@langchain/anthropic 0.1.8 → 0.1.10

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,6 +6,10 @@ const messages_1 = require("@langchain/core/messages");
6
6
  const outputs_1 = require("@langchain/core/outputs");
7
7
  const env_1 = require("@langchain/core/utils/env");
8
8
  const chat_models_1 = require("@langchain/core/language_models/chat_models");
9
+ const zod_to_json_schema_1 = require("zod-to-json-schema");
10
+ const runnables_1 = require("@langchain/core/runnables");
11
+ const types_1 = require("@langchain/core/utils/types");
12
+ const output_parsers_js_1 = require("./output_parsers.cjs");
9
13
  function _formatImage(imageUrl) {
10
14
  const regex = /^data:(image\/.+);base64,(.+)$/;
11
15
  const match = imageUrl.match(regex);
@@ -22,6 +26,34 @@ function _formatImage(imageUrl) {
22
26
  // eslint-disable-next-line @typescript-eslint/no-explicit-any
23
27
  };
24
28
  }
29
+ function anthropicResponseToChatMessages(messages, additionalKwargs) {
30
+ if (messages.length === 1 && messages[0].type === "text") {
31
+ return [
32
+ {
33
+ text: messages[0].text,
34
+ message: new messages_1.AIMessage(messages[0].text, additionalKwargs),
35
+ },
36
+ ];
37
+ }
38
+ else {
39
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
40
+ const castMessage = messages;
41
+ const generations = [
42
+ {
43
+ text: "",
44
+ message: new messages_1.AIMessage({
45
+ content: castMessage,
46
+ additional_kwargs: additionalKwargs,
47
+ }),
48
+ },
49
+ ];
50
+ return generations;
51
+ }
52
+ }
53
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
54
+ function isAnthropicTool(tool) {
55
+ return "input_schema" in tool;
56
+ }
25
57
  /**
26
58
  * Wrapper around Anthropic large language models.
27
59
  *
@@ -165,6 +197,32 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
165
197
  this.streaming = fields?.streaming ?? false;
166
198
  this.clientOptions = fields?.clientOptions ?? {};
167
199
  }
200
+ /**
201
+ * Formats LangChain StructuredTools to AnthropicTools.
202
+ *
203
+ * @param {ChatAnthropicCallOptions["tools"]} tools The tools to format
204
+ * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.
205
+ * @throws {Error} If a mix of AnthropicTools and StructuredTools are passed.
206
+ */
207
+ formatStructuredToolToAnthropic(tools) {
208
+ if (!tools || !tools.length) {
209
+ return undefined;
210
+ }
211
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
212
+ if (tools.every((tool) => isAnthropicTool(tool))) {
213
+ // If the tool is already an anthropic tool, return it
214
+ return tools;
215
+ }
216
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
217
+ if (tools.some((tool) => isAnthropicTool(tool))) {
218
+ throw new Error(`Can not pass in a mix of AnthropicTools and StructuredTools`);
219
+ }
220
+ return tools.map((tool) => ({
221
+ name: tool.name,
222
+ description: tool.description,
223
+ input_schema: (0, zod_to_json_schema_1.zodToJsonSchema)(tool.schema),
224
+ }));
225
+ }
168
226
  /**
169
227
  * Get the parameters used to invoke the model
170
228
  */
@@ -180,6 +238,27 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
180
238
  ...this.invocationKwargs,
181
239
  };
182
240
  }
241
+ invocationOptions(request, options) {
242
+ const toolUseBetaHeader = {
243
+ "anthropic-beta": "tools-2024-04-04",
244
+ };
245
+ const tools = this.formatStructuredToolToAnthropic(options?.tools);
246
+ // If tools are present, populate the body with the message request params.
247
+ // This is because Anthropic overwrites the message request params if a body
248
+ // is passed.
