@langchain/classic 1.0.2 → 1.0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +8 -0
- package/dist/agents/react/index.d.cts +2 -2
- package/dist/agents/react/index.d.cts.map +1 -1
- package/dist/agents/structured_chat/index.d.cts +2 -2
- package/dist/agents/structured_chat/index.d.cts.map +1 -1
- package/dist/chains/question_answering/load.d.cts +2 -2
- package/dist/chains/question_answering/load.d.cts.map +1 -1
- package/dist/chains/question_answering/load.d.ts +2 -2
- package/dist/chains/question_answering/load.d.ts.map +1 -1
- package/dist/chains/summarization/load.d.cts +2 -2
- package/dist/chains/summarization/load.d.cts.map +1 -1
- package/dist/chains/summarization/load.d.ts +2 -2
- package/dist/chains/summarization/load.d.ts.map +1 -1
- package/dist/evaluation/agents/trajectory.d.cts.map +1 -1
- package/dist/evaluation/agents/trajectory.d.ts.map +1 -1
- package/dist/evaluation/comparison/pairwise.d.ts.map +1 -1
- package/package.json +23 -22
package/CHANGELOG.md
CHANGED
|
@@ -1,5 +1,13 @@
|
|
|
1
1
|
# @langchain/classic
|
|
2
2
|
|
|
3
|
+
## 1.0.3
|
|
4
|
+
|
|
5
|
+
### Patch Changes
|
|
6
|
+
|
|
7
|
+
- Updated dependencies [[`04bd55c`](https://github.com/langchain-ai/langchainjs/commit/04bd55c63d8a0cb56f85da0b61a6bd6169b383f3), [`ac0d4fe`](https://github.com/langchain-ai/langchainjs/commit/ac0d4fe3807e05eb2185ae8a36da69498e6163d4), [`39dbe63`](https://github.com/langchain-ai/langchainjs/commit/39dbe63e3d8390bb90bb8b17f00755fa648c5651), [`dfbe45f`](https://github.com/langchain-ai/langchainjs/commit/dfbe45f3cfade7a1dbe15b2d702a8e9f8e5ac93a)]:
|
|
8
|
+
- @langchain/openai@1.1.1
|
|
9
|
+
- @langchain/textsplitters@1.0.0
|
|
10
|
+
|
|
3
11
|
## 1.0.2
|
|
4
12
|
|
|
5
13
|
### Patch Changes
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
import { AgentRunnableSequence } from "../agent.cjs";
|
|
2
|
-
import * as
|
|
2
|
+
import * as _langchain_core_agents0 from "@langchain/core/agents";
|
|
3
3
|
import { AgentStep } from "@langchain/core/agents";
|
|
4
4
|
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
5
5
|
import { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
|
|
@@ -75,7 +75,7 @@ declare function createReactAgent({
|
|
|
75
75
|
streamRunnable
|
|
76
76
|
}: CreateReactAgentParams): Promise<AgentRunnableSequence<{
|
|
77
77
|
steps: AgentStep[];
|
|
78
|
-
},
|
|
78
|
+
}, _langchain_core_agents0.AgentAction | _langchain_core_agents0.AgentFinish>>;
|
|
79
79
|
//#endregion
|
|
80
80
|
export { CreateReactAgentParams, createReactAgent };
|
|
81
81
|
//# sourceMappingURL=index.d.cts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"index.d.cts","names":["ToolInterface","BasePromptTemplate","BaseLanguageModelInterface","AgentStep","AgentRunnableSequence","CreateReactAgentParams","createReactAgent","llm","tools","prompt","streamRunnable","
|
|
1
|
+
{"version":3,"file":"index.d.cts","names":["ToolInterface","BasePromptTemplate","BaseLanguageModelInterface","AgentStep","AgentRunnableSequence","CreateReactAgentParams","createReactAgent","llm","tools","prompt","streamRunnable","_langchain_core_agents0","AgentAction","AgentFinish","Promise"],"sources":["../../../src/agents/react/index.d.ts"],"sourcesContent":["import type { ToolInterface } from \"@langchain/core/tools\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { AgentRunnableSequence } from \"../agent.js\";\n/**\n * Params used by the createXmlAgent function.\n */\nexport type CreateReactAgentParams = {\n /** LLM to use for the agent. */\n llm: BaseLanguageModelInterface;\n /** Tools this agent has access to. */\n tools: ToolInterface[];\n /**\n * The prompt to use. Must have input keys for\n * `tools`, `tool_names`, and `agent_scratchpad`.\n */\n prompt: BasePromptTemplate;\n /**\n * Whether to invoke the underlying model in streaming mode,\n * allowing streaming of intermediate steps. Defaults to true.\n */\n streamRunnable?: boolean;\n};\n/**\n * Create an agent that uses ReAct prompting.\n * @param params Params required to create the agent. Includes an LLM, tools, and prompt.\n * @returns A runnable sequence representing an agent. It takes as input all the same input\n * variables as the prompt passed in does. It returns as output either an\n * AgentAction or AgentFinish.\n *\n * @example\n * ```typescript\n * import { AgentExecutor, createReactAgent } from \"langchain/agents\";\n * import { pull } from \"langchain/hub\";\n * import type { PromptTemplate } from \"@langchain/core/prompts\";\n *\n * import { OpenAI } from \"@langchain/openai\";\n *\n * // Define the tools the agent will have access to.\n * const tools = [...];\n *\n * // Get the prompt to use - you can modify this!\n * // If you want to see the prompt in full, you can at:\n * // https://smith.langchain.com/hub/hwchase17/react\n * const prompt = await pull<PromptTemplate>(\"hwchase17/react\");\n *\n * const llm = new OpenAI({\n * temperature: 0,\n * });\n *\n * const agent = await createReactAgent({\n * llm,\n * tools,\n * prompt,\n * });\n *\n * const agentExecutor = new AgentExecutor({\n * agent,\n * tools,\n * });\n *\n * const result = await agentExecutor.invoke({\n * input: \"what is LangChain?\",\n * });\n * ```\n */\nexport declare function createReactAgent({ llm, tools, prompt, streamRunnable }: CreateReactAgentParams): Promise<AgentRunnableSequence<{\n steps: AgentStep[];\n}, import(\"@langchain/core/agents\").AgentAction | import(\"@langchain/core/agents\").AgentFinish>>;\n"],"mappings":";;;;;;;;;;;AAQYK,KAAAA,sBAAAA,GAAsB;EAAA;EAAA,GAEzBH,EAAAA,0BAAAA;EAA0B;EAEX,KAKZD,EALDD,aAKCC,EAAAA;EAAkB;AAkD9B;;;EAA8C,MAAEO,EAlDpCP,kBAkDoCO;EAAK;;;;EACjC,cAAAG,CAAAA,EAAAA,OAAAA;CAC2B;;;AAFkE;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAAzFL,gBAAAA;;;;;GAAyDD,yBAAyBS,QAAQV;SACvGD;GAASQ,uBAAAA,CACgBC,WAAAA,GAAWD,uBAAAA,CAAoCE"}
|
|
@@ -2,7 +2,7 @@ import { AgentInput } from "../types.cjs";
|
|
|
2
2
|
import { Agent, AgentArgs, AgentRunnableSequence, OutputParserArgs } from "../agent.cjs";
|
|
3
3
|
import { Optional } from "../../types/type-utils.cjs";
|
|
4
4
|
import { StructuredChatOutputParserWithRetries } from "./outputParser.cjs";
|
|
5
|
-
import * as
|
|
5
|
+
import * as _langchain_core_agents1 from "@langchain/core/agents";
