOutput> | Runnable<RunInput, { raw: BaseMessage; parsed: RunOutput }>} A new runnable that calls the LLM with structured output.\n */\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n schema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n {\n raw: BaseMessage;\n parsed: RunOutput;\n }\n >;\n}\n\n/**\n * Shared interface for token usage\n * return type from LLM calls.\n */\nexport interface TokenUsage {\n completionTokens?: number;\n promptTokens?: number;\n totalTokens?: number;\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAgCA,MAAa,0BAA0B,CAACA,cAAqC;AAC3E,KAAI,UAAU,WAAW,QAAQ,CAC/B,QAAO;AAGT,KAAI,UAAU,WAAW,oBAAoB,CAC3C,QAAO;AAGT,KAAI,UAAU,WAAW,iBAAiB,CACxC,QAAO;AAGT,KAAI,UAAU,WAAW,YAAY,CACnC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,QAAO;AACR;AAED,MAAa,0BAA0B,CAACC,cAA+B;AACrE,SAAQ,WAAR;EACE,KAAK,yBACH,QAAO;EACT,QACE,QAAO;CACV;AACF;;;;;;;;;;;;AAaD,MAAa,sBAAsB,CAACD,cAA8B;CAChE,MAAM,iBAAiB,wBAAwB,UAAU;AAEzD,SAAQ,gBAAR;EAEE,KAAK;EACL,KAAK;EACL,KAAK,sBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,oBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK,iBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EAGT,KAAK;EACL,KAAK,yBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,eACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EACT,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,0BACH,QAAO;EACT,KAAK;EACL,KAAK,oBACH,QAAO;EAET,QACE,QAAO;CACV;AACF;;;;;;AAOD,SAAgB,aAAaE,MAAuC;AAClE,KAAI,OAAO,SAAS,YAAY,CAAC,KAAM,QAAO;AAC9C,KACE,UAAU,QACV,KAAK,SAAS,cACd,cAAc,QACd,OAAO,KAAK,aAAa,YACzB,KAAK,YACL,UAAU,KAAK,YACf,gBAAgB,KAAK,SAErB,QAAO;AAET,QAAO;AACR;AAOD,MAAa,qBAAqB,OAAO,EACvC,QACA,WACuB,KAAK;CAC5B,IAAI;AAEJ,KAAI;EACF,aACE,MAAM,iBAAiB,wBAAwB,UAAU,CAAC,EAC1D,OAAO,OAAO,CAAC;CAClB,QAAO;EACN,QAAQ,KACN,0EACD;EAID,YAAY,KAAK,KAAK,OAAO,SAAS,EAAE;CACzC;CAED,MAAM,YAAY,oBAAoB,UAAU;AAChD,QAAO,YAAY;AACpB;AAED,MAAM,eAAe,MAAM;;;;AAkB3B,IAAsB,gBAAtB,cAKU,SAEV;;;;CAIE;CAEA;CAEA;CAEA;CAEA,IAAI,gBAA0D;AAC5D,SAAO;GACL,WAAW;GACX,SAAS;EACV;CACF;CAED,YAAYC,QAA6B;EACvC,MAAM,OAAO;EACb,KAAK,UAAU,OAAO,WAAW,cAAc;EAC/C,KAAK,YAAY,OAAO;EACxB,KAAK,OAAO,OAAO,QAAQ,CAAE;EAC7B,KAAK,WAAW,OAAO,YAAY,CAAE;CACtC;AACF;;;;AAwJD,IAAsB,oBAAtB,cAKU,cAIV;;;;CAIE,IAAI,WAAqB;AACvB,SAAO;GAAC;GAAQ;GAAW;GAAU;GAAQ;GAAY;EAAY;CACtE;;;;;CAMD;CAEA;CAEA,YAAY,EACV,WACA,gBACA,GAAG,QACqB,EAAE;EAC1B,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAC3B,MAAM;GACJ,WAAW,aAAa;GACxB,GAAG;EACJ,EAAC;AACF,MAAI,OAAO,UAAU,UACnB,KAAK,QAAQ;WACJ,OACT,KAAK,QAAQ,cAAc,QAAQ;OAEnC,KAAK,QAAQ;EAEf,KAAK,SAAS,IAAI,YAAY,UAAU,CAAE;CAC3C;CAYD,AAAQ;;;;;;CAOR,MAAM,aAAaC,SAAyB;EAE1C,IAAIC;AACJ,MAAI,OAAO,YAAY,UACrB,cAAc;;;;;;;;;EASd,cAAc,QACX,IAAI,CAAC,SAAS;AACb,OAAI,OAAO,SAAS,SAAU,QAAO;AACrC,OAAI,KAAK,SAAS,UAAU,UAAU,KAAM,QAAO,KAAK;AACxD,UAAO;EACR,EAAC,CACD,KAAK,GAAG;EAIb,IAAI,YAAY,KAAK,KAAK,YAAY,SAAS,EAAE;AAEjD,MAAI,CAAC,KAAK,UACR,KAAI;GACF,KAAK,YAAY,MAAM,iBACrB,eAAe,OACX,wBAAwB,KAAK,UAAoB,GACjD,OACL;EACF,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,MAAI,KAAK,UACP,KAAI;GACF,YAAY,KAAK,UAAU,OAAO,YAAY,CAAC;EAChD,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,SAAO;CACR;CAED,OAAiB,2BACfC,OAC0B;AAC1B,MAAI