249
+ const body = tools
250
+ ? {
251
+ ...request,
252
+ tools,
253
+ }
254
+ : undefined;
255
+ const headers = tools ? toolUseBetaHeader : undefined;
256
+ return {
257
+ signal: options.signal,
258
+ ...(body ? { body } : {}),
259
+ ...(headers ? { headers } : {}),
260
+ };
261
+ }
183
262
  /** @ignore */
184
263
  _identifyingParams() {
185
264
  return {
@@ -198,56 +277,90 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
198
277
  }
199
278
  async *_streamResponseChunks(messages, options, runManager) {
200
279
  const params = this.invocationParams(options);
201
- const stream = await this.createStreamWithRetry({
280
+ const requestOptions = this.invocationOptions({
202
281
  ...params,
282
+ stream: false,
203
283
  ...this.formatMessagesForAnthropic(messages),
204
- stream: true,
205
- });
206
- for await (const data of stream) {
207
- if (options.signal?.aborted) {
208
- stream.controller.abort();
209
- throw new Error("AbortError: User aborted the request.");
210
- }
211
- if (data.type === "message_start") {
212
- // eslint-disable-next-line @typescript-eslint/no-unused-vars
213
- const { content, ...additionalKwargs } = data.message;
214
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
215
- const filteredAdditionalKwargs = {};
216
- for (const [key, value] of Object.entries(additionalKwargs)) {
217
- if (value !== undefined && value !== null) {
218
- filteredAdditionalKwargs[key] = value;
284
+ }, options);
285
+ if (options.tools !== undefined && options.tools.length > 0) {
286
+ const requestOptions = this.invocationOptions({
287
+ ...params,
288
+ stream: false,
289
+ ...this.formatMessagesForAnthropic(messages),
290
+ }, options);
291
+ const generations = await this._generateNonStreaming(messages, params, requestOptions);
292
+ yield new outputs_1.ChatGenerationChunk({
293
+ message: new messages_1.AIMessageChunk({
294
+ content: generations[0].message.content,
295
+ additional_kwargs: generations[0].message.additional_kwargs,
296
+ }),
297
+ text: generations[0].text,
298
+ });
299
+ }
300
+ else {
301
+ const stream = await this.createStreamWithRetry({
302
+ ...params,
303
+ ...this.formatMessagesForAnthropic(messages),
304
+ stream: true,
305
+ }, requestOptions);
306
+ let usageData = { input_tokens: 0, output_tokens: 0 };
307
+ for await (const data of stream) {
308
+ if (options.signal?.aborted) {
309
+ stream.controller.abort();
310
+ throw new Error("AbortError: User aborted the request.");
311
+ }
312
+ if (data.type === "message_start") {
313
+ // eslint-disable-next-line @typescript-eslint/no-unused-vars
314
+ const { content, usage, ...additionalKwargs } = data.message;
315
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
316
+ const filteredAdditionalKwargs = {};
317
+ for (const [key, value] of Object.entries(additionalKwargs)) {
318
+ if (value !== undefined && value !== null) {
319
+ filteredAdditionalKwargs[key] = value;
320
+ }
219
321
  }
322
+ usageData = usage;
323
+ yield new outputs_1.ChatGenerationChunk({
324
+ message: new messages_1.AIMessageChunk({
325
+ content: "",
326
+ additional_kwargs: filteredAdditionalKwargs,
327
+ }),
328
+ text: "",
329
+ });
220
330
  }
221
- yield new outputs_1.ChatGenerationChunk({
222
- message: new messages_1.AIMessageChunk({
223
- content: "",
224
- additional_kwargs: filteredAdditionalKwargs,
225
- }),
226
- text: "",
227
- });
228
- }
229
- else if (data.type === "message_delta") {
230
- yield new outputs_1.ChatGenerationChunk({
231
- message: new messages_1.AIMessageChunk({
232
- content: "",
233
- additional_kwargs: { ...data.delta },
234
- }),
235
- text: "",
236
- });
237
- }
238
- else if (data.type === "content_block_delta") {
239
- const content = data.delta?.text;
240
- if (content !== undefined) {
331
+ else if (data.type === "message_delta") {
241
332
  yield new outputs_1.ChatGenerationChunk({
242
333
  message: new messages_1.AIMessageChunk({
243
- content,
244
- additional_kwargs: {},
334
+ content: "",
335
+ additional_kwargs: { ...data.delta },
245
336
  }),
246
- text: content,
337
+ text: "",
247
338
  });
248
- await runManager?.handleLLMNewToken(content);
339
+ if (data?.usage !== undefined) {
340
+ usageData.output_tokens += data.usage.output_tokens;
341
+ }
342
+ }
343
+ else if (data.type === "content_block_delta") {
344
+ const content = data.delta?.text;
345
+ if (content !== undefined) {
346
+ yield new outputs_1.ChatGenerationChunk({
347
+ message: new messages_1.AIMessageChunk({
348
+ content,
349
+ additional_kwargs: {},
350
+ }),
351
+ text: content,
352
+ });
353
+ await runManager?.handleLLMNewToken(content);
354
