@langchain/anthropic 1.0.1 → 1.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +12 -0
- package/dist/chat_models.cjs +165 -59
- package/dist/chat_models.cjs.map +1 -1
- package/dist/chat_models.d.cts +73 -1
- package/dist/chat_models.d.cts.map +1 -1
- package/dist/chat_models.d.ts +73 -1
- package/dist/chat_models.d.ts.map +1 -1
- package/dist/chat_models.js +165 -59
- package/dist/chat_models.js.map +1 -1
- package/dist/output_parsers.cjs +1 -1
- package/dist/output_parsers.js +1 -1
- package/dist/types.d.cts +2 -1
- package/dist/types.d.cts.map +1 -1
- package/dist/types.d.ts +2 -1
- package/dist/types.d.ts.map +1 -1
- package/package.json +2 -2
package/CHANGELOG.md
CHANGED
|
@@ -1,5 +1,17 @@
|
|
|
1
1
|
# @langchain/anthropic
|
|
2
2
|
|
|
3
|
+
## 1.1.0
|
|
4
|
+
|
|
5
|
+
### Minor Changes
|
|
6
|
+
|
|
7
|
+
- [#9424](https://github.com/langchain-ai/langchainjs/pull/9424) [`f17b2c9`](https://github.com/langchain-ai/langchainjs/commit/f17b2c9db047fab2d1db2d9aa791ec220cc9dd0a) Thanks [@hntrl](https://github.com/hntrl)! - add support for `betas` param
|
|
8
|
+
|
|
9
|
+
- [#9424](https://github.com/langchain-ai/langchainjs/pull/9424) [`f17b2c9`](https://github.com/langchain-ai/langchainjs/commit/f17b2c9db047fab2d1db2d9aa791ec220cc9dd0a) Thanks [@hntrl](https://github.com/hntrl)! - add support for native structured output
|
|
10
|
+
|
|
11
|
+
### Patch Changes
|
|
12
|
+
|
|
13
|
+
- [#9424](https://github.com/langchain-ai/langchainjs/pull/9424) [`f17b2c9`](https://github.com/langchain-ai/langchainjs/commit/f17b2c9db047fab2d1db2d9aa791ec220cc9dd0a) Thanks [@hntrl](https://github.com/hntrl)! - bump sdk version
|
|
14
|
+
|
|
3
15
|
## 1.0.1
|
|
4
16
|
|
|
5
17
|
### Patch Changes
|
package/dist/chat_models.cjs
CHANGED
|
@@ -6,12 +6,14 @@ const require_message_outputs = require('./utils/message_outputs.cjs');
|
|
|
6
6
|
const require_errors = require('./utils/errors.cjs');
|
|
7
7
|
const require_profiles = require('./profiles.cjs');
|
|
8
8
|
const __anthropic_ai_sdk = require_rolldown_runtime.__toESM(require("@anthropic-ai/sdk"));
|
|
9
|
+
const __anthropic_ai_sdk_lib_transform_json_schema_js = require_rolldown_runtime.__toESM(require("@anthropic-ai/sdk/lib/transform-json-schema.js"));
|
|
9
10
|
const __langchain_core_messages = require_rolldown_runtime.__toESM(require("@langchain/core/messages"));
|
|
10
11
|
const __langchain_core_outputs = require_rolldown_runtime.__toESM(require("@langchain/core/outputs"));
|
|
11
12
|
const __langchain_core_utils_env = require_rolldown_runtime.__toESM(require("@langchain/core/utils/env"));
|
|
12
13
|
const __langchain_core_language_models_chat_models = require_rolldown_runtime.__toESM(require("@langchain/core/language_models/chat_models"));
|
|
13
14
|
const __langchain_core_language_models_base = require_rolldown_runtime.__toESM(require("@langchain/core/language_models/base"));
|
|
14
15
|
const __langchain_core_utils_json_schema = require_rolldown_runtime.__toESM(require("@langchain/core/utils/json_schema"));
|
|
16
|
+
const __langchain_core_output_parsers = require_rolldown_runtime.__toESM(require("@langchain/core/output_parsers"));
|
|
15
17
|
const __langchain_core_runnables = require_rolldown_runtime.__toESM(require("@langchain/core/runnables"));
|
|
16
18
|
const __langchain_core_utils_types = require_rolldown_runtime.__toESM(require("@langchain/core/utils/types"));