|
|
6
6
|
import { AgentStep } from "@langchain/core/agents";
|
|
7
7
|
import { BaseMessagePromptTemplate, BasePromptTemplate, ChatPromptTemplate } from "@langchain/core/prompts";
|
|
8
8
|
import { BaseLanguageModelInterface, ToolDefinition } from "@langchain/core/language_models/base";
|
|
@@ -176,7 +176,7 @@ declare function createStructuredChatAgent({
|
|
|
176
176
|
streamRunnable
|
|
177
177
|
}: CreateStructuredChatAgentParams): Promise<AgentRunnableSequence<{
|
|
178
178
|
steps: AgentStep[];
|
|
179
|
-
},
|
|
179
|
+
}, _langchain_core_agents1.AgentAction | _langchain_core_agents1.AgentFinish>>;
|
|
180
180
|
//#endregion
|
|
181
181
|
export { CreateStructuredChatAgentParams, StructuredChatAgent, StructuredChatAgentInput, StructuredChatCreatePromptArgs, createStructuredChatAgent };
|
|
182
182
|
//# sourceMappingURL=index.d.cts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"index.d.cts","names":["StructuredToolInterface","BaseLanguageModelInterface","ToolDefinition","BasePromptTemplate","BaseMessagePromptTemplate","ChatPromptTemplate","AgentStep","Optional","Agent","AgentArgs","AgentRunnableSequence","OutputParserArgs","AgentInput","StructuredChatOutputParserWithRetries","StructuredChatCreatePromptArgs","StructuredChatAgentInput","StructuredChatAgent","Promise","CreateStructuredChatAgentParams","createStructuredChatAgent","llm","tools","prompt","streamRunnable","
|
|
1
|
+
{"version":3,"file":"index.d.cts","names":["StructuredToolInterface","BaseLanguageModelInterface","ToolDefinition","BasePromptTemplate","BaseMessagePromptTemplate","ChatPromptTemplate","AgentStep","Optional","Agent","AgentArgs","AgentRunnableSequence","OutputParserArgs","AgentInput","StructuredChatOutputParserWithRetries","StructuredChatCreatePromptArgs","StructuredChatAgentInput","StructuredChatAgent","Promise","CreateStructuredChatAgentParams","createStructuredChatAgent","llm","tools","prompt","streamRunnable","_langchain_core_agents1","AgentAction","AgentFinish"],"sources":["../../../src/agents/structured_chat/index.d.ts"],"sourcesContent":["import type { StructuredToolInterface } from \"@langchain/core/tools\";\nimport { type BaseLanguageModelInterface, type ToolDefinition } from \"@langchain/core/language_models/base\";\nimport type { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { BaseMessagePromptTemplate, ChatPromptTemplate } from \"@langchain/core/prompts\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { Optional } from \"../../types/type-utils.js\";\nimport { Agent, AgentArgs, AgentRunnableSequence, OutputParserArgs } from \"../agent.js\";\nimport { AgentInput } from \"../types.js\";\nimport { StructuredChatOutputParserWithRetries } from \"./outputParser.js\";\n/**\n * Interface for arguments used to create a prompt for a\n * StructuredChatAgent.\n */\nexport interface StructuredChatCreatePromptArgs {\n /** String to put after the list of tools. */\n suffix?: string;\n /** String to put before the list of tools. */\n prefix?: string;\n /** String to use directly as the human message template. */\n humanMessageTemplate?: string;\n /** List of input variables the final prompt will expect. */\n inputVariables?: string[];\n /** List of historical prompts from memory. */\n memoryPrompts?: BaseMessagePromptTemplate[];\n}\n/**\n * Type for input data for creating a StructuredChatAgent, with the\n * 'outputParser' property made optional.\n */\nexport type StructuredChatAgentInput = Optional<AgentInput, \"outputParser\">;\n/**\n * Agent that interoperates with Structured Tools using React logic.\n * @augments Agent\n */\nexport declare class StructuredChatAgent extends Agent {\n static lc_name(): string;\n lc_namespace: string[];\n constructor(input: StructuredChatAgentInput);\n _agentType(): \"structured-chat-zero-shot-react-description\";\n observationPrefix(): string;\n llmPrefix(): string;\n _stop(): string[];\n /**\n * Validates that all provided tools have a description. Throws an error\n * if any tool lacks a description.\n * @param tools Array of StructuredTool instances to validate.\n */\n static validateTools(tools: StructuredToolInterface[]): void;\n /**\n * Returns a default output parser for the StructuredChatAgent. If an LLM\n * is provided, it creates an output parser with retry logic from the LLM.\n * @param fields Optional fields to customize the output parser. Can include an LLM and a list of tool names.\n * @returns An instance of StructuredChatOutputParserWithRetries.\n */\n static getDefaultOutputParser(fields?: OutputParserArgs & {\n toolNames: string[];\n }): StructuredChatOutputParserWithRetries;\n /**\n * Constructs the agent's scratchpad from a list of steps. If the agent's\n * scratchpad is not empty, it prepends a message indicating that the\n * agent has not seen any previous work.\n * @param steps Array of AgentStep instances to construct the scratchpad from.\n * @returns A Promise that resolves to a string representing the agent's scratchpad.\n */\n constructScratchPad(steps: AgentStep[]): Promise<string>;\n /**\n * Creates a string representation of the schemas of the provided tools.\n * @param tools Array of StructuredTool instances to create the schemas string from.\n * @returns A string representing the schemas of the provided tools.\n */\n static createToolSchemasString(tools: StructuredToolInterface[]): string;\n /**\n * Create prompt in the style of the agent.\n *\n * @param tools - List of tools the agent will have access to, used to format the prompt.\n * @param args - Arguments to create the prompt with.\n * @param args.suffix - String to put after the list of tools.\n * @param args.prefix - String to put before the list of tools.\n * @param args.inputVariables List of input variables the final prompt will expect.\n * @param args.memoryPrompts List of historical prompts from memory.\n */\n static createPrompt(tools: StructuredToolInterface[], args?: StructuredChatCreatePromptArgs): ChatPromptTemplate<any, any>;\n /**\n * Creates a StructuredChatAgent from an LLM and a list of tools.\n * Validates the tools, creates a prompt, and sets up an LLM chain for the\n * agent.\n * @param llm BaseLanguageModel instance to create the agent from.