+ }
249
355
  }
250
356
  }
357
+ yield new outputs_1.ChatGenerationChunk({
358
+ message: new messages_1.AIMessageChunk({
359
+ content: "",
360
+ additional_kwargs: { usage: usageData },
361
+ }),
362
+ text: "",
363
+ });
251
364
  }
252
365
  }
253
366
  /**
@@ -272,6 +385,9 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
272
385
  else if (message._getType() === "ai") {
273
386
  role = "assistant";
274
387
  }
388
+ else if (message._getType() === "tool") {
389
+ role = "user";
390
+ }
275
391
  else if (message._getType() === "system") {
276
392
  throw new Error("System messages are only permitted as the first passed message.");
277
393
  }
@@ -284,29 +400,40 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
284
400
  content: message.content,
285
401
  };
286
402
  }
287
- else {
288
- return {
289
- role,
290
- content: message.content.map((contentPart) => {
291
- if (contentPart.type === "image_url") {
292
- let source;
293
- if (typeof contentPart.image_url === "string") {
294
- source = _formatImage(contentPart.image_url);
295
- }
296
- else {
297
- source = _formatImage(contentPart.image_url.url);
298
- }
299
- return {
300
- type: "image",
301
- source,
302
- };
403
+ else if ("type" in message.content) {
404
+ const contentBlocks = message.content.map((contentPart) => {
405
+ if (contentPart.type === "image_url") {
406
+ let source;
407
+ if (typeof contentPart.image_url === "string") {
408
+ source = _formatImage(contentPart.image_url);
303
409
  }
304
410
  else {
305
- return contentPart;
411
+ source = _formatImage(contentPart.image_url.url);
306
412
  }
307
- }),
413
+ return {
414
+ type: "image",
415
+ source,
416
+ };
417
+ }
418
+ else if (contentPart.type === "text") {
419
+ // Assuming contentPart is of type MessageContentText here
420
+ return {
421
+ type: "text",
422
+ text: contentPart.text,
423
+ };
424
+ }
425
+ else {
426
+ throw new Error("Unsupported message content format");
427
+ }
428
+ });
429
+ return {
430
+ role,
431
+ content: contentBlocks,
308
432
  };
309
433
  }
434
+ else {
435
+ throw new Error("Unsupported message content format");
436
+ }
310
437
  });
311
438
  return {
312
439
  messages: formattedMessages,
@@ -314,6 +441,17 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
314
441
  };
315
442
  }
316
443
  /** @ignore */
444
+ async _generateNonStreaming(messages, params, requestOptions) {
445
+ const response = await this.completionWithRetry({
446
+ ...params,
447
+ stream: false,
448
+ ...this.formatMessagesForAnthropic(messages),
449
+ }, requestOptions);
450
+ const { content, ...additionalKwargs } = response;
451
+ const generations = anthropicResponseToChatMessages(content, additionalKwargs);
452
+ return generations;
453
+ }
454
+ /** @ignore */
317
455
  async _generate(messages, options, runManager) {
318
456
  if (this.stopSequences && options.stop) {
319
457
  throw new Error(`"stopSequence" parameter found in input and default params`);
@@ -321,7 +459,7 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
321
459
  const params = this.invocationParams(options);
322
460
  if (params.stream) {
323
461
  let finalChunk;
324
- const stream = await this._streamResponseChunks(messages, options, runManager);
462
+ const stream = this._streamResponseChunks(messages, options, runManager);
325
463
  for await (const chunk of stream) {
326
464
  if (finalChunk === undefined) {
327
465
  finalChunk = chunk;
@@ -343,26 +481,14 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
343
481
  };
344
482
  }
345
483
  else {
346
- const response = await this.completionWithRetry({
484
+ const requestOptions = this.invocationOptions({
347
485
  ...params,
348
486
  stream: false,
349
487
  ...this.formatMessagesForAnthropic(messages),
350
- }, { signal: options.signal });
351
- const { content, ...additionalKwargs } = response;
352
- if (!Array.isArray(content) || content.length !== 1) {
353
- console.log(content);
354
- throw new Error("Received multiple content parts in Anthropic response. Only single part messages are currently supported.");
355
- }
488
+ }, options);
489
+ const generations = await this._generateNonStreaming(messages, params, requestOptions);
356
490
  return {
357
- generations: [
358
- {
359
- text: content[0].text,
360
- message: new messages_1.AIMessage({
361
- content: content[0].text,
362
- additional_kwargs: additionalKwargs,
363
- }),
364
- },
365
- ],
491
+ generations,
366
492
  };
367
493
  }
368
494
  }
@@ -371,12 +497,12 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
371
497
  * @param request The parameters for creating a completion.
