@langchain/anthropic 0.1.1 → 0.1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/chat_models.cjs +46 -12
- package/dist/chat_models.d.ts +0 -2
- package/dist/chat_models.js +46 -12
- package/dist/experimental/index.cjs +17 -0
- package/dist/experimental/index.d.ts +1 -0
- package/dist/experimental/index.js +1 -0
- package/dist/experimental/tests/tool_calling.int.test.d.ts +1 -0
- package/dist/experimental/tests/tool_calling.int.test.js +204 -0
- package/dist/experimental/tool_calling.cjs +247 -0
- package/dist/experimental/tool_calling.d.ts +51 -0
- package/dist/experimental/tool_calling.js +243 -0
- package/dist/experimental/utils/tool_calling.cjs +52 -0
- package/dist/experimental/utils/tool_calling.d.ts +8 -0
- package/dist/experimental/utils/tool_calling.js +48 -0
- package/dist/tests/chat_models.int.test.js +26 -6
- package/experimental.cjs +1 -0
- package/experimental.d.cts +1 -0
- package/experimental.d.ts +1 -0
- package/experimental.js +1 -0
- package/package.json +20 -3
package/dist/chat_models.cjs
CHANGED
|
@@ -6,6 +6,22 @@ const messages_1 = require("@langchain/core/messages");
|
|
|
6
6
|
const outputs_1 = require("@langchain/core/outputs");
|
|
7
7
|
const env_1 = require("@langchain/core/utils/env");
|
|
8
8
|
const chat_models_1 = require("@langchain/core/language_models/chat_models");
|
|
9
|
+
function _formatImage(imageUrl) {
|
|
10
|
+
const regex = /^data:(image\/.+);base64,(.+)$/;
|
|
11
|
+
const match = imageUrl.match(regex);
|
|
12
|
+
if (match === null) {
|
|
13
|
+
throw new Error([
|
|
14
|
+
"Anthropic only supports base64-encoded images currently.",
|
|
15
|
+
"Example: ...",
|
|
16
|
+
].join("\n\n"));
|
|
17
|
+
}
|
|
18
|
+
return {
|
|
19
|
+
type: "base64",
|
|
20
|
+
media_type: match[1] ?? "",
|
|
21
|
+
data: match[2] ?? "",
|
|
22
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
23
|
+
};
|
|
24
|
+
}
|
|
9
25
|
/**
|
|
10
26
|
* Wrapper around Anthropic large language models.
|
|
11
27
|
*
|
|
@@ -243,16 +259,13 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
|
|
|
243
259
|
let system;
|
|
244
260
|
if (messages.length > 0 && messages[0]._getType() === "system") {
|
|
245
261
|
if (typeof messages[0].content !== "string") {
|
|
246
|
-
throw new Error("
|
|
262
|
+
throw new Error("System message content must be a string.");
|
|
247
263
|
}
|
|
248
264
|
system = messages[0].content;
|
|
249
265
|
}
|
|
250
266
|
const conversationMessages = system !== undefined ? messages.slice(1) : messages;
|
|
251
267
|
const formattedMessages = conversationMessages.map((message) => {
|
|
252
268
|
let role;
|
|
253
|
-
if (typeof message.content !== "string") {
|
|
254
|
-
throw new Error("Currently only string content messages are supported.");
|
|
255
|
-
}
|
|
256
269
|
if (message._getType() === "human") {
|
|
257
270
|
role = "user";
|
|
258
271
|
}
|
|
@@ -265,10 +278,35 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
|
|
|
265
278
|
else {
|
|
266
279
|
throw new Error(`Message type "${message._getType()}" is not supported.`);
|
|
267
280
|
}
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
281
|
+
if (typeof message.content === "string") {
|
|
282
|
+
return {
|
|
283
|
+
role,
|
|
284
|
+
content: message.content,
|
|
285
|
+
};
|
|
286
|
+
}
|
|
287
|
+
else {
|
|
288
|
+
return {
|
|
289
|
+
role,
|
|
290
|
+
content: message.content.map((contentPart) => {
|
|
291
|
+
if (contentPart.type === "image_url") {
|
|
292
|
+
let source;
|
|
293
|
+
if (typeof contentPart.image_url === "string") {
|
|
294
|
+
source = _formatImage(contentPart.image_url);
|
|
295
|
+
}
|
|
296
|
+
else {
|
|
297
|
+
source = _formatImage(contentPart.image_url.url);
|
|
298
|
+
}
|
|
299
|
+
return {
|
|
300
|
+
type: "image",
|
|
301
|
+
source,
|
|
302
|
+
};
|
|
303
|
+
}
|
|
304
|
+
else {
|
|
305
|
+
return contentPart;
|
|
306
|
+
}
|
|
307
|
+
}),
|
|
308
|
+
};
|
|
309
|
+
}
|
|
272
310
|
});
|
|
273
311
|
return {
|
|
274
312
|
messages: formattedMessages,
|
|
@@ -374,10 +412,6 @@ class ChatAnthropicMessages extends chat_models_1.BaseChatModel {
|
|
|
374
412
|
_llmType() {
|
|
375
413
|
return "anthropic";
|
|
376
414
|
}
|
|
377
|
-
/** @ignore */
|
|
378
|
-
_combineLLMOutput() {
|
|
379
|
-
return [];
|
|
380
|
-
}
|
|
381
415
|
}
|
|
382
416
|
exports.ChatAnthropicMessages = ChatAnthropicMessages;
|
|
383
417
|
class ChatAnthropic extends ChatAnthropicMessages {
|
package/dist/chat_models.d.ts
CHANGED
|
@@ -165,8 +165,6 @@ export declare class ChatAnthropicMessages<CallOptions extends BaseLanguageModel
|
|
|
165
165
|
signal?: AbortSignal;
|
|
166
166
|
}): Promise<Anthropic.Message>;
|
|
167
167
|
_llmType(): string;
|
|
168
|
-
/** @ignore */
|
|
169
|
-
_combineLLMOutput(): never[];
|
|
170
168
|
}
|
|
171
169
|
export declare class ChatAnthropic extends ChatAnthropicMessages {
|
|
172
170
|
}
|
package/dist/chat_models.js
CHANGED
|
@@ -3,6 +3,22 @@ import { AIMessage, AIMessageChunk, } from "@langchain/core/messages";
|
|
|
3
3
|
import { ChatGenerationChunk } from "@langchain/core/outputs";
|
|
4
4
|
import { getEnvironmentVariable } from "@langchain/core/utils/env";
|
|
5
5
|
import { BaseChatModel, } from "@langchain/core/language_models/chat_models";
|
|
6
|
+
function _formatImage(imageUrl) {
|
|
7
|
+
const regex = /^data:(image\/.+);base64,(.+)$/;
|
|
8
|
+
const match = imageUrl.match(regex);
|
|
9
|
+
if (match === null) {
|
|
10
|
+
throw new Error([
|
|
11
|
+
"Anthropic only supports base64-encoded images currently.",
|
|
12
|
+
"Example: ...",
|
|
13
|
+
].join("\n\n"));
|
|
14
|
+
}
|
|
15
|
+
return {
|
|
16
|
+
type: "base64",
|
|
17
|
+
media_type: match[1] ?? "",
|
|
18
|
+
data: match[2] ?? "",
|
|
19
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
20
|
+
};
|
|
21
|
+
}
|
|
6
22
|
/**
|
|
7
23
|
* Wrapper around Anthropic large language models.
