@langchain/anthropic 1.1.0 → 1.1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -1,5 +1,17 @@
1
1
  # @langchain/anthropic
2
2
 
3
+ ## 1.1.2
4
+
5
+ ### Patch Changes
6
+
7
+ - [#9416](https://github.com/langchain-ai/langchainjs/pull/9416) [`0fe9beb`](https://github.com/langchain-ai/langchainjs/commit/0fe9bebee6710f719e47f913eec1ec4f638e4de4) Thanks [@hntrl](https://github.com/hntrl)! - fix 'moduleResultion: "node"' compatibility
8
+
9
+ ## 1.1.1
10
+
11
+ ### Patch Changes
12
+
13
+ - [#9451](https://github.com/langchain-ai/langchainjs/pull/9451) [`b1deda2`](https://github.com/langchain-ai/langchainjs/commit/b1deda21363b5a1a3f2b7bd77dc1d74764304666) Thanks [@hntrl](https://github.com/hntrl)! - fix betas being passed to client when streaming
14
+
3
15
  ## 1.1.0
4
16
 
5
17
  ### Minor Changes
@@ -767,7 +767,6 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
767
767
  }
768
768
  return await this.streamingClient.messages.create({
769
769
  ...rest,
770
- betas,
771
770
  ...this.invocationKwargs,
772
771
  stream: true
773
772
  }, options);
@@ -1 +1 @@
1
- {"version":3,"file":"chat_models.cjs","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","a?: AnthropicBeta[]","b?: AnthropicBeta[]","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","llm: Runnable<BaseLanguageModelInput>","outputParser: Runnable<AIMessageChunk, RunOutput>","StructuredOutputParser","JsonOutputParser","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { transformJSONSchema } from \"@anthropic-ai/sdk/lib/transform-json-schema.js\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport {\n JsonOutputParser,\n StructuredOutputParser,\n} from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicOutputFormat,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\nfunction _combineBetas(\n a?: AnthropicBeta[],\n b?: AnthropicBeta[]\n): AnthropicBeta[] {\n return Array.from(new Set([...(a ?? []), ...(b ?? [])]));\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n betas?: AnthropicBeta[];\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n this.betas = fields?.betas ?? this.betas;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const stream = await this.streamingClient.beta.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n return stream as Stream<Anthropic.Messages.RawMessageStreamEvent>;\n }\n return await this.streamingClient.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const response = await this.batchClient.beta.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n betas,\n } as AnthropicMessageCreateParams,\n options\n );\n return response as Anthropic.Messages.Message;\n }\n return await this.batchClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n let llm: Runnable<BaseLanguageModelInput>;\n let outputParser: Runnable<AIMessageChunk, RunOutput>;\n\n const { schema, name, includeRaw } = {\n ...config,\n schema: outputSchema,\n };\n let method = config?.method ?? \"functionCalling\";\n\n if (method === \"jsonMode\") {\n console.warn(\n `\"jsonMode\" is not supported for Anthropic models. Falling back to \"jsonSchema\".`\n );\n method = \"jsonSchema\";\n }\n if (method === \"jsonSchema\") {\n // https://docs.claude.com/en/docs/build-with-claude/structured-outputs\n outputParser = isInteropZodSchema(schema)\n ? StructuredOutputParser.fromZodSchema(schema)\n : new JsonOutputParser<RunOutput>();\n const jsonSchema = transformJSONSchema(toJsonSchema(schema));\n llm = this.withConfig({\n outputVersion: \"v0\",\n output_format: {\n type: \"json_schema\",\n schema: jsonSchema,\n },\n betas: [\"structured-outputs-2025-11-13\"],\n ls_structured_output_format: {\n kwargs: { method: \"json_schema\" },\n schema: jsonSchema,\n },\n } as Partial<CallOptions>);\n } else if (method === \"functionCalling\") {\n let functionName = name ?? \"extract\";\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n } else {\n throw new TypeError(\n `Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`\n );\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;;;AA2DA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAiCD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAED,SAAS,cACPC,GACAC,GACiB;AACjB,QAAO,MAAM,KAAK,IAAI,IAAI,CAAC,GAAI,KAAK,CAAE,GAAG,GAAI,KAAK,CAAE,CAAE,GAAE;AACzD;AAgHD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgbD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;CAEd;;;;;;CAOA;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EACpC,KAAK,QAAQ,QAAQ,SAAS,KAAK;EAEnC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;IACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;IAChD,eAAe,SAAS;GACzB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;GACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;GAChD,eAAe,SAAS;EACzB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,SAAS,MAAM,KAAK,gBAAgB,KAAK,SAAS,OACtD;MACE,GAAG;MACH;MACA,GAAG,KAAK;MACR,QAAQ;KACT,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH;KACA,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,WAAW,MAAM,KAAK,YAAY,KAAK,SAAS,OACpD;MACE,GAAG;MACH,GAAG,KAAK;MACR;KACD,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOI,yBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EACJ,IAAIC;EACJ,IAAIC;EAEJ,MAAM,EAAE,QAAQ,MAAM,YAAY,GAAG;GACnC,GAAG;GACH,QAAQ;EACT;EACD,IAAI,SAAS,QAAQ,UAAU;AAE/B,MAAI,WAAW,YAAY;GACzB,QAAQ,KACN,CAAC,+EAA+E,CAAC,CAClF;GACD,SAAS;EACV;AACD,MAAI,WAAW,cAAc;GAE3B,oEAAkC,OAAO,GACrCC,uDAAuB,cAAc,OAAO,GAC5C,IAAIC;GACR,MAAM,2IAA8C,OAAO,CAAC;GAC5D,MAAM,KAAK,WAAW;IACpB,eAAe;IACf,eAAe;KACb,MAAM;KACN,QAAQ;IACT;IACD,OAAO,CAAC,+BAAgC;IACxC,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,cAAe;KACjC,QAAQ;IACT;GACF,EAAyB;EAC3B,WAAU,WAAW,mBAAmB;GACvC,IAAI,eAAe,QAAQ;GAC3B,IAAIC;AACJ,4DAAuB,OAAO,EAAE;IAC9B,MAAM,kEAA0B,OAAO;IACvC,QAAQ,CACN;KACE,MAAM;KACN,aACE,WAAW,eAAe;KAC5B,cAAc;IACf,CACF;IACD,eAAe,IAAIC,kDAA2B;KAC5C,cAAc;KACd,SAAS;KACT,WAAW;IACZ;GACF,OAAM;IACL,IAAIC;AACJ,QACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;KACA,iBAAiB;KACjB,eAAe,OAAO;IACvB,OACC,iBAAiB;KACf,MAAM;KACN,aAAa,OAAO,eAAe;KACnC,cAAc;IACf;IAEH,QAAQ,CAAC,cAAe;IACxB,eAAe,IAAID,kDAAsC;KACvD,cAAc;KACd,SAAS;IACV;GACF;AACD,OAAI,KAAK,UAAU,SAAS,WAAW;IACrC,MAAM,qBACJ;IAMF,QAAQ,KAAK,mBAAmB;IAEhC,MAAM,KAAK,WAAW;KACpB,eAAe;KACf;KACA,6BAA6B;MAC3B,QAAQ,EAAE,QAAQ,kBAAmB;MACrC,6DAAqB,OAAO;KAC7B;IACF,EAAyB;IAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,SAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,YAAO;IACR;IAED,MAAM,IAAI,KAAK,mBAAmB;GACnC,OACC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,aAAa;KACX,MAAM;KACN,MAAM;IACP;IACD,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;EAE7B,MACC,OAAM,IAAI,UACR,CAAC,uCAAuC,EAAE,OAAO,6CAA6C,CAAC;AAInG,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
1
