@langchain/anthropic 1.0.0-alpha.1 → 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. package/CHANGELOG.md +37 -0
  2. package/LICENSE +6 -6
  3. package/dist/chat_models.cjs +53 -29
  4. package/dist/chat_models.cjs.map +1 -1
  5. package/dist/chat_models.d.cts +32 -31
  6. package/dist/chat_models.d.cts.map +1 -1
  7. package/dist/chat_models.d.ts +32 -31
  8. package/dist/chat_models.d.ts.map +1 -1
  9. package/dist/chat_models.js +53 -29
  10. package/dist/chat_models.js.map +1 -1
  11. package/dist/types.d.cts +5 -4
  12. package/dist/types.d.cts.map +1 -1
  13. package/dist/types.d.ts +5 -4
  14. package/dist/types.d.ts.map +1 -1
  15. package/dist/utils/content.cjs +2 -4
  16. package/dist/utils/content.cjs.map +1 -1
  17. package/dist/utils/content.js +2 -4
  18. package/dist/utils/content.js.map +1 -1
  19. package/dist/utils/message_inputs.cjs +11 -6
  20. package/dist/utils/message_inputs.cjs.map +1 -1
  21. package/dist/utils/message_inputs.js +11 -6
  22. package/dist/utils/message_inputs.js.map +1 -1
  23. package/dist/utils/message_outputs.cjs +2 -1
  24. package/dist/utils/message_outputs.cjs.map +1 -1
  25. package/dist/utils/message_outputs.js +2 -1
  26. package/dist/utils/message_outputs.js.map +1 -1
  27. package/dist/utils/prompts.cjs +1 -1
  28. package/dist/utils/prompts.cjs.map +1 -1
  29. package/dist/utils/prompts.d.cts +1 -1
  30. package/dist/utils/prompts.d.cts.map +1 -1
  31. package/dist/utils/prompts.d.ts +1 -1
  32. package/dist/utils/prompts.d.ts.map +1 -1
  33. package/dist/utils/prompts.js +1 -1
  34. package/dist/utils/prompts.js.map +1 -1
  35. package/dist/utils/standard.cjs +189 -31
  36. package/dist/utils/standard.cjs.map +1 -1
  37. package/dist/utils/standard.js +189 -31
  38. package/dist/utils/standard.js.map +1 -1
  39. package/dist/utils/tools.cjs +1 -0
  40. package/dist/utils/tools.cjs.map +1 -1
  41. package/dist/utils/tools.js +1 -0
  42. package/dist/utils/tools.js.map +1 -1
  43. package/package.json +32 -34
package/CHANGELOG.md ADDED
@@ -0,0 +1,37 @@
1
+ # @langchain/anthropic
2
+
3
+ ## 1.0.0
4
+
5
+ This release updates the package for compatibility with LangChain v1.0. See the v1.0 [release notes](https://docs.langchain.com/oss/javascript/releases/langchain-v1) for details on what's new.
6
+
7
+ ## 0.3.31
8
+
9
+ ### Patch Changes
10
+
11
+ - 51f638e: fix content management param
12
+
13
+ ## 0.3.30
14
+
15
+ ### Patch Changes
16
+
17
+ - 6c7eb84: fix sonnet-4.5 thinking
18
+
19
+ ## 0.3.29
20
+
21
+ ### Patch Changes
22
+
23
+ - 93493ee: add support for context management
24
+ - 93493ee: add support for memory server tools
25
+ - 93493ee: add default init options for sonnet-4.5
26
+
27
+ ## 0.3.28
28
+
29
+ ### Patch Changes
30
+
31
+ - 9ed7dfa: fix unhandled tool choice 'none'
32
+
33
+ ## 0.3.27
34
+
35
+ ### Patch Changes
36
+
37
+ - 49c242c: fix opus 4.1 topP error when streaming
package/LICENSE CHANGED
@@ -1,6 +1,6 @@
1
- The MIT License
1
+ MIT License
2
2
 
3
- Copyright (c) Harrison Chase
3
+ Copyright (c) LangChain, Inc.
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
@@ -9,13 +9,13 @@ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
9
  copies of the Software, and to permit persons to whom the Software is
10
10
  furnished to do so, subject to the following conditions:
11
11
 
12
- The above copyright notice and this permission notice shall be included in
13
- all copies or substantial portions of the Software.
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
14
 
15
15
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
16
  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
17
  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
18
  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
19
  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
- THE SOFTWARE.
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -16,13 +16,28 @@ const __langchain_core_utils_types = require_rolldown_runtime.__toESM(require("@
16
16
  const __langchain_core_utils_function_calling = require_rolldown_runtime.__toESM(require("@langchain/core/utils/function_calling"));
17
17
 
18
18
  //#region src/chat_models.ts
19
+ const MODEL_DEFAULT_MAX_OUTPUT_TOKENS = {
20
+ "claude-opus-4-1": 8192,
21
+ "claude-opus-4": 8192,
22
+ "claude-sonnet-4": 8192,
23
+ "claude-sonnet-3-7-sonnet": 8192,
24
+ "claude-3-5-sonnet": 4096,
25
+ "claude-3-5-haiku": 4096,
26
+ "claude-3-haiku": 2048
27
+ };
28
+ const FALLBACK_MAX_OUTPUT_TOKENS = 2048;
29
+ function defaultMaxOutputTokensForModel(model) {
30
+ if (!model) return FALLBACK_MAX_OUTPUT_TOKENS;
31
+ const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(([key]) => model.startsWith(key))?.[1];
32
+ return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;
33
+ }
19
34
  function _toolsInParams(params) {
20
35
  return !!(params.tools && params.tools.length > 0);
21
36
  }
22
37
  function _documentsInParams(params) {
23
38
  for (const message of params.messages ?? []) {
24
39
  if (typeof message.content === "string") continue;
25
- for (const block of message.content ?? []) if (typeof block === "object" && block != null && block.type === "document" && typeof block.citations === "object" && block.citations.enabled) return true;
40
+ for (const block of message.content ?? []) if (typeof block === "object" && block != null && block.type === "document" && typeof block.citations === "object" && block.citations?.enabled) return true;
26
41
  }
27
42
  return false;
28
43
  }
@@ -33,15 +48,18 @@ function isAnthropicTool(tool) {
33
48
  return "input_schema" in tool;
34
49
  }
35
50
  function isBuiltinTool(tool) {
36
- const builtinTools = [
37
- "web_search",
38
- "bash",
39
- "code_execution",
40
- "computer",
41
- "str_replace_editor",
42
- "str_replace_based_edit_tool"
51
+ const builtInToolPrefixes = [
52
+ "text_editor_",
53
+ "computer_",
54
+ "bash_",
55
+ "web_search_",
56
+ "web_fetch_",
57
+ "str_replace_editor_",
58
+ "str_replace_based_edit_tool_",
59
+ "code_execution_",
60
+ "memory_"
43
61
  ];
44
- return typeof tool === "object" && tool !== null && "type" in tool && "name" in tool && typeof tool.type === "string" && typeof tool.name === "string" && builtinTools.includes(tool.name);
62
+ return typeof tool === "object" && tool !== null && "type" in tool && "name" in tool && typeof tool.type === "string" && builtInToolPrefixes.some((prefix) => typeof tool.type === "string" && tool.type.startsWith(prefix));
45
63
  }
46
64
  function extractToken(chunk) {
47
65
  if (typeof chunk.content === "string") return chunk.content;
@@ -91,7 +109,7 @@ function extractToken(chunk) {
91
109
  * import { ChatAnthropic } from '@langchain/anthropic';
92
110
  *
93
111
  * const llm = new ChatAnthropic({
94
- * model: "claude-3-5-sonnet-20240620",
112
+ * model: "claude-sonnet-4-5-20250929",
95
113
  * temperature: 0,
96
114
  * maxTokens: undefined,
97
115
  * maxRetries: 2,
@@ -121,7 +139,7 @@ function extractToken(chunk) {
121
139
  * "content": "Here's the translation to French:\n\nJ'adore la programmation.",
122
140
  * "response_metadata": {
123
141
  * "id": "msg_01QDpd78JUHpRP6bRRNyzbW3",
124
- * "model": "claude-3-5-sonnet-20240620",
142
+ * "model": "claude-sonnet-4-5-20250929",
125
143
  * "stop_reason": "end_turn",
126
144
  * "stop_sequence": null,
127
145
  * "usage": {
@@ -159,7 +177,7 @@ function extractToken(chunk) {
159
177
  * "id": "msg_01N8MwoYxiKo9w4chE4gXUs4",
160
178
  * "type": "message",
161
179
  * "role": "assistant",
162
- * "model": "claude-3-5-sonnet-20240620"
180
+ * "model": "claude-sonnet-4-5-20250929"
163
181
  * },
164
182
  * "usage_metadata": {
165
183
  * "input_tokens": 25,