\n * @param tools Array of StructuredTool instances to create the agent from.\n * @param args Optional arguments to customize the creation of the agent. Can include arguments for creating the prompt and AgentArgs.\n * @returns A new instance of StructuredChatAgent.\n */\n static fromLLMAndTools(llm: BaseLanguageModelInterface, tools: StructuredToolInterface[], args?: StructuredChatCreatePromptArgs & AgentArgs): StructuredChatAgent;\n}\n/**\n * Params used by the createStructuredChatAgent function.\n */\nexport type CreateStructuredChatAgentParams = {\n /** LLM to use as the agent. */\n llm: BaseLanguageModelInterface;\n /** Tools this agent has access to. */\n tools: (StructuredToolInterface | ToolDefinition)[];\n /**\n * The prompt to use. Must have input keys for\n * `tools`, `tool_names`, and `agent_scratchpad`.\n */\n prompt: BasePromptTemplate;\n /**\n * Whether to invoke the underlying model in streaming mode,\n * allowing streaming of intermediate steps. Defaults to true.\n */\n streamRunnable?: boolean;\n};\n/**\n * Create an agent aimed at supporting tools with multiple inputs.\n * @param params Params required to create the agent. Includes an LLM, tools, and prompt.\n * @returns A runnable sequence representing an agent. It takes as input all the same input\n * variables as the prompt passed in does. It returns as output either an\n * AgentAction or AgentFinish.\n *\n * @example\n * ```typescript\n * import { AgentExecutor, createStructuredChatAgent } from \"langchain/agents\";\n * import { pull } from \"langchain/hub\";\n * import type { ChatPromptTemplate } from \"@langchain/core/prompts\";\n * import { AIMessage, HumanMessage } from \"@langchain/core/messages\";\n *\n * import { ChatOpenAI } from \"@langchain/openai\";\n *\n * // Define the tools the agent will have access to.\n * const tools = [...];\n *\n * // Get the prompt to use - you can modify this!\n * // If you want to see the prompt in full, you can at:\n * // https://smith.langchain.com/hub/hwchase17/structured-chat-agent\n * const prompt = await pull<ChatPromptTemplate>(\n * \"hwchase17/structured-chat-agent\"\n * );\n *\n * const llm = new ChatOpenAI({\n * temperature: 0,\n * model: \"gpt-3.5-turbo-1106\",\n * });\n *\n * const agent = await createStructuredChatAgent({\n * llm,\n * tools,\n * prompt,\n * });\n *\n * const agentExecutor = new AgentExecutor({\n * agent,\n * tools,\n * });\n *\n * const result = await agentExecutor.invoke({\n * input: \"what is LangChain?\",\n * });\n *\n * // With chat history\n * const result2 = await agentExecutor.invoke({\n * input: \"what's my name?\",\n * chat_history: [\n * new HumanMessage(\"hi! my name is cob\"),\n * new AIMessage(\"Hello Cob! How can I assist you today?\"),\n * ],\n * });\n * ```\n */\nexport declare function createStructuredChatAgent({ llm, tools, prompt, streamRunnable }: CreateStructuredChatAgentParams): Promise<AgentRunnableSequence<{\n steps: AgentStep[];\n}, import(\"@langchain/core/agents\").AgentAction | import(\"@langchain/core/agents\").AgentFinish>>;\n"],"mappings":";;;;;;;;;;;;;;AAaA;AAgBA;AAAoC,UAhBnBc,8BAAAA,CAgBmB;EAAA;EAAsB,MAAnBP,CAAAA,EAAAA,MAAAA;EAAQ;EAK1BS,MAAAA,CAAAA,EAAAA,MAAAA;EAAmB;EAAA,oBAGjBD,CAAAA,EAAAA,MAAAA;EAAwB;EAUQ,cAOZJ,CAAAA,EAAAA,MAAAA,EAAAA;EAAgB;EAEd,aAQdL,CAAAA,EAzCXF,yBAyCWE,EAAAA;;;;;;AA2BCL,KA9DpBc,wBAAAA,GAA2BR,QA8DPN,CA9DgBW,UA8DhBX,EAAAA,cAAAA,CAAAA;;;;;AAzDiBO,cAA5BQ,mBAAAA,SAA4BR,KAAAA,CAAAA;EAAK,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EA8D1CU,YAAAA,EAAAA,MAAAA,EAAAA;EAA+B,WAAA,CAAA,KAAA,EA3DpBH,wBA2DoB;EAAA,UAElCd,CAAAA,CAAAA,EAAAA,6CAAAA;EAA0B,iBAEvBD,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,SAAGE,CAAAA,CAAAA,EAAAA,MAAAA;EAAc,KAKxCC,CAAAA,CAAAA,EAAAA,MAAAA,EAAAA;EAAkB;AA+D9B;;;;EAA8D,OAAEmB,aAAAA,CAAAA,KAAAA,EAzHhCtB,uBAyHgCsB,EAAAA,CAAAA,EAAAA,IAAAA;EAAM;;;;;;EAAmF,OAA7BL,sBAAAA,CAAAA,OAAAA,EAlHjFN,gBAkHiFM,GAAAA;IAAO,SAAA,EAAA,MAAA,EAAA;MAhH3HJ;;;;;;;;6BAQuBP,cAAcW;;;;;;wCAMHjB;;;;;;;;;;;6BAWXA,kCAAkCc,iCAAiCT;;;;;;;;;;8BAUlEJ,mCAAmCD,kCAAkCc,iCAAiCL,YAAYO;;;;;KAKtIE,+BAAAA;;OAEHjB;;UAEGD,0BAA0BE;;;;;UAK1BC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBA+DYgB,yBAAAA;;;;;GAAkED,kCAAkCD,QAAQP;SACzHJ;GAASkB,uBAAAA,CACgBC,WAAAA,GAAWD,uBAAAA,CAAoCE"}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { MapReduceDocumentsChain, MapReduceDocumentsChainInput, RefineDocumentsChain, StuffDocumentsChain } from "../combine_docs_chain.cjs";
|
|
2
2
|
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
3
|
-
import * as
|
|
3
|
+
import * as _langchain_core_language_models_base0 from "@langchain/core/language_models/base";
|
|
4
4
|
import { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
|
|
5
5
|
|
|
6
6
|
//#region src/chains/question_answering/load.d.ts
|
|
@@ -16,7 +16,7 @@ type QAChainParams = ({
|
|
|
16
16
|
} & MapReduceQAChainParams) | ({
|
|
17
17
|
type?: "refine";
|
|
18
18
|
} & RefineQAChainParams);
|
|
19
|
-
declare const loadQAChain: (llm: BaseLanguageModelInterface<any,
|
|
19
|
+
declare const loadQAChain: (llm: BaseLanguageModelInterface<any, _langchain_core_language_models_base0.BaseLanguageModelCallOptions>, params?: QAChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;
|
|
20
20
|
/**
|
|
21
21
|
* Represents the parameters for creating a StuffQAChain.
|
|
22
22
|
*/
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"load.d.cts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","QAChainParams","StuffQAChainParams","MapReduceQAChainParams","RefineQAChainParams","loadQAChain","
|
|
1
|
+