|
|
8
24
|
*
|
|
@@ -240,16 +256,13 @@ export class ChatAnthropicMessages extends BaseChatModel {
|
|
|
240
256
|
let system;
|
|
241
257
|
if (messages.length > 0 && messages[0]._getType() === "system") {
|
|
242
258
|
if (typeof messages[0].content !== "string") {
|
|
243
|
-
throw new Error("
|
|
259
|
+
throw new Error("System message content must be a string.");
|
|
244
260
|
}
|
|
245
261
|
system = messages[0].content;
|
|
246
262
|
}
|
|
247
263
|
const conversationMessages = system !== undefined ? messages.slice(1) : messages;
|
|
248
264
|
const formattedMessages = conversationMessages.map((message) => {
|
|
249
265
|
let role;
|
|
250
|
-
if (typeof message.content !== "string") {
|
|
251
|
-
throw new Error("Currently only string content messages are supported.");
|
|
252
|
-
}
|
|
253
266
|
if (message._getType() === "human") {
|
|
254
267
|
role = "user";
|
|
255
268
|
}
|
|
@@ -262,10 +275,35 @@ export class ChatAnthropicMessages extends BaseChatModel {
|
|
|
262
275
|
else {
|
|
263
276
|
throw new Error(`Message type "${message._getType()}" is not supported.`);
|
|
264
277
|
}
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
278
|
+
if (typeof message.content === "string") {
|
|
279
|
+
return {
|
|
280
|
+
role,
|
|
281
|
+
content: message.content,
|
|
282
|
+
};
|
|
283
|
+
}
|
|
284
|
+
else {
|
|
285
|
+
return {
|
|
286
|
+
role,
|
|
287
|
+
content: message.content.map((contentPart) => {
|
|
288
|
+
if (contentPart.type === "image_url") {
|
|
289
|
+
let source;
|
|
290
|
+
if (typeof contentPart.image_url === "string") {
|
|
291
|
+
source = _formatImage(contentPart.image_url);
|
|
292
|
+
}
|
|
293
|
+
else {
|
|
294
|
+
source = _formatImage(contentPart.image_url.url);
|
|
295
|
+
}
|
|
296
|
+
return {
|
|
297
|
+
type: "image",
|
|
298
|
+
source,
|
|
299
|
+
};
|
|
300
|
+
}
|
|
301
|
+
else {
|
|
302
|
+
return contentPart;
|
|
303
|
+
}
|
|
304
|
+
}),
|
|
305
|
+
};
|
|
306
|
+
}
|
|
269
307
|
});
|
|
270
308
|
return {
|
|
271
309
|
messages: formattedMessages,
|
|
@@ -371,10 +409,6 @@ export class ChatAnthropicMessages extends BaseChatModel {
|
|
|
371
409
|
_llmType() {
|
|
372
410
|
return "anthropic";
|
|
373
411
|
}
|
|
374
|
-
/** @ignore */
|
|
375
|
-
_combineLLMOutput() {
|
|
376
|
-
return [];
|
|
377
|
-
}
|
|
378
412
|
}
|
|
379
413
|
export class ChatAnthropic extends ChatAnthropicMessages {
|
|
380
414
|
}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
|
3
|
+
if (k2 === undefined) k2 = k;
|
|
4
|
+
var desc = Object.getOwnPropertyDescriptor(m, k);
|
|
5
|
+
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
|
|
6
|
+
desc = { enumerable: true, get: function() { return m[k]; } };
|
|
7
|
+
}
|
|
8
|
+
Object.defineProperty(o, k2, desc);
|
|
9
|
+
}) : (function(o, m, k, k2) {
|
|
10
|
+
if (k2 === undefined) k2 = k;
|
|
11
|
+
o[k2] = m[k];
|
|
12
|
+
}));
|
|
13
|
+
var __exportStar = (this && this.__exportStar) || function(m, exports) {
|
|
14
|
+
for (var p in m) if (p !== "default" && !Object.prototype.hasOwnProperty.call(exports, p)) __createBinding(exports, m, p);
|
|
15
|
+
};
|
|
16
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
|
17
|
+
__exportStar(require("./tool_calling.cjs"), exports);
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export * from "./tool_calling.js";
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export * from "./tool_calling.js";
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export {};
|
|
@@ -0,0 +1,204 @@
|
|
|
1
|
+
/* eslint-disable no-process-env */
|
|
2
|
+
/* eslint-disable @typescript-eslint/no-non-null-assertion */
|
|
3
|
+
import { test } from "@jest/globals";
|
|
4
|
+
import { z } from "zod";
|
|
5
|
+
import { zodToJsonSchema } from "zod-to-json-schema";
|
|
6
|
+
import { HumanMessage } from "@langchain/core/messages";
|
|
7
|
+
import { ChatAnthropicTools } from "../tool_calling.js";
|
|
8
|
+
test("Test ChatAnthropicTools", async () => {
|
|
9
|
+
const chat = new ChatAnthropicTools({
|
|
10
|
+
modelName: "claude-3-sonnet-20240229",
|
|
11
|
+
maxRetries: 0,
|
|
12
|
+
});
|
|
13
|
+
const message = new HumanMessage("Hello!");
|
|
14
|
+
const res = await chat.invoke([message]);
|
|
15
|
+
console.log(JSON.stringify(res));
|
|
16
|
+
});
|
|
17
|
+
test("Test ChatAnthropicTools streaming", async () => {
|
|
18
|
+
const chat = new ChatAnthropicTools({
|
|
19
|
+
modelName: "claude-3-sonnet-20240229",
|
|
20
|
+
maxRetries: 0,
|
|
21
|
+
});
|
|
22
|
+
const message = new HumanMessage("Hello!");
|
|
23
|
+
const stream = await chat.stream([message]);
|
|
24
|
+
const chunks = [];
|
|
25
|
+
for await (const chunk of stream) {
|
|
26
|
+
console.log(chunk);
|
|
27
|
+
chunks.push(chunk);
|
|
28
|
+
}
|
|
29
|
+
expect(chunks.length).toBeGreaterThan(1);
|
|
30
|
+
});
|
|
31
|
+
test("Test ChatAnthropicTools with tools", async () => {
|
|
32
|
+
const chat = new ChatAnthropicTools({
|
|
33
|
+
modelName: "claude-3-sonnet-20240229",
|
|
34
|
+
temperature: 0.1,
|
|
35
|
+
maxRetries: 0,
|
|
36
|
+
}).bind({
|
|
37
|
+
tools: [
|
|
38
|
+
{
|
|
39
|
+
type: "function",
|
|
40
|
+
function: {
|
|
41
|
+
name: "get_current_weather",
|
|
42
|
+
description: "Get the current weather in a given location",
|
|
43
|
+
parameters: {
|
|
44
|
+
type: "object",
|
|
45
|
+
properties: {
|
|
46
|
+
location: {
|
|
47
|
+
type: "string",
|
|
48
|
+
description: "The city and state, e.g. San Francisco, CA",
|
|
49
|
+
},
|
|
50
|
+
unit: {
|
|
51
|
+
type: "string",
|
|
52
|
+
enum: ["celsius", "fahrenheit"],
|
|
53
|
+
},
|
|
54
|
+
},
|
|
55
|
+
required: ["location"],
|
|
56
|
+
},
|
|
57
|
+
},
|
|
58
|
+
},
|
|
59
|
+
],
|
|
60
|
+
});
|
|
61
|
+
const message = new HumanMessage("What is the weather in San Francisco?");
|
|
62
|
+
const res = await chat.invoke([message]);
|
|
63
|
+
console.log(JSON.stringify(res));
|
|
64
|
+
expect(res.additional_kwargs.tool_calls).toBeDefined();
|
|
65
|
+
expect(res.additional_kwargs.tool_calls?.[0].function.name).toEqual("get_current_weather");
|
|
66
|
+
});
|
|
67
|
+
test("Test ChatAnthropicTools with a forced function call", async () => {
|
|
68
|
+
const chat = new ChatAnthropicTools({
|
|
69
|
+
modelName: "claude-3-sonnet-20240229",
|
|
70
|
+
temperature: 0.1,
|
|
71
|
+
maxRetries: 0,
|
|
72
|
+
}).bind({
|
|
73
|
+
tools: [
|
|
74
|
+
{
|
|
75
|
+