@@ -228,7 +246,7 @@ function extractToken(chunk) {
228
246
  * "id": "msg_01SBTb5zSGXfjUc7yQ8EKEEA",
229
247
  * "type": "message",
230
248
  * "role": "assistant",
231
- * "model": "claude-3-5-sonnet-20240620",
249
+ * "model": "claude-sonnet-4-5-20250929",
232
250
  * "stop_reason": "end_turn",
233
251
  * "stop_sequence": null
234
252
  * },
@@ -413,7 +431,7 @@ function extractToken(chunk) {
413
431
  * ```txt
414
432
  * {
415
433
  * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',
416
- * model: 'claude-3-5-sonnet-20240620',
434
+ * model: 'claude-sonnet-4-5-20250929',
417
435
  * stop_reason: 'end_turn',
418
436
  * stop_sequence: null,
419
437
  * usage: { input_tokens: 25, output_tokens: 19 },
@@ -442,17 +460,18 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
442
460
  anthropicApiKey;
443
461
  apiKey;
444
462
  apiUrl;
445
- temperature = 1;
446
- topK = -1;
447
- topP = -1;
448
- maxTokens = 2048;
449
- modelName = "claude-2.1";
450
- model = "claude-2.1";
463
+ temperature;
464
+ topK;
465
+ topP;
466
+ maxTokens;
467
+ modelName = "claude-3-5-sonnet-latest";
468
+ model = "claude-3-5-sonnet-latest";
451
469
  invocationKwargs;
452
470
  stopSequences;
453
471
  streaming = false;
454
472
  clientOptions;
455
473
  thinking = { type: "disabled" };
474
+ contextManagement;
456
475
  batchClient;
457
476
  streamingClient;
458
477
  streamUsage = true;
@@ -474,15 +493,15 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
474
493
  this.modelName = fields?.model ?? fields?.modelName ?? this.model;
475
494
  this.model = this.modelName;
476
495
  this.invocationKwargs = fields?.invocationKwargs ?? {};
477
- if (this.model.includes("opus-4-1")) this.topP = fields?.topP === null ? void 0 : fields?.topP;
478
- else this.topP = fields?.topP ?? this.topP;
479
- this.temperature = fields?.temperature === null ? void 0 : fields?.temperature ?? this.temperature;
496
+ this.topP = fields?.topP ?? this.topP;
497
+ this.temperature = fields?.temperature ?? this.temperature;
480
498
  this.topK = fields?.topK ?? this.topK;
481
- this.maxTokens = fields?.maxTokensToSample ?? fields?.maxTokens ?? this.maxTokens;
499
+ this.maxTokens = fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);
482
500
  this.stopSequences = fields?.stopSequences ?? this.stopSequences;
483
501
  this.streaming = fields?.streaming ?? false;
484
502
  this.streamUsage = fields?.streamUsage ?? this.streamUsage;
485
503
  this.thinking = fields?.thinking ?? this.thinking;
504
+ this.contextManagement = fields?.contextManagement ?? this.contextManagement;
486
505
  this.createClient = fields?.createClient ?? ((options) => new __anthropic_ai_sdk.Anthropic(options));
487
506
  }
488
507
  getLsParams(options) {
@@ -532,9 +551,8 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
532
551
  invocationParams(options) {
533
552
  const tool_choice = require_tools.handleToolChoice(options?.tool_choice);
534
553
  if (this.thinking.type === "enabled") {
535
- if (this.topK !== -1) throw new Error("topK is not supported when thinking is enabled");
536
- if (this.topP !== -1) throw new Error("topP is not supported when thinking is enabled");
537
- if (this.temperature !== 1) throw new Error("temperature is not supported when thinking is enabled");
554
+ if (this.topP !== void 0 && this.topK !== -1) throw new Error("topK is not supported when thinking is enabled");
555
+ if (this.temperature !== void 0 && this.temperature !== 1) throw new Error("temperature is not supported when thinking is enabled");
538
556
  return {
539
557
  model: this.model,
540
558
  stop_sequences: options?.stop ?? this.stopSequences,
@@ -543,7 +561,9 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
543
561
  tools: this.formatStructuredToolToAnthropic(options?.tools),
544
562
  tool_choice,
545
563
  thinking: this.thinking,
546
- ...this.invocationKwargs
564
+ context_management: this.contextManagement,
565
+ ...this.invocationKwargs,
566
+ container: options?.container
547
567
  };
548
568
  }
549
569
  return {
@@ -557,7 +577,9 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
557
577
  tools: this.formatStructuredToolToAnthropic(options?.tools),
558
578
  tool_choice,
559
579
  thinking: this.thinking,
560
- ...this.invocationKwargs
580
+ context_management: this.contextManagement,
581
+ ...this.invocationKwargs,
582
+ container: options?.container
561
583
  };
562
584
  }
563
585
  /** @ignore */
@@ -749,6 +771,7 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
749
771
  const thinkingAdmonition = "Anthropic structured output relies on forced tool calling, which is not supported when `thinking` is enabled. This method will raise OutputParserException if tool calls are not generated. Consider disabling `thinking` or adjust your prompt to ensure the tool is called.";
750
772
  console.warn(thinkingAdmonition);
751
773
  llm = this.withConfig({
774
+ outputVersion: "v0",
752
775
  tools,
753
776
  ls_structured_output_format: {
754
777
  kwargs: { method: "functionCalling" },
@@ -761,6 +784,7 @@ var ChatAnthropicMessages = class extends __langchain_core_language_models_chat_
761
784
  };
762
785
  llm = llm.pipe(raiseIfNoToolCalls);
763
786
  } else llm = this.withConfig({
787
+ outputVersion: "v0",
764
788
  tools,
765
789
  tool_choice: {
766
790
  type: "tool",
@@ -1 +1 @@
1
- {"version":3,"file":"chat_models.cjs","names":["params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","schema: InteropZodType<RunOutput> | Record<string, any>","outputParser: BaseLLMOutputParser<RunOutput>","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtinTools = [\n \"web_search\",\n \"bash\",\n \"code_execution\",\n \"computer\",\n \"str_replace_editor\",\n \"str_replace_based_edit_tool\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n typeof tool.name === \"string\" &&\n builtinTools.includes(tool.name)\n );\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /** Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temp closer to 0 for analytical /\n * multiple choice, and temp closer to 1 for creative\n * and generative tasks.\n * To not set this field, pass `null`. If `undefined` is passed,\n * the default (1) will be used.\n */\n temperature?: number | null;\n\n /** Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses. Defaults to -1, which disables it.\n */\n topK?: number;\n\n /** Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Defaults to -1, which disables it.\n * Note that you should either alter temperature or top_p,\n * but not both.\n *\n * To not set this field, pass `null`. If `undefined` is passed,\n * the default (-1) will be used.\n *\n * For Opus 4.1, this defaults to `null`.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A maximum number of tokens to generate before stopping.\n * @deprecated Use \"maxTokens\" instead.\n */\n maxTokensToSample?: number;\n\n /** A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-3-5-sonnet-20240620\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-3-5-sonnet-20240620\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-3-5-sonnet-20240620\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-3-5-sonnet-20240620\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-3-5-sonnet-20240620',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature: number | undefined = 1;\n\n topK = -1;\n\n topP: number | undefined = -1;\n\n maxTokens = 2048;\n\n modelName = \"claude-2.1\";\n\n model = \"claude-2.1\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n if (this.model.includes(\"opus-4-1\")) {\n // Default to `undefined` for `topP` for Opus 4.1 models\n this.topP = fields?.topP === null ? undefined : fields?.topP;\n } else {\n this.topP = fields?.topP ?? this.topP;\n }\n\n // If the user passes `null`, set it to `undefined`. Otherwise, use their value or the default. We have to check for null, because\n // there's no way for us to know if they explicitly set it to `undefined`, or never passed a value\n this.temperature =\n fields?.temperature === null\n ? undefined\n : fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokensToSample ?? fields?.maxTokens ?? this.maxTokens;\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.topP !