{"version":3,"file":"load.d.cts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","QAChainParams","StuffQAChainParams","MapReduceQAChainParams","RefineQAChainParams","loadQAChain","_langchain_core_language_models_base0","BaseLanguageModelCallOptions","loadQAStuffChain","loadQAMapReduceChain","loadQARefineChain"],"sources":["../../../src/chains/question_answering/load.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { StuffDocumentsChain, MapReduceDocumentsChain, RefineDocumentsChain, MapReduceDocumentsChainInput } from \"../combine_docs_chain.js\";\n/**\n * Represents the parameters for creating a QAChain. It can be of three\n * types: \"stuff\", \"map_reduce\", or \"refine\".\n */\nexport type QAChainParams = ({\n type?: \"stuff\";\n} & StuffQAChainParams) | ({\n type?: \"map_reduce\";\n} & MapReduceQAChainParams) | ({\n type?: \"refine\";\n} & RefineQAChainParams);\nexport declare const loadQAChain: (llm: BaseLanguageModelInterface<any, import(\"@langchain/core/language_models/base\").BaseLanguageModelCallOptions>, params?: QAChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;\n/**\n * Represents the parameters for creating a StuffQAChain.\n */\nexport interface StuffQAChainParams {\n prompt?: BasePromptTemplate;\n verbose?: boolean;\n}\n/**\n * Loads a StuffQAChain based on the provided parameters. It takes an LLM\n * instance and StuffQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a StuffQAChain.\n * @returns A StuffQAChain instance.\n */\nexport declare function loadQAStuffChain(llm: BaseLanguageModelInterface, params?: StuffQAChainParams): StuffDocumentsChain;\n/**\n * Represents the parameters for creating a MapReduceQAChain.\n */\nexport interface MapReduceQAChainParams {\n returnIntermediateSteps?: MapReduceDocumentsChainInput[\"returnIntermediateSteps\"];\n combineMapPrompt?: BasePromptTemplate;\n combinePrompt?: BasePromptTemplate;\n combineLLM?: BaseLanguageModelInterface;\n verbose?: boolean;\n}\n/**\n * Loads a MapReduceQAChain based on the provided parameters. It takes an\n * LLM instance and MapReduceQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a MapReduceQAChain.\n * @returns A MapReduceQAChain instance.\n */\nexport declare function loadQAMapReduceChain(llm: BaseLanguageModelInterface, params?: MapReduceQAChainParams): MapReduceDocumentsChain;\n/**\n * Represents the parameters for creating a RefineQAChain.\n */\nexport interface RefineQAChainParams {\n questionPrompt?: BasePromptTemplate;\n refinePrompt?: BasePromptTemplate;\n refineLLM?: BaseLanguageModelInterface;\n verbose?: boolean;\n}\n/**\n * Loads a RefineQAChain based on the provided parameters. It takes an LLM\n * instance and RefineQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a RefineQAChain.\n * @returns A RefineQAChain instance.\n */\nexport declare function loadQARefineChain(llm: BaseLanguageModelInterface, params?: RefineQAChainParams): RefineDocumentsChain;\n"],"mappings":";;;;;;;;;;AAOA;AAAyB,KAAbM,aAAAA,GAAa,CAAA;EAAA,IAErBC,CAAAA,EAAAA,OAAAA;CAAkB,GAAlBA,kBAEAC,CAAAA,GAAAA,CAAAA;EAAsB,IAEtBC,CAAAA,EAAAA,YAAAA;AAAmB,CAAA,GAFnBD,sBAEmB,CAAA,GAAA,CAAA;EACFE,IAAAA,CAAAA,EAAAA,QAAgO;CAAA,GADjPD,mBACiP,CAAA;AAAAE,cAAhOD,WAAgOC,EAAAA,CAAAA,GAAAA,EAA7MX,0BAA+EY,CAAAA,GAAAA,EAA8HD,qCAAAA,CAA9HC,4BAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAAwCN,aAAxCM,EAAAA,GAA0DT,uBAA1DS,GAAoFR,oBAApFQ,GAA2GV,mBAA3GU;;;;AAAoFR,UAI1LG,kBAAAA,CAJ0LH;EAAoB,MAAGF,CAAAA,EAKrND,kBALqNC;EAAmB,OAAA,CAAA,EAAA,OAAA;AAIrP;AAWA;;;;;AAA2H;AAI3H;AAAuC,iBAJfW,gBAAAA,CAIe,GAAA,EAJOb,0BAIP,EAAA,MAAA,CAAA,EAJ4CO,kBAI5C,CAAA,EAJiEL,mBAIjE;;;;AAItBF,UAJAQ,sBAAAA,CAIAR;EAA0B,uBAAA,CAAA,EAHbK,4BAGa,CAAA,yBAAA,CAAA;EAUnBS,gBAAAA,CAAAA,EAZDb,kBAYqB;EAAA,aAAA,CAAA,EAXxBA,kBAWwB;EAAA,UAAMD,CAAAA,EAVjCA,0BAUiCA;EAA0B,OAAWQ,CAAAA,EAAAA,OAAAA;;AAAgD;AAIvI;;;;;AAG0C;AAUlBO,iBAjBAD,oBAAAA,CAiBiB,GAAA,EAjBSd,0BAiBT,EAAA,MAAA,CAAA,EAjB8CQ,sBAiB9C,CAAA,EAjBuEL,uBAiBvE;;;;AAAiEC,UAbzFK,mBAAAA,CAayFL;EAAoB,cAAA,CAAA,EAZzGH,kBAYyG;iBAX3GA;cACHD;;;;;;;;;;iBAUQe,iBAAAA,MAAuBf,qCAAqCS,sBAAsBL"}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { MapReduceDocumentsChain, MapReduceDocumentsChainInput, RefineDocumentsChain, StuffDocumentsChain } from "../combine_docs_chain.js";
|
|
2
2
|
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
3
|
-
import * as
|
|
3
|
+
import * as _langchain_core_language_models_base0 from "@langchain/core/language_models/base";
|
|
4
4
|
import { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
|
|
5
5
|
|
|
6
6
|
//#region src/chains/question_answering/load.d.ts
|
|
@@ -16,7 +16,7 @@ type QAChainParams = ({
|
|
|
16
16
|
} & MapReduceQAChainParams) | ({
|
|
17
17
|
type?: "refine";
|
|
18
18
|
} & RefineQAChainParams);
|
|
19
|
-
declare const loadQAChain: (llm: BaseLanguageModelInterface<any,
|
|
19
|
+
declare const loadQAChain: (llm: BaseLanguageModelInterface<any, _langchain_core_language_models_base0.BaseLanguageModelCallOptions>, params?: QAChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;
|
|
20
20
|
/**
|
|
21
21
|
* Represents the parameters for creating a StuffQAChain.
|
|
22
22
|
*/
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"load.d.ts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","QAChainParams","StuffQAChainParams","MapReduceQAChainParams","RefineQAChainParams","loadQAChain","
|
|
1
|
+
{"version":3,"file":"load.d.ts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","QAChainParams","StuffQAChainParams","MapReduceQAChainParams","RefineQAChainParams","loadQAChain","_langchain_core_language_models_base0","BaseLanguageModelCallOptions","loadQAStuffChain","loadQAMapReduceChain","loadQARefineChain"],"sources":["../../../src/chains/question_answering/load.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { StuffDocumentsChain, MapReduceDocumentsChain, RefineDocumentsChain, MapReduceDocumentsChainInput } from \"../combine_docs_chain.js\";\n/**\n * Represents the parameters for creating a QAChain. It can be of three\n * types: \"stuff\", \"map_reduce\", or \"refine\".\n */\nexport type QAChainParams = ({\n type?: \"stuff\";\n} & StuffQAChainParams) | ({\n type?: \"map_reduce\";\n} & MapReduceQAChainParams) | ({\n type?: \"refine\";\n} & RefineQAChainParams);\nexport declare const loadQAChain: (llm: BaseLanguageModelInterface<any, import(\"@langchain/core/language_models/base\").BaseLanguageModelCallOptions>, params?: QAChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;\n/**\n * Represents the parameters for creating a StuffQAChain.\n */\nexport interface StuffQAChainParams {\n prompt?: BasePromptTemplate;\n verbose?: boolean;\n}\n/**\n * Loads a StuffQAChain based on the provided parameters. It takes an LLM\n * instance and StuffQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a StuffQAChain.\n * @returns A StuffQAChain instance.