type: "function",
|
|
76
|
+
function: {
|
|
77
|
+
name: "extract_data",
|
|
78
|
+
description: "Return information about the input",
|
|
79
|
+
parameters: {
|
|
80
|
+
type: "object",
|
|
81
|
+
properties: {
|
|
82
|
+
sentiment: {
|
|
83
|
+
type: "string",
|
|
84
|
+
description: "The city and state, e.g. San Francisco, CA",
|
|
85
|
+
},
|
|
86
|
+
aggressiveness: {
|
|
87
|
+
type: "integer",
|
|
88
|
+
description: "How aggressive the input is from 1 to 10",
|
|
89
|
+
},
|
|
90
|
+
language: {
|
|
91
|
+
type: "string",
|
|
92
|
+
description: "The language the input is in",
|
|
93
|
+
},
|
|
94
|
+
},
|
|
95
|
+
required: ["sentiment", "aggressiveness"],
|
|
96
|
+
},
|
|
97
|
+
},
|
|
98
|
+
},
|
|
99
|
+
],
|
|
100
|
+
tool_choice: { type: "function", function: { name: "extract_data" } },
|
|
101
|
+
});
|
|
102
|
+
const message = new HumanMessage("Extract the desired information from the following passage:\n\nthis is really cool");
|
|
103
|
+
const res = await chat.invoke([message]);
|
|
104
|
+
console.log(JSON.stringify(res));
|
|
105
|
+
expect(res.additional_kwargs.tool_calls).toBeDefined();
|
|
106
|
+
expect(res.additional_kwargs.tool_calls?.[0]?.function.name).toEqual("extract_data");
|
|
107
|
+
});
|
|
108
|
+
test("ChatAnthropicTools with Zod schema", async () => {
|
|
109
|
+
const schema = z.object({
|
|
110
|
+
people: z.array(z.object({
|
|
111
|
+
name: z.string().describe("The name of a person"),
|
|
112
|
+
height: z.number().describe("The person's height"),
|
|
113
|
+
hairColor: z.optional(z.string()).describe("The person's hair color"),
|
|
114
|
+
})),
|
|
115
|
+
});
|
|
116
|
+
const chat = new ChatAnthropicTools({
|
|
117
|
+
modelName: "claude-3-sonnet-20240229",
|
|
118
|
+
temperature: 0.1,
|
|
119
|
+
maxRetries: 0,
|
|
120
|
+
}).bind({
|
|
121
|
+
tools: [
|
|
122
|
+
{
|
|
123
|
+
type: "function",
|
|
124
|
+
function: {
|
|
125
|
+
name: "information_extraction",
|
|
126
|
+
description: "Extracts the relevant information from the passage.",
|
|
127
|
+
parameters: zodToJsonSchema(schema),
|
|
128
|
+
},
|
|
129
|
+
},
|
|
130
|
+
],
|
|
131
|
+
tool_choice: {
|
|
132
|
+
type: "function",
|
|
133
|
+
function: {
|
|
134
|
+
name: "information_extraction",
|
|
135
|
+
},
|
|
136
|
+
},
|
|
137
|
+
});
|
|
138
|
+
const message = new HumanMessage("Alex is 5 feet tall. Claudia is 1 foot taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.");
|
|
139
|
+
const res = await chat.invoke([message]);
|
|
140
|
+
console.log(JSON.stringify(res));
|
|
141
|
+
expect(res.additional_kwargs.tool_calls).toBeDefined();
|
|
142
|
+
expect(res.additional_kwargs.tool_calls?.[0]?.function.name).toEqual("information_extraction");
|
|
143
|
+
expect(JSON.parse(res.additional_kwargs.tool_calls?.[0]?.function.arguments ?? "")).toEqual({
|
|
144
|
+
people: expect.arrayContaining([
|
|
145
|
+
{ name: "Alex", height: 5, hairColor: "blonde" },
|
|
146
|
+
{ name: "Claudia", height: 6, hairColor: "brunette" },
|
|
147
|
+
]),
|
|
148
|
+
});
|
|
149
|
+
});
|
|
150
|
+
test("ChatAnthropicTools with parallel tool calling", async () => {
|
|
151
|
+
const schema = z.object({
|
|
152
|
+
name: z.string().describe("The name of a person"),
|
|
153
|
+
height: z.number().describe("The person's height"),
|
|
154
|
+
hairColor: z.optional(z.string()).describe("The person's hair color"),
|
|
155
|
+
});
|
|
156
|
+
const chat = new ChatAnthropicTools({
|
|
157
|
+
modelName: "claude-3-sonnet-20240229",
|
|
158
|
+
temperature: 0.1,
|
|
159
|
+
maxRetries: 0,
|
|
160
|
+
}).bind({
|
|
161
|
+
tools: [
|
|
162
|
+
{
|
|
163
|
+
type: "function",
|
|
164
|
+
function: {
|
|
165
|
+
name: "person",
|
|
166
|
+
description: "A person mentioned in the passage.",
|
|
167
|
+
parameters: zodToJsonSchema(schema),
|
|
168
|
+
},
|
|
169
|
+
},
|
|
170
|
+
],
|
|
171
|
+
tool_choice: {
|
|
172
|
+
type: "function",
|
|
173
|
+
function: {
|
|
174
|
+
name: "person",
|
|
175
|
+
},
|
|
176
|
+
},
|
|
177
|
+
});
|
|
178
|
+
console.log(zodToJsonSchema(schema));
|
|
179
|
+
const message = new HumanMessage("Alex is 5 feet tall. Claudia is 1 foot taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.");
|
|
180
|
+
const res = await chat.invoke([message]);
|
|
181
|
+
console.log(JSON.stringify(res));
|
|
182
|
+
expect(res.additional_kwargs.tool_calls).toBeDefined();
|
|
183
|
+
expect(res.additional_kwargs.tool_calls?.map((toolCall) => JSON.parse(toolCall.function.arguments ?? ""))).toEqual(expect.arrayContaining([
|
|
184
|
+
{ name: "Alex", height: 5, hairColor: "blonde" },
|
|
185
|
+
{ name: "Claudia", height: 6, hairColor: "brunette" },
|
|
186
|
+
]));
|
|
187
|
+
});
|
|
188
|
+
test("Test ChatAnthropic withStructuredOutput", async () => {
|
|
189
|
+
const runnable = new ChatAnthropicTools({
|
|
190
|
+
modelName: "claude-3-sonnet-20240229",
|
|
191
|
+
maxRetries: 0,
|
|
192
|
+
}).withStructuredOutput({
|
|
193
|
+
schema: z.object({
|
|
194
|
+
name: z.string().describe("The name of a person"),
|
|
195
|
+
height: z.number().describe("The person's height"),
|
|
196
|
+
hairColor: z.optional(z.string()).describe("The person's hair color"),
|
|
197
|
+
}),
|
|
198
|
+
name: "person",
|
|
199
|
+
});
|
|
200
|
+
const message = new HumanMessage("Alex is 5 feet tall. Alex is blonde.");
|
|
201
|
+
const res = await runnable.invoke([message]);
|
|
202
|
+
console.log(JSON.stringify(res, null, 2));
|
|
203
|
+
expect(res).toEqual({ name: "Alex", height: 5, hairColor: "blonde" });
|
|
204
|
+
});
|
|
@@ -0,0 +1,247 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
+
exports.ChatAnthropicTools = void 0;
|
|
4
|
+
const fast_xml_parser_1 = require("fast-xml-parser");
|
|
5
|
+
const messages_1 = require("@langchain/core/messages");
|
|
6
|
+
const chat_models_1 = require("@langchain/core/language_models/chat_models");
|
|
7
|
+
const runnables_1 = require("@langchain/core/runnables");
|
|
8
|
+
const openai_tools_1 = require("@langchain/core/output_parsers/openai_tools");
|
|
9
|
+
const zod_to_json_schema_1 = require("zod-to-json-schema");
|
|
10
|
+
const chat_models_js_1 = require("../chat_models.cjs");
|
|
11
|
+
const tool_calling_js_1 = require("./utils/tool_calling.cjs");
|
|
12
|
+
/**
|
|
13
|
+
* Experimental wrapper over Anthropic chat models that adds support for
|
|
14
|
+
* a function calling interface.