== -1) {\n throw new Error(\"topP is not supported when thinking is enabled\");\n }\n if (this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n ...this.invocationKwargs,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n ...this.invocationKwargs,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n // eslint-disable-next-line @typescript-eslint/no-unused-vars\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.streamingClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.batchClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const schema: InteropZodType<RunOutput> | Record<string, any> =\n outputSchema;\n const name = config?.name;\n const method = config?.method;\n const includeRaw = config?.includeRaw;\n if (method === \"jsonMode\") {\n throw new Error(`Anthropic only supports \"functionCalling\" as a method.`);\n }\n\n let functionName = name ?? \"extract\";\n let outputParser: BaseLLMOutputParser<RunOutput>;\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n let llm;\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;AAkEA,SAAS,eACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,UAAU,QAEhB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,eAAe;EACnB;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,OAAO,KAAK,SAAS,YACrB,aAAa,SAAS,KAAK,KAAK;AAEnC;AA8GD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AA0XD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA,cAAkC;CAElC,OAAO;CAEP,OAA2B;CAE3B,YAAY;CAEZ,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAG7D,AAAU;CAGV,AAAU;CAEV,cAAc;;;;;;CAOd;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;AAEtD,MAAI,KAAK,MAAM,SAAS,WAAW,EAEjC,KAAK,OAAO,QAAQ,SAAS,OAAO,SAAY,QAAQ;OAExD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAKnC,KAAK,cACH,QAAQ,gBAAgB,OACpB,SACA,QAAQ,eAAe,KAAK;EAClC,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,qBAAqB,QAAQ,aAAa,KAAK;EACzD,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EAEzC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAIUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,GAChB,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,SAAS,GAChB,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,EACvB,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,GAAG,KAAK;GACT;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,GAAG,KAAK;EACT;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EAED,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;CAwBD,qBAIEI,cAIAC,QAMI;EAEJ,MAAMC,SACJ;EACF,MAAM,OAAO,QAAQ;EACrB,MAAM,SAAS,QAAQ;EACvB,MAAM,aAAa,QAAQ;AAC3B,MAAI,WAAW,WACb,OAAM,IAAI,MAAM,CAAC,sDAAsD,CAAC;EAG1E,IAAI,eAAe,QAAQ;EAC3B,IAAIC;EACJ,IAAIC;AACJ,2DAAuB,OAAO,EAAE;GAC9B,MAAM,kEAA0B,OAAO;GACvC,QAAQ,CACN;IACE,MAAM;IACN,aACE,WAAW,eAAe;IAC5B,cAAc;GACf,CACF;GACD,eAAe,IAAIC,kDAA2B;IAC5C,cAAc;IACd,SAAS;IACT,WAAW;GACZ;EACF,OAAM;GACL,IAAIC;AACJ,OACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;IACA,iBAAiB;IACjB,eAAe,OAAO;GACvB,OACC,iBAAiB;IACf,MAAM;IACN,aAAa,OAAO,eAAe;IACnC,cAAc;GACf;GAEH,QAAQ,CAAC,cAAe;GACxB,eAAe,IAAID,kDAAsC;IACvD,cAAc;IACd,SAAS;GACV;EACF;EACD,IAAI;AACJ,MAAI,KAAK,UAAU,SAAS,WAAW;GACrC,MAAM,qBACJ;GAMF,QAAQ,KAAK,mBAAmB;GAEhC,MAAM,KAAK,WAAW;IACpB;IACA,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;GAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,QAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,WAAO;GACR;GAED,MAAM,IAAI,KAAK,mBAAmB;EACnC,OACC,MAAM,KAAK,WAAW;GACpB;GACA,aAAa;IACX,MAAM;IACN,MAAM;GACP;GACD,6BAA6B;IAC3B,QAAQ,EAAE,QAAQ,kBAAmB;IACrC,6DAAqB,OAAO;GAC7B;EACF,EAAyB;AAG5B,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}
1
+ {"version":3,"file":"chat_models.cjs","names":["MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n>","model?: Anthropic.Model","params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams","tool: any","tool: unknown","chunk: AIMessageChunk","BaseChatModel","fields?: AnthropicInput & BaseChatModelParams","options: ClientOptions","Anthropic","options: this[\"ParsedCallOptions\"]","tools: ChatAnthropicCallOptions[\"tools\"]","tools: ChatAnthropicToolType[]","kwargs?: Partial<CallOptions>","options?: this[\"ParsedCallOptions\"]","tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined","handleToolChoice","messages: BaseMessage[]","runManager?: CallbackManagerForLLMRun","_convertMessagesToAnthropicPayload","_makeMessageChunkFromAnthropicEvent","ChatGenerationChunk","AIMessageChunk","params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs","requestOptions: AnthropicRequestOptions","anthropicResponseToChatMessages","finalChunk: ChatGenerationChunk | undefined","request: AnthropicStreamingMessageCreateParams & Kwargs","options?: AnthropicRequestOptions","wrapAnthropicClientError","request: AnthropicMessageCreateParams & Kwargs","options: AnthropicRequestOptions","options","outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>","config?: StructuredOutputMethodOptions<boolean>","schema: InteropZodType<RunOutput> | Record<string, any>","outputParser: BaseLLMOutputParser<RunOutput>","tools: Anthropic.Messages.Tool[]","AnthropicToolsOutputParser","anthropicTools: Anthropic.Messages.Tool","message: AIMessageChunk","RunnablePassthrough","input: any","config","RunnableSequence"],"sources":["../src/chat_models.ts"],"sourcesContent":["import { Anthropic, type ClientOptions } from \"@anthropic-ai/sdk\";\nimport type { Stream } from \"@anthropic-ai/sdk/streaming\";\n\nimport { CallbackManagerForLLMRun } from \"@langchain/core/callbacks/manager\";\nimport { AIMessageChunk, type BaseMessage } from \"@langchain/core/messages\";\nimport { ChatGenerationChunk, type ChatResult } from \"@langchain/core/outputs\";\nimport { getEnvironmentVariable } from \"@langchain/core/utils/env\";\nimport {\n BaseChatModel,\n BaseChatModelCallOptions,\n LangSmithParams,\n type BaseChatModelParams,\n} from \"@langchain/core/language_models/chat_models\";\nimport {\n type StructuredOutputMethodOptions,\n type BaseLanguageModelInput,\n isOpenAITool,\n} from \"@langchain/core/language_models/base\";\nimport { toJsonSchema } from \"@langchain/core/utils/json_schema\";\nimport { BaseLLMOutputParser } from \"@langchain/core/output_parsers\";\nimport {\n Runnable,\n RunnablePassthrough,\n RunnableSequence,\n} from \"@langchain/core/runnables\";\nimport {\n InteropZodType,\n isInteropZodSchema,\n} from \"@langchain/core/utils/types\";\n\nimport { isLangChainTool } from \"@langchain/core/utils/function_calling\";\nimport { AnthropicToolsOutputParser } from \"./output_parsers.js\";\nimport { handleToolChoice } from \"./utils/tools.js\";\nimport { _convertMessagesToAnthropicPayload } from \"./utils/message_inputs.js\";\nimport {\n _makeMessageChunkFromAnthropicEvent,\n anthropicResponseToChatMessages,\n} from \"./utils/message_outputs.js\";\nimport {\n AnthropicBuiltInToolUnion,\n AnthropicContextManagementConfigParam,\n AnthropicMessageCreateParams,\n AnthropicMessageStreamEvent,\n AnthropicRequestOptions,\n AnthropicStreamingMessageCreateParams,\n AnthropicThinkingConfigParam,\n AnthropicToolChoice,\n ChatAnthropicToolType,\n} from \"./types.js\";\nimport { wrapAnthropicClientError } from \"./utils/errors.js\";\n\nconst MODEL_DEFAULT_MAX_OUTPUT_TOKENS: Partial<\n Record<Anthropic.Model, number>\n> = {\n \"claude-opus-4-1\": 8192,\n \"claude-opus-4\": 8192,\n \"claude-sonnet-4\": 8192,\n \"claude-sonnet-3-7-sonnet\": 8192,\n \"claude-3-5-sonnet\": 4096,\n \"claude-3-5-haiku\": 4096,\n \"claude-3-haiku\": 2048,\n};\nconst FALLBACK_MAX_OUTPUT_TOKENS = 2048;\n\nfunction defaultMaxOutputTokensForModel(model?: Anthropic.Model): number {\n if (!model) {\n return FALLBACK_MAX_OUTPUT_TOKENS;\n }\n const maxTokens = Object.entries(MODEL_DEFAULT_MAX_OUTPUT_TOKENS).find(\n ([key]) => model.startsWith(key)\n )?.