372
498
  * @returns A streaming request.
373
499
  */
374
- async createStreamWithRetry(request) {
500
+ async createStreamWithRetry(request, options) {
375
501
  if (!this.streamingClient) {
376
- const options = this.apiUrl ? { baseURL: this.apiUrl } : undefined;
502
+ const options_ = this.apiUrl ? { baseURL: this.apiUrl } : undefined;
377
503
  this.streamingClient = new sdk_1.Anthropic({
378
504
  ...this.clientOptions,
379
- ...options,
505
+ ...options_,
380
506
  apiKey: this.anthropicApiKey,
381
507
  // Prefer LangChain built-in retries
382
508
  maxRetries: 0,
@@ -386,7 +512,7 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
386
512
  ...request,
387
513
  ...this.invocationKwargs,
388
514
  stream: true,
389
- });
515
+ }, options);
390
516
  return this.caller.call(makeCompletionRequest);
391
517
  }
392
518
  /** @ignore */
@@ -406,12 +532,88 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
406
532
  const makeCompletionRequest = async () => this.batchClient.messages.create({
407
533
  ...request,
408
534
  ...this.invocationKwargs,
409
- });
410
- return this.caller.callWithOptions({ signal: options.signal }, makeCompletionRequest);
535
+ }, options);
536
+ return this.caller.callWithOptions({ signal: options.signal ?? undefined }, makeCompletionRequest);
411
537
  }
412
538
  _llmType() {
413
539
  return "anthropic";
414
540
  }
541
+ withStructuredOutput(outputSchema, config) {
542
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
543
+ const schema = outputSchema;
544
+ const name = config?.name;
545
+ const method = config?.method;
546
+ const includeRaw = config?.includeRaw;
547
+ if (method === "jsonMode") {
548
+ throw new Error(`Anthropic only supports "functionCalling" as a method.`);
549
+ }
550
+ let functionName = name ?? "extract";
551
+ let outputParser;
552
+ let tools;
553
+ if ((0, types_1.isZodSchema)(schema)) {
554
+ const jsonSchema = (0, zod_to_json_schema_1.zodToJsonSchema)(schema);
555
+ tools = [
556
+ {
557
+ name: functionName,
558
+ description: jsonSchema.description ?? "A function available to call.",
559
+ input_schema: jsonSchema,
560
+ },
561
+ ];
562
+ outputParser = new output_parsers_js_1.AnthropicToolsOutputParser({
563
+ returnSingle: true,
564
+ keyName: functionName,
565
+ zodSchema: schema,
566
+ });
567
+ }
568
+ else {
569
+ let anthropicTools;
570
+ if (typeof schema.name === "string" &&
571
+ typeof schema.description === "string" &&
572
+ typeof schema.input_schema === "object" &&
573
+ schema.input_schema != null) {
574
+ anthropicTools = schema;
575
+ functionName = schema.name;
576
+ }
577
+ else {
578
+ anthropicTools = {
579
+ name: functionName,
580
+ description: schema.description ?? "",
581
+ input_schema: schema,
582
+ };
583
+ }
584
+ tools = [anthropicTools];
585
+ outputParser = new output_parsers_js_1.AnthropicToolsOutputParser({
586
+ returnSingle: true,
587
+ keyName: functionName,
588
+ });
589
+ }
590
+ const llm = this.bind({
591
+ tools,
592
+ });
593
+ if (!includeRaw) {
594
+ return llm.pipe(outputParser).withConfig({
595
+ runName: "ChatAnthropicStructuredOutput",
596
+ });
597
+ }
598
+ const parserAssign = runnables_1.RunnablePassthrough.assign({
599
+ // eslint-disable-next-line @typescript-eslint/no-explicit-any
600
+ parsed: (input, config) => outputParser.invoke(input.raw, config),
601
+ });
602