|
|
15
|
+
*/
|
|
16
|
+
class ChatAnthropicTools extends chat_models_1.BaseChatModel {
|
|
17
|
+
static lc_name() {
|
|
18
|
+
return "ChatAnthropicTools";
|
|
19
|
+
}
|
|
20
|
+
constructor(fields) {
|
|
21
|
+
super(fields ?? {});
|
|
22
|
+
Object.defineProperty(this, "llm", {
|
|
23
|
+
enumerable: true,
|
|
24
|
+
configurable: true,
|
|
25
|
+
writable: true,
|
|
26
|
+
value: void 0
|
|
27
|
+
});
|
|
28
|
+
Object.defineProperty(this, "stopSequences", {
|
|
29
|
+
enumerable: true,
|
|
30
|
+
configurable: true,
|
|
31
|
+
writable: true,
|
|
32
|
+
value: void 0
|
|
33
|
+
});
|
|
34
|
+
Object.defineProperty(this, "systemPromptTemplate", {
|
|
35
|
+
enumerable: true,
|
|
36
|
+
configurable: true,
|
|
37
|
+
writable: true,
|
|
38
|
+
value: void 0
|
|
39
|
+
});
|
|
40
|
+
Object.defineProperty(this, "lc_namespace", {
|
|
41
|
+
enumerable: true,
|
|
42
|
+
configurable: true,
|
|
43
|
+
writable: true,
|
|
44
|
+
value: ["langchain", "experimental", "chat_models"]
|
|
45
|
+
});
|
|
46
|
+
this.llm = fields?.llm ?? new chat_models_js_1.ChatAnthropic(fields);
|
|
47
|
+
this.systemPromptTemplate =
|
|
48
|
+
fields?.systemPromptTemplate ?? tool_calling_js_1.DEFAULT_TOOL_SYSTEM_PROMPT;
|
|
49
|
+
this.stopSequences =
|
|
50
|
+
fields?.stopSequences ?? this.llm.stopSequences;
|
|
51
|
+
}
|
|
52
|
+
invocationParams() {
|
|
53
|
+
return this.llm.invocationParams();
|
|
54
|
+
}
|
|
55
|
+
/** @ignore */
|
|
56
|
+
_identifyingParams() {
|
|
57
|
+
return this.llm._identifyingParams();
|
|
58
|
+
}
|
|
59
|
+
async *_streamResponseChunks(messages, options, runManager) {
|
|
60
|
+
yield* this.llm._streamResponseChunks(messages, options, runManager);
|
|
61
|
+
}
|
|
62
|
+
async _prepareAndParseToolCall({ messages, options, runManager, systemPromptTemplate = tool_calling_js_1.DEFAULT_TOOL_SYSTEM_PROMPT, stopSequences, }) {
|
|
63
|
+
let promptMessages = messages;
|
|
64
|
+
let forced = false;
|
|
65
|
+
let toolCall;
|
|
66
|
+
if (options.tools !== undefined && options.tools.length > 0) {
|
|
67
|
+
const content = await systemPromptTemplate.format({
|
|
68
|
+
tools: `<tools>\n${options.tools
|
|
69
|
+
.map(tool_calling_js_1.formatAsXMLRepresentation)
|
|
70
|
+
.join("\n\n")}</tools>`,
|
|
71
|
+
});
|
|
72
|
+
if (promptMessages.length && promptMessages[0]._getType() !== "system") {
|
|
73
|
+
const systemMessage = new messages_1.SystemMessage({ content });
|
|
74
|
+
promptMessages = [systemMessage].concat(promptMessages);
|
|
75
|
+
}
|
|
76
|
+
else {
|
|
77
|
+
const systemMessage = new messages_1.SystemMessage({
|
|
78
|
+
content: `${content}\n\n${promptMessages[0].content}`,
|
|
79
|
+
});
|
|
80
|
+
promptMessages = [systemMessage].concat(promptMessages.slice(1));
|
|
81
|
+
}
|
|
82
|
+
// eslint-disable-next-line no-param-reassign
|
|
83
|
+
options.stop = stopSequences.concat(["</function_calls>"]);
|
|
84
|
+
if (options.tool_choice && options.tool_choice !== "auto") {
|
|
85
|
+
toolCall = options.tool_choice.function.name;
|
|
86
|
+
forced = true;
|
|
87
|
+
const matchingFunction = options.tools.find(
|
|
88
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
89
|
+
(tool) => tool.function.name === toolCall);
|
|
90
|
+
if (!matchingFunction) {
|
|
91
|
+
throw new Error(`No matching function found for passed "tool_choice"`);
|
|
92
|
+
}
|
|
93
|
+
promptMessages = promptMessages.concat([
|
|
94
|
+
new messages_1.AIMessage({
|
|
95
|
+
content: `<function_calls>\n<invoke><tool_name>${toolCall}</tool_name>`,
|
|
96
|
+
}),
|
|
97
|
+
]);
|
|
98
|
+
// eslint-disable-next-line no-param-reassign
|
|
99
|
+
delete options.tool_choice;
|
|
100
|
+
}
|
|
101
|
+
// eslint-disable-next-line no-param-reassign
|
|
102
|
+
delete options.tools;
|
|
103
|
+
}
|
|
104
|
+
else if (options.tool_choice !== undefined) {
|
|
105
|
+
throw new Error(`If "tool_choice" is provided, "tools" must also be.`);
|
|
106
|
+
}
|
|
107
|
+
const chatResult = await this.llm._generate(promptMessages, options, runManager);
|
|
108
|
+
const chatGenerationContent = chatResult.generations[0].message.content;
|
|
109
|
+
if (typeof chatGenerationContent !== "string") {
|
|
110
|
+
throw new Error("AnthropicFunctions does not support non-string output.");
|
|
111
|
+
}
|
|
112
|
+
if (forced) {
|
|
113
|
+
const parser = new fast_xml_parser_1.XMLParser();
|
|
114
|
+
const result = parser.parse(`<function_calls>\n<invoke><tool_name>${toolCall}</tool_name>${chatGenerationContent}</function_calls>`);
|
|
115
|
+
if (toolCall === undefined) {
|
|
116
|
+
throw new Error(`Could not parse called function from model output.`);
|
|
117
|
+
}
|
|
118
|
+
const invocations = Array.isArray(result.function_calls?.invoke ?? [])
|
|
119
|
+
? result.function_calls.invoke
|
|
120
|
+
: [result.function_calls.invoke];
|
|
121
|
+
const responseMessageWithFunctions = new messages_1.AIMessage({
|
|
122
|
+
content: "",
|
|
123
|
+
additional_kwargs: {
|
|
124
|
+
tool_calls: invocations.map((toolInvocation, i) => ({
|
|
125
|
+
id: i.toString(),
|
|
126
|
+
type: "function",
|
|
127
|
+
function: {
|
|
128
|
+
name: toolInvocation.tool_name,
|
|
129
|
+
arguments: JSON.stringify(toolInvocation.parameters),
|
|
130
|
+
},
|
|
131
|
+
})),
|
|
132
|
+
},
|
|
133
|
+
});
|
|
134
|
+
return {
|
|
135
|
+
generations: [{ message: responseMessageWithFunctions, text: "" }],
|
|
136
|
+
};
|
|
137
|
+
}
|
|
138
|
+
else if (chatGenerationContent.includes("<function_calls>")) {
|
|
139
|
+
const parser = new fast_xml_parser_1.XMLParser();
|
|
140
|
+
const result = parser.parse(`${chatGenerationContent}</function_calls>`);
|
|
141
|
+
const invocations = Array.isArray(result.function_calls?.invoke ?? [])
|
|
142
|
+
? result.function_calls.invoke
|
|
143
|
+
: [result.function_calls.invoke];
|
|
144
|
+
const responseMessageWithFunctions = new messages_1.AIMessage({
|
|
145
|
+
content: chatGenerationContent.split("<function_calls>")[0],
|
|
146
|
+
additional_kwargs: {
|
|
147
|
+
tool_calls: invocations.map((toolInvocation, i) => ({
|
|
148
|
+
id: i.toString(),
|
|
149
|
+
type: "function",
|
|
150
|
+
function: {
|
|
151
|
+
name: toolInvocation.tool_name,
|
|
152
|
+
arguments: JSON.stringify(toolInvocation.parameters),
|
|
153
|
+
},
|
|
154
|
+
})),
|
|
155
|
+
},
|
|
156
|
+
});
|
|
157
|
+
return {
|
|
158
|
+
generations: [{ message: responseMessageWithFunctions, text: "" }],
|
|
159
|
+
};
|
|
160
|
+
}
|
|
161
|
+
return chatResult;
|
|
162
|
+
}
|
|
163
|
+
async _generate(messages, options, _runManager) {
|
|
164
|
+
return this._prepareAndParseToolCall({
|
|
165
|
+
messages,
|
|
166
|
+
options,