[1];\n return maxTokens ?? FALLBACK_MAX_OUTPUT_TOKENS;\n}\n\nexport interface ChatAnthropicCallOptions\n extends BaseChatModelCallOptions,\n Pick<AnthropicInput, \"streamUsage\"> {\n tools?: ChatAnthropicToolType[];\n /**\n * Whether or not to specify what tool the model should use\n * @default \"auto\"\n */\n tool_choice?: AnthropicToolChoice;\n /**\n * Custom headers to pass to the Anthropic API\n * when making a request.\n */\n headers?: Record<string, string>;\n /**\n * Container ID for file persistence across turns with code execution.\n * Used with the code_execution_20250825 tool.\n */\n container?: string;\n}\n\nfunction _toolsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.tools && params.tools.length > 0);\n}\n\nfunction _documentsInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n for (const message of params.messages ?? []) {\n if (typeof message.content === \"string\") {\n continue;\n }\n for (const block of message.content ?? []) {\n if (\n typeof block === \"object\" &&\n block != null &&\n block.type === \"document\" &&\n typeof block.citations === \"object\" &&\n block.citations?.enabled\n ) {\n return true;\n }\n }\n }\n return false;\n}\n\nfunction _thinkingInParams(\n params: AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams\n): boolean {\n return !!(params.thinking && params.thinking.type === \"enabled\");\n}\n\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\nfunction isAnthropicTool(tool: any): tool is Anthropic.Messages.Tool {\n return \"input_schema\" in tool;\n}\n\nfunction isBuiltinTool(tool: unknown): tool is AnthropicBuiltInToolUnion {\n const builtInToolPrefixes = [\n \"text_editor_\",\n \"computer_\",\n \"bash_\",\n \"web_search_\",\n \"web_fetch_\",\n \"str_replace_editor_\",\n \"str_replace_based_edit_tool_\",\n \"code_execution_\",\n \"memory_\",\n ];\n return (\n typeof tool === \"object\" &&\n tool !== null &&\n \"type\" in tool &&\n \"name\" in tool &&\n typeof tool.type === \"string\" &&\n builtInToolPrefixes.some(\n (prefix) => typeof tool.type === \"string\" && tool.type.startsWith(prefix)\n )\n );\n}\n\n/**\n * @see https://docs.anthropic.com/claude/docs/models-overview\n */\nexport type AnthropicMessagesModelId =\n | Anthropic.Model\n | (string & NonNullable<unknown>);\n\n/**\n * Input to AnthropicChat class.\n */\nexport interface AnthropicInput {\n /**\n * Amount of randomness injected into the response. Ranges\n * from 0 to 1. Use temperature closer to 0 for analytical /\n * multiple choice, and temperature closer to 1 for creative\n * and generative tasks.\n */\n temperature?: number;\n\n /**\n * Only sample from the top K options for each subsequent\n * token. Used to remove \"long tail\" low probability\n * responses.\n */\n topK?: number;\n\n /**\n * Does nucleus sampling, in which we compute the\n * cumulative distribution over all the options for each\n * subsequent token in decreasing probability order and\n * cut it off once it reaches a particular probability\n * specified by top_p. Note that you should either alter\n * temperature or top_p, but not both.\n */\n topP?: number | null;\n\n /** A maximum number of tokens to generate before stopping. */\n maxTokens?: number;\n\n /**\n * A list of strings upon which to stop generating.\n * You probably want `[\"\\n\\nHuman:\"]`, as that's the cue for\n * the next turn in the dialog agent.\n */\n stopSequences?: string[];\n\n /** Whether to stream the results or not */\n streaming?: boolean;\n\n /** Anthropic API key */\n anthropicApiKey?: string;\n /** Anthropic API key */\n apiKey?: string;\n\n /** Anthropic API URL */\n anthropicApiUrl?: string;\n\n /** @deprecated Use \"model\" instead */\n modelName?: AnthropicMessagesModelId;\n /** Model name to use */\n model?: AnthropicMessagesModelId;\n\n /** Overridable Anthropic ClientOptions */\n clientOptions?: ClientOptions;\n\n /** Holds any additional parameters that are valid to pass to {@link\n * https://console.anthropic.com/docs/api/reference |\n * `anthropic.messages`} that are not explicitly specified on this class.\n */\n invocationKwargs?: Kwargs;\n\n /**\n * Whether or not to include token usage data in streamed chunks.\n * @default true\n */\n streamUsage?: boolean;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n createClient?: (options: ClientOptions) => any;\n\n /**\n * Options for extended thinking.\n */\n thinking?: AnthropicThinkingConfigParam;\n\n /**\n * Configuration for context management. See https://docs.claude.com/en/docs/build-with-claude/context-editing\n */\n contextManagement?: AnthropicContextManagementConfigParam;\n}\n\n/**\n * A type representing additional parameters that can be passed to the\n * Anthropic API.\n */\n// eslint-disable-next-line @typescript-eslint/no-explicit-any\ntype Kwargs = Record<string, any>;\n\nfunction extractToken(chunk: AIMessageChunk): string | undefined {\n if (typeof chunk.content === \"string\") {\n return chunk.content;\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"input\" in chunk.content[0]\n ) {\n return typeof chunk.content[0].input === \"string\"\n ? chunk.content[0].input\n : JSON.stringify(chunk.content[0].input);\n } else if (\n Array.isArray(chunk.content) &&\n chunk.content.length >= 1 &&\n \"text\" in chunk.content[0] &&\n typeof chunk.content[0].text === \"string\"\n ) {\n return chunk.content[0].text;\n }\n return undefined;\n}\n\n/**\n * Anthropic chat model integration.\n *\n * Setup:\n * Install `@langchain/anthropic` and set an environment variable named `ANTHROPIC_API_KEY`.\n *\n * ```bash\n * npm install @langchain/anthropic\n * export ANTHROPIC_API_KEY=\"your-api-key\"\n * ```\n *\n * ## [Constructor args](https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html#constructor)\n *\n * ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_anthropic.ChatAnthropicCallOptions.html)\n *\n * Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.\n * They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:\n *\n * ```typescript\n * // When calling `.bind`, call options should be passed via the first argument\n * const llmWithArgsBound = llm.bindTools([...]).withConfig({\n * stop: [\"\\n\"],\n * });\n *\n * // When calling `.bindTools`, call options should be passed via the second argument\n * const llmWithTools = llm.bindTools(\n * [...],\n * {\n * tool_choice: \"auto\",\n * }\n * );\n * ```\n *\n * ## Examples\n *\n * <details open>\n * <summary><strong>Instantiate</strong></summary>\n *\n * ```typescript\n * import { ChatAnthropic } from '@langchain/anthropic';\n *\n * const llm = new ChatAnthropic({\n * model: \"claude-sonnet-4-5-20250929\",\n * temperature: 0,\n * maxTokens: undefined,\n * maxRetries: 2,\n * // apiKey: \"...\",\n * // baseUrl: \"...\",\n * // other params...\n * });\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Invoking</strong></summary>\n *\n * ```typescript\n * const input = `Translate \"I love programming\" into French.