|
|
17
19
|
const __langchain_core_utils_function_calling = require_rolldown_runtime.__toESM(require("@langchain/core/utils/function_calling"));
|
|
@@ -62,6 +64,9 @@ function isBuiltinTool(tool) {
|
|
|
62
64
|
];
|
|
63
65
|
return typeof tool === "object" && tool !== null && "type" in tool && "name" in tool && typeof tool.type === "string" && builtInToolPrefixes.some((prefix) => typeof tool.type === "string" && tool.type.startsWith(prefix));
|
|
64
66
|
}
|
|
67
|
+
function _combineBetas(a, b) {
|
|
68
|
+
return Array.from(new Set([...a ?? [], ...b ?? []]));
|
|
69
|
+
}
|
|
65
70
|
function extractToken(chunk) {
|
|
66
71
|
if (typeof chunk.content === "string") return chunk.content;
|
|
67
72
|
else if (Array.isArray(chunk.content) && chunk.content.length >= 1 && "input" in chunk.content[0]) return typeof chunk.content[0].input === "string" ? chunk.content[0].input : JSON.stringify(chunk.content[0].input);
|
|
@@ -326,6 +331,18 @@ function extractToken(chunk) {
|
|
|
326
331
|
* <details>
|
|
327
332
|
* <summary><strong>Structured Output</strong></summary>
|
|
328
333
|
*
|
|
334
|
+
* ChatAnthropic supports structured output through two main approaches:
|
|
335
|
+
*
|
|
336
|
+
* 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling
|
|
337
|
+
* under the hood to constrain outputs to a specific schema.
|
|
338
|
+
* 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct
|
|
339
|
+
* structured output without tool calling overhead.
|
|
340
|
+
*
|
|
341
|
+
* **Using withStructuredOutput (Function Calling)**
|
|
342
|
+
*
|
|
343
|
+
* This method leverages Anthropic's tool calling capabilities to ensure the model
|
|
344
|
+
* returns data matching your schema:
|
|
345
|
+
*
|
|
329
346
|
* ```typescript
|
|
330
347
|
* import { z } from 'zod';
|
|
331
348
|
*
|
|
@@ -347,6 +364,48 @@ function extractToken(chunk) {
|
|
|
347
364
|
* rating: 7
|
|
348
365
|
* }
|
|
349
366
|
* ```
|
|
367
|
+
*
|
|
368
|
+
* **Using JSON Schema Mode**
|
|
369
|
+
*
|
|
370
|
+
* For more direct control, you can use Anthropic's native JSON schema support by
|
|
371
|
+
* passing `method: "jsonSchema"`:
|
|
372
|
+
*
|
|
373
|
+
* ```typescript
|
|
374
|
+
* import { z } from 'zod';
|
|
375
|
+
*
|
|
376
|
+
* const RecipeSchema = z.object({
|
|
377
|
+
* recipeName: z.string().describe("Name of the recipe"),
|
|
378
|
+
* ingredients: z.array(z.string()).describe("List of ingredients needed"),
|
|
379
|
+
* steps: z.array(z.string()).describe("Cooking steps in order"),
|
|
380
|
+
* prepTime: z.number().describe("Preparation time in minutes")
|
|
381
|
+
* });
|
|
382
|
+
*
|
|
383
|
+
* const structuredLlm = llm.withStructuredOutput(RecipeSchema, {
|
|
384
|
+
* method: "jsonSchema"
|
|
385
|
+
* });
|
|
386
|
+
*
|
|
387
|
+
* const recipe = await structuredLlm.invoke(
|
|
388
|
+
* "Give me a simple recipe for chocolate chip cookies"
|
|
389
|
+
* );
|
|
390
|
+
* console.log(recipe);
|
|
391
|
+
* ```
|
|
392
|
+
*
|
|
393
|
+
* ```txt
|
|
394
|
+
* {
|
|
395
|
+
* recipeName: 'Classic Chocolate Chip Cookies',
|
|
396
|
+
* ingredients: [
|
|
397
|
+
* '2 1/4 cups all-purpose flour',
|
|
398
|
+
* '1 cup butter, softened',
|
|
399
|
+
* ...
|
|
400
|
+
* ],
|
|
401
|
+
* steps: [
|
|
402
|
+
* 'Preheat oven to 375°F',
|
|
403
|
+
* 'Mix butter and sugars until creamy',
|
|
404
|
+
* ...