,OAAO,UAAU,SACnB,QAAO,IAAI,kBAAkB;WACpB,MAAM,QAAQ,MAAM,CAC7B,QAAO,IAAI,gBAAgB,MAAM,IAAI,2BAA2B;MAEhE,QAAO;CAEV;;;;CAMD,qBAA0C;AACxC,SAAO,CAAE;CACV;;;;;;CAOD,wCAEE,EAAE,OAAQ,GAAG,aAAwD,EAC7D;EAER,MAAMC,SAA8B;GAClC,GAAG,KAAK,oBAAoB;GAC5B,GAAG;GACH,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;EACD,MAAM,kBAAkB,OAAO,QAAQ,OAAO,CAAC,OAC7C,CAAC,CAAC,GAAG,MAAM,KAAK,UAAU,OAC3B;EACD,MAAM,oBAAoB,gBACvB,IAAI,CAAC,CAAC,KAAK,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE,CAAC,CACxD,MAAM,CACN,KAAK,IAAI;AACZ,SAAO;CACR;;;;;CAMD,YAA2B;AACzB,SAAO;GACL,GAAG,KAAK,oBAAoB;GAC5B,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;CACF;;;;;CAMD,aAAa,YAAYC,OAAkD;AACzE,QAAM,IAAI,MAAM;CACjB;;;;;;CAOD,IAAI,UAAwB;AAC1B,SAAO,CAAE;CACV;AA6EF"}
|
|
1
|
+
{"version":3,"file":"base.js","names":["modelName: string","modelName?: string","tool: unknown","params: BaseLangChainParams","content: MessageContent","textContent: string","input: BaseLanguageModelInput","params: Record<string, any>","_data: SerializedLLM"],"sources":["../../src/language_models/base.ts"],"sourcesContent":["import type { Tiktoken, TiktokenModel } from \"js-tiktoken/lite\";\nimport type { ZodType as ZodTypeV3 } from \"zod/v3\";\nimport type { $ZodType as ZodTypeV4 } from \"zod/v4/core\";\n\nimport { type BaseCache, InMemoryCache } from \"../caches/index.js\";\nimport {\n type BasePromptValueInterface,\n StringPromptValue,\n ChatPromptValue,\n} from \"../prompt_values.js\";\nimport {\n type BaseMessage,\n type BaseMessageLike,\n type MessageContent,\n} from \"../messages/base.js\";\nimport { coerceMessageLikeToMessage } from \"../messages/utils.js\";\nimport { type LLMResult } from \"../outputs.js\";\nimport { CallbackManager, Callbacks } from \"../callbacks/manager.js\";\nimport { AsyncCaller, AsyncCallerParams } from \"../utils/async_caller.js\";\nimport { encodingForModel } from \"../utils/tiktoken.js\";\nimport { Runnable, type RunnableInterface } from \"../runnables/base.js\";\nimport { RunnableConfig } from \"../runnables/config.js\";\nimport { JSONSchema } from \"../utils/json_schema.js\";\nimport {\n InferInteropZodOutput,\n InteropZodObject,\n InteropZodType,\n} from \"../utils/types/zod.js\";\nimport { ModelProfile } from \"./profile.js\";\n\n// https://www.npmjs.com/package/js-tiktoken\n\nexport const getModelNameForTiktoken = (modelName: string): TiktokenModel => {\n if (modelName.startsWith(\"gpt-5\")) {\n return \"gpt-5\" as TiktokenModel;\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-16k\")) {\n return \"gpt-3.5-turbo-16k\";\n }\n\n if (modelName.startsWith(\"gpt-3.5-turbo-\")) {\n return \"gpt-3.5-turbo\";\n }\n\n if (modelName.startsWith(\"gpt-4-32k\")) {\n return \"gpt-4-32k\";\n }\n\n if (modelName.startsWith(\"gpt-4-\")) {\n return \"gpt-4\";\n }\n\n if (modelName.startsWith(\"gpt-4o\")) {\n return \"gpt-4o\";\n }\n\n return modelName as TiktokenModel;\n};\n\nexport const getEmbeddingContextSize = (modelName?: string): number => {\n switch (modelName) {\n case \"text-embedding-ada-002\":\n return 8191;\n default:\n return 2046;\n }\n};\n\n/**\n * Get the context window size (max input tokens) for a given model.