`;\n *\n * // Models also accept a list of chat messages or a formatted prompt\n * const result = await llm.invoke(input);\n * console.log(result);\n * ```\n *\n * ```txt\n * AIMessage {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"response_metadata\": {\n * \"id\": \"msg_01QDpd78JUHpRP6bRRNyzbW3\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null,\n * \"usage\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19\n * },\n * \"type\": \"message\",\n * \"role\": \"assistant\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 19,\n * \"total_tokens\": 44\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Streaming Chunks</strong></summary>\n *\n * ```typescript\n * for await (const chunk of await llm.stream(input)) {\n * console.log(chunk);\n * }\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01N8MwoYxiKo9w4chE4gXUs4\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\"\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 1,\n * \"total_tokens\": 26\n * }\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * }\n * AIMessageChunk {\n * \"content\": \"Here\",\n * }\n * AIMessageChunk {\n * \"content\": \"'s\",\n * }\n * AIMessageChunk {\n * \"content\": \" the translation to\",\n * }\n * AIMessageChunk {\n * \"content\": \" French:\\n\\nJ\",\n * }\n * AIMessageChunk {\n * \"content\": \"'adore la programmation\",\n * }\n * AIMessageChunk {\n * \"content\": \".\",\n * }\n * AIMessageChunk {\n * \"content\": \"\",\n * \"additional_kwargs\": {\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 0,\n * \"output_tokens\": 19,\n * \"total_tokens\": 19\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Aggregate Streamed Chunks</strong></summary>\n *\n * ```typescript\n * import { AIMessageChunk } from '@langchain/core/messages';\n * import { concat } from '@langchain/core/utils/stream';\n *\n * const stream = await llm.stream(input);\n * let full: AIMessageChunk | undefined;\n * for await (const chunk of stream) {\n * full = !full ? chunk : concat(full, chunk);\n * }\n * console.log(full);\n * ```\n *\n * ```txt\n * AIMessageChunk {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"content\": \"Here's the translation to French:\\n\\nJ'adore la programmation.\",\n * \"additional_kwargs\": {\n * \"id\": \"msg_01SBTb5zSGXfjUc7yQ8EKEEA\",\n * \"type\": \"message\",\n * \"role\": \"assistant\",\n * \"model\": \"claude-sonnet-4-5-20250929\",\n * \"stop_reason\": \"end_turn\",\n * \"stop_sequence\": null\n * },\n * \"usage_metadata\": {\n * \"input_tokens\": 25,\n * \"output_tokens\": 20,\n * \"total_tokens\": 45\n * }\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Bind tools</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const GetWeather = {\n * name: \"GetWeather\",\n * description: \"Get the current weather in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const GetPopulation = {\n * name: \"GetPopulation\",\n * description: \"Get the current population in a given location\",\n * schema: z.object({\n * location: z.string().describe(\"The city and state, e.g. San Francisco, CA\")\n * }),\n * }\n *\n * const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);\n * const aiMsg = await llmWithTools.invoke(\n * \"Which city is hotter today and which is bigger: LA or NY?\"\n * );\n * console.log(aiMsg.tool_calls);\n * ```\n *\n * ```txt\n * [\n * {\n * name: 'GetWeather',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_01WjW3Dann6BPJVtLhovdBD5',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetWeather',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01G6wfJgqi5zRmJomsmkyZXe',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'Los Angeles, CA' },\n * id: 'toolu_0165qYWBA2VFyUst5RA18zew',\n * type: 'tool_call'\n * },\n * {\n * name: 'GetPopulation',\n * args: { location: 'New York, NY' },\n * id: 'toolu_01PGNyP33vxr13tGqr7i3rDo',\n * type: 'tool_call'\n * }\n * ]\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Structured Output</strong></summary>\n *\n * ```typescript\n * import { z } from 'zod';\n *\n * const Joke = z.object({\n * setup: z.string().describe(\"The setup of the joke\"),\n * punchline: z.string().describe(\"The punchline to the joke\"),\n * rating: z.number().optional().describe(\"How funny the joke is, from 1 to 10\")\n * }).describe('Joke to tell user.');\n *\n * const structuredLlm = llm.withStructuredOutput(Joke, { name: \"Joke\" });\n * const jokeResult = await structuredLlm.invoke(\"Tell me a joke about cats\");\n * console.log(jokeResult);\n * ```\n *\n * ```txt\n * {\n * setup: \"Why don't cats play poker in the jungle?\",\n * punchline: 'Too many cheetahs!',\n * rating: 7\n * }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Multimodal</strong></summary>\n *\n * ```typescript\n * import { HumanMessage } from '@langchain/core/messages';\n *\n * const imageUrl = \"https://example.com/image.jpg\";\n * const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());\n * const base64Image = Buffer.from(imageData).toString('base64');\n *\n * const message = new HumanMessage({\n * content: [\n * { type: \"text\", text: \"describe the weather in this image\" },\n * {\n * type: \"image_url\",\n * image_url: { url: `data:image/jpeg;base64,${base64Image}` },\n * },\n * ]\n * });\n *\n * const imageDescriptionAiMsg = await llm.invoke([message]);\n * console.log(imageDescriptionAiMsg.content);\n * ```\n *\n * ```txt\n * The weather in this image appears to be beautiful and clear. The sky is a vibrant blue with scattered white clouds, suggesting a sunny and pleasant day. The clouds are wispy and light, indicating calm conditions without any signs of storms or heavy weather. The bright green grass on the rolling hills looks lush and well-watered, which could mean recent rainfall or good growing conditions. Overall, the scene depicts a perfect spring or early summer day with mild temperatures, plenty of sunshine, and gentle breezes - ideal weather for enjoying the outdoors or for plant growth.\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Usage Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForMetadata = await llm.invoke(input);\n * console.log(aiMsgForMetadata.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 19, total_tokens: 44 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Stream Usage Metadata</strong></summary>\n *\n * ```typescript\n * const streamForMetadata = await llm.stream(\n * input,\n * {\n * streamUsage: true\n * }\n * );\n * let fullForMetadata: AIMessageChunk | undefined;\n * for await (const chunk of streamForMetadata) {\n * fullForMetadata = !fullForMetadata ? chunk : concat(fullForMetadata, chunk);\n * }\n * console.log(fullForMetadata?.usage_metadata);\n * ```\n *\n * ```txt\n * { input_tokens: 25, output_tokens: 20, total_tokens: 45 }\n * ```\n * </details>\n *\n * <br />\n *\n * <details>\n * <summary><strong>Response Metadata</strong></summary>\n *\n * ```typescript\n * const aiMsgForResponseMetadata = await llm.invoke(input);\n * console.log(aiMsgForResponseMetadata.response_metadata);\n * ```\n *\n * ```txt\n * {\n * id: 'msg_01STxeQxJmp4sCSpioD6vK3L',\n * model: 'claude-sonnet-4-5-20250929',\n * stop_reason: 'end_turn',\n * stop_sequence: null,\n * usage: { input_tokens: 25, output_tokens: 19 },\n * type: 'message',\n * role: 'assistant'\n * }\n * ```\n * </details>\n *\n * <br />\n */\nexport class ChatAnthropicMessages<\n CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions\n >\n extends BaseChatModel<CallOptions, AIMessageChunk>\n implements AnthropicInput\n{\n static lc_name() {\n return \"ChatAnthropic\";\n }\n\n get lc_secrets(): { [key: string]: string } | undefined {\n return {\n anthropicApiKey: \"ANTHROPIC_API_KEY\",\n apiKey: \"ANTHROPIC_API_KEY\",\n };\n }\n\n get lc_aliases(): Record<string, string> {\n return {\n modelName: \"model\",\n };\n }\n\n lc_serializable = true;\n\n anthropicApiKey?: string;\n\n apiKey?: string;\n\n apiUrl?: string;\n\n temperature?: number;\n\n topK?: number;\n\n topP?: number;\n\n maxTokens: number;\n\n modelName = \"claude-3-5-sonnet-latest\";\n\n model = \"claude-3-5-sonnet-latest\";\n\n invocationKwargs?: Kwargs;\n\n stopSequences?: string[];\n\n streaming = false;\n\n clientOptions: ClientOptions;\n\n thinking: AnthropicThinkingConfigParam = { type: \"disabled\" };\n\n contextManagement?: AnthropicContextManagementConfigParam;\n\n // Used for non-streaming requests\n protected batchClient: Anthropic;\n\n // Used for streaming requests\n protected streamingClient: Anthropic;\n\n streamUsage = true;\n\n /**\n * Optional method that returns an initialized underlying Anthropic client.