|
|
405
|
+
* ],
|
|
406
|
+
* prepTime: 15
|
|
407
|
+
* }
|
|
408
|
+
* ```
|
|
350
409
|
* </details>
|
|
351
410
|
*
|
|
352
411
|
* <br />
|
|
@@ -476,6 +535,7 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
476
535
|
batchClient;
|
|
477
536
|
streamingClient;
|
|
478
537
|
streamUsage = true;
|
|
538
|
+
betas;
|
|
479
539
|
/**
|
|
480
540
|
* Optional method that returns an initialized underlying Anthropic client.
|
|
481
541
|
* Useful for accessing Anthropic models hosted on other cloud services
|
|
@@ -503,6 +563,7 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
503
563
|
this.streamUsage = fields?.streamUsage ?? this.streamUsage;
|
|
504
564
|
this.thinking = fields?.thinking ?? this.thinking;
|
|
505
565
|
this.contextManagement = fields?.contextManagement ?? this.contextManagement;
|
|
566
|
+
this.betas = fields?.betas ?? this.betas;
|
|
506
567
|
this.createClient = fields?.createClient ?? ((options) => new __anthropic_ai_sdk.Anthropic(options));
|
|
507
568
|
}
|
|
508
569
|
getLsParams(options) {
|
|
@@ -564,7 +625,9 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
564
625
|
thinking: this.thinking,
|
|
565
626
|
context_management: this.contextManagement,
|
|
566
627
|
...this.invocationKwargs,
|
|
567
|
-
container: options?.container
|
|
628
|
+
container: options?.container,
|
|
629
|
+
betas: _combineBetas(this.betas, options?.betas),
|
|
630
|
+
output_format: options?.output_format
|
|
568
631
|
};
|
|
569
632
|
}
|
|
570
633
|
return {
|
|
@@ -580,7 +643,9 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
580
643
|
thinking: this.thinking,
|
|
581
644
|
context_management: this.contextManagement,
|
|
582
645
|
...this.invocationKwargs,
|
|
583
|
-
container: options?.container
|
|
646
|
+
container: options?.container,
|
|
647
|
+
betas: _combineBetas(this.betas, options?.betas),
|
|
648
|
+
output_format: options?.output_format
|
|
584
649
|
};
|
|
585
650
|
}
|
|
586
651
|
/** @ignore */
|
|
@@ -688,10 +753,21 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
688
753
|
maxRetries: 0
|
|
689
754
|
});
|
|
690
755
|
}
|
|
756
|
+
const { betas,...rest } = request;
|
|
691
757
|
const makeCompletionRequest = async () => {
|
|
692
758
|
try {
|
|
759
|
+
if (request?.betas?.length) {
|
|
760
|
+
const stream = await this.streamingClient.beta.messages.create({
|
|
761
|
+
...rest,
|
|
762
|
+
betas,
|
|
763
|
+
...this.invocationKwargs,
|
|
764
|
+
stream: true
|
|
765
|
+
}, options);
|
|
766
|
+
return stream;
|
|
767
|
+
}
|
|
693
768
|
return await this.streamingClient.messages.create({
|
|
694
|
-
...
|
|
769
|
+
...rest,
|
|
770
|
+
betas,
|
|
695
771
|
...this.invocationKwargs,
|
|
696
772
|
stream: true
|
|
697
773
|
}, options);
|
|
@@ -714,10 +790,19 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
714
790
|
maxRetries: 0
|
|
715
791
|
});
|
|
716
792
|
}
|
|
793
|
+
const { betas,...rest } = request;
|
|
717
794
|
const makeCompletionRequest = async () => {
|
|
718
795
|
try {
|
|
796
|
+
if (request?.betas?.length) {
|
|
797
|
+
const response = await this.batchClient.beta.messages.create({
|
|
798
|
+
...rest,
|
|
799
|
+
...this.invocationKwargs,
|
|
800
|
+
betas
|
|
801
|
+
}, options);
|
|
802
|
+
return response;
|
|
803
|
+
}
|
|
719
804
|
return await this.batchClient.messages.create({
|
|
720
|
-
...