+ {"version":3,"file":"chat_models.cjs","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","a?: AnthropicBeta[]","b?: AnthropicBeta[]","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","llm: Runnable<BaseLanguageModelInput>","outputParser: Runnable<AIMessageChunk, RunOutput>","StructuredOutputParser","JsonOutputParser","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { transformJSONSchema } from \"@anthropic-ai/sdk/lib/transform-json-schema.js\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport {\n JsonOutputParser,\n StructuredOutputParser,\n} from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicOutputFormat,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\nfunction _combineBetas(\n a?: AnthropicBeta[],\n b?: AnthropicBeta[]\n): AnthropicBeta[] {\n return Array.from(new Set([...(a ?? []), ...(b ?? [])]));\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n betas?: AnthropicBeta[];\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n this.betas = fields?.betas ?? this.betas;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const stream = await this.streamingClient.beta.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n return stream as Stream<Anthropic.Messages.RawMessageStreamEvent>;\n }\n return await this.streamingClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const response = await this.batchClient.beta.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n betas,\n } as AnthropicMessageCreateParams,\n options\n );\n return response as Anthropic.Messages.Message;\n }\n return await this.batchClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n let llm: Runnable<BaseLanguageModelInput>;\n let outputParser: Runnable<AIMessageChunk, RunOutput>;\n\n const { schema, name, includeRaw } = {\n ...config,\n schema: outputSchema,\n };\n let method = config?.method ?? \"functionCalling\";\n\n if (method === \"jsonMode\") {\n console.warn(\n `\"jsonMode\" is not supported for Anthropic models. Falling back to \"jsonSchema\".`\n );\n method = \"jsonSchema\";\n }\n if (method === \"jsonSchema\") {\n // https://docs.claude.com/en/docs/build-with-claude/structured-outputs\n outputParser = isInteropZodSchema(schema)\n ? StructuredOutputParser.fromZodSchema(schema)\n : new JsonOutputParser<RunOutput>();\n const jsonSchema = transformJSONSchema(toJsonSchema(schema));\n llm = this.withConfig({\n outputVersion: \"v0\",\n output_format: {\n type: \"json_schema\",\n schema: jsonSchema,\n },\n betas: [\"structured-outputs-2025-11-13\"],\n ls_structured_output_format: {\n kwargs: { method: \"json_schema\" },\n schema: jsonSchema,\n },\n } as Partial<CallOptions>);\n } else if (method === \"functionCalling\") {\n let functionName = name ?? \"extract\";\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n } else {\n throw new TypeError(\n `Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`\n );\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;;;AA2DA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAiCD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAED,SAAS,cACPC,GACAC,GACiB;AACjB,QAAO,MAAM,KAAK,IAAI,IAAI,CAAC,GAAI,KAAK,CAAE,GAAG,GAAI,KAAK,CAAE,CAAE,GAAE;AACzD;AAgHD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgbD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;CAEd;;;;;;CAOA;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EACpC,KAAK,QAAQ,QAAQ,SAAS,KAAK;EAEnC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;IACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;IAChD,eAAe,SAAS;GACzB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;GACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;GAChD,eAAe,SAAS;EACzB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,SAAS,MAAM,KAAK,gBAAgB,KAAK,SAAS,OACtD;MACE,GAAG;MACH;MACA,GAAG,KAAK;MACR,QAAQ;KACT,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,WAAW,MAAM,KAAK,YAAY,KAAK,SAAS,OACpD;MACE,GAAG;MACH,GAAG,KAAK;MACR;KACD,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOI,yBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EACJ,IAAIC;EACJ,IAAIC;EAEJ,MAAM,EAAE,QAAQ,MAAM,YAAY,GAAG;GACnC,GAAG;GACH,QAAQ;EACT;EACD,IAAI,SAAS,QAAQ,UAAU;AAE/B,MAAI,WAAW,YAAY;GACzB,QAAQ,KACN,CAAC,+EAA+E,CAAC,CAClF;GACD,SAAS;EACV;AACD,MAAI,WAAW,cAAc;GAE3B,oEAAkC,OAAO,GACrCC,uDAAuB,cAAc,OAAO,GAC5C,IAAIC;GACR,MAAM,2IAA8C,OAAO,CAAC;GAC5D,MAAM,KAAK,WAAW;IACpB,eAAe;IACf,eAAe;KACb,MAAM;KACN,QAAQ;IACT;IACD,OAAO,CAAC,+BAAgC;IACxC,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,cAAe;KACjC,QAAQ;IACT;GACF,EAAyB;EAC3B,WAAU,WAAW,mBAAmB;GACvC,IAAI,eAAe,QAAQ;GAC3B,IAAIC;AACJ,4DAAuB,OAAO,EAAE;IAC9B,MAAM,kEAA0B,OAAO;IACvC,QAAQ,CACN;KACE,MAAM;KACN,aACE,WAAW,eAAe;KAC5B,cAAc;IACf,CACF;IACD,eAAe,IAAIC,kDAA2B;KAC5C,cAAc;KACd,SAAS;KACT,WAAW;IACZ;GACF,OAAM;IACL,IAAIC;AACJ,QACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;KACA,iBAAiB;KACjB,eAAe,OAAO;IACvB,OACC,iBAAiB;KACf,MAAM;KACN,aAAa,OAAO,eAAe;KACnC,cAAc;IACf;IAEH,QAAQ,CAAC,cAAe;IACxB,eAAe,IAAID,kDAAsC;KACvD,cAAc;KACd,SAAS;IACV;GACF;AACD,OAAI,KAAK,UAAU,SAAS,WAAW;IACrC,MAAM,qBACJ;IAMF,QAAQ,KAAK,mBAAmB;IAEhC,MAAM,KAAK,WAAW;KACpB,eAAe;KACf;KACA,6BAA6B;MAC3B,QAAQ,EAAE,QAAQ,kBAAmB;MACrC,6DAAqB,OAAO;KAC7B;IACF,EAAyB;IAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,SAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,YAAO;IACR;IAED,MAAM,IAAI,KAAK,mBAAmB;GACnC,OACC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,aAAa;KACX,MAAM;KACN,MAAM;IACP;IACD,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;EAE7B,MACC,OAAM,IAAI,UACR,CAAC,uCAAuC,EAAE,OAAO,6CAA6C,CAAC;AAInG,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
@@ -766,7 +766,6 @@ var ChatAnthropicMessages = class extends BaseChatModel {
766
766
  }
767
767
  return await this.streamingClient.messages.create({
768
768
  ...rest,
769
- betas,
770
769
  ...this.invocationKwargs,
771
770
  stream: true
772
771
  }, options);
@@ -1 +1 @@
1
- {"version":3,"file":"chat_models.js","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","a?: AnthropicBeta[]","b?: AnthropicBeta[]","chunk: AIMessageChunk","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","llm: Runnable<BaseLanguageModelInput>","outputParser: Runnable<AIMessageChunk, RunOutput>","tools: Anthropic.Messages.Tool[]","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","input: any","config"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { transformJSONSchema } from \"@anthropic-ai/sdk/lib/transform-json-schema.js\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport {\n JsonOutputParser,\n StructuredOutputParser,\n} from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicOutputFormat,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\nfunction _combineBetas(\n a?: AnthropicBeta[],\n b?: AnthropicBeta[]\n): AnthropicBeta[] {\n return Array.from(new Set([...(a ?? []), ...(b ?? [])]));\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n betas?: AnthropicBeta[];\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n this.betas = fields?.betas ?? this.betas;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const stream = await this.streamingClient.beta.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n return stream as Stream<Anthropic.Messages.RawMessageStreamEvent>;\n }\n return await this.streamingClient.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const response = await this.batchClient.beta.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n betas,\n } as AnthropicMessageCreateParams,\n options\n );\n return response as Anthropic.Messages.Message;\n }\n return await this.batchClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n let llm: Runnable<BaseLanguageModelInput>;\n let outputParser: Runnable<AIMessageChunk, RunOutput>;\n\n const { schema, name, includeRaw } = {\n ...config,\n schema: outputSchema,\n };\n let method = config?.method ?? \"functionCalling\";\n\n if (method === \"jsonMode\") {\n console.warn(\n `\"jsonMode\" is not supported for Anthropic models. Falling back to \"jsonSchema\".