\n * Useful for accessing Anthropic models hosted on other cloud services\n * such as Google Vertex.\n */\n createClient: (options: ClientOptions) => Anthropic;\n\n constructor(fields?: AnthropicInput & BaseChatModelParams) {\n super(fields ?? {});\n\n this.anthropicApiKey =\n fields?.apiKey ??\n fields?.anthropicApiKey ??\n getEnvironmentVariable(\"ANTHROPIC_API_KEY\");\n\n if (!this.anthropicApiKey && !fields?.createClient) {\n throw new Error(\"Anthropic API key not found\");\n }\n this.clientOptions = fields?.clientOptions ?? {};\n /** Keep anthropicApiKey for backwards compatibility */\n this.apiKey = this.anthropicApiKey;\n\n // Support overriding the default API URL (i.e., https://api.anthropic.com)\n this.apiUrl = fields?.anthropicApiUrl;\n\n /** Keep modelName for backwards compatibility */\n this.modelName = fields?.model ?? fields?.modelName ?? this.model;\n this.model = this.modelName;\n\n this.invocationKwargs = fields?.invocationKwargs ?? {};\n\n this.topP = fields?.topP ?? this.topP;\n\n this.temperature = fields?.temperature ?? this.temperature;\n this.topK = fields?.topK ?? this.topK;\n this.maxTokens =\n fields?.maxTokens ?? defaultMaxOutputTokensForModel(this.model);\n this.stopSequences = fields?.stopSequences ?? this.stopSequences;\n\n this.streaming = fields?.streaming ?? false;\n this.streamUsage = fields?.streamUsage ?? this.streamUsage;\n\n this.thinking = fields?.thinking ?? this.thinking;\n this.contextManagement =\n fields?.contextManagement ?? this.contextManagement;\n\n this.createClient =\n fields?.createClient ??\n ((options: ClientOptions) => new Anthropic(options));\n }\n\n getLsParams(options: this[\"ParsedCallOptions\"]): LangSmithParams {\n const params = this.invocationParams(options);\n return {\n ls_provider: \"anthropic\",\n ls_model_name: this.model,\n ls_model_type: \"chat\",\n ls_temperature: params.temperature ?? undefined,\n ls_max_tokens: params.max_tokens ?? undefined,\n ls_stop: options.stop,\n };\n }\n\n /**\n * Formats LangChain StructuredTools to AnthropicTools.\n *\n * @param {ChatAnthropicCallOptions[\"tools\"]} tools The tools to format\n * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.\n */\n formatStructuredToolToAnthropic(\n tools: ChatAnthropicCallOptions[\"tools\"]\n ): Anthropic.Messages.ToolUnion[] | undefined {\n if (!tools || !tools.length) {\n return undefined;\n }\n return tools.map((tool) => {\n if (isBuiltinTool(tool)) {\n return tool;\n }\n if (isAnthropicTool(tool)) {\n return tool;\n }\n if (isOpenAITool(tool)) {\n return {\n name: tool.function.name,\n description: tool.function.description,\n input_schema: tool.function\n .parameters as Anthropic.Messages.Tool.InputSchema,\n };\n }\n if (isLangChainTool(tool)) {\n return {\n name: tool.name,\n description: tool.description,\n input_schema: (isInteropZodSchema(tool.schema)\n ? toJsonSchema(tool.schema)\n : tool.schema) as Anthropic.Messages.Tool.InputSchema,\n };\n }\n throw new Error(\n `Unknown tool type passed to ChatAnthropic: ${JSON.stringify(\n tool,\n null,\n 2\n )}`\n );\n });\n }\n\n override bindTools(\n tools: ChatAnthropicToolType[],\n kwargs?: Partial<CallOptions>\n ): Runnable<BaseLanguageModelInput, AIMessageChunk, CallOptions> {\n return this.withConfig({\n tools: this.formatStructuredToolToAnthropic(tools),\n ...kwargs,\n } as Partial<CallOptions>);\n }\n\n /**\n * Get the parameters used to invoke the model\n */\n override invocationParams(\n options?: this[\"ParsedCallOptions\"]\n ): Omit<\n AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams,\n \"messages\"\n > &\n Kwargs {\n const tool_choice:\n | Anthropic.Messages.ToolChoiceAuto\n | Anthropic.Messages.ToolChoiceAny\n | Anthropic.Messages.ToolChoiceTool\n | Anthropic.Messages.ToolChoiceNone\n | undefined = handleToolChoice(options?.tool_choice);\n\n if (this.thinking.type === \"enabled\") {\n if (this.topP !== undefined && this.topK !== -1) {\n throw new Error(\"topK is not supported when thinking is enabled\");\n }\n if (this.temperature !== undefined && this.temperature !== 1) {\n throw new Error(\n \"temperature is not supported when thinking is enabled\"\n );\n }\n\n return {\n model: this.model,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n };\n }\n return {\n model: this.model,\n temperature: this.temperature,\n top_k: this.topK,\n top_p: this.topP,\n stop_sequences: options?.stop ?? this.stopSequences,\n stream: this.streaming,\n max_tokens: this.maxTokens,\n tools: this.formatStructuredToolToAnthropic(options?.tools),\n tool_choice,\n thinking: this.thinking,\n context_management: this.contextManagement,\n ...this.invocationKwargs,\n container: options?.container,\n };\n }\n\n /** @ignore */\n _identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n /**\n * Get the identifying parameters for the model\n */\n identifyingParams() {\n return {\n model_name: this.model,\n ...this.invocationParams(),\n };\n }\n\n async *_streamResponseChunks(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): AsyncGenerator<ChatGenerationChunk> {\n const params = this.invocationParams(options);\n const formattedMessages = _convertMessagesToAnthropicPayload(messages);\n const payload = {\n ...params,\n ...formattedMessages,\n stream: true,\n } as const;\n const coerceContentToString =\n !_toolsInParams(payload) &&\n !_documentsInParams(payload) &&\n !_thinkingInParams(payload);\n\n const stream = await this.createStreamWithRetry(payload, {\n headers: options.headers,\n });\n\n for await (const data of stream) {\n if (options.signal?.aborted) {\n stream.controller.abort();\n throw new Error(\"AbortError: User aborted the request.\");\n }\n const shouldStreamUsage = this.streamUsage ?? options.streamUsage;\n const result = _makeMessageChunkFromAnthropicEvent(data, {\n streamUsage: shouldStreamUsage,\n coerceContentToString,\n });\n if (!result) continue;\n\n const { chunk } = result;\n\n // Extract the text content token for text field and runManager.\n const token = extractToken(chunk);\n const generationChunk = new ChatGenerationChunk({\n message: new AIMessageChunk({\n // Just yield chunk as it is and tool_use will be concat by BaseChatModel._generateUncached().