\n *\n * Context window sizes are sourced from official model documentation:\n * - OpenAI: https://platform.openai.com/docs/models\n * - Anthropic: https://docs.anthropic.com/claude/docs/models-overview\n * - Google: https://ai.google.dev/gemini/docs/models/gemini\n *\n * @param modelName - The name of the model\n * @returns The context window size in tokens\n */\nexport const getModelContextSize = (modelName: string): number => {\n const normalizedName = getModelNameForTiktoken(modelName) as string;\n\n switch (normalizedName) {\n // GPT-5 series\n case \"gpt-5\":\n case \"gpt-5-turbo\":\n case \"gpt-5-turbo-preview\":\n return 400000;\n\n // GPT-4o series\n case \"gpt-4o\":\n case \"gpt-4o-mini\":\n case \"gpt-4o-2024-05-13\":\n case \"gpt-4o-2024-08-06\":\n return 128000;\n\n // GPT-4 Turbo series\n case \"gpt-4-turbo\":\n case \"gpt-4-turbo-preview\":\n case \"gpt-4-turbo-2024-04-09\":\n case \"gpt-4-0125-preview\":\n case \"gpt-4-1106-preview\":\n return 128000;\n\n // GPT-4 series\n case \"gpt-4-32k\":\n case \"gpt-4-32k-0314\":\n case \"gpt-4-32k-0613\":\n return 32768;\n case \"gpt-4\":\n case \"gpt-4-0314\":\n case \"gpt-4-0613\":\n return 8192;\n\n // GPT-3.5 Turbo series\n case \"gpt-3.5-turbo-16k\":\n case \"gpt-3.5-turbo-16k-0613\":\n return 16384;\n case \"gpt-3.5-turbo\":\n case \"gpt-3.5-turbo-0301\":\n case \"gpt-3.5-turbo-0613\":\n case \"gpt-3.5-turbo-1106\":\n case \"gpt-3.5-turbo-0125\":\n return 4096;\n\n // Legacy GPT-3 models\n case \"text-davinci-003\":\n case \"text-davinci-002\":\n return 4097;\n case \"text-davinci-001\":\n return 2049;\n case \"text-curie-001\":\n case \"text-babbage-001\":\n case \"text-ada-001\":\n return 2048;\n\n // Code models\n case \"code-davinci-002\":\n case \"code-davinci-001\":\n return 8000;\n case \"code-cushman-001\":\n return 2048;\n\n // Claude models (Anthropic)\n case \"claude-3-5-sonnet-20241022\":\n case \"claude-3-5-sonnet-20240620\":\n case \"claude-3-opus-20240229\":\n case \"claude-3-sonnet-20240229\":\n case \"claude-3-haiku-20240307\":\n case \"claude-2.1\":\n return 200000;\n case \"claude-2.0\":\n case \"claude-instant-1.2\":\n return 100000;\n\n // Gemini models (Google)\n case \"gemini-1.5-pro\":\n case \"gemini-1.5-pro-latest\":\n case \"gemini-1.5-flash\":\n case \"gemini-1.5-flash-latest\":\n return 1000000; // 1M tokens\n case \"gemini-pro\":\n case \"gemini-pro-vision\":\n return 32768;\n\n default:\n return 4097;\n }\n};\n\n/**\n * Whether or not the input matches the OpenAI tool definition.\n * @param {unknown} tool The input to check.\n * @returns {boolean} Whether the input is an OpenAI tool definition.\n */\nexport function isOpenAITool(tool: unknown): tool is ToolDefinition {\n if (typeof tool !