`\n );\n method = \"jsonSchema\";\n }\n if (method === \"jsonSchema\") {\n // https://docs.claude.com/en/docs/build-with-claude/structured-outputs\n outputParser = isInteropZodSchema(schema)\n ? StructuredOutputParser.fromZodSchema(schema)\n : new JsonOutputParser<RunOutput>();\n const jsonSchema = transformJSONSchema(toJsonSchema(schema));\n llm = this.withConfig({\n outputVersion: \"v0\",\n output_format: {\n type: \"json_schema\",\n schema: jsonSchema,\n },\n betas: [\"structured-outputs-2025-11-13\"],\n ls_structured_output_format: {\n kwargs: { method: \"json_schema\" },\n schema: jsonSchema,\n },\n } as Partial<CallOptions>);\n } else if (method === \"functionCalling\") {\n let functionName = name ?? \"extract\";\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n } else {\n throw new TypeError(\n `Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`\n );\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;;AA2DA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAiCD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAED,SAAS,cACPC,GACAC,GACiB;AACjB,QAAO,MAAM,KAAK,IAAI,IAAI,CAAC,GAAI,KAAK,CAAE,GAAG,GAAI,KAAK,CAAE,CAAE,GAAE;AACzD;AAgHD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgbD,IAAa,wBAAb,cAGU,cAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;CAEd;;;;;;CAOA;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,mBACR,uBAAuB,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EACpC,KAAK,QAAQ,QAAQ,SAAS,KAAK;EAEnC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,YAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,OAAI,aAAa,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,OAAI,gBAAgB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,cAAe,mBAAmB,KAAK,OAAO,GAC1C,aAAa,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKU,iBAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;IACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;IAChD,eAAe,SAAS;GACzB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;GACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;GAChD,eAAe,SAAS;EACzB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAN,SACAO,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoB,mCAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAAS,oCAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAI,oBAAoB;IAC9C,SAAS,IAAI,eAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJD,UACAE,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAG,mCAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAc,gCAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJH,UACAN,SACAO,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIG;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,SAAS,MAAM,KAAK,gBAAgB,KAAK,SAAS,OACtD;MACE,GAAG;MACH;MACA,GAAG,KAAK;MACR,QAAQ;KACT,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH;KACA,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQ,yBAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,WAAW,MAAM,KAAK,YAAY,KAAK,SAAS,OACpD;MACE,GAAG;MACH,GAAG,KAAK;MACR;KACD,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQ,yBAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOC,iBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EACJ,IAAIC;EACJ,IAAIC;EAEJ,MAAM,EAAE,QAAQ,MAAM,YAAY,GAAG;GACnC,GAAG;GACH,QAAQ;EACT;EACD,IAAI,SAAS,QAAQ,UAAU;AAE/B,MAAI,WAAW,YAAY;GACzB,QAAQ,KACN,CAAC,+EAA+E,CAAC,CAClF;GACD,SAAS;EACV;AACD,MAAI,WAAW,cAAc;GAE3B,eAAe,mBAAmB,OAAO,GACrC,uBAAuB,cAAc,OAAO,GAC5C,IAAI;GACR,MAAM,aAAa,oBAAoB,aAAa,OAAO,CAAC;GAC5D,MAAM,KAAK,WAAW;IACpB,eAAe;IACf,eAAe;KACb,MAAM;KACN,QAAQ;IACT;IACD,OAAO,CAAC,+BAAgC;IACxC,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,cAAe;KACjC,QAAQ;IACT;GACF,EAAyB;EAC3B,WAAU,WAAW,mBAAmB;GACvC,IAAI,eAAe,QAAQ;GAC3B,IAAIC;AACJ,OAAI,mBAAmB,OAAO,EAAE;IAC9B,MAAM,aAAa,aAAa,OAAO;IACvC,QAAQ,CACN;KACE,MAAM;KACN,aACE,WAAW,eAAe;KAC5B,cAAc;IACf,CACF;IACD,eAAe,IAAI,2BAA2B;KAC5C,cAAc;KACd,SAAS;KACT,WAAW;IACZ;GACF,OAAM;IACL,IAAIC;AACJ,QACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;KACA,iBAAiB;KACjB,eAAe,OAAO;IACvB,OACC,iBAAiB;KACf,MAAM;KACN,aAAa,OAAO,eAAe;KACnC,cAAc;IACf;IAEH,QAAQ,CAAC,cAAe;IACxB,eAAe,IAAI,2BAAsC;KACvD,cAAc;KACd,SAAS;IACV;GACF;AACD,OAAI,KAAK,UAAU,SAAS,WAAW;IACrC,MAAM,qBACJ;IAMF,QAAQ,KAAK,mBAAmB;IAEhC,MAAM,KAAK,WAAW;KACpB,eAAe;KACf;KACA,6BAA6B;MAC3B,QAAQ,EAAE,QAAQ,kBAAmB;MACrC,QAAQ,aAAa,OAAO;KAC7B;IACF,EAAyB;IAE1B,MAAM,qBAAqB,CAACC,YAA4B;AACtD,SAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,YAAO;IACR;IAED,MAAM,IAAI,KAAK,mBAAmB;GACnC,OACC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,aAAa;KACX,MAAM;KACN,MAAM;IACP;IACD,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,QAAQ,aAAa,OAAO;IAC7B;GACF,EAAyB;EAE7B,MACC,OAAM,IAAI,UACR,CAAC,uCAAuC,EAAE,OAAO,6CAA6C,CAAC;AAInG,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAe,oBAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAa,oBAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAO,iBAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
1
+ {"version":3,"file":"chat_models.js","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","a?: AnthropicBeta[]","b?: AnthropicBeta[]","chunk: AIMessageChunk","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","llm: Runnable<BaseLanguageModelInput>","outputParser: Runnable<AIMessageChunk, RunOutput>","tools: Anthropic.Messages.Tool[]","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","input: any","config"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { transformJSONSchema } from \"@anthropic-ai/sdk/lib/transform-json-schema.js\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport {\n JsonOutputParser,\n StructuredOutputParser,\n} from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicOutputFormat,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\nfunction _combineBetas(\n a?: AnthropicBeta[],\n b?: AnthropicBeta[]\n): AnthropicBeta[] {\n return Array.from(new Set([...(a ?? []), ...(b ?? [])]));\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n betas?: AnthropicBeta[];\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n this.betas = fields?.betas ?? this.betas;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const stream = await this.streamingClient.beta.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n return stream as Stream<Anthropic.Messages.RawMessageStreamEvent>;\n }\n return await this.streamingClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const response = await this.batchClient.beta.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n betas,\n } as AnthropicMessageCreateParams,\n options\n );\n return response as Anthropic.Messages.Message;\n }\n return await this.batchClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n let llm: Runnable<BaseLanguageModelInput>;\n let outputParser: Runnable<AIMessageChunk, RunOutput>;\n\n const { schema, name, includeRaw } = {\n ...config,\n schema: outputSchema,\n };\n let method = config?.method ?? \"functionCalling\";\n\n if (method === \"jsonMode\") {\n console.warn(\n `\"jsonMode\" is not supported for Anthropic models. Falling back to \"jsonSchema\".`\n );\n method = \"jsonSchema\";\n }\n if (method === \"jsonSchema\") {\n // https://docs.claude.com/en/docs/build-with-claude/structured-outputs\n outputParser = isInteropZodSchema(schema)\n ? StructuredOutputParser.fromZodSchema(schema)\n : new JsonOutputParser<RunOutput>();\n const jsonSchema = transformJSONSchema(toJsonSchema(schema));\n llm = this.withConfig({\n outputVersion: \"v0\",\n output_format: {\n type: \"json_schema\",\n schema: jsonSchema,\n },\n betas: [\"structured-outputs-2025-11-13\"],\n ls_structured_output_format: {\n kwargs: { method: \"json_schema\" },\n schema: jsonSchema,\n },\n } as Partial<CallOptions>);\n } else if (method === \"functionCalling\") {\n let functionName = name ?? \"extract\";\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n } else {\n throw new TypeError(\n `Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`\n );\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;;AA2DA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAiCD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAED,SAAS,cACPC,GACAC,GACiB;AACjB,QAAO,MAAM,KAAK,IAAI,IAAI,CAAC,GAAI,KAAK,CAAE,GAAG,GAAI,KAAK,CAAE,CAAE,GAAE;AACzD;AAgHD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgbD,IAAa,wBAAb,cAGU,cAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;CAEd;;;;;;CAOA;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,mBACR,uBAAuB,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EACpC,KAAK,QAAQ,QAAQ,SAAS,KAAK;EAEnC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,YAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,OAAI,aAAa,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,OAAI,gBAAgB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,cAAe,mBAAmB,KAAK,OAAO,GAC1C,aAAa,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKU,iBAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;IACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;IAChD,eAAe,SAAS;GACzB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;GACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;GAChD,eAAe,SAAS;EACzB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAN,SACAO,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoB,mCAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAAS,oCAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAI,oBAAoB;IAC9C,SAAS,IAAI,eAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJD,UACAE,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAG,mCAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAc,gCAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJH,UACAN,SACAO,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIG;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,SAAS,MAAM,KAAK,gBAAgB,KAAK,SAAS,OACtD;MACE,GAAG;MACH;MACA,GAAG,KAAK;MACR,QAAQ;KACT,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQ,yBAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,WAAW,MAAM,KAAK,YAAY,KAAK,SAAS,OACpD;MACE,GAAG;MACH,GAAG,KAAK;MACR;KACD,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQ,yBAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOC,iBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EACJ,IAAIC;EACJ,IAAIC;EAEJ,MAAM,EAAE,QAAQ,MAAM,YAAY,GAAG;GACnC,GAAG;GACH,QAAQ;EACT;EACD,IAAI,SAAS,QAAQ,UAAU;AAE/B,MAAI,WAAW,YAAY;GACzB,QAAQ,KACN,CAAC,+EAA+E,CAAC,CAClF;GACD,SAAS;EACV;AACD,MAAI,WAAW,cAAc;GAE3B,eAAe,mBAAmB,OAAO,GACrC,uBAAuB,cAAc,OAAO,GAC5C,IAAI;GACR,MAAM,aAAa,oBAAoB,aAAa,OAAO,CAAC;GAC5D,MAAM,KAAK,WAAW;IACpB,eAAe;IACf,eAAe;KACb,MAAM;KACN,QAAQ;IACT;IACD,OAAO,CAAC,+BAAgC;IACxC,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,cAAe;KACjC,QAAQ;IACT;GACF,EAAyB;EAC3B,WAAU,WAAW,mBAAmB;GACvC,IAAI,eAAe,QAAQ;GAC3B,IAAIC;AACJ,OAAI,mBAAmB,OAAO,EAAE;IAC9B,MAAM,aAAa,aAAa,OAAO;IACvC,QAAQ,CACN;KACE,MAAM;KACN,aACE,WAAW,eAAe;KAC5B,cAAc;IACf,CACF;IACD,eAAe,IAAI,2BAA2B;KAC5C,cAAc;KACd,SAAS;KACT,WAAW;IACZ;GACF,OAAM;IACL,IAAIC;AACJ,QACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;KACA,iBAAiB;KACjB,eAAe,OAAO;IACvB,OACC,iBAAiB;KACf,MAAM;KACN,aAAa,OAAO,eAAe;KACnC,cAAc;IACf;IAEH,QAAQ,CAAC,cAAe;IACxB,eAAe,IAAI,2BAAsC;KACvD,cAAc;KACd,SAAS;IACV;GACF;AACD,OAAI,KAAK,UAAU,SAAS,WAAW;IACrC,MAAM,qBACJ;IAMF,QAAQ,KAAK,mBAAmB;IAEhC,MAAM,KAAK,WAAW;KACpB,eAAe;KACf;KACA,6BAA6B;MAC3B,QAAQ,EAAE,QAAQ,kBAAmB;MACrC,QAAQ,aAAa,OAAO;KAC7B;IACF,EAAyB;IAE1B,MAAM,qBAAqB,CAACC,YAA4B;AACtD,SAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,YAAO;IACR;IAED,MAAM,IAAI,KAAK,mBAAmB;GACnC,OACC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,aAAa;KACX,MAAM;KACN,MAAM;IACP;IACD,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,QAAQ,aAAa,OAAO;IAC7B;GACF,EAAyB;EAE7B,MACC,OAAM,IAAI,UACR,CAAC,uCAAuC,EAAE,OAAO,6CAA6C,CAAC;AAInG,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAe,oBAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAa,oBAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAO,iBAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@langchain/anthropic",
3
- "version": "1.1.0",
3
+ "version": "1.1.2",
4
4
  "description": "Anthropic integrations for LangChain.js",
5
5
  "author": "LangChain",
6
6
  "license": "MIT",
@@ -33,9 +33,9 @@
33
33
  "uuid": "^13.0.0",
34
34
  "vitest": "^3.2.4",
35
35
  "zod": "3.25.76",
36
- "@langchain/core": "1.0.5",
37
- "@langchain/eslint": "0.1.0",
38
- "@langchain/standard-tests": "0.0.1"
36
+ "@langchain/core": "1.1.0",
37
+ "@langchain/eslint": "0.1.1",
38
+ "@langchain/standard-tests": "0.0.3"
39
39
  },
40
40
  "publishConfig": {
41
41
  "access": "public"
@@ -54,18 +54,18 @@
54
54
  "embeddings",
55
55
  "vectorstores"
56
56
  ],
57
- "main": "./dist/index.js",
58
- "types": "./dist/index.d.ts",
57
+ "main": "./dist/index.cjs",
58
+ "types": "./dist/index.d.cts",
59
59
  "exports": {
60
60
  ".": {
61
61
  "input": "./src/index.ts",
62
- "import": {
63
- "types": "./dist/index.d.ts",
64
- "default": "./dist/index.js"
65
- },
66
62
  "require": {
67
63
  "types": "./dist/index.d.cts",
68
64
  "default": "./dist/index.cjs"
65
+ },
66
+ "import": {
67
+ "types": "./dist/index.d.ts",
68
+ "default": "./dist/index.js"
69
69
  }
70
70
  },
71
71
  "./package.json": "./package.json"
@@ -76,9 +76,10 @@
76
76
  "README.md",
77
77
  "LICENSE"
78
78
  ],
79
+ "module": "./dist/index.js",
79
80
  "scripts": {
80
- "build": "turbo build:compile --filter @langchain/anthropic",
81
- "build:compile": "pnpm --filter @langchain/build compile @langchain/anthropic",
81
+ "build": "turbo build:compile --filter @langchain/anthropic --output-logs new-only",
82
+ "build:compile": "tsdown",
82
83
  "lint:eslint": "eslint --cache src/",
83
84
  "lint:dpdm": "dpdm --skip-dynamic-imports circular --exit-code circular:1 --no-warning --no-tree src/*.ts src/**/*.ts",
84
85
  "lint": "pnpm lint:eslint && pnpm lint:dpdm",
@@ -1 +0,0 @@
1
- {"version":3,"file":"chat_models.d.cts","names":["Anthropic","ClientOptions","Stream","CallbackManagerForLLMRun","AIMessageChunk","BaseMessage","ChatGenerationChunk","ChatResult","BaseChatModel","BaseChatModelCallOptions","LangSmithParams","BaseChatModelParams","StructuredOutputMethodOptions","BaseLanguageModelInput","ModelProfile","Runnable","InteropZodType","AnthropicContextManagementConfigParam","AnthropicMessageCreateParams","AnthropicMessageStreamEvent","AnthropicRequestOptions","AnthropicStreamingMessageCreateParams","AnthropicThinkingConfigParam","AnthropicToolChoice","ChatAnthropicOutputFormat","ChatAnthropicToolType","AnthropicBeta","ChatAnthropicCallOptions","AnthropicInput","Record","Pick","AnthropicMessagesModelId","Model","NonNullable","Kwargs","ChatAnthropicMessages","CallOptions","Messages","ToolUnion","Partial","Omit","Metadata","TextBlockParam","ThinkingConfigParam","ToolChoice","AsyncGenerator","MessageCreateParamsNonStreaming","MessageCreateParamsStreaming","_langchain_core_outputs0","ChatGeneration","StopReason","Usage","Promise","Message","RunOutput","ChatAnthropic"],"sources":["../src/chat_models.d.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { BaseChatModel, BaseChatModelCallOptions, LangSmithParams, type BaseChatModelParams } from \"@langchain/core/language_models/chat_models\";\nimport { type StructuredOutputMethodOptions, type BaseLanguageModelInput } from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { Runnable } from \"@langchain/core/runnables\";\nimport { InteropZodType } from \"@langchain/core/utils/types\";\nimport { AnthropicContextManagementConfigParam, AnthropicMessageCreateParams, AnthropicMessageStreamEvent, AnthropicRequestOptions, AnthropicStreamingMessageCreateParams, AnthropicThinkingConfigParam, AnthropicToolChoice, ChatAnthropicOutputFormat, ChatAnthropicToolType } from \"./types.