|
|
805
|
+
...rest,
|
|
721
806
|
...this.invocationKwargs
|
|
722
807
|
}, options);
|
|
723
808
|
} catch (e) {
|
|
@@ -751,71 +836,92 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
|
|
|
751
836
|
return require_profiles.default[this.model] ?? {};
|
|
752
837
|
}
|
|
753
838
|
withStructuredOutput(outputSchema, config) {
|
|
754
|
-
|
|
755
|
-
const name = config?.name;
|
|
756
|
-
const method = config?.method;
|
|
757
|
-
const includeRaw = config?.includeRaw;
|
|
758
|
-
if (method === "jsonMode") throw new Error(`Anthropic only supports "functionCalling" as a method.`);
|
|
759
|
-
let functionName = name ?? "extract";
|
|
839
|
+
let llm;
|
|
760
840
|
let outputParser;
|
|
761
|
-
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
|
|
769
|
-
outputParser = new require_output_parsers.AnthropicToolsOutputParser({
|
|
770
|
-
returnSingle: true,
|
|
771
|
-
keyName: functionName,
|
|
772
|
-
zodSchema: schema
|
|
773
|
-
});
|
|
774
|
-
} else {
|
|
775
|
-
let anthropicTools;
|
|
776
|
-
if (typeof schema.name === "string" && typeof schema.description === "string" && typeof schema.input_schema === "object" && schema.input_schema != null) {
|
|
777
|
-
anthropicTools = schema;
|
|
778
|
-
functionName = schema.name;
|
|
779
|
-
} else anthropicTools = {
|
|
780
|
-
name: functionName,
|
|
781
|
-
description: schema.description ?? "",
|
|
782
|
-
input_schema: schema
|
|
783
|
-
};
|
|
784
|
-
tools = [anthropicTools];
|
|
785
|
-
outputParser = new require_output_parsers.AnthropicToolsOutputParser({
|
|
786
|
-
returnSingle: true,
|
|
787
|
-
keyName: functionName
|
|
788
|
-
});
|
|
841
|
+
const { schema, name, includeRaw } = {
|
|
842
|
+
...config,
|
|
843
|
+
schema: outputSchema
|
|
844
|
+
};
|
|
845
|
+
let method = config?.method ?? "functionCalling";
|
|
846
|
+
if (method === "jsonMode") {
|
|
847
|
+
console.warn(`"jsonMode" is not supported for Anthropic models. Falling back to "jsonSchema".`);
|
|
848
|
+
method = "jsonSchema";
|
|
789
849
|
}
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
const
|
|
793
|
-
console.warn(thinkingAdmonition);
|
|
850
|
+
if (method === "jsonSchema") {
|
|
851
|
+
outputParser = (0, __langchain_core_utils_types.isInteropZodSchema)(schema) ? __langchain_core_output_parsers.StructuredOutputParser.fromZodSchema(schema) : new __langchain_core_output_parsers.JsonOutputParser();
|
|
852
|
+
const jsonSchema = (0, __anthropic_ai_sdk_lib_transform_json_schema_js.transformJSONSchema)((0, __langchain_core_utils_json_schema.toJsonSchema)(schema));
|
|
794
853
|
llm = this.withConfig({
|
|
854
|
+
outputVersion: "v0",
|
|
855
|
+
output_format: {
|
|
856
|
+
type: "json_schema",
|
|
857
|
+
schema: jsonSchema
|
|
858
|
+
},
|
|
859
|
+
betas: ["structured-outputs-2025-11-13"],
|
|
860
|
+
ls_structured_output_format: {
|
|
861
|
+
kwargs: { method: "json_schema" },
|
|
862
|
+
schema: jsonSchema
|
|
863
|
+
}
|
|
864
|
+
});
|
|
865
|
+
} else if (method === "functionCalling") {
|
|
866
|
+
let functionName = name ?? "extract";
|
|
867
|
+
let tools;
|
|
868
|
+
if ((0, __langchain_core_utils_types.isInteropZodSchema)(schema)) {
|
|
869
|
+
const jsonSchema = (0, __langchain_core_utils_json_schema.toJsonSchema)(schema);
|
|
870
|
+
tools = [{
|
|
871
|
+
name: functionName,
|
|
872
|
+
description: jsonSchema.description ?? "A function available to call.",
|
|
873
|
+
input_schema: jsonSchema
|
|
874
|
+
}];
|
|
875
|
+
outputParser = new require_output_parsers.AnthropicToolsOutputParser({
|
|
876
|
+
returnSingle: true,
|
|
877
|
+
keyName: functionName,
|
|
878
|
+
zodSchema: schema
|
|
879
|
+
});
|
|
880
|
+
} else {
|
|
881
|
+
let anthropicTools;
|
|
882
|
+
if (typeof schema.name === "string" && typeof schema.description === "string" && typeof schema.input_schema === "object" && schema.input_schema != null) {