== \"object\" || !tool) return false;\n if (\n \"type\" in tool &&\n tool.type === \"function\" &&\n \"function\" in tool &&\n typeof tool.function === \"object\" &&\n tool.function &&\n \"name\" in tool.function &&\n \"parameters\" in tool.function\n ) {\n return true;\n }\n return false;\n}\n\ninterface CalculateMaxTokenProps {\n prompt: string;\n modelName: TiktokenModel;\n}\n\nexport const calculateMaxTokens = async ({\n prompt,\n modelName,\n}: CalculateMaxTokenProps) => {\n let numTokens;\n\n try {\n numTokens = (\n await encodingForModel(getModelNameForTiktoken(modelName))\n ).encode(prompt).length;\n } catch {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\"\n );\n\n // fallback to approximate calculation if tiktoken is not available\n // each token is ~4 characters: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them#\n numTokens = Math.ceil(prompt.length / 4);\n }\n\n const maxTokens = getModelContextSize(modelName);\n return maxTokens - numTokens;\n};\n\nconst getVerbosity = () => false;\n\nexport type SerializedLLM = {\n _model: string;\n _type: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n} & Record<string, any>;\n\nexport interface BaseLangChainParams {\n verbose?: boolean;\n callbacks?: Callbacks;\n tags?: string[];\n metadata?: Record<string, unknown>;\n}\n\n/**\n * Base class for language models, chains, tools.\n */\nexport abstract class BaseLangChain<\n RunInput,\n RunOutput,\n CallOptions extends RunnableConfig = RunnableConfig,\n >\n extends Runnable<RunInput, RunOutput, CallOptions>\n implements BaseLangChainParams\n{\n /**\n * Whether to print out response text.\n */\n verbose: boolean;\n\n callbacks?: Callbacks;\n\n tags?: string[];\n\n metadata?: Record<string, unknown>;\n\n get lc_attributes(): { [key: string]: undefined } | undefined {\n return {\n callbacks: undefined,\n verbose: undefined,\n };\n }\n\n constructor(params: BaseLangChainParams) {\n super(params);\n this.verbose = params.verbose ?? getVerbosity();\n this.callbacks = params.callbacks;\n this.tags = params.tags ?? [];\n this.metadata = params.metadata ?? {};\n }\n}\n\n/**\n * Base interface for language model parameters.\n * A subclass of {@link BaseLanguageModel} should have a constructor that\n * takes in a parameter that extends this interface.\n */\nexport interface BaseLanguageModelParams\n extends AsyncCallerParams,\n BaseLangChainParams {\n /**\n * @deprecated Use `callbacks` instead\n */\n callbackManager?: CallbackManager;\n\n cache?: BaseCache | boolean;\n}\n\nexport interface BaseLanguageModelTracingCallOptions {\n /**\n * Describes the format of structured outputs.\n * This should be provided if an output is considered to be structured\n */\n ls_structured_output_format?: {\n /**\n * An object containing the method used for structured output (e.g., \"jsonMode\").\n */\n kwargs: { method: string };\n /**\n * The JSON schema describing the expected output structure.\n */\n schema?: JSONSchema;\n };\n}\n\nexport interface BaseLanguageModelCallOptions\n extends RunnableConfig,\n BaseLanguageModelTracingCallOptions {\n /**\n * Stop tokens to use for this call.\n * If not provided, the default stop tokens for the model will be used.\n */\n stop?: string[];\n}\n\nexport interface FunctionDefinition {\n /**\n * The name of the function to be called. Must be a-z, A-Z, 0-9, or contain\n * underscores and dashes, with a maximum length of 64.