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\nexport interface ChatAnthropicCallOptions extends BaseChatModelCallOptions, Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId = Anthropic.Model | (string & NonNullable<unknown>);\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n /** Whether to stream the results or not */\n streaming?: boolean;\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class ChatAnthropicMessages<CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions> extends BaseChatModel<CallOptions, AIMessageChunk> implements AnthropicInput {\n static lc_name(): string;\n get lc_secrets(): {\n [key: string]: string;\n } | undefined;\n get lc_aliases(): Record<string, string>;\n lc_serializable: boolean;\n anthropicApiKey?: string;\n apiKey?: string;\n apiUrl?: string;\n temperature?: number;\n topK?: number;\n topP?: number;\n maxTokens: number;\n modelName: string;\n model: string;\n invocationKwargs?: Kwargs;\n stopSequences?: string[];\n streaming: boolean;\n clientOptions: ClientOptions;\n thinking: AnthropicThinkingConfigParam;\n contextManagement?: AnthropicContextManagementConfigParam;\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n // Used for streaming requests\n protected streamingClient: Anthropic;\n streamUsage: boolean;\n betas?: AnthropicBeta[];\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n constructor(fields?: AnthropicInput & BaseChatModelParams);\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams;\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(tools: ChatAnthropicCallOptions[\"tools\"]): Anthropic.Messages.ToolUnion[] | undefined;\n bindTools(tools: ChatAnthropicToolType[], kwargs?: Partial<CallOptions>): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions>;\n /**\n * Get the parameters used to invoke the model\n */\n invocationParams(options?: this[\"ParsedCallOptions\"]): Omit<AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams, \"messages\"> & Kwargs;\n /** @ignore */\n _identifyingParams(): {\n max_tokens: number;\n model: Anthropic.Model;\n metadata?: Anthropic.Metadata | undefined;\n service_tier?: \"auto\" | \"standard_only\" | undefined;\n stop_sequences?: string[] | undefined;\n system?: string | Anthropic.TextBlockParam[] | undefined;\n temperature?: number | undefined;\n thinking?: Anthropic.ThinkingConfigParam | undefined;\n tool_choice?: Anthropic.ToolChoice | undefined;\n tools?: Anthropic.ToolUnion[] | undefined;\n top_k?: number | undefined;\n top_p?: number | undefined;\n stream?: boolean | undefined;\n model_name: string;\n };\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams(): {\n max_tokens: number;\n model: Anthropic.Model;\n metadata?: Anthropic.Metadata | undefined;\n service_tier?: \"auto\" | \"standard_only\" | undefined;\n stop_sequences?: string[] | undefined;\n system?: string | Anthropic.TextBlockParam[] | undefined;\n temperature?: number | undefined;\n thinking?: Anthropic.ThinkingConfigParam | undefined;\n tool_choice?: Anthropic.ToolChoice | undefined;\n tools?: Anthropic.ToolUnion[] | undefined;\n top_k?: number | undefined;\n top_p?: number | undefined;\n stream?: boolean | undefined;\n model_name: string;\n };\n _streamResponseChunks(messages: BaseMessage[], options: this[\"ParsedCallOptions\"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<ChatGenerationChunk>;\n /** @ignore */\n _generateNonStreaming(messages: BaseMessage[], params: Omit<Anthropic.Messages.MessageCreateParamsNonStreaming | Anthropic.Messages.MessageCreateParamsStreaming, \"messages\"> & Kwargs, requestOptions: AnthropicRequestOptions): Promise<{\n generations: import(\"@langchain/core/outputs\").ChatGeneration[];\n llmOutput: {\n id: string;\n model: Anthropic.Model;\n stop_reason: Anthropic.StopReason | null;\n stop_sequence: string | null;\n usage: Anthropic.Usage;\n };\n }>;\n /** @ignore */\n _generate(messages: BaseMessage[], options: this[\"ParsedCallOptions\"], runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected createStreamWithRetry(request: AnthropicStreamingMessageCreateParams & Kwargs, options?: AnthropicRequestOptions): Promise<Stream<AnthropicMessageStreamEvent>>;\n /** @ignore */\n protected completionWithRetry(request: AnthropicMessageCreateParams & Kwargs, options: AnthropicRequestOptions): Promise<Anthropic.Message>;\n _llmType(): string;\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile;\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>, config?: StructuredOutputMethodOptions<false>): Runnable<BaseLanguageModelInput, RunOutput>;\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>, config?: StructuredOutputMethodOptions<true>): Runnable<BaseLanguageModelInput, {\n raw: BaseMessage;\n parsed: RunOutput;\n }>;\n}\nexport declare class ChatAnthropic extends ChatAnthropicMessages {\n}\nexport {};\n"],"mappings":";;;;;;;;;;;;;;;UAYiB2B,wBAAAA,SAAiClB,0BAA0BqB,KAAKF;UACrEH;;AADZ;;;EAA+F,WACnFA,CAAAA,EAKMF,mBALNE;EAAqB;;;;EAyBR,OA1ByBhB,CAAAA,EAWpCoB,MAXoCpB,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAwB;AAAM;AA+BhF;;EAAoC,SAAGT,CAAAA,EAAAA,MAAUgC;EAAK;AAAwB;AAI9E;EAA+B,aAAA,CAAA,EAfXR,yBAeW;EAAA;;;;;EA6DW,KAI3BF,CAAAA,EA1EHI,aA0EGJ,EAAAA;;;AAUU;AACxB;AAqboBa,KArgBTJ,wBAAAA,GAA2B/B,WAAAA,CAAUgC,KAqgBP,GAAA,CAAA,MAAA,GArgByBC,WAqgBzB,CAAA,OAAA,CAAA,CAAA;;;;AAAgGG,UAjgBzHR,cAAAA,CAigByHQ;EAAW;;;;;;EAqBxF,WAElCpC,CAAAA,EAAAA,MAAAA;EAAS;;;;;EAWG,IAAGW,CAAAA,EAAAA,MAAAA;EAAmB;;;;;;;;EASgE,IAAEyB,CAAAA,EAAAA,MAAAA,GAAAA,IAAAA;EAAW;EAApD,SAItBlB,CAAAA,EAAAA,MAAAA;EAA4B;;;;;EAKvD,aAGXlB,CAAAA,EAAU0C,MAAAA,EAAAA;EAAc;EAEF,SAC1B1C,CAAAA,EAAAA,OAAU4C;EAAU;EACP,eAWVZ,CAAAA,EAAAA,MAAAA;EAAK;EACO,MAGXhC,CAAAA,EAAAA,MAAU0C;EAAc;EAEF,eAChBE,CAAAA,EAAAA,MAAAA;EAAU;EACP,SAMCvC,CAAAA,EA7iBpB0B,wBA6iBoB1B;EAAW;EAA6E,KAAkBC,CAAAA,EA3iBlIyB,wBA2iBkIzB;EAAmB;EAApB,aAEzGD,CAAAA,EA3iBhBJ,aA2iBgBI;EAAW;;;;EAA2I,gBAAkBe,CAAAA,EAtiBrLc,MAsiBqLd;EAAuB;;;;EAOjM,WAPoMgC,CAAAA,EAAAA,OAAAA;EAAO;;;;;EAkB3J;EAAS,YAAYhC,CAAAA,EAAAA,CAAAA,OAAAA,EA5iB1EnB,aA4iB0EmB,EAAAA,GAAAA,GAAAA;EAAuB;;;EAAU,QAE7FF,CAAAA,EA1iB5BI,4BA0iB4BJ;EAA4B;;;EAAuE,iBAAzBkC,CAAAA,EAtiB7FnC,qCAsiB6FmC;EAAO;;;;;EAsB/B,KAEtFvB,CAAAA,EAxjBKH,aAwjBLG,EAAAA;;;;;;;KAjjBFK,MAAAA,GAASL,MAojBgFyB,CAAAA,MAAAA,EAAAA,GAAAA,CAAAA;;;;;;;;;;AArIkG;AA4IhM;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cA5IqBnB,0CAA0CR,2BAA2BA,kCAAkCnB,cAAc4B,aAAahC,2BAA2BwB;;;;;oBAK5JC;;;;;;;;;;;qBAWCK;;;iBAGJjC;YACLqB;sBACUL;;yBAEGjB;;6BAEIA;;UAEnB0B;;;;;;0BAMgBzB,kBAAkBD;uBACrB4B,iBAAiBjB;mDACWD;;;;;;;yCAOViB,oCAAoC3B,WAAAA,CAAUqC,QAAAA,CAASC;mBAC7Eb,kCAAkCc,QAAQH,eAAerB,SAASF,wBAAwBT,gBAAgBgC;;;;yDAIpEI,KAAKtB,+BAA+BG,qDAAqDa;;;;WAIrIlC,WAAAA,CAAUgC;eACNhC,WAAAA,CAAUyC;;;sBAGHzC,WAAAA,CAAU0C;;eAEjB1C,WAAAA,CAAU2C;kBACP3C,WAAAA,CAAU4C;YAChB5C,WAAAA,CAAUsC;;;;;;;;;;;WAWXtC,WAAAA,CAAUgC;eACNhC,WAAAA,CAAUyC;;;sBAGHzC,WAAAA,CAAU0C;;eAEjB1C,WAAAA,CAAU2C;kBACP3C,WAAAA,CAAU4C;YAChB5C,WAAAA,CAAUsC;;;;;;kCAMUjC,gEAAgEF,2BAA2B0C,eAAevC;;kCAE1GD,uBAAuBmC,KAAKxC,WAAAA,CAAUqC,QAAAA,CAASS,kCAAkC9C,WAAAA,CAAUqC,QAAAA,CAASU,4CAA4Cb,wBAAwBd,0BAA0BgC;iBAAHJ,wBAAAA,CAC5KC,cAAAA;;;aAGpCjD,WAAAA,CAAUgC;mBACJhC,WAAAA,CAAUkD;;aAEhBlD,WAAAA,CAAUmD;;;;sBAIL9C,gEAAgEF,2BAA2BiD,QAAQ7C;;;;;;;2CAO9Ec,wCAAwCa,kBAAkBd,0BAA0BgC,QAAQlD,OAAOiB;;yCAErGD,+BAA+BgB,iBAAiBd,0BAA0BgC,QAAQpD,WAAAA,CAAUqD;;;;;;;;;;;;;;;;;;;iBAmBpHvC;;;oBAGGe,sBAAsBA,mCAAmCb,eAAesC;;IAEvFzB,8BAA8BjB,uCAAuCG,SAASF,wBAAwByC;;;oBAGvFzB,sBAAsBA,mCAAmCb,eAAesC;;IAEvFzB,8BAA8BjB,sCAAsCG,SAASF;SACvER;YACGiD;;;cAGKC,aAAAA,SAAsBpB,qBAAqB"}
@@ -1 +0,0 @@
1
- {"version":3,"file":"chat_models.d.ts","names":["Anthropic","ClientOptions","Stream","CallbackManagerForLLMRun","AIMessageChunk","BaseMessage","ChatGenerationChunk","ChatResult","BaseChatModel","BaseChatModelCallOptions","LangSmithParams","BaseChatModelParams","StructuredOutputMethodOptions","BaseLanguageModelInput","ModelProfile","Runnable","InteropZodType","AnthropicContextManagementConfigParam","AnthropicMessageCreateParams","AnthropicMessageStreamEvent","AnthropicRequestOptions","AnthropicStreamingMessageCreateParams","AnthropicThinkingConfigParam","AnthropicToolChoice","ChatAnthropicOutputFormat","ChatAnthropicToolType","AnthropicBeta","ChatAnthropicCallOptions","AnthropicInput","Record","Pick","AnthropicMessagesModelId","Model","NonNullable","Kwargs","ChatAnthropicMessages","CallOptions","Messages","ToolUnion","Partial","Omit","Metadata","TextBlockParam","ThinkingConfigParam","ToolChoice","AsyncGenerator","MessageCreateParamsNonStreaming","MessageCreateParamsStreaming","_langchain_core_outputs0","ChatGeneration","StopReason","Usage","Promise","Message","RunOutput","ChatAnthropic"],"sources":["../src/chat_models.d.