|
|
883
|
+
anthropicTools = schema;
|
|
884
|
+
functionName = schema.name;
|
|
885
|
+
} else anthropicTools = {
|
|
886
|
+
name: functionName,
|
|
887
|
+
description: schema.description ?? "",
|
|
888
|
+
input_schema: schema
|
|
889
|
+
};
|
|
890
|
+
tools = [anthropicTools];
|
|
891
|
+
outputParser = new require_output_parsers.AnthropicToolsOutputParser({
|
|
892
|
+
returnSingle: true,
|
|
893
|
+
keyName: functionName
|
|
894
|
+
});
|
|
895
|
+
}
|
|
896
|
+
if (this.thinking?.type === "enabled") {
|
|
897
|
+
const thinkingAdmonition = "Anthropic structured output relies on forced tool calling, which is not supported when `thinking` is enabled. This method will raise OutputParserException if tool calls are not generated. Consider disabling `thinking` or adjust your prompt to ensure the tool is called.";
|
|
898
|
+
console.warn(thinkingAdmonition);
|
|
899
|
+
llm = this.withConfig({
|
|
900
|
+
outputVersion: "v0",
|
|
901
|
+
tools,
|
|
902
|
+
ls_structured_output_format: {
|
|
903
|
+
kwargs: { method: "functionCalling" },
|
|
904
|
+
schema: (0, __langchain_core_utils_json_schema.toJsonSchema)(schema)
|
|
905
|
+
}
|
|
906
|
+
});
|
|
907
|
+
const raiseIfNoToolCalls = (message) => {
|
|
908
|
+
if (!message.tool_calls || message.tool_calls.length === 0) throw new Error(thinkingAdmonition);
|
|
909
|
+
return message;
|
|
910
|
+
};
|
|
911
|
+
llm = llm.pipe(raiseIfNoToolCalls);
|
|
912
|
+
} else llm = this.withConfig({
|
|
795
913
|
outputVersion: "v0",
|
|
796
914
|
tools,
|
|
915
|
+
tool_choice: {
|
|
916
|
+
type: "tool",
|
|
917
|
+
name: functionName
|
|
918
|
+
},
|
|
797
919
|
ls_structured_output_format: {
|
|
798
920
|
kwargs: { method: "functionCalling" },
|
|
799
921
|
schema: (0, __langchain_core_utils_json_schema.toJsonSchema)(schema)
|
|
800
922
|
}
|
|
801
923
|
});
|
|
802
|
-
|
|
803
|
-
if (!message.tool_calls || message.tool_calls.length === 0) throw new Error(thinkingAdmonition);
|
|
804
|
-
return message;
|
|
805
|
-
};
|
|
806
|
-
llm = llm.pipe(raiseIfNoToolCalls);
|
|
807
|
-
} else llm = this.withConfig({
|
|
808
|
-
outputVersion: "v0",
|
|
809
|
-
tools,
|
|
810
|
-
tool_choice: {
|
|
811
|
-
type: "tool",
|
|
812
|
-
name: functionName
|
|
813
|
-
},
|
|
814
|
-
ls_structured_output_format: {
|
|
815
|
-
kwargs: { method: "functionCalling" },
|
|
816
|
-
schema: (0, __langchain_core_utils_json_schema.toJsonSchema)(schema)
|
|
817
|
-
}
|
|
818
|
-
});
|
|
924
|
+
} else throw new TypeError(`Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`);
|
|
819
925
|
if (!includeRaw) return llm.pipe(outputParser).withConfig({ runName: "ChatAnthropicStructuredOutput" });
|
|
820
926
|
const parserAssign = __langchain_core_runnables.RunnablePassthrough.assign({ parsed: (input, config$1) => outputParser.invoke(input.raw, config$1) });
|
|
821
927
|
const parserNone = __langchain_core_runnables.RunnablePassthrough.assign({ parsed: () => null });
|
package/dist/chat_models.cjs.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"chat_models.cjs","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","schema: InteropZodType<RunOutput> | Record<string, any>","outputParser: BaseLLMOutputParser<RunOutput>","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.streamingClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.batchClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const schema: InteropZodType<RunOutput> | Record<string, any> =\n outputSchema;\n const name = config?.name;\n const method = config?.method;\n const includeRaw = config?.includeRaw;\n if (method === \"jsonMode\") {\n throw new Error(`Anthropic only supports \"functionCalling\" as a method.