|
|
167
|
+
systemPromptTemplate: this.systemPromptTemplate,
|
|
168
|
+
stopSequences: this.stopSequences ?? [],
|
|
169
|
+
});
|
|
170
|
+
}
|
|
171
|
+
_llmType() {
|
|
172
|
+
return "anthropic_tool_calling";
|
|
173
|
+
}
|
|
174
|
+
withStructuredOutput({ schema, name, method, includeRaw, }) {
|
|
175
|
+
if (method === "jsonMode") {
|
|
176
|
+
throw new Error(`Anthropic only supports "functionCalling" as a method.`);
|
|
177
|
+
}
|
|
178
|
+
const functionName = name ?? "extract";
|
|
179
|
+
const outputParser = new openai_tools_1.JsonOutputKeyToolsParser({
|
|
180
|
+
returnSingle: true,
|
|
181
|
+
keyName: functionName,
|
|
182
|
+
});
|
|
183
|
+
let tools;
|
|
184
|
+
if (isZodSchema(schema)) {
|
|
185
|
+
const jsonSchema = (0, zod_to_json_schema_1.zodToJsonSchema)(schema);
|
|
186
|
+
tools = [
|
|
187
|
+
{
|
|
188
|
+
type: "function",
|
|
189
|
+
function: {
|
|
190
|
+
name: functionName,
|
|
191
|
+
description: jsonSchema.description,
|
|
192
|
+
parameters: jsonSchema,
|
|
193
|
+
},
|
|
194
|
+
},
|
|
195
|
+
];
|
|
196
|
+
}
|
|
197
|
+
else {
|
|
198
|
+
tools = [
|
|
199
|
+
{
|
|
200
|
+
type: "function",
|
|
201
|
+
function: {
|
|
202
|
+
name: functionName,
|
|
203
|
+
description: schema.description,
|
|
204
|
+
parameters: schema,
|
|
205
|
+
},
|
|
206
|
+
},
|
|
207
|
+
];
|
|
208
|
+
}
|
|
209
|
+
const llm = this.bind({
|
|
210
|
+
tools,
|
|
211
|
+
tool_choice: {
|
|
212
|
+
type: "function",
|
|
213
|
+
function: {
|
|
214
|
+
name: functionName,
|
|
215
|
+
},
|
|
216
|
+
},
|
|
217
|
+
});
|
|
218
|
+
if (!includeRaw) {
|
|
219
|
+
return llm.pipe(outputParser).withConfig({
|
|
220
|
+
runName: "ChatAnthropicStructuredOutput",
|
|
221
|
+
});
|
|
222
|
+
}
|
|
223
|
+
const parserAssign = runnables_1.RunnablePassthrough.assign({
|
|
224
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
225
|
+
parsed: (input, config) => outputParser.invoke(input.raw, config),
|
|
226
|
+
});
|
|
227
|
+
const parserNone = runnables_1.RunnablePassthrough.assign({
|
|
228
|
+
parsed: () => null,
|
|
229
|
+
});
|
|
230
|
+
const parsedWithFallback = parserAssign.withFallbacks({
|
|
231
|
+
fallbacks: [parserNone],
|
|
232
|
+
});
|
|
233
|
+
return runnables_1.RunnableSequence.from([
|
|
234
|
+
{
|
|
235
|
+
raw: llm,
|
|
236
|
+
},
|
|
237
|
+
parsedWithFallback,
|
|
238
|
+
]).withConfig({
|
|
239
|
+
runName: "StructuredOutputRunnable",
|
|
240
|
+
});
|
|
241
|
+
}
|
|
242
|
+
}
|
|
243
|
+
exports.ChatAnthropicTools = ChatAnthropicTools;
|
|
244
|
+
function isZodSchema(input) {
|
|
245
|
+
// Check for a characteristic method of Zod schemas
|
|
246
|
+
return typeof input?.parse === "function";
|
|
247
|
+
}
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
import { BaseMessage } from "@langchain/core/messages";
|
|
2
|
+
import { ChatGenerationChunk, ChatResult } from "@langchain/core/outputs";
|
|
3
|
+
import { BaseChatModel, BaseChatModelParams } from "@langchain/core/language_models/chat_models";
|
|
4
|
+
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
|
|
5
|
+
import { BasePromptTemplate } from "@langchain/core/prompts";
|
|
6
|
+
import { BaseLanguageModelCallOptions, BaseLanguageModelInput, StructuredOutputMethodParams, ToolDefinition } from "@langchain/core/language_models/base";
|
|
7
|
+
import { Runnable } from "@langchain/core/runnables";
|
|
8
|
+
import { type AnthropicInput } from "../chat_models.js";
|
|
9
|
+
export interface ChatAnthropicToolsCallOptions extends BaseLanguageModelCallOptions {
|
|
10
|
+
tools?: ToolDefinition[];
|
|
11
|
+
tool_choice?: "auto" | {
|
|
12
|
+
function: {
|
|
13
|
+
name: string;
|
|
14
|
+
};
|
|
15
|
+
type: "function";
|
|
16
|
+
};
|
|
17
|
+
}
|
|
18
|
+
export type ChatAnthropicToolsInput = Partial<AnthropicInput> & BaseChatModelParams & {
|
|
19
|
+
llm?: BaseChatModel;
|
|
20
|
+
systemPromptTemplate?: BasePromptTemplate;
|
|
21
|
+
};
|
|
22
|
+
/**
|
|
23
|
+
* Experimental wrapper over Anthropic chat models that adds support for
|
|
24
|
+
* a function calling interface.
|
|
25
|
+
*/
|
|
26
|
+
export declare class ChatAnthropicTools extends BaseChatModel<ChatAnthropicToolsCallOptions> {
|
|
27
|
+
llm: BaseChatModel;
|
|
28
|
+
stopSequences?: string[];
|
|
29
|
+
systemPromptTemplate: BasePromptTemplate;
|
|
30
|
+
lc_namespace: string[];
|
|
31
|
+
static lc_name(): string;
|
|
32
|
+
constructor(fields?: ChatAnthropicToolsInput);
|
|
33
|
+
invocationParams(): any;
|
|
34
|
+
/** @ignore */
|
|
35
|
+
_identifyingParams(): Record<string, any>;
|
|
36
|
+
_streamResponseChunks(messages: BaseMessage[], options: this["ParsedCallOptions"], runManager?: CallbackManagerForLLMRun): AsyncGenerator<ChatGenerationChunk>;
|
|
37
|
+
_prepareAndParseToolCall({ messages, options, runManager, systemPromptTemplate, stopSequences, }: {
|
|
38
|
+
messages: BaseMessage[];
|
|
39
|
+
options: ChatAnthropicToolsCallOptions;
|
|
40
|
+
runManager?: CallbackManagerForLLMRun;
|
|
41
|
+
systemPromptTemplate?: BasePromptTemplate;
|
|
42
|
+
stopSequences: string[];
|
|
43
|
+
}): Promise<ChatResult>;
|
|
44
|
+
_generate(messages: BaseMessage[], options: this["ParsedCallOptions"], _runManager?: CallbackManagerForLLMRun | undefined): Promise<ChatResult>;
|
|
45
|
+
_llmType(): string;
|
|
46
|
+
withStructuredOutput<RunOutput extends Record<string, any> = Record<string, any>>({ schema, name, method, includeRaw, }: StructuredOutputMethodParams<RunOutput, false>): Runnable<BaseLanguageModelInput, RunOutput>;
|
|
47
|
+
withStructuredOutput<RunOutput extends Record<string, any> = Record<string, any>>({ schema, name, method, includeRaw, }: StructuredOutputMethodParams<RunOutput, true>): Runnable<BaseLanguageModelInput, {
|
|
48
|
+
raw: BaseMessage;
|
|
49
|
+
parsed: RunOutput;
|
|
50
|
+
}>;
|
|
51
|
+
}
|
|
@@ -0,0 +1,243 @@
|
|
|
1
|
+
import { XMLParser } from "fast-xml-parser";
|
|
2
|
+
import { AIMessage, SystemMessage, } from "@langchain/core/messages";
|
|
3
|
+
import { BaseChatModel, } from "@langchain/core/language_models/chat_models";
|
|
4
|
+
import { RunnablePassthrough, RunnableSequence, } from "@langchain/core/runnables";
|
|
5
|
+
import { JsonOutputKeyToolsParser } from "@langchain/core/output_parsers/openai_tools";
|
|
6
|
+
import { zodToJsonSchema } from "zod-to-json-schema";
|
|
7
|
+
import { ChatAnthropic } from "../chat_models.js";
|
|
8
|
+
import { DEFAULT_TOOL_SYSTEM_PROMPT, formatAsXMLRepresentation, } from "./utils/tool_calling.js";
|
|
9
|
+
/**
|
|
10
|
+
* Experimental wrapper over Anthropic chat models that adds support for
|
|
11
|
+
* a function calling interface.