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { BaseChatModel, BaseChatModelCallOptions, LangSmithParams, type BaseChatModelParams } from \"@langchain/core/language_models/chat_models\";\nimport { type StructuredOutputMethodOptions, type BaseLanguageModelInput } from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { Runnable } from \"@langchain/core/runnables\";\nimport { InteropZodType } from \"@langchain/core/utils/types\";\nimport { AnthropicContextManagementConfigParam, AnthropicMessageCreateParams, AnthropicMessageStreamEvent, AnthropicRequestOptions, AnthropicStreamingMessageCreateParams, AnthropicThinkingConfigParam, AnthropicToolChoice, ChatAnthropicOutputFormat, ChatAnthropicToolType } from \"./types.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\nexport interface ChatAnthropicCallOptions extends BaseChatModelCallOptions, Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId = Anthropic.Model | (string & NonNullable<unknown>);\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n /** Whether to stream the results or not */\n streaming?: boolean;\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport declare class ChatAnthropicMessages<CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions> extends BaseChatModel<CallOptions, AIMessageChunk> implements AnthropicInput {\n static lc_name(): string;\n get lc_secrets(): {\n [key: string]: string;\n } | undefined;\n get lc_aliases(): Record<string, string>;\n lc_serializable: boolean;\n anthropicApiKey?: string;\n apiKey?: string;\n apiUrl?: string;\n temperature?: number;\n topK?: number;\n topP?: number;\n maxTokens: number;\n modelName: string;\n model: string;\n invocationKwargs?: Kwargs;\n stopSequences?: string[];\n streaming: boolean;\n clientOptions: ClientOptions;\n thinking: AnthropicThinkingConfigParam;\n contextManagement?: AnthropicContextManagementConfigParam;\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n // Used for streaming requests\n protected streamingClient: Anthropic;\n streamUsage: boolean;\n betas?: AnthropicBeta[];\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n constructor(fields?: AnthropicInput & BaseChatModelParams);\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams;\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(tools: ChatAnthropicCallOptions[\"tools\"]): Anthropic.Messages.ToolUnion[] | undefined;\n bindTools(tools: ChatAnthropicToolType[], kwargs?: Partial<CallOptions>): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions>;\n /**\n * Get the parameters used to invoke the model\n */\n invocationParams(options?: this[\"ParsedCallOptions\"]): Omit<AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams, \"messages\"> & Kwargs;\n /** @ignore */\n _identifyingParams(): {\n max_tokens: number;\n model: Anthropic.Model;\n metadata?: Anthropic.Metadata | undefined;\n service_tier?: \"auto\" | \"standard_only\" | undefined;\n stop_sequences?: string[] | undefined;\n system?: string | Anthropic.TextBlockParam[] | undefined;\n temperature?: number | undefined;\n thinking?: Anthropic.ThinkingConfigParam | undefined;\n tool_choice?: Anthropic.ToolChoice | undefined;\n tools?: Anthropic.ToolUnion[] | undefined;\n top_k?: number | undefined;\n top_p?: number | undefined;\n stream?: boolean | undefined;\n model_name: string;\n };\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams(): {\n max_tokens: number;\n model: Anthropic.Model;\n metadata?: Anthropic.Metadata | undefined;\n service_tier?: \"auto\" | \"standard_only\" | undefined;\n stop_sequences?: string[] | undefined;\n system?: string | Anthropic.TextBlockParam[] | undefined;\n temperature?: number | undefined;\n thinking?: Anthropic.ThinkingConfigParam | undefined;\n tool_choice?: Anthropic.ToolChoice | undefined;\n tools?: Anthropic.ToolUnion[] | undefined;\n top_k?: number | undefined;\n top_p?: number | undefined;\n stream?: boolean | undefined;\n model_name: string;\n };\n _streamResponseChunks(messages: BaseMessage[], options: this[\"ParsedCallOptions\"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<ChatGenerationChunk>;\n /** @ignore */\n _generateNonStreaming(messages: BaseMessage[], params: Omit<Anthropic.Messages.MessageCreateParamsNonStreaming | Anthropic.Messages.MessageCreateParamsStreaming, \"messages\"> & Kwargs, requestOptions: AnthropicRequestOptions): Promise<{\n generations: import(\"@langchain/core/outputs\").ChatGeneration[];\n llmOutput: {\n id: string;\n model: Anthropic.Model;\n stop_reason: Anthropic.StopReason | null;\n stop_sequence: string | null;\n usage: Anthropic.Usage;\n };\n }>;\n /** @ignore */\n _generate(messages: BaseMessage[], options: this[\"ParsedCallOptions\"], runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected createStreamWithRetry(request: AnthropicStreamingMessageCreateParams & Kwargs, options?: AnthropicRequestOptions): Promise<Stream<AnthropicMessageStreamEvent>>;\n /** @ignore */\n protected completionWithRetry(request: AnthropicMessageCreateParams & Kwargs, options: AnthropicRequestOptions): Promise<Anthropic.Message>;\n _llmType(): string;\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile;\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>, config?: StructuredOutputMethodOptions<false>): Runnable<BaseLanguageModelInput, RunOutput>;\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>, config?: StructuredOutputMethodOptions<true>): Runnable<BaseLanguageModelInput, {\n raw: BaseMessage;\n parsed: RunOutput;\n }>;\n}\nexport declare class ChatAnthropic extends ChatAnthropicMessages {\n}\nexport {};\n"],"mappings":";;;;;;;;;;;;;;;UAYiB2B,wBAAAA,SAAiClB,0BAA0BqB,KAAKF;UACrEH;;AADZ;;;EAA+F,WACnFA,CAAAA,EAKMF,mBALNE;EAAqB;;;;EAyBR,OA1ByBhB,CAAAA,EAWpCoB,MAXoCpB,CAAAA,MAAAA,EAAAA,MAAAA,CAAAA;EAAwB;AAAM;AA+BhF;;EAAoC,SAAGT,CAAAA,EAAAA,MAAUgC;EAAK;AAAwB;AAI9E;EAA+B,aAAA,CAAA,EAfXR,yBAeW;EAAA;;;;;EA6DW,KAI3BF,CAAAA,EA1EHI,aA0EGJ,EAAAA;;;AAUU;AACxB;AAqboBa,KArgBTJ,wBAAAA,GAA2B/B,WAAAA,CAAUgC,KAqgBP,GAAA,CAAA,MAAA,GArgByBC,WAqgBzB,CAAA,OAAA,CAAA,CAAA;;;;AAAgGG,UAjgBzHR,cAAAA,CAigByHQ;EAAW;;;;;;EAqBxF,WAElCpC,CAAAA,EAAAA,MAAAA;EAAS;;;;;EAWG,IAAGW,CAAAA,EAAAA,MAAAA;EAAmB;;;;;;;;EASgE,IAAEyB,CAAAA,EAAAA,MAAAA,GAAAA,IAAAA;EAAW;EAApD,SAItBlB,CAAAA,EAAAA,MAAAA;EAA4B;;;;;EAKvD,aAGXlB,CAAAA,EAAU0C,MAAAA,EAAAA;EAAc;EAEF,SAC1B1C,CAAAA,EAAAA,OAAU4C;EAAU;EACP,eAWVZ,CAAAA,EAAAA,MAAAA;EAAK;EACO,MAGXhC,CAAAA,EAAAA,MAAU0C;EAAc;EAEF,eAChBE,CAAAA,EAAAA,MAAAA;EAAU;EACP,SAMCvC,CAAAA,EA7iBpB0B,wBA6iBoB1B;EAAW;EAA6E,KAAkBC,CAAAA,EA3iBlIyB,wBA2iBkIzB;EAAmB;EAApB,aAEzGD,CAAAA,EA3iBhBJ,aA2iBgBI;EAAW;;;;EAA2I,gBAAkBe,CAAAA,EAtiBrLc,MAsiBqLd;EAAuB;;;;EAOjM,WAPoMgC,CAAAA,EAAAA,OAAAA;EAAO;;;;;EAkB3J;EAAS,YAAYhC,CAAAA,EAAAA,CAAAA,OAAAA,EA5iB1EnB,aA4iB0EmB,EAAAA,GAAAA,GAAAA;EAAuB;;;EAAU,QAE7FF,CAAAA,EA1iB5BI,4BA0iB4BJ;EAA4B;;;EAAuE,iBAAzBkC,CAAAA,EAtiB7FnC,qCAsiB6FmC;EAAO;;;;;EAsB/B,KAEtFvB,CAAAA,EAxjBKH,aAwjBLG,EAAAA;;;;;;;KAjjBFK,MAAAA,GAASL,MAojBgFyB,CAAAA,MAAAA,EAAAA,GAAAA,CAAAA;;;;;;;;;;AArIkG;AA4IhM;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cA5IqBnB,0CAA0CR,2BAA2BA,kCAAkCnB,cAAc4B,aAAahC,2BAA2BwB;;;;;oBAK5JC;;;;;;;;;;;qBAWCK;;;iBAGJjC;YACLqB;sBACUL;;yBAEGjB;;6BAEIA;;UAEnB0B;;;;;;0BAMgBzB,kBAAkBD;uBACrB4B,iBAAiBjB;mDACWD;;;;;;;yCAOViB,oCAAoC3B,WAAAA,CAAUqC,QAAAA,CAASC;mBAC7Eb,kCAAkCc,QAAQH,eAAerB,SAASF,wBAAwBT,gBAAgBgC;;;;yDAIpEI,KAAKtB,+BAA+BG,qDAAqDa;;;;WAIrIlC,WAAAA,CAAUgC;eACNhC,WAAAA,CAAUyC;;;sBAGHzC,WAAAA,CAAU0C;;eAEjB1C,WAAAA,CAAU2C;kBACP3C,WAAAA,CAAU4C;YAChB5C,WAAAA,CAAUsC;;;;;;;;;;;WAWXtC,WAAAA,CAAUgC;eACNhC,WAAAA,CAAUyC;;;sBAGHzC,WAAAA,CAAU0C;;eAEjB1C,WAAAA,CAAU2C;kBACP3C,WAAAA,CAAU4C;YAChB5C,WAAAA,CAAUsC;;;;;;kCAMUjC,gEAAgEF,2BAA2B0C,eAAevC;;kCAE1GD,uBAAuBmC,KAAKxC,WAAAA,CAAUqC,QAAAA,CAASS,kCAAkC9C,WAAAA,CAAUqC,QAAAA,CAASU,4CAA4Cb,wBAAwBd,0BAA0BgC;iBAAHJ,wBAAAA,CAC5KC,cAAAA;;;aAGpCjD,WAAAA,CAAUgC;mBACJhC,WAAAA,CAAUkD;;aAEhBlD,WAAAA,CAAUmD;;;;sBAIL9C,gEAAgEF,2BAA2BiD,QAAQ7C;;;;;;;2CAO9Ec,wCAAwCa,kBAAkBd,0BAA0BgC,QAAQlD,OAAOiB;;yCAErGD,+BAA+BgB,iBAAiBd,0BAA0BgC,QAAQpD,WAAAA,CAAUqD;;;;;;;;;;;;;;;;;;;iBAmBpHvC;;;oBAGGe,sBAAsBA,mCAAmCb,eAAesC;;IAEvFzB,8BAA8BjB,uCAAuCG,SAASF,wBAAwByC;;;oBAGvFzB,sBAAsBA,mCAAmCb,eAAesC;;IAEvFzB,8BAA8BjB,sCAAsCG,SAASF;SACvER;YACGiD;;;cAGKC,aAAAA,SAAsBpB,qBAAqB"}