`);\n }\n\n let functionName = name ?? \"extract\";\n let outputParser: BaseLLMOutputParser<RunOutput>;\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n let llm;\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;AAqDA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAuBD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAyGD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AA0XD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;;;;;;CAOd;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EAEpC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;GACrB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;EACrB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOI,yBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EAEJ,MAAMC,SACJ;EACF,MAAM,OAAO,QAAQ;EACrB,MAAM,SAAS,QAAQ;EACvB,MAAM,aAAa,QAAQ;AAC3B,MAAI,WAAW,WACb,OAAM,IAAI,MAAM,CAAC,sDAAsD,CAAC;EAG1E,IAAI,eAAe,QAAQ;EAC3B,IAAIC;EACJ,IAAIC;AACJ,2DAAuB,OAAO,EAAE;GAC9B,MAAM,kEAA0B,OAAO;GACvC,QAAQ,CACN;IACE,MAAM;IACN,aACE,WAAW,eAAe;IAC5B,cAAc;GACf,CACF;GACD,eAAe,IAAIC,kDAA2B;IAC5C,cAAc;IACd,SAAS;IACT,WAAW;GACZ;EACF,OAAM;GACL,IAAIC;AACJ,OACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;IACA,iBAAiB;IACjB,eAAe,OAAO;GACvB,OACC,iBAAiB;IACf,MAAM;IACN,aAAa,OAAO,eAAe;IACnC,cAAc;GACf;GAEH,QAAQ,CAAC,cAAe;GACxB,eAAe,IAAID,kDAAsC;IACvD,cAAc;IACd,SAAS;GACV;EACF;EACD,IAAI;AACJ,MAAI,KAAK,UAAU,SAAS,WAAW;GACrC,MAAM,qBACJ;GAMF,QAAQ,KAAK,mBAAmB;GAEhC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;GAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,QAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,WAAO;GACR;GAED,MAAM,IAAI,KAAK,mBAAmB;EACnC,OACC,MAAM,KAAK,WAAW;GACpB,eAAe;GACf;GACA,aAAa;IACX,MAAM;IACN,MAAM;GACP;GACD,6BAA6B;IAC3B,QAAQ,EAAE,QAAQ,kBAAmB;IACrC,6DAAqB,OAAO;GAC7B;EACF,EAAyB;AAG5B,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
|
|
1
|
+
{"version":3,"file":"chat_models.cjs","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","a?: AnthropicBeta[]","b?: AnthropicBeta[]","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","PROFILES","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","llm: Runnable<BaseLanguageModelInput>","outputParser: Runnable<AIMessageChunk, RunOutput>","StructuredOutputParser","JsonOutputParser","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\nimport { transformJSONSchema } from \"@anthropic-ai/sdk/lib/transform-json-schema.js\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { ModelProfile } from \"@langchain/core/language_models/profile\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport {\n JsonOutputParser,\n StructuredOutputParser,\n} from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicOutputFormat,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\nimport PROFILES from \"./profiles.js\";\nimport { AnthropicBeta } from \"@anthropic-ai/sdk/resources\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n /**\n * Output format to use for the response.\n */\n output_format?: ChatAnthropicOutputFormat;\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.anthropic.com/en/api/versioning for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\nfunction _combineBetas(\n a?: AnthropicBeta[],\n b?: AnthropicBeta[]\n): AnthropicBeta[] {\n return Array.from(new Set([...(a ?? []), ...(b ?? [])]));\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n\n /**\n * Optional array of beta features to enable for the Anthropic API.\n * Beta features are experimental capabilities that may change or be removed.\n * See https://docs.claude.com/en/api/beta-headers for available beta features.\n */\n betas?: AnthropicBeta[];\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ChatAnthropic supports structured output through two main approaches:\n *\n * 1. **Function Calling with `withStructuredOutput()`**: Uses Anthropic's tool calling\n * under the hood to constrain outputs to a specific schema.