+ const parserNone = runnables_1.RunnablePassthrough.assign({
603
+ parsed: () => null,
604
+ });
605
+ const parsedWithFallback = parserAssign.withFallbacks({
606
+ fallbacks: [parserNone],
607
+ });
608
+ return runnables_1.RunnableSequence.from([
609
+ {
610
+ raw: llm,
611
+ },
612
+ parsedWithFallback,
613
+ ]).withConfig({
614
+ runName: "StructuredOutputRunnable",
615
+ });
616
+ }
415
617
  }
416
618
  exports.ChatAnthropicMessages = ChatAnthropicMessages;
417
619
  class ChatAnthropic extends ChatAnthropicMessages {
@@ -2,13 +2,28 @@ import { Anthropic, type ClientOptions } from "@anthropic-ai/sdk";
2
2
  import type { Stream } from "@anthropic-ai/sdk/streaming";
3
3
  import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
4
4
  import { type BaseMessage } from "@langchain/core/messages";
5
- import { ChatGenerationChunk, type ChatResult } from "@langchain/core/outputs";
5
+ import { ChatGeneration, ChatGenerationChunk, type ChatResult } from "@langchain/core/outputs";
6
6
  import { BaseChatModel, type BaseChatModelParams } from "@langchain/core/language_models/chat_models";
7
- import { type BaseLanguageModelCallOptions } from "@langchain/core/language_models/base";
7
+ import { StructuredOutputMethodOptions, type BaseLanguageModelCallOptions, BaseLanguageModelInput } from "@langchain/core/language_models/base";
8
+ import { StructuredToolInterface } from "@langchain/core/tools";
9
+ import { Runnable } from "@langchain/core/runnables";
10
+ import { z } from "zod";
11
+ type AnthropicTool = {
12
+ name: string;
13
+ description: string;
14
+ /**
15
+ * JSON schema.
16
+ */
17
+ input_schema: Record<string, unknown>;
18
+ };
8
19
  type AnthropicMessage = Anthropic.MessageParam;
9
20
  type AnthropicMessageCreateParams = Anthropic.MessageCreateParamsNonStreaming;
10
21
  type AnthropicStreamingMessageCreateParams = Anthropic.MessageCreateParamsStreaming;
11
22
  type AnthropicMessageStreamEvent = Anthropic.MessageStreamEvent;
23
+ type AnthropicRequestOptions = Anthropic.RequestOptions;
24
+ interface ChatAnthropicCallOptions extends BaseLanguageModelCallOptions {
25
+ tools?: StructuredToolInterface[] | AnthropicTool[];
26
+ }
12
27
  /**
13
28
  * Input to AnthropicChat class.
14
29
  */
@@ -89,7 +104,7 @@ type Kwargs = Record<string, any>;
89
104
  * console.log(res);
90
105
  * ```
91
106
  */
92
- export declare class ChatAnthropicMessages<CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions> extends BaseChatModel<CallOptions> implements AnthropicInput {
107
+ export declare class ChatAnthropicMessages<CallOptions extends ChatAnthropicCallOptions = ChatAnthropicCallOptions> extends BaseChatModel<CallOptions> implements AnthropicInput {
93
108
  static lc_name(): string;
94
109
  get lc_secrets(): {
95
110
  [key: string]: string;
@@ -110,18 +125,27 @@ export declare class ChatAnthropicMessages<CallOptions extends BaseLanguageModel
110
125
  protected batchClient: Anthropic;
111
126
  protected streamingClient: Anthropic;
112
127
  constructor(fields?: Partial<AnthropicInput> & BaseChatModelParams);
128
+ /**
129
+ * Formats LangChain StructuredTools to AnthropicTools.
130
+ *
131
+ * @param {ChatAnthropicCallOptions["tools"]} tools The tools to format
132
+ * @returns {AnthropicTool[] | undefined} The formatted tools, or undefined if none are passed.
133
+ * @throws {Error} If a mix of AnthropicTools and StructuredTools are passed.