@@ -1 +0,0 @@
1
- {"version":3,"file":"types.d.cts","names":["Anthropic","BindToolsInput","AnthropicToolResponse","Record","AnthropicMessageParam","MessageParam","AnthropicMessageResponse","ContentBlock","AnthropicMessageCreateParams","MessageCreateParamsNonStreaming","AnthropicStreamingMessageCreateParams","MessageCreateParamsStreaming","AnthropicThinkingConfigParam","ThinkingConfigParam","AnthropicContextManagementConfigParam","Beta","BetaContextManagementConfig","AnthropicMessageStreamEvent","MessageStreamEvent","AnthropicRequestOptions","RequestOptions","AnthropicToolChoice","ChatAnthropicToolType","Messages","Tool","ChatAnthropicOutputFormat","BetaJSONOutputFormat","AnthropicTextBlockParam","TextBlockParam","AnthropicImageBlockParam","ImageBlockParam","AnthropicToolUseBlockParam","ToolUseBlockParam","AnthropicToolResultBlockParam","ToolResultBlockParam","AnthropicDocumentBlockParam","DocumentBlockParam","AnthropicThinkingBlockParam","ThinkingBlockParam","AnthropicRedactedThinkingBlockParam","RedactedThinkingBlockParam","AnthropicServerToolUseBlockParam","ServerToolUseBlockParam","AnthropicWebSearchToolResultBlockParam","WebSearchToolResultBlockParam","AnthropicWebSearchResultBlockParam","WebSearchResultBlockParam","AnthropicSearchResultBlockParam","SearchResultBlockParam","AnthropicContainerUploadBlockParam","BetaContainerUploadBlockParam","ChatAnthropicContentBlock","isAnthropicImageBlockParam","AnthropicBuiltInToolUnion","ToolUnion","Exclude"],"sources":["../src/types.d.ts"],"sourcesContent":["import Anthropic from \"@anthropic-ai/sdk\";\nimport { BindToolsInput } from \"@langchain/core/language_models/chat_models\";\nexport type AnthropicToolResponse = {\n type: \"tool_use\";\n id: string;\n name: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n input: Record<string, any>;\n};\nexport type AnthropicMessageParam = Anthropic.MessageParam;\nexport type AnthropicMessageResponse = Anthropic.ContentBlock | AnthropicToolResponse;\nexport type AnthropicMessageCreateParams = Anthropic.MessageCreateParamsNonStreaming;\nexport type AnthropicStreamingMessageCreateParams = Anthropic.MessageCreateParamsStreaming;\nexport type AnthropicThinkingConfigParam = Anthropic.ThinkingConfigParam;\nexport type AnthropicContextManagementConfigParam = Anthropic.Beta.BetaContextManagementConfig;\nexport type AnthropicMessageStreamEvent = Anthropic.MessageStreamEvent;\nexport type AnthropicRequestOptions = Anthropic.RequestOptions;\nexport type AnthropicToolChoice = {\n type: \"tool\";\n name: string;\n} | \"any\" | \"auto\" | \"none\" | string;\nexport type ChatAnthropicToolType = Anthropic.Messages.Tool | BindToolsInput;\nexport type ChatAnthropicOutputFormat = Anthropic.Beta.BetaJSONOutputFormat;\nexport type AnthropicTextBlockParam = Anthropic.Messages.TextBlockParam;\nexport type AnthropicImageBlockParam = Anthropic.Messages.ImageBlockParam;\nexport type AnthropicToolUseBlockParam = Anthropic.Messages.ToolUseBlockParam;\nexport type AnthropicToolResultBlockParam = Anthropic.Messages.ToolResultBlockParam;\nexport type AnthropicDocumentBlockParam = Anthropic.Messages.DocumentBlockParam;\nexport type AnthropicThinkingBlockParam = Anthropic.Messages.ThinkingBlockParam;\nexport type AnthropicRedactedThinkingBlockParam = Anthropic.Messages.RedactedThinkingBlockParam;\nexport type AnthropicServerToolUseBlockParam = Anthropic.Messages.ServerToolUseBlockParam;\nexport type AnthropicWebSearchToolResultBlockParam = Anthropic.Messages.WebSearchToolResultBlockParam;\nexport type AnthropicWebSearchResultBlockParam = Anthropic.Messages.WebSearchResultBlockParam;\nexport type AnthropicSearchResultBlockParam = Anthropic.SearchResultBlockParam;\nexport type AnthropicContainerUploadBlockParam = Anthropic.Beta.BetaContainerUploadBlockParam;\n// Union of all possible content block types including server tool use\nexport type ChatAnthropicContentBlock = AnthropicTextBlockParam | AnthropicImageBlockParam | AnthropicToolUseBlockParam | AnthropicToolResultBlockParam | AnthropicDocumentBlockParam | AnthropicThinkingBlockParam | AnthropicRedactedThinkingBlockParam | AnthropicServerToolUseBlockParam | AnthropicWebSearchToolResultBlockParam | AnthropicWebSearchResultBlockParam | AnthropicSearchResultBlockParam | AnthropicContainerUploadBlockParam;\nexport declare function isAnthropicImageBlockParam(block: unknown): block is AnthropicImageBlockParam;\n// Type for built-in tools only (excludes custom Tool type)\nexport type AnthropicBuiltInToolUnion = Exclude<Anthropic.Messages.ToolUnion, Anthropic.Messages.Tool>;\n"],"mappings":";;;;;AAqBYsB,KAVAd,4BAAAA,GAA+BR,SAAAA,CAAUS,+BAUpB;AAAA,KATrBC,qCAAAA,GAAwCV,SAAAA,CAAUW,4BAS7B;AAAGX,KARxBY,4BAAAA,GAA+BZ,SAAAA,CAAUa,mBAQEW;AAAOvB,KAPlDa,qCAAAA,GAAwCd,SAAAA,CAAUe,IAAAA,CAAKC,2BAOLf;AAAc,KANhEgB,2BAAAA,GAA8BjB,SAAAA,CAAUkB,kBAMwB;AAChEO,KANAN,uBAAAA,GAA0BnB,SAAAA,CAAUoB,cAMOM;AAC3CC,KANAN,mBAAAA,GAMuB;EACvBQ,IAAAA,EAAAA,MAAAA;EACAE,IAAAA,EAAAA,MAAAA;AACZ,CAAA,GAAYE,KAAAA,GAAAA,MAAAA,GAAAA,MAAAA,GAAAA,MAA6B;AAC7BE,KANAb,qBAAAA,GAAwBtB,SAAAA,CAAUuB,QAAAA,CAASC,IAMHD,GANUtB,cAMDmC;AACjDC,KANAZ,yBAAAA,GAA4BzB,SAAAA,CAAUe,IAAAA,CAAKW,oBAMMY;AACjDC,KANAZ,uBAAAA,GAA0B3B,SAAAA,CAAUuB,QAAAA,CAASK,cAMGL;AAChDkB,KANAZ,wBAAAA,GAA2B7B,SAAAA,CAAUuB,QAAAA,CAASO,eAMQY;AACtDC,KANAZ,0BAAAA,GAA6B/B,SAAAA,CAAUuB,QAAAA,CAASS,iBAMYY;AAC5DC,KANAZ,6BAAAA,GAAgCjC,SAAAA,CAAUuB,QAAAA,CAASW,oBAMKY;AACxDC,KANAZ,2BAAAA,GAA8BnC,SAAAA,CAAUuB,QAAAA,CAASa,kBAMLY;AAC5CC,KANAZ,2BAAAA,GAA8BrC,SAAAA,CAAUuB,QAAAA,CAASe,kBAMGY;AAEpDC,KAPAZ,mCAAAA,GAAsCvC,SAAAA,CAAUuB,QAAAA,CAASiB,0BAOhC;AAAA,KANzBC,gCAAAA,GAAmCzC,SAAAA,CAAUuB,QAAAA,CAASmB,uBAM7B;AAAGf,KAL5BgB,sCAAAA,GAAyC3C,SAAAA,CAAUuB,QAAAA,CAASqB,6BAKhCjB;AAA0BE,KAJtDgB,kCAAAA,GAAqC7C,SAAAA,CAAUuB,QAAAA,CAASuB,yBAIFjB;AAA2BE,KAHjFgB,+BAAAA,GAAkC/C,SAAAA,CAAUgD,sBAGqCjB;AAA6BE,KAF9GgB,kCAAAA,GAAqCjD,SAAAA,CAAUe,IAAAA,CAAKmC,6BAE0DjB;;AAA8DI,KAA5Kc,yBAAAA,GAA4BxB,uBAAgJU,GAAtHR,wBAAsHQ,GAA3FN,0BAA2FM,GAA9DJ,6BAA8DI,GAA9BF,2BAA8BE,GAAAA,2BAAAA,GAA8BE,mCAA9BF,GAAoEI,gCAApEJ,GAAuGM,sCAAvGN,GAAgJQ,kCAAhJR,GAAqLU,+BAArLV,GAAuNY,kCAAvNZ"}
@@ -1 +0,0 @@
1
- {"version":3,"file":"types.d.ts","names":["Anthropic","BindToolsInput","AnthropicToolResponse","Record","AnthropicMessageParam","MessageParam","AnthropicMessageResponse","ContentBlock","AnthropicMessageCreateParams","MessageCreateParamsNonStreaming","AnthropicStreamingMessageCreateParams","MessageCreateParamsStreaming","AnthropicThinkingConfigParam","ThinkingConfigParam","AnthropicContextManagementConfigParam","Beta","BetaContextManagementConfig","AnthropicMessageStreamEvent","MessageStreamEvent","AnthropicRequestOptions","RequestOptions","AnthropicToolChoice","ChatAnthropicToolType","Messages","Tool","ChatAnthropicOutputFormat","BetaJSONOutputFormat","AnthropicTextBlockParam","TextBlockParam","AnthropicImageBlockParam","ImageBlockParam","AnthropicToolUseBlockParam","ToolUseBlockParam","AnthropicToolResultBlockParam","ToolResultBlockParam","AnthropicDocumentBlockParam","DocumentBlockParam","AnthropicThinkingBlockParam","ThinkingBlockParam","AnthropicRedactedThinkingBlockParam","RedactedThinkingBlockParam","AnthropicServerToolUseBlockParam","ServerToolUseBlockParam","AnthropicWebSearchToolResultBlockParam","WebSearchToolResultBlockParam","AnthropicWebSearchResultBlockParam","WebSearchResultBlockParam","AnthropicSearchResultBlockParam","SearchResultBlockParam","AnthropicContainerUploadBlockParam","BetaContainerUploadBlockParam","ChatAnthropicContentBlock","isAnthropicImageBlockParam","AnthropicBuiltInToolUnion","ToolUnion","Exclude"],"sources":["../src/types.d.ts"],"sourcesContent":["import