\n */\nexport declare function loadQAStuffChain(llm: BaseLanguageModelInterface, params?: StuffQAChainParams): StuffDocumentsChain;\n/**\n * Represents the parameters for creating a MapReduceQAChain.\n */\nexport interface MapReduceQAChainParams {\n returnIntermediateSteps?: MapReduceDocumentsChainInput[\"returnIntermediateSteps\"];\n combineMapPrompt?: BasePromptTemplate;\n combinePrompt?: BasePromptTemplate;\n combineLLM?: BaseLanguageModelInterface;\n verbose?: boolean;\n}\n/**\n * Loads a MapReduceQAChain based on the provided parameters. It takes an\n * LLM instance and MapReduceQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a MapReduceQAChain.\n * @returns A MapReduceQAChain instance.\n */\nexport declare function loadQAMapReduceChain(llm: BaseLanguageModelInterface, params?: MapReduceQAChainParams): MapReduceDocumentsChain;\n/**\n * Represents the parameters for creating a RefineQAChain.\n */\nexport interface RefineQAChainParams {\n questionPrompt?: BasePromptTemplate;\n refinePrompt?: BasePromptTemplate;\n refineLLM?: BaseLanguageModelInterface;\n verbose?: boolean;\n}\n/**\n * Loads a RefineQAChain based on the provided parameters. It takes an LLM\n * instance and RefineQAChainParams as parameters.\n * @param llm An instance of BaseLanguageModel.\n * @param params Parameters for creating a RefineQAChain.\n * @returns A RefineQAChain instance.\n */\nexport declare function loadQARefineChain(llm: BaseLanguageModelInterface, params?: RefineQAChainParams): RefineDocumentsChain;\n"],"mappings":";;;;;;;;;;AAOA;AAAyB,KAAbM,aAAAA,GAAa,CAAA;EAAA,IAErBC,CAAAA,EAAAA,OAAAA;CAAkB,GAAlBA,kBAEAC,CAAAA,GAAAA,CAAAA;EAAsB,IAEtBC,CAAAA,EAAAA,YAAAA;AAAmB,CAAA,GAFnBD,sBAEmB,CAAA,GAAA,CAAA;EACFE,IAAAA,CAAAA,EAAAA,QAAgO;CAAA,GADjPD,mBACiP,CAAA;AAAAE,cAAhOD,WAAgOC,EAAAA,CAAAA,GAAAA,EAA7MX,0BAA+EY,CAAAA,GAAAA,EAA8HD,qCAAAA,CAA9HC,4BAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAAwCN,aAAxCM,EAAAA,GAA0DT,uBAA1DS,GAAoFR,oBAApFQ,GAA2GV,mBAA3GU;;;;AAAoFR,UAI1LG,kBAAAA,CAJ0LH;EAAoB,MAAGF,CAAAA,EAKrND,kBALqNC;EAAmB,OAAA,CAAA,EAAA,OAAA;AAIrP;AAWA;;;;;AAA2H;AAI3H;AAAuC,iBAJfW,gBAAAA,CAIe,GAAA,EAJOb,0BAIP,EAAA,MAAA,CAAA,EAJ4CO,kBAI5C,CAAA,EAJiEL,mBAIjE;;;;AAItBF,UAJAQ,sBAAAA,CAIAR;EAA0B,uBAAA,CAAA,EAHbK,4BAGa,CAAA,yBAAA,CAAA;EAUnBS,gBAAAA,CAAAA,EAZDb,kBAYqB;EAAA,aAAA,CAAA,EAXxBA,kBAWwB;EAAA,UAAMD,CAAAA,EAVjCA,0BAUiCA;EAA0B,OAAWQ,CAAAA,EAAAA,OAAAA;;AAAgD;AAIvI;;;;;AAG0C;AAUlBO,iBAjBAD,oBAAAA,CAiBiB,GAAA,EAjBSd,0BAiBT,EAAA,MAAA,CAAA,EAjB8CQ,sBAiB9C,CAAA,EAjBuEL,uBAiBvE;;;;AAAiEC,UAbzFK,mBAAAA,CAayFL;EAAoB,cAAA,CAAA,EAZzGH,kBAYyG;iBAX3GA;cACHD;;;;;;;;;;iBAUQe,iBAAAA,MAAuBf,qCAAqCS,sBAAsBL"}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { MapReduceDocumentsChain, MapReduceDocumentsChainInput, RefineDocumentsChain, StuffDocumentsChain } from "../combine_docs_chain.cjs";
|
|
2
2
|
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
3
|
-
import * as
|
|
3
|
+
import * as _langchain_core_language_models_base1 from "@langchain/core/language_models/base";
|
|
4
4
|
import { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
|
|
5
5
|
|
|
6
6
|
//#region src/chains/summarization/load.d.ts
|
|
@@ -27,7 +27,7 @@ type SummarizationChainParams = BaseParams & ({
|
|
|
27
27
|
refineLLM?: BaseLanguageModelInterface;
|
|
28
28
|
questionPrompt?: BasePromptTemplate;
|
|
29
29
|
});
|
|
30
|
-
declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any,
|
|
30
|
+
declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any, _langchain_core_language_models_base1.BaseLanguageModelCallOptions>, params?: SummarizationChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;
|
|
31
31
|
//#endregion
|
|
32
32
|
export { SummarizationChainParams, loadSummarizationChain };
|
|
33
33
|
//# sourceMappingURL=load.d.cts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"load.d.cts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","BaseParams","SummarizationChainParams","Pick","loadSummarizationChain","
|
|
1
|
+
{"version":3,"file":"load.d.cts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","BaseParams","SummarizationChainParams","Pick","loadSummarizationChain","_langchain_core_language_models_base1","BaseLanguageModelCallOptions"],"sources":["../../../src/chains/summarization/load.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { StuffDocumentsChain, MapReduceDocumentsChain, RefineDocumentsChain, MapReduceDocumentsChainInput } from \"../combine_docs_chain.js\";\n/**\n * Type for the base parameters that can be used to configure a\n * summarization chain.\n */\ntype BaseParams = {\n verbose?: boolean;\n};\n/** @interface */\nexport type SummarizationChainParams = BaseParams & ({\n type?: \"stuff\";\n prompt?: BasePromptTemplate;\n} | ({\n type?: \"map_reduce\";\n combineMapPrompt?: BasePromptTemplate;\n combinePrompt?: BasePromptTemplate;\n combineLLM?: BaseLanguageModelInterface;\n} & Pick<MapReduceDocumentsChainInput, \"returnIntermediateSteps\">) | {\n type?: \"refine\";\n refinePrompt?: BasePromptTemplate;\n refineLLM?: BaseLanguageModelInterface;\n questionPrompt?: BasePromptTemplate;\n});\nexport declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any, import(\"@langchain/core/language_models/base\").BaseLanguageModelCallOptions>, params?: SummarizationChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;\nexport {};\n"],"mappings":";;;;;;;;;;AAE4I;AAS5I,KAJKM,UAAAA,GAIOC;EAAwB,OAAA,CAAA,EAAA,OAAA;CAAA;;AAKbN,KALXM,wBAAAA,GAA2BD,UAKhBL,GAAAA,CAAAA;EAAkB,IACrBA,CAAAA,EAAAA,OAAAA;EAAkB,MACrBD,CAAAA,EALJC,kBAKID;CAA0B,GAAA,CAAA;EACN,IAAjCQ,CAAAA,EAAAA,YAAAA;EAAI,gBAEWP,CAAAA,EALIA,kBAKJA;EAAkB,aACrBD,CAAAA,EALIC,kBAKJD;EAA0B,UACrBC,CAAAA,EALJD,0BAKIC;AAAkB,CAAA,GAJnCO,IAImC,CAJ9BH,4BAI8B,EAAA,yBAAA,CAAA,CAAA,GAAA;EAElBI,IAAAA,CAAAA,EAAAA,QAAAA;EAAsP,YAAA,CAAA,EAJxPR,kBAIwP;EAAA,SAAAS,CAAAA,EAH3PV,0BAG2PU;EAA7G,cAA3GV,CAAAA,EAF9BC,kBAE8BD;CAA0B,CAAA;AAA0HG,cAAlLM,sBAAkLN,EAAAA,CAAAA,GAAAA,EAApJH,0BAAoJG,CAAAA,GAAAA,EAAoEO,qCAAAA,CAAzIC,4BAAAA,CAAqER,EAAAA,MAAAA,CAAAA,EAA7BI,wBAA6BJ,EAAAA,GAAAA,uBAAAA,GAA0BC,oBAA1BD,GAAiDD,mBAAjDC"}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { MapReduceDocumentsChain, MapReduceDocumentsChainInput, RefineDocumentsChain, StuffDocumentsChain } from "../combine_docs_chain.js";
|
|
2
2
|