\n content: chunk.content,\n additional_kwargs: chunk.additional_kwargs,\n tool_call_chunks: chunk.tool_call_chunks,\n usage_metadata: shouldStreamUsage ? chunk.usage_metadata : undefined,\n response_metadata: chunk.response_metadata,\n id: chunk.id,\n }),\n text: token ?? \"\",\n });\n yield generationChunk;\n\n await runManager?.handleLLMNewToken(\n token ?? \"\",\n undefined,\n undefined,\n undefined,\n undefined,\n { chunk: generationChunk }\n );\n }\n }\n\n /** @ignore */\n async _generateNonStreaming(\n messages: BaseMessage[],\n params: Omit<\n | Anthropic.Messages.MessageCreateParamsNonStreaming\n | Anthropic.Messages.MessageCreateParamsStreaming,\n \"messages\"\n > &\n Kwargs,\n requestOptions: AnthropicRequestOptions\n ) {\n const response = await this.completionWithRetry(\n {\n ...params,\n stream: false,\n ..._convertMessagesToAnthropicPayload(messages),\n },\n requestOptions\n );\n\n const { content, ...additionalKwargs } = response;\n\n const generations = anthropicResponseToChatMessages(\n content,\n additionalKwargs\n );\n const { role: _role, type: _type, ...rest } = additionalKwargs;\n return { generations, llmOutput: rest };\n }\n\n /** @ignore */\n async _generate(\n messages: BaseMessage[],\n options: this[\"ParsedCallOptions\"],\n runManager?: CallbackManagerForLLMRun\n ): Promise<ChatResult> {\n if (this.stopSequences && options.stop) {\n throw new Error(\n `\"stopSequence\" parameter found in input and default params`\n );\n }\n\n const params = this.invocationParams(options);\n if (params.stream) {\n let finalChunk: ChatGenerationChunk | undefined;\n const stream = this._streamResponseChunks(messages, options, runManager);\n for await (const chunk of stream) {\n if (finalChunk === undefined) {\n finalChunk = chunk;\n } else {\n finalChunk = finalChunk.concat(chunk);\n }\n }\n if (finalChunk === undefined) {\n throw new Error(\"No chunks returned from Anthropic API.\");\n }\n return {\n generations: [\n {\n text: finalChunk.text,\n message: finalChunk.message,\n },\n ],\n };\n } else {\n return this._generateNonStreaming(messages, params, {\n signal: options.signal,\n headers: options.headers,\n });\n }\n }\n\n /**\n * Creates a streaming request with retry.\n * @param request The parameters for creating a completion.\n * @param options\n * @returns A streaming request.\n */\n protected async createStreamWithRetry(\n request: AnthropicStreamingMessageCreateParams & Kwargs,\n options?: AnthropicRequestOptions\n ): Promise<Stream<AnthropicMessageStreamEvent>> {\n if (!this.streamingClient) {\n const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.streamingClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options_,\n apiKey: this.apiKey,\n // Prefer LangChain built-in retries\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.streamingClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n stream: true,\n } as AnthropicStreamingMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.call(makeCompletionRequest);\n }\n\n /** @ignore */\n protected async completionWithRetry(\n request: AnthropicMessageCreateParams & Kwargs,\n options: AnthropicRequestOptions\n ): Promise<Anthropic.Message> {\n if (!this.batchClient) {\n const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;\n this.batchClient = this.createClient({\n dangerouslyAllowBrowser: true,\n ...this.clientOptions,\n ...options,\n apiKey: this.apiKey,\n maxRetries: 0,\n });\n }\n const makeCompletionRequest = async () => {\n try {\n return await this.batchClient.messages.create(\n {\n ...request,\n ...this.invocationKwargs,\n } as AnthropicMessageCreateParams,\n options\n );\n } catch (e) {\n const error = wrapAnthropicClientError(e);\n throw error;\n }\n };\n return this.caller.callWithOptions(\n { signal: options.signal ?? undefined },\n makeCompletionRequest\n );\n }\n\n _llmType() {\n return \"anthropic\";\n }\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<false>\n ): Runnable<BaseLanguageModelInput, RunOutput>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<true>\n ): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;\n\n withStructuredOutput<\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n RunOutput extends Record<string, any> = Record<string, any>\n >(\n outputSchema:\n | InteropZodType<RunOutput>\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n | Record<string, any>,\n config?: StructuredOutputMethodOptions<boolean>\n ):\n | Runnable<BaseLanguageModelInput, RunOutput>\n | Runnable<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n > {\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n const schema: InteropZodType<RunOutput> | Record<string, any> =\n outputSchema;\n const name = config?.name;\n const method = config?.method;\n const includeRaw = config?.includeRaw;\n if (method === \"jsonMode\") {\n throw new Error(`Anthropic only supports \"functionCalling\" as a method.`);\n }\n\n let functionName = name ?? \"extract\";\n let outputParser: BaseLLMOutputParser<RunOutput>;\n let tools: Anthropic.Messages.Tool[];\n if (isInteropZodSchema(schema)) {\n const jsonSchema = toJsonSchema(schema);\n tools = [\n {\n name: functionName,\n description:\n jsonSchema.description ?? \"A function available to call.\",\n input_schema: jsonSchema as Anthropic.Messages.Tool.InputSchema,\n },\n ];\n outputParser = new AnthropicToolsOutputParser({\n returnSingle: true,\n keyName: functionName,\n zodSchema: schema,\n });\n } else {\n let anthropicTools: Anthropic.Messages.Tool;\n if (\n typeof schema.name === \"string\" &&\n typeof schema.description === \"string\" &&\n typeof schema.input_schema === \"object\" &&\n schema.input_schema != null\n ) {\n anthropicTools = schema as Anthropic.Messages.Tool;\n functionName = schema.name;\n } else {\n anthropicTools = {\n name: functionName,\n description: schema.description ?? \"\",\n input_schema: schema as Anthropic.Messages.Tool.InputSchema,\n };\n }\n tools = [anthropicTools];\n outputParser = new AnthropicToolsOutputParser<RunOutput>({\n returnSingle: true,\n keyName: functionName,\n });\n }\n let llm;\n if (this.thinking?.type === \"enabled\") {\n const thinkingAdmonition =\n \"Anthropic structured output relies on forced tool calling, \" +\n \"which is not supported when `thinking` is enabled. This method will raise \" +\n \"OutputParserException if tool calls are not \" +\n \"generated. Consider disabling `thinking` or adjust your prompt to ensure \" +\n \"the tool is called.\";\n\n console.warn(thinkingAdmonition);\n\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n\n const raiseIfNoToolCalls = (message: AIMessageChunk) => {\n if (!message.tool_calls || message.tool_calls.length === 0) {\n throw new Error(thinkingAdmonition);\n }\n return message;\n };\n\n llm = llm.pipe(raiseIfNoToolCalls);\n } else {\n llm = this.withConfig({\n outputVersion: \"v0\",\n tools,\n tool_choice: {\n type: \"tool\",\n name: functionName,\n },\n ls_structured_output_format: {\n kwargs: { method: \"functionCalling\" },\n schema: toJsonSchema(schema),\n },\n } as Partial<CallOptions>);\n }\n\n if (!includeRaw) {\n return llm.pipe(outputParser).withConfig({\n runName: \"ChatAnthropicStructuredOutput\",\n }) as Runnable<BaseLanguageModelInput, RunOutput>;\n }\n\n const parserAssign = RunnablePassthrough.assign({\n // eslint-disable-next-line @typescript-eslint/no-explicit-any\n parsed: (input: any, config) => outputParser.invoke(input.raw, config),\n });\n const parserNone = RunnablePassthrough.assign({\n parsed: () => null,\n });\n const parsedWithFallback = parserAssign.withFallbacks({\n fallbacks: [parserNone],\n });\n return RunnableSequence.from<\n BaseLanguageModelInput,\n { raw: BaseMessage; parsed: RunOutput }\n >([\n {\n raw: llm,\n },\n parsedWithFallback,\n ]).withConfig({\n runName: \"StructuredOutputRunnable\",\n });\n }\n}\n\nexport class ChatAnthropic extends ChatAnthropicMessages {}\n"],"mappings":";;;;;;;;;;;;;;;;;;AAmDA,MAAMA,kCAEF;CACF,mBAAmB;CACnB,iBAAiB;CACjB,mBAAmB;CACnB,4BAA4B;CAC5B,qBAAqB;CACrB,oBAAoB;CACpB,kBAAkB;AACnB;AACD,MAAM,6BAA6B;AAEnC,SAAS,+BAA+BC,OAAiC;AACvE,KAAI,CAAC,MACH,QAAO;CAET,MAAM,YAAY,OAAO,QAAQ,gCAAgC,CAAC,KAChE,CAAC,CAAC,IAAI,KAAK,MAAM,WAAW,IAAI,CACjC,GAAG;AACJ,QAAO,aAAa;AACrB;AAuBD,SAAS,eACPC,QACS;AACT,QAAO,CAAC,EAAE,OAAO,SAAS,OAAO,MAAM,SAAS;AACjD;AAED,SAAS,mBACPA,QACS;AACT,MAAK,MAAM,WAAW,OAAO,YAAY,CAAE,GAAE;AAC3C,MAAI,OAAO,QAAQ,YAAY,SAC7B;AAEF,OAAK,MAAM,SAAS,QAAQ,WAAW,CAAE,EACvC,KACE,OAAO,UAAU,YACjB,SAAS,QACT,MAAM,SAAS,cACf,OAAO,MAAM,cAAc,YAC3B,MAAM,WAAW,QAEjB,QAAO;CAGZ;AACD,QAAO;AACR;AAED,SAAS,kBACPA,QACS;AACT,QAAO,CAAC,EAAE,OAAO,YAAY,OAAO,SAAS,SAAS;AACvD;AAGD,SAAS,gBAAgBC,MAA4C;AACnE,QAAO,kBAAkB;AAC1B;AAED,SAAS,cAAcC,MAAkD;CACvE,MAAM,sBAAsB;EAC1B;EACA;EACA;EACA;EACA;EACA;EACA;EACA;EACA;CACD;AACD,QACE,OAAO,SAAS,YAChB,SAAS,QACT,UAAU,QACV,UAAU,QACV,OAAO,KAAK,SAAS,YACrB,oBAAoB,KAClB,CAAC,WAAW,OAAO,KAAK,SAAS,YAAY,KAAK,KAAK,WAAW,OAAO,CAC1E;AAEJ;AAyGD,SAAS,aAAaC,OAA2C;AAC/D,KAAI,OAAO,MAAM,YAAY,SAC3B,QAAO,MAAM;UAEb,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,WAAW,MAAM,QAAQ,GAEzB,QAAO,OAAO,MAAM,QAAQ,GAAG,UAAU,WACrC,MAAM,QAAQ,GAAG,QACjB,KAAK,UAAU,MAAM,QAAQ,GAAG,MAAM;UAE1C,MAAM,QAAQ,MAAM,QAAQ,IAC5B,MAAM,QAAQ,UAAU,KACxB,UAAU,MAAM,QAAQ,MACxB,OAAO,MAAM,QAAQ,GAAG,SAAS,SAEjC,QAAO,MAAM,QAAQ,GAAG;AAE1B,QAAO;AACR;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AA0XD,IAAa,wBAAb,cAGUC,2DAEV;CACE,OAAO,UAAU;AACf,SAAO;CACR;CAED,IAAI,aAAoD;AACtD,SAAO;GACL,iBAAiB;GACjB,QAAQ;EACT;CACF;CAED,IAAI,aAAqC;AACvC,SAAO,EACL,WAAW,QACZ;CACF;CAED,kBAAkB;CAElB;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA;CAEA,YAAY;CAEZ,QAAQ;CAER;CAEA;CAEA,YAAY;CAEZ;CAEA,WAAyC,EAAE,MAAM,WAAY;CAE7D;CAGA,AAAU;CAGV,AAAU;CAEV,cAAc;;;;;;CAOd;CAEA,YAAYC,QAA+C;EACzD,MAAM,UAAU,CAAE,EAAC;EAEnB,KAAK,kBACH,QAAQ,UACR,QAAQ,0EACe,oBAAoB;AAE7C,MAAI,CAAC,KAAK,mBAAmB,CAAC,QAAQ,aACpC,OAAM,IAAI,MAAM;EAElB,KAAK,gBAAgB,QAAQ,iBAAiB,CAAE;;EAEhD,KAAK,SAAS,KAAK;EAGnB,KAAK,SAAS,QAAQ;;EAGtB,KAAK,YAAY,QAAQ,SAAS,QAAQ,aAAa,KAAK;EAC5D,KAAK,QAAQ,KAAK;EAElB,KAAK,mBAAmB,QAAQ,oBAAoB,CAAE;EAEtD,KAAK,OAAO,QAAQ,QAAQ,KAAK;EAEjC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAC/C,KAAK,OAAO,QAAQ,QAAQ,KAAK;EACjC,KAAK,YACH,QAAQ,aAAa,+BAA+B,KAAK,MAAM;EACjE,KAAK,gBAAgB,QAAQ,iBAAiB,KAAK;EAEnD,KAAK,YAAY,QAAQ,aAAa;EACtC,KAAK,cAAc,QAAQ,eAAe,KAAK;EAE/C,KAAK,WAAW,QAAQ,YAAY,KAAK;EACzC,KAAK,oBACH,QAAQ,qBAAqB,KAAK;EAEpC,KAAK,eACH,QAAQ,iBACP,CAACC,YAA2B,IAAIC,6BAAU;CAC9C;CAED,YAAYC,SAAqD;EAC/D,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,SAAO;GACL,aAAa;GACb,eAAe,KAAK;GACpB,eAAe;GACf,gBAAgB,OAAO,eAAe;GACtC,eAAe,OAAO,cAAc;GACpC,SAAS,QAAQ;EAClB;CACF;;;;;;;CAQD,gCACEC,OAC4C;AAC5C,MAAI,CAAC,SAAS,CAAC,MAAM,OACnB,QAAO;AAET,SAAO,MAAM,IAAI,CAAC,SAAS;AACzB,OAAI,cAAc,KAAK,CACrB,QAAO;AAET,OAAI,gBAAgB,KAAK,CACvB,QAAO;AAET,+DAAiB,KAAK,CACpB,QAAO;IACL,MAAM,KAAK,SAAS;IACpB,aAAa,KAAK,SAAS;IAC3B,cAAc,KAAK,SAChB;GACJ;AAEH,oEAAoB,KAAK,CACvB,QAAO;IACL,MAAM,KAAK;IACX,aAAa,KAAK;IAClB,mEAAkC,KAAK,OAAO,wDAC7B,KAAK,OAAO,GACzB,KAAK;GACV;AAEH,SAAM,IAAI,MACR,CAAC,2CAA2C,EAAE,KAAK,UACjD,MACA,MACA,EACD,EAAE;EAEN,EAAC;CACH;CAED,AAAS,UACPC,OACAC,QAC+D;AAC/D,SAAO,KAAK,WAAW;GACrB,OAAO,KAAK,gCAAgC,MAAM;GAClD,GAAG;EACJ,EAAyB;CAC3B;;;;CAKD,AAAS,iBACPC,SAKO;EACP,MAAMC,cAKUC,+BAAiB,SAAS,YAAY;AAEtD,MAAI,KAAK,SAAS,SAAS,WAAW;AACpC,OAAI,KAAK,SAAS,UAAa,KAAK,SAAS,GAC3C,OAAM,IAAI,MAAM;AAElB,OAAI,KAAK,gBAAgB,UAAa,KAAK,gBAAgB,EACzD,OAAM,IAAI,MACR;AAIJ,UAAO;IACL,OAAO,KAAK;IACZ,gBAAgB,SAAS,QAAQ,KAAK;IACtC,QAAQ,KAAK;IACb,YAAY,KAAK;IACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;IAC3D;IACA,UAAU,KAAK;IACf,oBAAoB,KAAK;IACzB,GAAG,KAAK;IACR,WAAW,SAAS;GACrB;EACF;AACD,SAAO;GACL,OAAO,KAAK;GACZ,aAAa,KAAK;GAClB,OAAO,KAAK;GACZ,OAAO,KAAK;GACZ,gBAAgB,SAAS,QAAQ,KAAK;GACtC,QAAQ,KAAK;GACb,YAAY,KAAK;GACjB,OAAO,KAAK,gCAAgC,SAAS,MAAM;GAC3D;GACA,UAAU,KAAK;GACf,oBAAoB,KAAK;GACzB,GAAG,KAAK;GACR,WAAW,SAAS;EACrB;CACF;;CAGD,qBAAqB;AACnB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;;;;CAKD,oBAAoB;AAClB,SAAO;GACL,YAAY,KAAK;GACjB,GAAG,KAAK,kBAAkB;EAC3B;CACF;CAED,OAAO,sBACLC,UACAP,SACAQ,YACqC;EACrC,MAAM,SAAS,KAAK,iBAAiB,QAAQ;EAC7C,MAAM,oBAAoBC,0DAAmC,SAAS;EACtE,MAAM,UAAU;GACd,GAAG;GACH,GAAG;GACH,QAAQ;EACT;EACD,MAAM,wBACJ,CAAC,eAAe,QAAQ,IACxB,CAAC,mBAAmB,QAAQ,IAC5B,CAAC,kBAAkB,QAAQ;EAE7B,MAAM,SAAS,MAAM,KAAK,sBAAsB,SAAS,EACvD,SAAS,QAAQ,QAClB,EAAC;AAEF,aAAW,MAAM,QAAQ,QAAQ;AAC/B,OAAI,QAAQ,QAAQ,SAAS;IAC3B,OAAO,WAAW,OAAO;AACzB,UAAM,IAAI,MAAM;GACjB;GACD,MAAM,oBAAoB,KAAK,eAAe,QAAQ;GACtD,MAAM,SAASC,4DAAoC,MAAM;IACvD,aAAa;IACb;GACD,EAAC;AACF,OAAI,CAAC,OAAQ;GAEb,MAAM,EAAE,OAAO,GAAG;GAGlB,MAAM,QAAQ,aAAa,MAAM;GACjC,MAAM,kBAAkB,IAAIC,6CAAoB;IAC9C,SAAS,IAAIC,yCAAe;KAE1B,SAAS,MAAM;KACf,mBAAmB,MAAM;KACzB,kBAAkB,MAAM;KACxB,gBAAgB,oBAAoB,MAAM,iBAAiB;KAC3D,mBAAmB,MAAM;KACzB,IAAI,MAAM;IACX;IACD,MAAM,SAAS;GAChB;GACD,MAAM;GAEN,MAAM,YAAY,kBAChB,SAAS,IACT,QACA,QACA,QACA,QACA,EAAE,OAAO,gBAAiB,EAC3B;EACF;CACF;;CAGD,MAAM,sBACJL,UACAM,QAMAC,gBACA;EACA,MAAM,WAAW,MAAM,KAAK,oBAC1B;GACE,GAAG;GACH,QAAQ;GACR,GAAGL,0DAAmC,SAAS;EAChD,GACD,eACD;EAED,MAAM,EAAE,QAAS,GAAG,kBAAkB,GAAG;EAEzC,MAAM,cAAcM,wDAClB,SACA,iBACD;EACD,MAAM,EAAE,MAAM,OAAO,MAAM,MAAO,GAAG,MAAM,GAAG;AAC9C,SAAO;GAAE;GAAa,WAAW;EAAM;CACxC;;CAGD,MAAM,UACJR,UACAP,SACAQ,YACqB;AACrB,MAAI,KAAK,iBAAiB,QAAQ,KAChC,OAAM,IAAI,MACR,CAAC,0DAA0D,CAAC;EAIhE,MAAM,SAAS,KAAK,iBAAiB,QAAQ;AAC7C,MAAI,OAAO,QAAQ;GACjB,IAAIQ;GACJ,MAAM,SAAS,KAAK,sBAAsB,UAAU,SAAS,WAAW;AACxE,cAAW,MAAM,SAAS,OACxB,KAAI,eAAe,QACjB,aAAa;QAEb,aAAa,WAAW,OAAO,MAAM;AAGzC,OAAI,eAAe,OACjB,OAAM,IAAI,MAAM;AAElB,UAAO,EACL,aAAa,CACX;IACE,MAAM,WAAW;IACjB,SAAS,WAAW;GACrB,CACF,EACF;EACF,MACC,QAAO,KAAK,sBAAsB,UAAU,QAAQ;GAClD,QAAQ,QAAQ;GAChB,SAAS,QAAQ;EAClB,EAAC;CAEL;;;;;;;CAQD,MAAgB,sBACdC,SACAC,SAC8C;AAC9C,MAAI,CAAC,KAAK,iBAAiB;GACzB,MAAM,WAAW,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GAC1D,KAAK,kBAAkB,KAAK,aAAa;IACvC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAG;IACH,QAAQ,KAAK;IAEb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,gBAAgB,SAAS,OACzC;KACE,GAAG;KACH,GAAG,KAAK;KACR,QAAQ;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQC,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,KAAK,sBAAsB;CAC/C;;CAGD,MAAgB,oBACdC,SACAC,SAC4B;AAC5B,MAAI,CAAC,KAAK,aAAa;GACrB,MAAMC,YAAU,KAAK,SAAS,EAAE,SAAS,KAAK,OAAQ,IAAG;GACzD,KAAK,cAAc,KAAK,aAAa;IACnC,yBAAyB;IACzB,GAAG,KAAK;IACR,GAAGA;IACH,QAAQ,KAAK;IACb,YAAY;GACb,EAAC;EACH;EACD,MAAM,wBAAwB,YAAY;AACxC,OAAI;AACF,WAAO,MAAM,KAAK,YAAY,SAAS,OACrC;KACE,GAAG;KACH,GAAG,KAAK;IACT,GACD,QACD;GACF,SAAQ,GAAG;IACV,MAAM,QAAQH,wCAAyB,EAAE;AACzC,UAAM;GACP;EACF;AACD,SAAO,KAAK,OAAO,gBACjB,EAAE,QAAQ,QAAQ,UAAU,OAAW,GACvC,sBACD;CACF;CAED,WAAW;AACT,SAAO;CACR;CAwBD,qBAIEI,cAIAC,QAMI;EAEJ,MAAMC,SACJ;EACF,MAAM,OAAO,QAAQ;EACrB,MAAM,SAAS,QAAQ;EACvB,MAAM,aAAa,QAAQ;AAC3B,MAAI,WAAW,WACb,OAAM,IAAI,MAAM,CAAC,sDAAsD,CAAC;EAG1E,IAAI,eAAe,QAAQ;EAC3B,IAAIC;EACJ,IAAIC;AACJ,2DAAuB,OAAO,EAAE;GAC9B,MAAM,kEAA0B,OAAO;GACvC,QAAQ,CACN;IACE,MAAM;IACN,aACE,WAAW,eAAe;IAC5B,cAAc;GACf,CACF;GACD,eAAe,IAAIC,kDAA2B;IAC5C,cAAc;IACd,SAAS;IACT,WAAW;GACZ;EACF,OAAM;GACL,IAAIC;AACJ,OACE,OAAO,OAAO,SAAS,YACvB,OAAO,OAAO,gBAAgB,YAC9B,OAAO,OAAO,iBAAiB,YAC/B,OAAO,gBAAgB,MACvB;IACA,iBAAiB;IACjB,eAAe,OAAO;GACvB,OACC,iBAAiB;IACf,MAAM;IACN,aAAa,OAAO,eAAe;IACnC,cAAc;GACf;GAEH,QAAQ,CAAC,cAAe;GACxB,eAAe,IAAID,kDAAsC;IACvD,cAAc;IACd,SAAS;GACV;EACF;EACD,IAAI;AACJ,MAAI,KAAK,UAAU,SAAS,WAAW;GACrC,MAAM,qBACJ;GAMF,QAAQ,KAAK,mBAAmB;GAEhC,MAAM,KAAK,WAAW;IACpB,eAAe;IACf;IACA,6BAA6B;KAC3B,QAAQ,EAAE,QAAQ,kBAAmB;KACrC,6DAAqB,OAAO;IAC7B;GACF,EAAyB;GAE1B,MAAM,qBAAqB,CAACE,YAA4B;AACtD,QAAI,CAAC,QAAQ,cAAc,QAAQ,WAAW,WAAW,EACvD,OAAM,IAAI,MAAM;AAElB,WAAO;GACR;GAED,MAAM,IAAI,KAAK,mBAAmB;EACnC,OACC,MAAM,KAAK,WAAW;GACpB,eAAe;GACf;GACA,aAAa;IACX,MAAM;IACN,MAAM;GACP;GACD,6BAA6B;IAC3B,QAAQ,EAAE,QAAQ,kBAAmB;IACrC,6DAAqB,OAAO;GAC7B;EACF,EAAyB;AAG5B,MAAI,CAAC,WACH,QAAO,IAAI,KAAK,aAAa,CAAC,WAAW,EACvC,SAAS,gCACV,EAAC;EAGJ,MAAM,eAAeC,+CAAoB,OAAO,EAE9C,QAAQ,CAACC,OAAYC,aAAW,aAAa,OAAO,MAAM,KAAKA,SAAO,CACvE,EAAC;EACF,MAAM,aAAaF,+CAAoB,OAAO,EAC5C,QAAQ,MAAM,KACf,EAAC;EACF,MAAM,qBAAqB,aAAa,cAAc,EACpD,WAAW,CAAC,UAAW,EACxB,EAAC;AACF,SAAOG,4CAAiB,KAGtB,CACA,EACE,KAAK,IACN,GACD,kBACD,EAAC,CAAC,WAAW,EACZ,SAAS,2BACV,EAAC;CACH;AACF;AAED,IAAa,gBAAb,cAAmC,sBAAsB,CAAE"}