Anthropic from \"@anthropic-ai/sdk\";\nimport { BindToolsInput } from \"@langchain/core/language_models/chat_models\";\nexport type AnthropicToolResponse = {\n type: \"tool_use\";\n id: string;\n name: string;\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n input: Record<string, any>;\n};\nexport type AnthropicMessageParam = Anthropic.MessageParam;\nexport type AnthropicMessageResponse = Anthropic.ContentBlock | AnthropicToolResponse;\nexport type AnthropicMessageCreateParams = Anthropic.MessageCreateParamsNonStreaming;\nexport type AnthropicStreamingMessageCreateParams = Anthropic.MessageCreateParamsStreaming;\nexport type AnthropicThinkingConfigParam = Anthropic.ThinkingConfigParam;\nexport type AnthropicContextManagementConfigParam = Anthropic.Beta.BetaContextManagementConfig;\nexport type AnthropicMessageStreamEvent = Anthropic.MessageStreamEvent;\nexport type AnthropicRequestOptions = Anthropic.RequestOptions;\nexport type AnthropicToolChoice = {\n type: \"tool\";\n name: string;\n} | \"any\" | \"auto\" | \"none\" | string;\nexport type ChatAnthropicToolType = Anthropic.Messages.Tool | BindToolsInput;\nexport type ChatAnthropicOutputFormat = Anthropic.Beta.BetaJSONOutputFormat;\nexport type AnthropicTextBlockParam = Anthropic.Messages.TextBlockParam;\nexport type AnthropicImageBlockParam = Anthropic.Messages.ImageBlockParam;\nexport type AnthropicToolUseBlockParam = Anthropic.Messages.ToolUseBlockParam;\nexport type AnthropicToolResultBlockParam = Anthropic.Messages.ToolResultBlockParam;\nexport type AnthropicDocumentBlockParam = Anthropic.Messages.DocumentBlockParam;\nexport type AnthropicThinkingBlockParam = Anthropic.Messages.ThinkingBlockParam;\nexport type AnthropicRedactedThinkingBlockParam = Anthropic.Messages.RedactedThinkingBlockParam;\nexport type AnthropicServerToolUseBlockParam = Anthropic.Messages.ServerToolUseBlockParam;\nexport type AnthropicWebSearchToolResultBlockParam = Anthropic.Messages.WebSearchToolResultBlockParam;\nexport type AnthropicWebSearchResultBlockParam = Anthropic.Messages.WebSearchResultBlockParam;\nexport type AnthropicSearchResultBlockParam = Anthropic.SearchResultBlockParam;\nexport type AnthropicContainerUploadBlockParam = Anthropic.Beta.BetaContainerUploadBlockParam;\n// Union of all possible content block types including server tool use\nexport type ChatAnthropicContentBlock = AnthropicTextBlockParam | AnthropicImageBlockParam | AnthropicToolUseBlockParam | AnthropicToolResultBlockParam | AnthropicDocumentBlockParam | AnthropicThinkingBlockParam | AnthropicRedactedThinkingBlockParam | AnthropicServerToolUseBlockParam | AnthropicWebSearchToolResultBlockParam | AnthropicWebSearchResultBlockParam | AnthropicSearchResultBlockParam | AnthropicContainerUploadBlockParam;\nexport declare function isAnthropicImageBlockParam(block: unknown): block is AnthropicImageBlockParam;\n// Type for built-in tools only (excludes custom Tool type)\nexport type AnthropicBuiltInToolUnion = Exclude<Anthropic.Messages.ToolUnion, Anthropic.Messages.Tool>;\n"],"mappings":";;;;;AAqBYsB,KAVAd,4BAAAA,GAA+BR,SAAAA,CAAUS,+BAUpB;AAAA,KATrBC,qCAAAA,GAAwCV,SAAAA,CAAUW,4BAS7B;AAAGX,KARxBY,4BAAAA,GAA+BZ,SAAAA,CAAUa,mBAQEW;AAAOvB,KAPlDa,qCAAAA,GAAwCd,SAAAA,CAAUe,IAAAA,CAAKC,2BAOLf;AAAc,KANhEgB,2BAAAA,GAA8BjB,SAAAA,CAAUkB,kBAMwB;AAChEO,KANAN,uBAAAA,GAA0BnB,SAAAA,CAAUoB,cAMOM;AAC3CC,KANAN,mBAAAA,GAMuB;EACvBQ,IAAAA,EAAAA,MAAAA;EACAE,IAAAA,EAAAA,MAAAA;AACZ,CAAA,GAAYE,KAAAA,GAAAA,MAAAA,GAAAA,MAAAA,GAAAA,MAA6B;AAC7BE,KANAb,qBAAAA,GAAwBtB,SAAAA,CAAUuB,QAAAA,CAASC,IAMHD,GANUtB,cAMDmC;AACjDC,KANAZ,yBAAAA,GAA4BzB,SAAAA,CAAUe,IAAAA,CAAKW,oBAMMY;AACjDC,KANAZ,uBAAAA,GAA0B3B,SAAAA,CAAUuB,QAAAA,CAASK,cAMGL;AAChDkB,KANAZ,wBAAAA,GAA2B7B,SAAAA,CAAUuB,QAAAA,CAASO,eAMQY;AACtDC,KANAZ,0BAAAA,GAA6B/B,SAAAA,CAAUuB,QAAAA,CAASS,iBAMYY;AAC5DC,KANAZ,6BAAAA,GAAgCjC,SAAAA,CAAUuB,QAAAA,CAASW,oBAMKY;AACxDC,KANAZ,2BAAAA,GAA8BnC,SAAAA,CAAUuB,QAAAA,CAASa,kBAMLY;AAC5CC,KANAZ,2BAAAA,GAA8BrC,SAAAA,CAAUuB,QAAAA,CAASe,kBAMGY;AAEpDC,KAPAZ,mCAAAA,GAAsCvC,SAAAA,CAAUuB,QAAAA,CAASiB,0BAOhC;AAAA,KANzBC,gCAAAA,GAAmCzC,SAAAA,CAAUuB,QAAAA,CAASmB,uBAM7B;AAAGf,KAL5BgB,sCAAAA,GAAyC3C,SAAAA,CAAUuB,QAAAA,CAASqB,6BAKhCjB;AAA0BE,KAJtDgB,kCAAAA,GAAqC7C,SAAAA,CAAUuB,QAAAA,CAASuB,yBAIFjB;AAA2BE,KAHjFgB,+BAAAA,GAAkC/C,SAAAA,CAAUgD,sBAGqCjB;AAA6BE,KAF9GgB,kCAAAA,GAAqCjD,SAAAA,CAAUe,IAAAA,CAAKmC,6BAE0DjB;;AAA8DI,KAA5Kc,yBAAAA,GAA4BxB,uBAAgJU,GAAtHR,wBAAsHQ,GAA3FN,0BAA2FM,GAA9DJ,6BAA8DI,GAA9BF,2BAA8BE,GAAAA,2BAAAA,GAA8BE,mCAA9BF,GAAoEI,gCAApEJ,GAAuGM,sCAAvGN,GAAgJQ,kCAAhJR,GAAqLU,+BAArLV,GAAuNY,kCAAvNZ"}
@@ -1 +0,0 @@
1
- {"version":3,"file":"prompts.d.cts","names":["BasePromptValue","Anthropic","convertPromptToAnthropic","Messages","MessageCreateParams"],"sources":["../../src/utils/prompts.d.ts"],"sourcesContent":["import type { BasePromptValue } from \"@langchain/core/prompt_values\";\nimport Anthropic from \"@anthropic-ai/sdk\";\n/**\n * Convert a formatted LangChain prompt (e.g. pulled from the hub) into\n * a format expected by Anthropic's JS SDK.\n *\n * Requires the \"@langchain/anthropic\" package to be installed in addition\n * to the Anthropic SDK.\n *\n * @example\n * ```ts\n * import { convertPromptToAnthropic } from \"langsmith/utils/hub/anthropic\";\n * import { pull } from \"langchain/hub\";\n *\n * import Anthropic from '@anthropic-ai/sdk';\n *\n * const prompt = await pull(\"jacob/joke-generator\");\n * const formattedPrompt = await prompt.invoke({\n * topic: \"cats\",\n * });\n *\n * const { system, messages } = convertPromptToAnthropic(formattedPrompt);\n *\n * const anthropicClient = new Anthropic({\n * apiKey: 'your_api_key',\n * });\n *\n * const anthropicResponse = await anthropicClient.messages.create({\n * model: \"claude-sonnet-4-5-20250929\",\n * max_tokens: 1024,\n * stream: false,\n * system,\n * messages,\n * });\n * ```\n * @param formattedPrompt\n * @returns A partial Anthropic payload.\n */\nexport declare function convertPromptToAnthropic(formattedPrompt: BasePromptValue): Anthropic.Messages.MessageCreateParams;\n"],"mappings":";;;;;;;AAsCA;;;;AAA0H;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAAlGE,wBAAAA,kBAA0CF,kBAAkBC,SAAAA,CAAUE,QAAAA,CAASC"}
@@ -1 +0,0 @@
1
- {"version":3,"file":"prompts.d.ts","names":["BasePromptValue","Anthropic","convertPromptToAnthropic","Messages","MessageCreateParams"],"sources":["../../src/utils/prompts.d.ts"],"sourcesContent":["import type { BasePromptValue } from \"@langchain/core/prompt_values\";\nimport Anthropic from \"@anthropic-ai/sdk\";\n/**\n * Convert a formatted LangChain prompt (e.g. pulled from the hub) into\n * a format expected by Anthropic's JS SDK.\n *\n * Requires the \"@langchain/anthropic\" package to be installed in addition\n * to the Anthropic SDK.\n *\n * @example\n * ```ts\n * import { convertPromptToAnthropic } from \"langsmith/utils/hub/anthropic\";\n * import { pull } from \"langchain/hub\";\n *\n * import Anthropic from '@anthropic-ai/sdk';\n *\n * const prompt = await pull(\"jacob/joke-generator\");\n * const formattedPrompt = await prompt.invoke({\n * topic: \"cats\",\n * });\n *\n * const { system, messages } = convertPromptToAnthropic(formattedPrompt);\n *\n * const anthropicClient = new Anthropic({\n * apiKey: 'your_api_key',\n * });\n *\n * const anthropicResponse = await anthropicClient.messages.create({\n * model: \"claude-sonnet-4-5-20250929\",\n * max_tokens: 1024,\n * stream: false,\n * system,\n * messages,\n * });\n * ```\n * @param formattedPrompt\n * @returns A partial Anthropic payload.\n */\nexport declare function convertPromptToAnthropic(formattedPrompt: BasePromptValue): Anthropic.Messages.MessageCreateParams;\n"],"mappings":";;;;;;;AAsCA;;;;AAA0H;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iBAAlGE,wBAAAA,kBAA0CF,kBAAkBC,SAAAA,CAAUE,QAAAA,CAASC"}