|
|
12
|
+
*/
|
|
13
|
+
export class ChatAnthropicTools extends BaseChatModel {
|
|
14
|
+
static lc_name() {
|
|
15
|
+
return "ChatAnthropicTools";
|
|
16
|
+
}
|
|
17
|
+
constructor(fields) {
|
|
18
|
+
super(fields ?? {});
|
|
19
|
+
Object.defineProperty(this, "llm", {
|
|
20
|
+
enumerable: true,
|
|
21
|
+
configurable: true,
|
|
22
|
+
writable: true,
|
|
23
|
+
value: void 0
|
|
24
|
+
});
|
|
25
|
+
Object.defineProperty(this, "stopSequences", {
|
|
26
|
+
enumerable: true,
|
|
27
|
+
configurable: true,
|
|
28
|
+
writable: true,
|
|
29
|
+
value: void 0
|
|
30
|
+
});
|
|
31
|
+
Object.defineProperty(this, "systemPromptTemplate", {
|
|
32
|
+
enumerable: true,
|
|
33
|
+
configurable: true,
|
|
34
|
+
writable: true,
|
|
35
|
+
value: void 0
|
|
36
|
+
});
|
|
37
|
+
Object.defineProperty(this, "lc_namespace", {
|
|
38
|
+
enumerable: true,
|
|
39
|
+
configurable: true,
|
|
40
|
+
writable: true,
|
|
41
|
+
value: ["langchain", "experimental", "chat_models"]
|
|
42
|
+
});
|
|
43
|
+
this.llm = fields?.llm ?? new ChatAnthropic(fields);
|
|
44
|
+
this.systemPromptTemplate =
|
|
45
|
+
fields?.systemPromptTemplate ?? DEFAULT_TOOL_SYSTEM_PROMPT;
|
|
46
|
+
this.stopSequences =
|
|
47
|
+
fields?.stopSequences ?? this.llm.stopSequences;
|
|
48
|
+
}
|
|
49
|
+
invocationParams() {
|
|
50
|
+
return this.llm.invocationParams();
|
|
51
|
+
}
|
|
52
|
+
/** @ignore */
|
|
53
|
+
_identifyingParams() {
|
|
54
|
+
return this.llm._identifyingParams();
|
|
55
|
+
}
|
|
56
|
+
async *_streamResponseChunks(messages, options, runManager) {
|
|
57
|
+
yield* this.llm._streamResponseChunks(messages, options, runManager);
|
|
58
|
+
}
|
|
59
|
+
async _prepareAndParseToolCall({ messages, options, runManager, systemPromptTemplate = DEFAULT_TOOL_SYSTEM_PROMPT, stopSequences, }) {
|
|
60
|
+
let promptMessages = messages;
|
|
61
|
+
let forced = false;
|
|
62
|
+
let toolCall;
|
|
63
|
+
if (options.tools !== undefined && options.tools.length > 0) {
|
|
64
|
+
const content = await systemPromptTemplate.format({
|
|
65
|
+
tools: `<tools>\n${options.tools
|
|
66
|
+
.map(formatAsXMLRepresentation)
|
|
67
|
+
.join("\n\n")}</tools>`,
|
|
68
|
+
});
|
|
69
|
+
if (promptMessages.length && promptMessages[0]._getType() !== "system") {
|
|
70
|
+
const systemMessage = new SystemMessage({ content });
|
|
71
|
+
promptMessages = [systemMessage].concat(promptMessages);
|
|
72
|
+
}
|
|
73
|
+
else {
|
|
74
|
+
const systemMessage = new SystemMessage({
|
|
75
|
+
content: `${content}\n\n${promptMessages[0].content}`,
|
|
76
|
+
});
|
|
77
|
+
promptMessages = [systemMessage].concat(promptMessages.slice(1));
|
|
78
|
+
}
|
|
79
|
+
// eslint-disable-next-line no-param-reassign
|
|
80
|
+
options.stop = stopSequences.concat(["</function_calls>"]);
|
|
81
|
+
if (options.tool_choice && options.tool_choice !== "auto") {
|
|
82
|
+
toolCall = options.tool_choice.function.name;
|
|
83
|
+
forced = true;
|
|
84
|
+
const matchingFunction = options.tools.find(
|
|
85
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
86
|
+
(tool) => tool.function.name === toolCall);
|
|
87
|
+
if (!matchingFunction) {
|
|
88
|
+
throw new Error(`No matching function found for passed "tool_choice"`);
|
|
89
|
+
}
|
|
90
|
+
promptMessages = promptMessages.concat([
|
|
91
|
+
new AIMessage({
|
|
92
|
+
content: `<function_calls>\n<invoke><tool_name>${toolCall}</tool_name>`,
|
|
93
|
+
}),
|
|
94
|
+
]);
|
|
95
|
+
// eslint-disable-next-line no-param-reassign
|
|
96
|
+
delete options.tool_choice;
|
|
97
|
+
}
|
|
98
|
+
// eslint-disable-next-line no-param-reassign
|
|
99
|
+
delete options.tools;
|
|
100
|
+
}
|
|
101
|
+
else if (options.tool_choice !== undefined) {
|
|
102
|
+
throw new Error(`If "tool_choice" is provided, "tools" must also be.`);
|
|
103
|
+
}
|
|
104
|
+
const chatResult = await this.llm._generate(promptMessages, options, runManager);
|
|
105
|
+
const chatGenerationContent = chatResult.generations[0].message.content;
|
|
106
|
+
if (typeof chatGenerationContent !== "string") {
|
|
107
|
+
throw new Error("AnthropicFunctions does not support non-string output.");
|
|
108
|
+
}
|
|
109
|
+
if (forced) {
|
|
110
|
+
const parser = new XMLParser();
|
|
111
|
+
const result = parser.parse(`<function_calls>\n<invoke><tool_name>${toolCall}</tool_name>${chatGenerationContent}</function_calls>`);
|
|
112
|
+
if (toolCall === undefined) {
|
|
113
|
+
throw new Error(`Could not parse called function from model output.`);
|
|
114
|
+
}
|
|
115
|
+
const invocations = Array.isArray(result.function_calls?.invoke ?? [])
|
|
116
|
+
? result.function_calls.invoke
|
|
117
|
+
: [result.function_calls.invoke];
|
|
118
|
+
const responseMessageWithFunctions = new AIMessage({
|
|
119
|
+
content: "",
|
|
120
|
+
additional_kwargs: {
|
|
121
|
+
tool_calls: invocations.map((toolInvocation, i) => ({
|
|
122
|
+
id: i.toString(),
|
|
123
|
+
type: "function",
|
|
124
|
+
function: {
|
|
125
|
+
name: toolInvocation.tool_name,
|
|
126
|
+
arguments: JSON.stringify(toolInvocation.parameters),
|
|
127
|
+
},
|
|
128
|
+
})),
|
|
129
|
+
},
|
|
130
|
+
});
|
|
131
|
+
return {
|
|
132
|
+
generations: [{ message: responseMessageWithFunctions, text: "" }],
|
|
133
|
+
};
|
|
134
|
+
}
|
|
135
|
+
else if (chatGenerationContent.includes("<function_calls>")) {
|
|
136
|
+
const parser = new XMLParser();
|
|
137
|
+
const result = parser.parse(`${chatGenerationContent}</function_calls>`);
|
|
138
|
+
const invocations = Array.isArray(result.function_calls?.invoke ?? [])
|
|
139
|
+
? result.function_calls.invoke
|
|
140
|
+
: [result.function_calls.invoke];
|
|
141
|
+
const responseMessageWithFunctions = new AIMessage({
|
|
142
|
+
content: chatGenerationContent.split("<function_calls>")[0],
|
|
143
|
+
additional_kwargs: {
|
|
144
|
+
tool_calls: invocations.map((toolInvocation, i) => ({
|
|
145
|
+
id: i.toString(),
|
|
146
|
+
type: "function",
|
|
147
|
+
function: {
|
|
148
|
+
name: toolInvocation.tool_name,
|
|
149
|
+
arguments: JSON.stringify(toolInvocation.parameters),
|
|
150
|
+
},
|
|
151
|
+
})),
|
|
152
|
+
},
|
|
153
|
+
});
|
|
154
|
+
return {
|
|
155
|
+
generations: [{ message: responseMessageWithFunctions, text: "" }],
|
|
156
|
+
};
|
|
157
|
+
}
|
|
158
|
+
return chatResult;
|
|
159
|
+
}
|
|
160
|
+
async _generate(messages, options, _runManager) {
|
|
161
|
+
return this._prepareAndParseToolCall({
|
|
162
|
+
messages,
|
|
163