\n * 2. **JSON Schema Mode**: Uses Anthropic's native JSON schema support for direct\n * structured output without tool calling overhead.\n *\n * **Using withStructuredOutput (Function Calling)**\n *\n * This method leverages Anthropic's tool calling capabilities to ensure the model\n * returns data matching your schema:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n *\n * **Using JSON Schema Mode**\n *\n * For more direct control, you can use Anthropic's native JSON schema support by\n * passing `method: \"jsonSchema\"`:\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const RecipeSchema = z.object({\n * recipeName: z.string().describe(\"Name of the recipe\"),\n * ingredients: z.array(z.string()).describe(\"List of ingredients needed\"),\n * steps: z.array(z.string()).describe(\"Cooking steps in order\"),\n * prepTime: z.number().describe(\"Preparation time in minutes\")\n * });\n *\n * const structuredLlm = llm.withStructuredOutput(RecipeSchema, {\n * method: \"jsonSchema\"\n * });\n *\n * const recipe = await structuredLlm.invoke(\n * \"Give me a simple recipe for chocolate chip cookies\"\n * );\n * console.log(recipe);\n * ```\n *\n * ```txt\n * {\n * recipeName: 'Classic Chocolate Chip Cookies',\n * ingredients: [\n * '2 1/4 cups all-purpose flour',\n * '1 cup butter, softened',\n * ...\n * ],\n * steps: [\n * 'Preheat oven to 375°F',\n * 'Mix butter and sugars until creamy',\n * ...\n * ],\n * prepTime: 15\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n betas?: AnthropicBeta[];\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n this.betas = fields?.betas ?? this.betas;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n betas: _combineBetas(this.betas, options?.betas),\n output_format: options?.output_format,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const stream = await this.streamingClient.beta.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n return stream as Stream<Anthropic.Messages.RawMessageStreamEvent>;\n }\n return await this.streamingClient.messages.create(\n {\n ...rest,\n betas,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const { betas, ...rest } = request;\n\n const makeCompletionRequest = async () => {\n try {\n if (request?.betas?.length) {\n const response = await this.batchClient.beta.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n betas,\n } as AnthropicMessageCreateParams,\n options\n );\n return response as Anthropic.Messages.Message;\n }\n return await this.batchClient.messages.create(\n {\n ...rest,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n /**\n * Return profiling information for the model.\n *\n * Provides information about the model's capabilities and constraints,\n * including token limits, multimodal support, and advanced features like\n * tool calling and structured output.\n *\n * @returns {ModelProfile} An object describing the model's capabilities and constraints\n *\n * @example\n * ```typescript\n * const model = new ChatAnthropic({ model: \"claude-opus-4-0\" });\n * const profile = model.profile;\n * console.log(profile.maxInputTokens); // 200000\n * console.log(profile.imageInputs); // true\n * ```\n */\n get profile(): ModelProfile {\n return PROFILES[this.model] ?? {};\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n let llm: Runnable<BaseLanguageModelInput>;\n let outputParser: Runnable<AIMessageChunk, RunOutput>;\n\n const { schema, name, includeRaw } = {\n ...config,\n schema: outputSchema,\n };\n let method = config?.method ?? \"functionCalling\";\n\n if (method === \"jsonMode\") {\n console.warn(\n `\"jsonMode\" is not supported for Anthropic models. Falling back to \"jsonSchema\".