\n */\n name: string;\n\n /**\n * The parameters the functions accepts, described as a JSON Schema object. See the\n * [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for\n * examples, and the\n * [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for\n * documentation about the format.\n *\n * To describe a function that accepts no parameters, provide the value\n * `{\"type\": \"object\", \"properties\": {}}`.\n */\n parameters: Record<string, unknown> | JSONSchema;\n\n /**\n * A description of what the function does, used by the model to choose when and\n * how to call the function.\n */\n description?: string;\n}\n\nexport interface ToolDefinition {\n type: \"function\";\n function: FunctionDefinition;\n}\n\nexport type FunctionCallOption = {\n name: string;\n};\n\nexport interface BaseFunctionCallOptions extends BaseLanguageModelCallOptions {\n function_call?: FunctionCallOption;\n functions?: FunctionDefinition[];\n}\n\nexport type BaseLanguageModelInput =\n | BasePromptValueInterface\n | string\n | BaseMessageLike[];\n\nexport type StructuredOutputType = InferInteropZodOutput<InteropZodObject>;\n\nexport type StructuredOutputMethodOptions<IncludeRaw extends boolean = false> =\n {\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\" | \"jsonSchema\" | string;\n includeRaw?: IncludeRaw;\n /** Whether to use strict mode. Currently only supported by OpenAI models. */\n strict?: boolean;\n };\n\n/** @deprecated Use StructuredOutputMethodOptions instead */\nexport type StructuredOutputMethodParams<\n RunOutput,\n IncludeRaw extends boolean = false,\n> = {\n /** @deprecated Pass schema in as the first argument */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n schema: InteropZodType<RunOutput> | Record<string, any>;\n name?: string;\n method?: \"functionCalling\" | \"jsonMode\";\n includeRaw?: IncludeRaw;\n};\n\nexport interface BaseLanguageModelInterface<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends\n BaseLanguageModelCallOptions = BaseLanguageModelCallOptions,\n> extends RunnableInterface<BaseLanguageModelInput, RunOutput, CallOptions> {\n get callKeys(): string[];\n\n generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n _modelType(): string;\n\n _llmType(): string;\n\n getNumTokens(content: MessageContent): Promise<number>;\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any>;\n\n serialize(): SerializedLLM;\n}\n\nexport type LanguageModelOutput = BaseMessage | string;\n\nexport type LanguageModelLike = Runnable<\n BaseLanguageModelInput,\n LanguageModelOutput\n>;\n\n/**\n * Base class for language models.\n */\nexport abstract class BaseLanguageModel<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput = any,\n CallOptions extends\n BaseLanguageModelCallOptions = BaseLanguageModelCallOptions,\n >\n extends BaseLangChain<BaseLanguageModelInput, RunOutput, CallOptions>\n implements\n BaseLanguageModelParams,\n BaseLanguageModelInterface<RunOutput, CallOptions>\n{\n /**\n * Keys that the language model accepts as call options.\n */\n get callKeys(): string[] {\n return [\"stop\", \"timeout\", \"signal\", \"tags\", \"metadata\", \"callbacks\"];\n }\n\n /**\n * The async caller should be used by subclasses to make any async calls,\n * which will thus benefit from the concurrency and retry logic.