134
+ */
135
+ formatStructuredToolToAnthropic(tools: ChatAnthropicCallOptions["tools"]): AnthropicTool[] | undefined;
113
136
  /**
114
137
  * Get the parameters used to invoke the model
115
138
  */
116
139
  invocationParams(options?: this["ParsedCallOptions"]): Omit<AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams, "messages"> & Kwargs;
140
+ invocationOptions(request: Omit<AnthropicMessageCreateParams | AnthropicStreamingMessageCreateParams, "messages"> & Kwargs, options: this["ParsedCallOptions"]): AnthropicRequestOptions;
117
141
  /** @ignore */
118
142
  _identifyingParams(): {
143
+ system?: string | undefined;
119
144
  metadata?: Anthropic.Messages.MessageCreateParams.Metadata | undefined;
120
145
  stream?: boolean | undefined;
121
146
  max_tokens: number;
122
147
  model: (string & {}) | "claude-3-opus-20240229" | "claude-3-sonnet-20240229" | "claude-2.1'" | "claude-2.0" | "claude-instant-1.2";
123
148
  stop_sequences?: string[] | undefined;
124
- system?: string | undefined;
125
149
  temperature?: number | undefined;
126
150
  top_k?: number | undefined;
127
151
  top_p?: number | undefined;
@@ -131,12 +155,12 @@ export declare class ChatAnthropicMessages<CallOptions extends BaseLanguageModel
131
155
  * Get the identifying parameters for the model
132
156
  */
133
157
  identifyingParams(): {
158
+ system?: string | undefined;
134
159
  metadata?: Anthropic.Messages.MessageCreateParams.Metadata | undefined;
135
160
  stream?: boolean | undefined;
136
161
  max_tokens: number;
137
162
  model: (string & {}) | "claude-3-opus-20240229" | "claude-3-sonnet-20240229" | "claude-2.1'" | "claude-2.0" | "claude-instant-1.2";
138
163
  stop_sequences?: string[] | undefined;
139
- system?: string | undefined;
140
164
  temperature?: number | undefined;
141
165
  top_k?: number | undefined;
142
166
  top_p?: number | undefined;
@@ -153,18 +177,23 @@ export declare class ChatAnthropicMessages<CallOptions extends BaseLanguageModel
153
177
  messages: AnthropicMessage[];
154
178
  };
155
179
  /** @ignore */
180
+ _generateNonStreaming(messages: BaseMessage[], params: Omit<Anthropic.Messages.MessageCreateParamsNonStreaming | Anthropic.Messages.MessageCreateParamsStreaming, "messages"> & Kwargs, requestOptions: AnthropicRequestOptions): Promise<ChatGeneration[]>;
181
+ /** @ignore */
156
182
  _generate(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): Promise<ChatResult>;
157
183
  /**
158
184
  * Creates a streaming request with retry.
159
185
  * @param request The parameters for creating a completion.
160
186
  * @returns A streaming request.
161
187
  */
162
- protected createStreamWithRetry(request: AnthropicStreamingMessageCreateParams & Kwargs): Promise<Stream<AnthropicMessageStreamEvent>>;
188
+ protected createStreamWithRetry(request: AnthropicStreamingMessageCreateParams & Kwargs, options?: AnthropicRequestOptions): Promise<Stream<AnthropicMessageStreamEvent>>;
163
189
  /** @ignore */
164
- protected completionWithRetry(request: AnthropicMessageCreateParams & Kwargs, options: {
165
- signal?: AbortSignal;
166
- }): Promise<Anthropic.Message>;
190
+ protected completionWithRetry(request: AnthropicMessageCreateParams & Kwargs, options: AnthropicRequestOptions): Promise<Anthropic.Message>;
167
191
  _llmType(): string;
192
+ withStructuredOutput<RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: z.ZodType<RunOutput> | Record<string, any>, config?: StructuredOutputMethodOptions<false>): Runnable<BaseLanguageModelInput, RunOutput>;
193
+ withStructuredOutput<RunOutput extends Record<string, any> = Record<string, any>>(outputSchema: z.ZodType<RunOutput> | Record<string, any>, config?: StructuredOutputMethodOptions<true>): Runnable<BaseLanguageModelInput, {
194
+ raw: BaseMessage;
195
+ parsed: RunOutput;
196
+ }>;
168
197
  }
169
198
  export declare class ChatAnthropic extends ChatAnthropicMessages {
170
199
  }