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
3
|
-
import * as
|
|
3
|
+
import * as _langchain_core_language_models_base1 from "@langchain/core/language_models/base";
|
|
4
4
|
import { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
|
|
5
5
|
|
|
6
6
|
//#region src/chains/summarization/load.d.ts
|
|
@@ -27,7 +27,7 @@ type SummarizationChainParams = BaseParams & ({
|
|
|
27
27
|
refineLLM?: BaseLanguageModelInterface;
|
|
28
28
|
questionPrompt?: BasePromptTemplate;
|
|
29
29
|
});
|
|
30
|
-
declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any,
|
|
30
|
+
declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any, _langchain_core_language_models_base1.BaseLanguageModelCallOptions>, params?: SummarizationChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;
|
|
31
31
|
//#endregion
|
|
32
32
|
export { SummarizationChainParams, loadSummarizationChain };
|
|
33
33
|
//# sourceMappingURL=load.d.ts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"load.d.ts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","BaseParams","SummarizationChainParams","Pick","loadSummarizationChain","
|
|
1
|
+
{"version":3,"file":"load.d.ts","names":["BaseLanguageModelInterface","BasePromptTemplate","StuffDocumentsChain","MapReduceDocumentsChain","RefineDocumentsChain","MapReduceDocumentsChainInput","BaseParams","SummarizationChainParams","Pick","loadSummarizationChain","_langchain_core_language_models_base1","BaseLanguageModelCallOptions"],"sources":["../../../src/chains/summarization/load.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { StuffDocumentsChain, MapReduceDocumentsChain, RefineDocumentsChain, MapReduceDocumentsChainInput } from \"../combine_docs_chain.js\";\n/**\n * Type for the base parameters that can be used to configure a\n * summarization chain.\n */\ntype BaseParams = {\n verbose?: boolean;\n};\n/** @interface */\nexport type SummarizationChainParams = BaseParams & ({\n type?: \"stuff\";\n prompt?: BasePromptTemplate;\n} | ({\n type?: \"map_reduce\";\n combineMapPrompt?: BasePromptTemplate;\n combinePrompt?: BasePromptTemplate;\n combineLLM?: BaseLanguageModelInterface;\n} & Pick<MapReduceDocumentsChainInput, \"returnIntermediateSteps\">) | {\n type?: \"refine\";\n refinePrompt?: BasePromptTemplate;\n refineLLM?: BaseLanguageModelInterface;\n questionPrompt?: BasePromptTemplate;\n});\nexport declare const loadSummarizationChain: (llm: BaseLanguageModelInterface<any, import(\"@langchain/core/language_models/base\").BaseLanguageModelCallOptions>, params?: SummarizationChainParams) => MapReduceDocumentsChain | RefineDocumentsChain | StuffDocumentsChain;\nexport {};\n"],"mappings":";;;;;;;;;;AAE4I;AAS5I,KAJKM,UAAAA,GAIOC;EAAwB,OAAA,CAAA,EAAA,OAAA;CAAA;;AAKbN,KALXM,wBAAAA,GAA2BD,UAKhBL,GAAAA,CAAAA;EAAkB,IACrBA,CAAAA,EAAAA,OAAAA;EAAkB,MACrBD,CAAAA,EALJC,kBAKID;CAA0B,GAAA,CAAA;EACN,IAAjCQ,CAAAA,EAAAA,YAAAA;EAAI,gBAEWP,CAAAA,EALIA,kBAKJA;EAAkB,aACrBD,CAAAA,EALIC,kBAKJD;EAA0B,UACrBC,CAAAA,EALJD,0BAKIC;AAAkB,CAAA,GAJnCO,IAImC,CAJ9BH,4BAI8B,EAAA,yBAAA,CAAA,CAAA,GAAA;EAElBI,IAAAA,CAAAA,EAAAA,QAAAA;EAAsP,YAAA,CAAA,EAJxPR,kBAIwP;EAAA,SAAAS,CAAAA,EAH3PV,0BAG2PU;EAA7G,cAA3GV,CAAAA,EAF9BC,kBAE8BD;CAA0B,CAAA;AAA0HG,cAAlLM,sBAAkLN,EAAAA,CAAAA,GAAAA,EAApJH,0BAAoJG,CAAAA,GAAAA,EAAoEO,qCAAAA,CAAzIC,4BAAAA,CAAqER,EAAAA,MAAAA,CAAAA,EAA7BI,wBAA6BJ,EAAAA,GAAAA,uBAAAA,GAA0BC,oBAA1BD,GAAiDD,mBAAjDC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"trajectory.d.cts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","
|
|
1
|
+
{"version":3,"file":"trajectory.d.cts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","____________langchain_core_dist_prompt_values_js1","BasePromptValueInterface","Omit","Partial"],"sources":["../../../src/evaluation/agents/trajectory.d.ts"],"sourcesContent":["import type { StructuredToolInterface } from \"@langchain/core/tools\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { BaseChatModel } from \"@langchain/core/language_models/chat_models\";\nimport { AgentTrajectoryEvaluator, EvalOutputType, LLMEvalChainInput, LLMTrajectoryEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\n/**\n * A parser for the output of the TrajectoryEvalChain.\n */\nexport declare class TrajectoryOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for evaluating ReAct style agents.\n *\n * This chain is used to evaluate ReAct style agents by reasoning about\n * the sequence of actions taken and their outcomes.\n */\nexport declare class TrajectoryEvalChain extends AgentTrajectoryEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n outputParser: TrajectoryOutputParser;\n static resolveTrajectoryPrompt(prompt?: BasePromptTemplate | undefined, agentTools?: StructuredToolInterface[]): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Get the description of the agent tools.\n *\n * @returns The description of the agent tools.\n */\n static toolsDescription(agentTools: StructuredToolInterface[]): string;\n /**\n * Create a new TrajectoryEvalChain.\n * @param llm\n * @param agentTools - The tools used by the agent.\n * @param chainOptions - The options for the chain.\n */\n static fromLLM(llm: BaseChatModel, agentTools?: StructuredToolInterface[], chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<TrajectoryEvalChain>;\n _prepareOutput(result: ChainValues): any;\n /**\n * Get the agent trajectory as a formatted string.\n *\n * @param steps - The agent trajectory.\n * @returns The formatted agent trajectory.\n */\n getAgentTrajectory(steps: AgentStep[]): string;\n formatReference(reference?: string): string;\n _evaluateAgentTrajectory(args: LLMTrajectoryEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n"],"mappings":";;;;;;;;;;;;;;;AAYqBe,cAAAA,sBAAAA,SAA+Bd,mBAAT,CAA6BU,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGzDN,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EM,cAA7EN,CAAAA;;;;;;AAH0C;AAWvE;AAAwC,cAAnBY,mBAAAA,SAA4BP,wBAAAA,CAAT;EAAA,OAMtBK,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAsB,aACIT,CAAAA,EAAAA,MAAAA;EAAkB,cAA2BN,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,EAAA,OAAA;EAAgH,iBAA3GM,EAAAA,OAAAA;EAAkB,YAM/FN,EAPtBe,sBAOsBf;EAAuB,OAOvCS,uBAAAA,CAAAA,MAAAA,CAAAA,EAboBH,kBAapBG,GAAAA,SAAAA,EAAAA,UAAAA,CAAAA,EAbiET,uBAajES,EAAAA,CAAAA,EAb6FH,kBAa7FG,CAAAA,GAAAA,EAbwF,wBAAA,EAaxFA,GAAAA,CAAAA;EAAa;;;;;EAA8H,OAA3BO,gBAAAA,CAAAA,UAAAA,EAPhGhB,uBAOgGgB,EAAAA,CAAAA,EAAAA,MAAAA;EAAO;;;;;;EAUQ,OAAWb,OAAAA,CAAAA,GAAAA,EAV1IM,aAU0IN,EAAAA,UAAAA,CAAAA,EAV9GH,uBAU8GG,EAAAA,EAAAA,YAAAA,CAAAA,EAVpEkB,OAUoElB,CAV5DiB,IAU4DjB,CAVvDS,iBAUuDT,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAV1Ba,OAU0Bb,CAVlBc,mBAUkBd,CAAAA;EAAW,cAAnBa,CAAAA,MAAAA,EAT/Hb,WAS+Ha,CAAAA,EAAAA,GAAAA;EAAO;AA9BxF;;;;;4BA4B3Cd;;iCAEKW,yCAAyCC,6CAA6CP,YAAYC,qBAAqBQ,QAAQb"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"trajectory.d.ts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","