`\n );\n method = \"jsonSchema\";\n }\n if (method === \"jsonSchema\") {\n // https://docs.claude.com/en/docs/build-with-claude/structured-outputs\n outputParser = isInteropZodSchema(schema)\n ? StructuredOutputParser.fromZodSchema(schema)\n : new JsonOutputParser<RunOutput>();\n const jsonSchema = transformJSONSchema(toJsonSchema(schema));\n llm = this.withConfig({\n outputVersion: \"v0\",\n output_format: {\n type: \"json_schema\",\n schema: jsonSchema,\n },\n betas: [\"structured-outputs-2025-11-13\"],\n ls_structured_output_format: {\n kwargs: { method: \"json_schema\" },\n schema: jsonSchema,\n },\n } as Partial<CallOptions>);\n } else if (method === \"functionCalling\") {\n let functionName = name ?? \"extract\";\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n } else {\n throw new TypeError(\n `Unrecognized structured output method '${method}'. Expected 'functionCalling' or 'jsonSchema'`\n );\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;;;;AA2DA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAiCD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAED,SAAS,cACPC,GACAC,GACiB;AACjB,QAAO,MAAM,KAAK,IAAI,IAAI,CAAC,GAAI,KAAK,CAAE,GAAG,GAAI,KAAK,CAAE,CAAE,GAAE;AACzD;AAgHD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAgbD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;CAEd;;;;;;CAOA;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EACpC,KAAK,QAAQ,QAAQ,SAAS,KAAK;EAEnC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;IACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;IAChD,eAAe,SAAS;GACzB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;GACpB,OAAO,cAAc,KAAK,OAAO,SAAS,MAAM;GAChD,eAAe,SAAS;EACzB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,SAAS,MAAM,KAAK,gBAAgB,KAAK,SAAS,OACtD;MACE,GAAG;MACH;MACA,GAAG,KAAK;MACR,QAAQ;KACT,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH;KACA,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,EAAE,MAAO,GAAG,MAAM,GAAG;EAE3B,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,QAAI,SAAS,OAAO,QAAQ;KAC1B,MAAM,WAAW,MAAM,KAAK,YAAY,KAAK,SAAS,OACpD;MACE,GAAG;MACH,GAAG,KAAK;MACR;KACD,GACD,QACD;AACD,YAAO;IACR;AACD,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;;;;;;;;;;;;;;;;;;CAmBD,IAAI,UAAwB;AAC1B,SAAOI,yBAAS,KAAK,UAAU,CAAE;CAClC;CAwBD,qBAIEC,cAIAC,QAMI;EACJ,IAAIC;EACJ,IAAIC;EAEJ,MAAM,EAAE,QAAQ,MAAM,YAAY,GAAG;GACnC,GAAG;GACH,QAAQ;EACT;EACD,IAAI,SAAS,QAAQ,UAAU;AAE/B,MAAI,WAAW,YAAY;GACzB,QAAQ,KACN,CAAC,+EAA+E,CAAC,CAClF;GACD,SAAS;EACV;AACD,MAAI,WAAW,cAAc;GAE3B,oEAAkC,OAAO,GACrCC,uDAAuB,cAAc,OAAO,GAC5C,IAAIC;GACR,MAAM,2IAA8C,OAAO,CAAC;GAC5D,MAAM,KAAK,WAAW;IACpB,eAAe;IACf,eAAe;KACb,MAAM;KACN,QAAQ;IACT;IACD,OAAO,CAAC,+BAAgC;IACxC,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,cAAe;KACjC,QAAQ;IACT;GACF,EAAyB;EAC3B,WAAU,WAAW,mBAAmB;GACvC,IAAI,eAAe,QAAQ;GAC3B,IAAIC;AACJ,4DAAuB,OAAO,EAAE;IAC9B,MAAM,kEAA0B,OAAO;IACvC,QAAQ,CACN;KACE,MAAM;KACN,aACE,WAAW,eAAe;KAC5B,cAAc;IACf,CACF;IACD,eAAe,IAAIC,kDAA2B;KAC5C,cAAc;KACd,SAAS;KACT,WAAW;IACZ;GACF,OAAM;IACL,IAAIC;AACJ,QACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;KACA,iBAAiB;KACjB,eAAe,OAAO;IACvB,OACC,iBAAiB;KACf,MAAM;KACN,aAAa,OAAO,eAAe;KACnC,cAAc;IACf;IAEH,QAAQ,CAAC,cAAe;IACxB,eAAe,IAAID,kDAAsC;KACvD,cAAc;KACd,SAAS;IACV;GACF;AACD,OAAI,KAAK,UAAU,SAAS,WAAW;IACrC,MAAM,qBACJ;IAMF,QAAQ,KAAK,mBAAmB;IAEhC,MAAM,KAAK,WAAW;KACpB,eAAe;KACf;KACA,6BAA6B;MAC3B,QAAQ,EAAE,QAAQ,kBAAmB;MACrC,6DAAqB,OAAO;KAC7B;IACF,EAAyB;IAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,SAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,YAAO;IACR;IAED,MAAM,IAAI,KAAK,mBAAmB;GACnC,OACC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,aAAa;KACX,MAAM;KACN,MAAM;IACP;IACD,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;EAE7B,MACC,OAAM,IAAI,UACR,CAAC,uCAAuC,EAAE,OAAO,6CAA6C,CAAC;AAInG,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
|