\n */\n caller: AsyncCaller;\n\n cache?: BaseCache;\n\n constructor({\n callbacks,\n callbackManager,\n ...params\n }: BaseLanguageModelParams) {\n const { cache, ...rest } = params;\n super({\n callbacks: callbacks ?? callbackManager,\n ...rest,\n });\n if (typeof cache === \"object\") {\n this.cache = cache;\n } else if (cache) {\n this.cache = InMemoryCache.global();\n } else {\n this.cache = undefined;\n }\n this.caller = new AsyncCaller(params ?? {});\n }\n\n abstract generatePrompt(\n promptValues: BasePromptValueInterface[],\n options?: string[] | CallOptions,\n callbacks?: Callbacks\n ): Promise<LLMResult>;\n\n abstract _modelType(): string;\n\n abstract _llmType(): string;\n\n private _encoding?: Tiktoken;\n\n /**\n * Get the number of tokens in the content.\n * @param content The content to get the number of tokens for.\n * @returns The number of tokens in the content.\n */\n async getNumTokens(content: MessageContent) {\n // Extract text content from MessageContent\n let textContent: string;\n if (typeof content === \"string\") {\n textContent = content;\n } else {\n /**\n * Content is an array of ContentBlock\n *\n * ToDo(@christian-bromann): This is a temporary fix to get the number of tokens for the content.\n * We need to find a better way to do this.\n * @see https://github.com/langchain-ai/langchainjs/pull/8341#pullrequestreview-2933713116\n */\n textContent = content\n .map((item) => {\n if (typeof item === \"string\") return item;\n if (item.type === \"text\" && \"text\" in item) return item.text;\n return \"\";\n })\n .join(\"\");\n }\n\n // fallback to approximate calculation if tiktoken is not available\n let numTokens = Math.ceil(textContent.length / 4);\n\n if (!this._encoding) {\n try {\n this._encoding = await encodingForModel(\n \"modelName\" in this\n ? getModelNameForTiktoken(this.modelName as string)\n : \"gpt2\"\n );\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n if (this._encoding) {\n try {\n numTokens = this._encoding.encode(textContent).length;\n } catch (error) {\n console.warn(\n \"Failed to calculate number of tokens, falling back to approximate count\",\n error\n );\n }\n }\n\n return numTokens;\n }\n\n protected static _convertInputToPromptValue(\n input: BaseLanguageModelInput\n ): BasePromptValueInterface {\n if (typeof input === \"string\") {\n return new StringPromptValue(input);\n } else if (Array.isArray(input)) {\n return new ChatPromptValue(input.map(coerceMessageLikeToMessage));\n } else {\n return input;\n }\n }\n\n /**\n * Get the identifying parameters of the LLM.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n _identifyingParams(): Record<string, any> {\n return {};\n }\n\n /**\n * Create a unique cache key for a specific call to a specific language model.\n * @param callOptions Call options for the model\n * @returns A unique cache key.\n */\n _getSerializedCacheKeyParametersForCall(\n // TODO: Fix when we remove the RunnableLambda backwards compatibility shim.