|
|
1
|
+
{"version":3,"file":"trajectory.d.ts","names":["StructuredToolInterface","BaseLLMOutputParser","AgentStep","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","BaseChatModel","AgentTrajectoryEvaluator","EvalOutputType","LLMEvalChainInput","LLMTrajectoryEvaluatorArgs","ExtractLLMCallOptions","TrajectoryOutputParser","Promise","TrajectoryEvalChain","____________langchain_core_dist_prompt_values_js1","BasePromptValueInterface","Omit","Partial"],"sources":["../../../src/evaluation/agents/trajectory.d.ts"],"sourcesContent":["import type { StructuredToolInterface } from \"@langchain/core/tools\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { AgentStep } from \"@langchain/core/agents\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { BaseChatModel } from \"@langchain/core/language_models/chat_models\";\nimport { AgentTrajectoryEvaluator, EvalOutputType, LLMEvalChainInput, LLMTrajectoryEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\n/**\n * A parser for the output of the TrajectoryEvalChain.\n */\nexport declare class TrajectoryOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for evaluating ReAct style agents.\n *\n * This chain is used to evaluate ReAct style agents by reasoning about\n * the sequence of actions taken and their outcomes.\n */\nexport declare class TrajectoryEvalChain extends AgentTrajectoryEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n outputParser: TrajectoryOutputParser;\n static resolveTrajectoryPrompt(prompt?: BasePromptTemplate | undefined, agentTools?: StructuredToolInterface[]): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Get the description of the agent tools.\n *\n * @returns The description of the agent tools.\n */\n static toolsDescription(agentTools: StructuredToolInterface[]): string;\n /**\n * Create a new TrajectoryEvalChain.\n * @param llm\n * @param agentTools - The tools used by the agent.\n * @param chainOptions - The options for the chain.\n */\n static fromLLM(llm: BaseChatModel, agentTools?: StructuredToolInterface[], chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<TrajectoryEvalChain>;\n _prepareOutput(result: ChainValues): any;\n /**\n * Get the agent trajectory as a formatted string.\n *\n * @param steps - The agent trajectory.\n * @returns The formatted agent trajectory.\n */\n getAgentTrajectory(steps: AgentStep[]): string;\n formatReference(reference?: string): string;\n _evaluateAgentTrajectory(args: LLMTrajectoryEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n"],"mappings":";;;;;;;;;;;;;;;AAYqBe,cAAAA,sBAAAA,SAA+Bd,mBAAT,CAA6BU,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGzDN,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EM,cAA7EN,CAAAA;;;;;;AAH0C;AAWvE;AAAwC,cAAnBY,mBAAAA,SAA4BP,wBAAAA,CAAT;EAAA,OAMtBK,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAsB,aACIT,CAAAA,EAAAA,MAAAA;EAAkB,cAA2BN,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,EAAA,OAAA;EAAgH,iBAA3GM,EAAAA,OAAAA;EAAkB,YAM/FN,EAPtBe,sBAOsBf;EAAuB,OAOvCS,uBAAAA,CAAAA,MAAAA,CAAAA,EAboBH,kBAapBG,GAAAA,SAAAA,EAAAA,UAAAA,CAAAA,EAbiET,uBAajES,EAAAA,CAAAA,EAb6FH,kBAa7FG,CAAAA,GAAAA,EAbwF,wBAAA,EAaxFA,GAAAA,CAAAA;EAAa;;;;;EAA8H,OAA3BO,gBAAAA,CAAAA,UAAAA,EAPhGhB,uBAOgGgB,EAAAA,CAAAA,EAAAA,MAAAA;EAAO;;;;;;EAUQ,OAAWb,OAAAA,CAAAA,GAAAA,EAV1IM,aAU0IN,EAAAA,UAAAA,CAAAA,EAV9GH,uBAU8GG,EAAAA,EAAAA,YAAAA,CAAAA,EAVpEkB,OAUoElB,CAV5DiB,IAU4DjB,CAVvDS,iBAUuDT,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAV1Ba,OAU0Bb,CAVlBc,mBAUkBd,CAAAA;EAAW,cAAnBa,CAAAA,MAAAA,EAT/Hb,WAS+Ha,CAAAA,EAAAA,GAAAA;EAAO;AA9BxF;;;;;4BA4B3Cd;;iCAEKW,yCAAyCC,6CAA6CP,YAAYC,qBAAqBQ,QAAQb"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"pairwise.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","
|
|
1
|
+
{"version":3,"file":"pairwise.d.ts","names":["BaseLanguageModelInterface","BaseLLMOutputParser","ChainValues","ChatGeneration","Generation","BasePromptTemplate","Callbacks","BaseCallbackConfig","EvalOutputType","LLMEvalChainInput","LLMPairwiseStringEvaluator","LLMPairwiseStringEvaluatorArgs","ExtractLLMCallOptions","CriteriaLike","PairwiseStringResultOutputParser","Promise","PairwiseStringEvalChain","Record","____________langchain_core_dist_prompt_values_js2","BasePromptValueInterface","Omit","Partial","LabeledPairwiseStringEvalChain"],"sources":["../../../src/evaluation/comparison/pairwise.d.ts"],"sourcesContent":["import type { BaseLanguageModelInterface } from \"@langchain/core/language_models/base\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport { ChainValues } from \"@langchain/core/utils/types\";\nimport { ChatGeneration, Generation } from \"@langchain/core/outputs\";\nimport { BasePromptTemplate } from \"@langchain/core/prompts\";\nimport { Callbacks, BaseCallbackConfig } from \"@langchain/core/callbacks/manager\";\nimport { EvalOutputType, LLMEvalChainInput, LLMPairwiseStringEvaluator, LLMPairwiseStringEvaluatorArgs, type ExtractLLMCallOptions } from \"../base.js\";\nimport { CriteriaLike } from \"../criteria/criteria.js\";\n/**\n * A parser for the output of the PairwiseStringEvalChain.\n */\nexport declare class PairwiseStringResultOutputParser extends BaseLLMOutputParser<EvalOutputType> {\n static lc_name(): string;\n lc_namespace: string[];\n parseResult(generations: Generation[] | ChatGeneration[], _callbacks: Callbacks | undefined): Promise<EvalOutputType>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs.\n */\nexport declare class PairwiseStringEvalChain extends LLMPairwiseStringEvaluator {\n static lc_name(): string;\n criterionName?: string;\n evaluationName?: string;\n requiresInput: boolean;\n requiresReference: boolean;\n skipReferenceWarning: string;\n outputParser: PairwiseStringResultOutputParser;\n static resolvePairwiseCriteria(criteria?: CriteriaLike): Record<string, string>;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n /**\n * Create a new instance of the PairwiseStringEvalChain.\n * @param llm\n * @param criteria The criteria to use for evaluation.\n * @param chainOptions Options to pass to the chain.\n */\n static fromLLM(llm: BaseLanguageModelInterface, criteria?: CriteriaLike, chainOptions?: Partial<Omit<LLMEvalChainInput, \"llm\">>): Promise<PairwiseStringEvalChain>;\n _prepareOutput(result: ChainValues): any;\n _evaluateStringPairs(args: LLMPairwiseStringEvaluatorArgs, callOptions: ExtractLLMCallOptions<this[\"llm\"]>, config?: Callbacks | BaseCallbackConfig): Promise<ChainValues>;\n}\n/**\n * A chain for comparing two outputs, such as the outputs\n * of two models, prompts, or outputs of a single model on similar inputs,\n * with labeled preferences.\n */\nexport declare class LabeledPairwiseStringEvalChain extends PairwiseStringEvalChain {\n static lc_name(): string;\n requiresReference: boolean;\n static resolvePairwisePrompt(prompt?: BasePromptTemplate): BasePromptTemplate<any, import(\"../../../../langchain-core/dist/prompt_values.js\").BasePromptValueInterface, any>;\n}\n"],"mappings":";;;;;;;;;;;;;;AAWqBc,cAAAA,gCAAAA,SAAyCb,mBAAT,CAA6BO,cAA7B,CAAA,CAAA;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,YAA6BA,EAAAA,MAAAA,EAAAA;EAAc,WAGnEJ,CAAAA,WAAAA,EAAAA,UAAAA,EAAAA,GAAeD,cAAfC,EAAAA,EAAAA,UAAAA,EAA6CE,SAA7CF,GAAAA,SAAAA,CAAAA,EAAqEW,OAArEX,CAA6EI,cAA7EJ,CAAAA;;;;;;AAHoD,cAS5DY,uBAAAA,SAAgCN,0BAAAA,CAT4B;EAS5DM,OAAAA,OAAAA,CAAAA,CAAAA,EAAAA,MAAAA;EAAuB,aAAA,CAAA,EAAA,MAAA;EAAA,cAO1BF,CAAAA,EAAAA,MAAAA;EAAgC,aACJD,EAAAA,OAAAA;EAAY,iBAAGI,EAAAA,OAAAA;EAAM,oBACzBZ,EAAAA,MAAAA;EAAkB,YAAA,EAF1CS,gCAE0C;EAA8G,OAA3GT,uBAAAA,CAAAA,QAAAA,CAAAA,EADjBQ,YACiBR,CAAAA,EADFY,MACEZ,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAkB,OAOzDL,qBAAAA,CAAAA,MAAAA,CAAAA,EAPkBK,kBAOlBL,CAAAA,EAPuCK,kBAOvCL,CAAAA,GAAAA,EAPoC,wBAAA,EAOpCA,GAAAA,CAAAA;EAA0B;;;;;;EAA2F,OAClHE,OAAAA,CAAAA,GAAAA,EADHF,0BACGE,EAAAA,QAAAA,CAAAA,EADoCW,YACpCX,EAAAA,YAAAA,CAAAA,EADiEmB,OACjEnB,CADyEkB,IACzElB,CAD8EO,iBAC9EP,EAAAA,KAAAA,CAAAA,CAAAA,CAAAA,EAD2Ga,OAC3Gb,CADmHc,uBACnHd,CAAAA;EAAW,cACPS,CAAAA,MAAAA,EADJT,WACIS,CAAAA,EAAAA,GAAAA;EAA8B,oBAAeC,CAAAA,IAAAA,EAA7CD,8BAA6CC,EAAAA,WAAAA,EAAAA,qBAAAA,CAAAA,IAAAA,CAAAA,KAAAA,CAAAA,CAAAA,EAAAA,MAAAA,CAAAA,EAA6CN,SAA7CM,GAAyDL,kBAAzDK,CAAAA,EAA8EG,OAA9EH,CAAsFV,WAAtFU,CAAAA;;;;;;AAlBG;AAyB1DU,cAAAA,8BAAAA,SAAuCN,uBAAAA,CAAT;EAAA,OAAA,OAAA,CAAA,CAAA,EAAA,MAAA;EAAA,iBAGTX,EAAAA,OAAAA;EAAkB,OAAA,qBAAA,CAAA,MAAA,CAAA,EAAlBA,kBAAkB,CAAA,EAAGA,kBAAH,CAAA,GAAA,EAAA,wBAAA,EAAA,GAAA,CAAA"}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@langchain/classic",
|
|
3
|
-
"version": "1.0.
|
|
3
|
+
"version": "1.0.3",
|
|
4
4
|
"description": "Old abstractions form LangChain.js",
|
|
5
5
|
"author": "LangChain",
|
|
6
6
|
"license": "MIT",
|
|
@@ -96,36 +96,36 @@
|
|
|
96
96
|
"voy-search": "0.6.2",
|
|
97
97
|
"weaviate-client": "^3.8.0",
|
|
98
98
|
"zod-to-json-schema": "^3.24.6",
|
|
99
|
-
"@langchain/
|
|
99
|
+
"@langchain/azure-dynamic-sessions": "1.0.0",
|
|
100
|
+
"@langchain/anthropic": "1.0.1",
|
|
101
|
+
"@langchain/eslint": "0.1.0",
|
|
100
102
|
"@langchain/aws": "1.0.1",
|
|
103
|
+
"@langchain/core": "1.0.5",
|
|
101
104
|
"@langchain/baidu-qianfan": "1.0.0",
|
|
102
|
-
"@langchain/
|
|
103
|
-
"@langchain/cloudflare": "1.0.0",
|
|
104
|
-
"@langchain/cohere": "1.0.0",
|
|
105
|
-
"@langchain/azure-cosmosdb": "1.0.0",
|
|
105
|
+
"@langchain/deepseek": "1.0.1",
|
|
106
106
|
"@langchain/exa": "1.0.0",
|
|
107
|
-
"@langchain/
|
|
107
|
+
"@langchain/google-common": "1.0.1",
|
|
108
|
+
"@langchain/google-genai": "1.0.1",
|
|
108
109
|
"@langchain/google-cloud-sql-pg": "1.0.0",
|
|
109
|
-
"@langchain/
|
|
110
|
-
"@langchain/
|
|
111
|
-
"@langchain/google-
|
|
112
|
-
"@langchain/
|
|
113
|
-
"@langchain/groq": "1.0.0",
|
|
114
|
-
"@langchain/google-vertexai-web": "1.0.0",
|
|
115
|
-
"@langchain/google-vertexai": "1.0.0",
|
|
110
|
+
"@langchain/cloudflare": "1.0.0",
|
|
111
|
+
"@langchain/cohere": "1.0.0",
|
|
112
|
+
"@langchain/google-vertexai-web": "1.0.1",
|
|
113
|
+
"@langchain/google-vertexai": "1.0.1",
|
|
116
114
|
"@langchain/mistralai": "1.0.0",
|
|
115
|
+
"@langchain/groq": "1.0.1",
|
|
117
116
|
"@langchain/nomic": "1.0.0",
|
|
118
117
|
"@langchain/ollama": "1.0.1",
|
|
119
|
-
"@langchain/mongodb": "1.0.0",
|
|
120
118
|
"@langchain/textsplitters": "1.0.0",
|
|
119
|
+
"@langchain/weaviate": "1.0.0",
|
|
120
|
+
"@langchain/tavily": "1.0.0",
|
|
121
121
|
"@langchain/redis": "1.0.0",
|
|
122
|
-
"@langchain/qdrant": "1.0.0",
|
|
123
122
|
"@langchain/pinecone": "1.0.0",
|
|
124
|
-
"@langchain/
|
|
125
|
-
"@langchain/
|
|
123
|
+
"@langchain/azure-cosmosdb": "1.0.0",
|
|
124
|
+
"@langchain/mongodb": "1.0.0",
|
|
126
125
|
"@langchain/yandex": "1.0.0",
|
|
127
|
-
"
|
|
128
|
-
"langchain": "1.0.
|
|
126
|
+
"langchain": "1.0.4",
|
|
127
|
+
"@langchain/qdrant": "1.0.0",
|
|
128
|
+
"@langchain/xai": "1.0.1"
|
|
129
129
|
},
|
|
130
130
|
"peerDependencies": {
|
|
131
131
|
"@langchain/core": "^1.0.0",
|
|
@@ -153,7 +153,7 @@
|
|
|
153
153
|
"uuid": "^10.0.0",
|
|
154
154
|
"yaml": "^2.2.1",
|
|
155
155
|
"zod": "^3.25.76 || ^4",
|
|
156
|
-
"@langchain/openai": "1.1.
|
|
156
|
+
"@langchain/openai": "1.1.1",
|
|
157
157
|
"@langchain/textsplitters": "1.0.0"
|
|
158
158
|
},
|
|
159
159
|
"optionalDependencies": {
|
|
@@ -1216,7 +1216,8 @@
|
|
|
1216
1216
|
"./package.json": "./package.json"
|
|
1217
1217
|
},
|
|
1218
1218
|
"scripts": {
|
|
1219
|
-
"build": "
|
|
1219
|
+
"build": "turbo build:compile --filter @langchain/classic",
|
|
1220
|
+
"build:compile": "pnpm --filter @langchain/build compile @langchain/classic",
|
|
1220
1221
|
"lint:eslint": "eslint --cache",
|
|
1221
1222
|
"lint:dpdm": "dpdm --skip-dynamic-imports circular --exit-code circular:1 --no-warning --no-tree src/*.ts src/**/*.ts",
|
|
1222
1223
|
"lint": "pnpm lint:eslint && pnpm lint:dpdm",
|