|
+
options,
|
|
164
|
+
systemPromptTemplate: this.systemPromptTemplate,
|
|
165
|
+
stopSequences: this.stopSequences ?? [],
|
|
166
|
+
});
|
|
167
|
+
}
|
|
168
|
+
_llmType() {
|
|
169
|
+
return "anthropic_tool_calling";
|
|
170
|
+
}
|
|
171
|
+
withStructuredOutput({ schema, name, method, includeRaw, }) {
|
|
172
|
+
if (method === "jsonMode") {
|
|
173
|
+
throw new Error(`Anthropic only supports "functionCalling" as a method.`);
|
|
174
|
+
}
|
|
175
|
+
const functionName = name ?? "extract";
|
|
176
|
+
const outputParser = new JsonOutputKeyToolsParser({
|
|
177
|
+
returnSingle: true,
|
|
178
|
+
keyName: functionName,
|
|
179
|
+
});
|
|
180
|
+
let tools;
|
|
181
|
+
if (isZodSchema(schema)) {
|
|
182
|
+
const jsonSchema = zodToJsonSchema(schema);
|
|
183
|
+
tools = [
|
|
184
|
+
{
|
|
185
|
+
type: "function",
|
|
186
|
+
function: {
|
|
187
|
+
name: functionName,
|
|
188
|
+
description: jsonSchema.description,
|
|
189
|
+
parameters: jsonSchema,
|
|
190
|
+
},
|
|
191
|
+
},
|
|
192
|
+
];
|
|
193
|
+
}
|
|
194
|
+
else {
|
|
195
|
+
tools = [
|
|
196
|
+
{
|
|
197
|
+
type: "function",
|
|
198
|
+
function: {
|
|
199
|
+
name: functionName,
|
|
200
|
+
description: schema.description,
|
|
201
|
+
parameters: schema,
|
|
202
|
+
},
|
|
203
|
+
},
|
|
204
|
+
];
|
|
205
|
+
}
|
|
206
|
+
const llm = this.bind({
|
|
207
|
+
tools,
|
|
208
|
+
tool_choice: {
|
|
209
|
+
type: "function",
|
|
210
|
+
function: {
|
|
211
|
+
name: functionName,
|
|
212
|
+
},
|
|
213
|
+
},
|
|
214
|
+
});
|
|
215
|
+
if (!includeRaw) {
|
|
216
|
+
return llm.pipe(outputParser).withConfig({
|
|
217
|
+
runName: "ChatAnthropicStructuredOutput",
|
|
218
|
+
});
|
|
219
|
+
}
|
|
220
|
+
const parserAssign = RunnablePassthrough.assign({
|
|
221
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
222
|
+
parsed: (input, config) => outputParser.invoke(input.raw, config),
|
|
223
|
+
});
|
|
224
|
+
const parserNone = RunnablePassthrough.assign({
|
|
225
|
+
parsed: () => null,
|
|
226
|
+
});
|
|
227
|
+
const parsedWithFallback = parserAssign.withFallbacks({
|
|
228
|
+
fallbacks: [parserNone],
|
|
229
|
+
});
|
|
230
|
+
return RunnableSequence.from([
|
|
231
|
+
{
|
|
232
|
+
raw: llm,
|
|
233
|
+
},
|
|
234
|
+
parsedWithFallback,
|
|
235
|
+
]).withConfig({
|
|
236
|
+
runName: "StructuredOutputRunnable",
|
|
237
|
+
});
|
|
238
|
+
}
|
|
239
|
+
}
|
|
240
|
+
function isZodSchema(input) {
|
|
241
|
+
// Check for a characteristic method of Zod schemas
|
|
242
|
+
return typeof input?.parse === "function";
|
|
243
|
+
}
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
"use strict";
|
|
2
|
+
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
+
exports.formatAsXMLRepresentation = exports.DEFAULT_TOOL_SYSTEM_PROMPT = void 0;
|
|
4
|
+
const fast_xml_parser_1 = require("fast-xml-parser");
|
|
5
|
+
const prompts_1 = require("@langchain/core/prompts");
|
|
6
|
+
exports.DEFAULT_TOOL_SYSTEM_PROMPT =
|
|
7
|
+
/* #__PURE__ */ prompts_1.PromptTemplate.fromTemplate(`In this environment you have access to a set of tools you can use to answer the user's question.
|
|
8
|
+
|
|
9
|
+
You may call them like this:
|
|
10
|
+
<function_calls>
|
|
11
|
+
<invoke>
|
|
12
|
+
<tool_name>$TOOL_NAME</tool_name>
|
|
13
|
+
<parameters>
|
|
14
|
+
<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
|
|
15
|
+
...
|
|
16
|
+
</parameters>
|
|
17
|
+
</invoke>
|
|
18
|
+
</function_calls>
|
|
19
|
+
|
|
20
|
+
Here are the tools available:
|
|
21
|
+
{tools}`);
|
|
22
|
+
function formatAsXMLRepresentation(tool) {
|
|
23
|
+
const builder = new fast_xml_parser_1.XMLBuilder();
|
|
24
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
25
|
+
const toolParamProps = tool.function.parameters?.properties;
|
|
26
|
+
const parameterXml = Object.keys(toolParamProps)
|
|
27
|
+
.map((key) => {
|
|
28
|
+
const parameterData = toolParamProps[key];
|
|
29
|
+
let xml = `<parameter>
|
|
30
|
+
<name>${key}</name>
|
|
31
|
+
<type>${parameterData.type}</type>`;
|
|
32
|
+
if (parameterData.description) {
|
|
33
|
+
xml += `\n<description>${parameterData.description}</description>`;
|
|
34
|
+
}
|
|
35
|
+
if (parameterData.type === "array" && parameterData.items) {
|
|
36
|
+
xml += `\n<items>${builder.build(parameterData.items.properties)}</items>`;
|
|
37
|
+
}
|
|
38
|
+
if (parameterData.properties) {
|
|
39
|
+
xml += `\n<properties>\n${builder.build(parameterData.properties)}\n</properties>`;
|
|
40
|
+
}
|
|
41
|
+
return `${xml}\n</parameter>`;
|
|
42
|
+
})
|
|
43
|
+
.join("\n");
|
|
44
|
+
return `<tool_description>
|
|
45
|
+
<tool_name>${tool.function.name}</tool_name>
|
|
46
|
+
<description>${tool.function.description}</description>
|
|
47
|
+
<parameters>
|
|
48
|
+
${parameterXml}
|
|
49
|
+
</parameters>
|
|
50
|
+
</tool_description>`;
|
|
51
|
+
}
|
|
52
|
+
exports.formatAsXMLRepresentation = formatAsXMLRepresentation;
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
import { PromptTemplate } from "@langchain/core/prompts";
|
|
2
|
+
import { ToolDefinition } from "@langchain/core/language_models/base";
|
|
3
|
+
export declare const DEFAULT_TOOL_SYSTEM_PROMPT: PromptTemplate<import("@langchain/core/prompts").ParamsFromFString<"In this environment you have access to a set of tools you can use to answer the user's question.\n\nYou may call them like this:\n<function_calls>\n<invoke>\n<tool_name>$TOOL_NAME</tool_name>\n<parameters>\n<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>\n...\n</parameters>\n</invoke>\n</function_calls>\n\nHere are the tools available:\n{tools}">, any>;
|
|
4
|
+
export type ToolInvocation = {
|
|
5
|
+
tool_name: string;
|
|
6
|
+
parameters: Record<string, unknown>;
|
|
7
|
+
};
|
|
8
|
+
export declare function formatAsXMLRepresentation(tool: ToolDefinition): string;
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
import { XMLBuilder } from "fast-xml-parser";
|
|
2
|
+
import { PromptTemplate } from "@langchain/core/prompts";
|
|
3
|
+
export const DEFAULT_TOOL_SYSTEM_PROMPT =
|
|
4
|
+
/* #__PURE__ */ PromptTemplate.fromTemplate(`In this environment you have access to a set of tools you can use to answer the user's question.
|
|
5
|
+
|
|
6
|
+
You may call them like this:
|
|
7
|
+
<function_calls>
|
|
8
|
+
<invoke>
|
|
9
|
+
<tool_name>$TOOL_NAME</tool_name>
|
|
10
|
+
<parameters>
|
|
11
|
+
<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
|
|
12
|
+
...