\n { config, ...callOptions }: CallOptions & { config?: RunnableConfig }\n ): string {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const params: Record<string, any> = {\n ...this._identifyingParams(),\n ...callOptions,\n _type: this._llmType(),\n _model: this._modelType(),\n };\n const filteredEntries = Object.entries(params).filter(\n ([_, value]) => value !== undefined\n );\n const serializedEntries = filteredEntries\n .map(([key, value]) => `${key}:${JSON.stringify(value)}`)\n .sort()\n .join(\",\");\n return serializedEntries;\n }\n\n /**\n * @deprecated\n * Return a json-like object representing this LLM.\n */\n serialize(): SerializedLLM {\n return {\n ...this._identifyingParams(),\n _type: this._llmType(),\n _model: this._modelType(),\n };\n }\n\n /**\n * @deprecated\n * Load an LLM from a json-like object describing it.\n */\n static async deserialize(_data: SerializedLLM): Promise<BaseLanguageModel> {\n throw new Error(\"Use .toJSON() instead\");\n }\n\n /**\n * Return profiling information for the model.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n */\n get profile(): ModelProfile {\n return {};\n }\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV3<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | ZodTypeV4<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n /**\n * Model wrapper that returns outputs formatted to match the given schema.\n *\n * @template {BaseLanguageModelInput} RunInput The input type for the Runnable, expected to be the same input for the LLM.\n * @template {Record<string, any>} RunOutput The output type for the Runnable, expected to be a Zod schema object for structured output validation.\n *\n * @param {InteropZodType<RunOutput>} schema The schema for the structured output. Either as a Zod schema or a valid JSON schema object.\n * If a Zod schema is passed, the returned attributes will be validated, whereas with JSON schema they will not be.\n * @param {string} name The name of the function to call.\n * @param {\"functionCalling\" | \"jsonMode\"} [method=functionCalling] The method to use for getting the structured output. Defaults to \"functionCalling\".\n * @param {boolean | undefined} [includeRaw=false] Whether to include the raw output in the result. Defaults to false.\n * @returns {Runnable<RunInput, RunOutput> | Runnable<RunInput, { raw: BaseMessage; parsed: RunOutput }>} A new runnable that calls the LLM with structured output.\n */\n withStructuredOutput?<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>,\n >(\n schema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n {\n raw: BaseMessage;\n parsed: RunOutput;\n }\n >;\n}\n\n/**\n * Shared interface for token usage\n * return type from LLM calls.\n */\nexport interface TokenUsage {\n completionTokens?: number;\n promptTokens?: number;\n totalTokens?: number;\n}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAgCA,MAAa,0BAA0B,CAACA,cAAqC;AAC3E,KAAI,UAAU,WAAW,QAAQ,CAC/B,QAAO;AAGT,KAAI,UAAU,WAAW,oBAAoB,CAC3C,QAAO;AAGT,KAAI,UAAU,WAAW,iBAAiB,CACxC,QAAO;AAGT,KAAI,UAAU,WAAW,YAAY,CACnC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,KAAI,UAAU,WAAW,SAAS,CAChC,QAAO;AAGT,QAAO;AACR;AAED,MAAa,0BAA0B,CAACC,cAA+B;AACrE,SAAQ,WAAR;EACE,KAAK,yBACH,QAAO;EACT,QACE,QAAO;CACV;AACF;;;;;;;;;;;;AAaD,MAAa,sBAAsB,CAACD,cAA8B;CAChE,MAAM,iBAAiB,wBAAwB,UAAU;AAEzD,SAAQ,gBAAR;EAEE,KAAK;EACL,KAAK;EACL,KAAK,sBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,oBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK,iBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EAGT,KAAK;EACL,KAAK,yBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EACT,KAAK;EACL,KAAK;EACL,KAAK,eACH,QAAO;EAGT,KAAK;EACL,KAAK,mBACH,QAAO;EACT,KAAK,mBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,aACH,QAAO;EACT,KAAK;EACL,KAAK,qBACH,QAAO;EAGT,KAAK;EACL,KAAK;EACL,KAAK;EACL,KAAK,0BACH,QAAO;EACT,KAAK;EACL,KAAK,oBACH,QAAO;EAET,QACE,QAAO;CACV;AACF;;;;;;AAOD,SAAgB,aAAaE,MAAuC;AAClE,KAAI,OAAO,SAAS,YAAY,CAAC,KAAM,QAAO;AAC9C,KACE,UAAU,QACV,KAAK,SAAS,cACd,cAAc,QACd,OAAO,KAAK,aAAa,YACzB,KAAK,YACL,UAAU,KAAK,YACf,gBAAgB,KAAK,SAErB,QAAO;AAET,QAAO;AACR;AAOD,MAAa,qBAAqB,OAAO,EACvC,QACA,WACuB,KAAK;CAC5B,IAAI;AAEJ,KAAI;EACF,aACE,MAAM,iBAAiB,wBAAwB,UAAU,CAAC,EAC1D,OAAO,OAAO,CAAC;CAClB,QAAO;EACN,QAAQ,KACN,0EACD;EAID,YAAY,KAAK,KAAK,OAAO,SAAS,EAAE;CACzC;CAED,MAAM,YAAY,oBAAoB,UAAU;AAChD,QAAO,YAAY;AACpB;AAED,MAAM,eAAe,MAAM;;;;AAkB3B,IAAsB,gBAAtB,cAKU,SAEV;;;;CAIE;CAEA;CAEA;CAEA;CAEA,IAAI,gBAA0D;AAC5D,SAAO;GACL,WAAW;GACX,SAAS;EACV;CACF;CAED,YAAYC,QAA6B;EACvC,MAAM,OAAO;EACb,KAAK,UAAU,OAAO,WAAW,cAAc;EAC/C,KAAK,YAAY,OAAO;EACxB,KAAK,OAAO,OAAO,QAAQ,CAAE;EAC7B,KAAK,WAAW,OAAO,YAAY,CAAE;CACtC;AACF;;;;AAyJD,IAAsB,oBAAtB,cAMU,cAIV;;;;CAIE,IAAI,WAAqB;AACvB,SAAO;GAAC;GAAQ;GAAW;GAAU;GAAQ;GAAY;EAAY;CACtE;;;;;CAMD;CAEA;CAEA,YAAY,EACV,WACA,gBACA,GAAG,QACqB,EAAE;EAC1B,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAC3B,MAAM;GACJ,WAAW,aAAa;GACxB,GAAG;EACJ,EAAC;AACF,MAAI,OAAO,UAAU,UACnB,KAAK,QAAQ;WACJ,OACT,KAAK,QAAQ,cAAc,QAAQ;OAEnC,KAAK,QAAQ;EAEf,KAAK,SAAS,IAAI,YAAY,UAAU,CAAE;CAC3C;CAYD,AAAQ;;;;;;CAOR,MAAM,aAAaC,SAAyB;EAE1C,IAAIC;AACJ,MAAI,OAAO,YAAY,UACrB,cAAc;;;;;;;;;EASd,cAAc,QACX,IAAI,CAAC,SAAS;AACb,OAAI,OAAO,SAAS,SAAU,QAAO;AACrC,OAAI,KAAK,SAAS,UAAU,UAAU,KAAM,QAAO,KAAK;AACxD,UAAO;EACR,EAAC,CACD,KAAK,GAAG;EAIb,IAAI,YAAY,KAAK,KAAK,YAAY,SAAS,EAAE;AAEjD,MAAI,CAAC,KAAK,UACR,KAAI;GACF,KAAK,YAAY,MAAM,iBACrB,eAAe,OACX,wBAAwB,KAAK,UAAoB,GACjD,OACL;EACF,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,MAAI,KAAK,UACP,KAAI;GACF,YAAY,KAAK,UAAU,OAAO,YAAY,CAAC;EAChD,SAAQ,OAAO;GACd,QAAQ,KACN,2EACA,MACD;EACF;AAGH,SAAO;CACR;CAED,OAAiB,2BACfC,OAC0B;AAC1B,MAAI,OAAO,UAAU,SACnB,QAAO,IAAI,kBAAkB;WACpB,MAAM,QAAQ,MAAM,CAC7B,QAAO,IAAI,gBAAgB,MAAM,IAAI,2BAA2B;MAEhE,QAAO;CAEV;;;;CAMD,qBAA0C;AACxC,SAAO,CAAE;CACV;;;;;;CAOD,wCAEE,EAAE,OAAQ,GAAG,aAAwD,EAC7D;EAER,MAAMC,SAA8B;GAClC,GAAG,KAAK,oBAAoB;GAC5B,GAAG;GACH,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;EACD,MAAM,kBAAkB,OAAO,QAAQ,OAAO,CAAC,OAC7C,CAAC,CAAC,GAAG,MAAM,KAAK,UAAU,OAC3B;EACD,MAAM,oBAAoB,gBACvB,IAAI,CAAC,CAAC,KAAK,MAAM,KAAK,GAAG,IAAI,CAAC,EAAE,KAAK,UAAU,MAAM,EAAE,CAAC,CACxD,MAAM,CACN,KAAK,IAAI;AACZ,SAAO;CACR;;;;;CAMD,YAA2B;AACzB,SAAO;GACL,GAAG,KAAK,oBAAoB;GAC5B,OAAO,KAAK,UAAU;GACtB,QAAQ,KAAK,YAAY;EAC1B;CACF;;;;;CAMD,aAAa,YAAYC,OAAkD;AACzE,QAAM,IAAI,MAAM;CACjB;;;;;;CAOD,IAAI,UAAwB;AAC1B,SAAO,CAAE;CACV;AA6EF"}
|