|
|
13
|
+
</parameters>
|
|
14
|
+
</invoke>
|
|
15
|
+
</function_calls>
|
|
16
|
+
|
|
17
|
+
Here are the tools available:
|
|
18
|
+
{tools}`);
|
|
19
|
+
export function formatAsXMLRepresentation(tool) {
|
|
20
|
+
const builder = new XMLBuilder();
|
|
21
|
+
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
22
|
+
const toolParamProps = tool.function.parameters?.properties;
|
|
23
|
+
const parameterXml = Object.keys(toolParamProps)
|
|
24
|
+
.map((key) => {
|
|
25
|
+
const parameterData = toolParamProps[key];
|
|
26
|
+
let xml = `<parameter>
|
|
27
|
+
<name>${key}</name>
|
|
28
|
+
<type>${parameterData.type}</type>`;
|
|
29
|
+
if (parameterData.description) {
|
|
30
|
+
xml += `\n<description>${parameterData.description}</description>`;
|
|
31
|
+
}
|
|
32
|
+
if (parameterData.type === "array" && parameterData.items) {
|
|
33
|
+
xml += `\n<items>${builder.build(parameterData.items.properties)}</items>`;
|
|
34
|
+
}
|
|
35
|
+
if (parameterData.properties) {
|
|
36
|
+
xml += `\n<properties>\n${builder.build(parameterData.properties)}\n</properties>`;
|
|
37
|
+
}
|
|
38
|
+
return `${xml}\n</parameter>`;
|
|
39
|
+
})
|
|
40
|
+
.join("\n");
|
|
41
|
+
return `<tool_description>
|
|
42
|
+
<tool_name>${tool.function.name}</tool_name>
|
|
43
|
+
<description>${tool.function.description}</description>
|
|
44
|
+
<parameters>
|
|
45
|
+
${parameterXml}
|
|
46
|
+
</parameters>
|
|
47
|
+
</tool_description>`;
|
|
48
|
+
}
|
|
@@ -30,7 +30,7 @@ test("Test ChatAnthropic Generate", async () => {
|
|
|
30
30
|
}
|
|
31
31
|
console.log({ res });
|
|
32
32
|
});
|
|
33
|
-
test("Test ChatAnthropic Generate w/ ClientOptions", async () => {
|
|
33
|
+
test.skip("Test ChatAnthropic Generate w/ ClientOptions", async () => {
|
|
34
34
|
const chat = new ChatAnthropic({
|
|
35
35
|
modelName: "claude-3-sonnet-20240229",
|
|
36
36
|
maxRetries: 0,
|
|
@@ -127,7 +127,7 @@ test("Test ChatAnthropic in streaming mode with a signal", async () => {
|
|
|
127
127
|
}).rejects.toThrow();
|
|
128
128
|
console.log({ nrNewTokens, streamedCompletion });
|
|
129
129
|
}, 5000);
|
|
130
|
-
test("Test ChatAnthropic prompt value", async () => {
|
|
130
|
+
test.skip("Test ChatAnthropic prompt value", async () => {
|
|
131
131
|
const chat = new ChatAnthropic({
|
|
132
132
|
modelName: "claude-3-sonnet-20240229",
|
|
133
133
|
maxRetries: 0,
|
|
@@ -142,7 +142,7 @@ test("Test ChatAnthropic prompt value", async () => {
|
|
|
142
142
|
}
|
|
143
143
|
console.log({ res });
|
|
144
144
|
});
|
|
145
|
-
test("ChatAnthropic, docs, prompt templates", async () => {
|
|
145
|
+
test.skip("ChatAnthropic, docs, prompt templates", async () => {
|
|
146
146
|
const chat = new ChatAnthropic({
|
|
147
147
|
modelName: "claude-3-sonnet-20240229",
|
|
148
148
|
maxRetries: 0,
|
|
@@ -162,7 +162,7 @@ test("ChatAnthropic, docs, prompt templates", async () => {
|
|
|
162
162
|
]);
|
|
163
163
|
console.log(responseA.generations);
|
|
164
164
|
});
|
|
165
|
-
test("ChatAnthropic, longer chain of messages", async () => {
|
|
165
|
+
test.skip("ChatAnthropic, longer chain of messages", async () => {
|
|
166
166
|
const chat = new ChatAnthropic({
|
|
167
167
|
modelName: "claude-3-sonnet-20240229",
|
|
168
168
|
maxRetries: 0,
|
|
@@ -180,7 +180,7 @@ test("ChatAnthropic, longer chain of messages", async () => {
|
|
|
180
180
|
]);
|
|
181
181
|
console.log(responseA.generations);
|
|
182
182
|
});
|
|
183
|
-
test("ChatAnthropic, Anthropic apiUrl set manually via constructor", async () => {
|
|
183
|
+
test.skip("ChatAnthropic, Anthropic apiUrl set manually via constructor", async () => {
|
|
184
184
|
// Pass the default URL through (should use this, and work as normal)
|
|
185
185
|
const anthropicApiUrl = "https://api.anthropic.com";
|
|
186
186
|
const chat = new ChatAnthropic({
|
|
@@ -249,6 +249,26 @@ test("Test ChatAnthropic headers passed through", async () => {
|
|
|
249
249
|
},
|
|
250
250
|
});
|
|
251
251
|
const message = new HumanMessage("Hello!");
|
|
252
|
-
const res = await chat.
|
|
252
|
+
const res = await chat.invoke([message]);
|
|
253
253
|
console.log({ res });
|
|
254
254
|
});
|
|
255
|
+
test("Test ChatAnthropic multimodal", async () => {
|
|
256
|
+
const chat = new ChatAnthropic({
|
|
257
|
+
modelName: "claude-3-sonnet-20240229",
|
|
258
|
+
maxRetries: 0,
|
|
259
|
+
});
|
|
260
|
+
const res = await chat.invoke([
|
|
261
|
+
new HumanMessage({
|
|
262
|
+
content: [
|
|
263
|
+
{
|
|
264
|
+
type: "image_url",
|
|
265
|
+
image_url: {
|
|
266
|
+
url: "",
|
|
267
|
+
},
|
|
268
|
+
},
|
|
269
|
+
{ type: "text", text: "What is this a logo for?" },
|
|
270
|
+
],
|
|
271
|
+
}),
|
|
272
|
+
]);
|
|
273
|
+
console.log(res);
|
|
274
|
+
});
|
package/experimental.cjs
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
module.exports = require('./dist/experimental/index.cjs');
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export * from './dist/experimental/index.js'
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export * from './dist/experimental/index.js'
|
package/experimental.js
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export * from './dist/experimental/index.js'
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@langchain/anthropic",
|
|
3
|
-
"version": "0.1.
|
|
3
|
+
"version": "0.1.2",
|
|
4
4
|
"description": "Anthropic integrations for LangChain.js",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"engines": {
|
|
@@ -39,10 +39,14 @@
|
|
|
39
39
|
"license": "MIT",
|
|
40
40
|
"dependencies": {
|
|
41
41
|
"@anthropic-ai/sdk": "^0.15.0",
|
|
42
|
-
"@langchain/core": "~0.1"
|
|
42
|
+
"@langchain/core": "~0.1",
|
|
43
|
+
"fast-xml-parser": "^4.3.5",
|
|
44
|
+
"zod": "^3.22.4",
|
|
45
|
+
"zod-to-json-schema": "^3.22.4"
|
|
43
46
|
},
|
|
44
47
|
"devDependencies": {
|
|
45
48
|
"@jest/globals": "^29.5.0",
|
|
49
|
+
"@langchain/community": "workspace:^",
|
|
46
50
|
"@langchain/scripts": "~0.0",
|
|
47
51
|
"@swc/core": "^1.3.90",
|
|
48
52
|
"@swc/jest": "^0.2.29",
|
|
@@ -88,6 +92,15 @@
|
|
|
88
92
|
"import": "./index.js",
|
|
89
93
|
"require": "./index.cjs"
|
|
90
94
|
},
|
|
95
|
+
"./experimental": {
|
|
96
|
+
"types": {
|
|
97
|
+
"import": "./experimental.d.ts",
|
|
98
|
+
"require": "./experimental.d.cts",
|
|
99
|
+
"default": "./experimental.d.ts"
|
|
100
|
+
},
|
|
101
|
+
"import": "./experimental.js",
|
|
102
|
+
"require": "./experimental.cjs"
|
|
103
|
+
},
|
|
91
104
|
"./package.json": "./package.json"
|
|
92
105
|
},
|
|
93
106
|
"files": [
|
|
@@ -95,6 +108,10 @@
|
|
|
95
108
|
"index.cjs",
|
|
96
109
|
"index.js",
|
|
97
110
|
"index.d.ts",
|
|
98
|
-
"index.d.cts"
|
|
111
|
+
"index.d.cts",
|
|
112
|
+
"experimental.cjs",
|
|
113
|
+
"experimental.js",
|
|
114
|
+
"experimental.d.ts",
|
|
115
|
+
"experimental.d.cts"
|
|
99
116
|
]
|
|
100
117
|
}
|