@labelbee/lb-components 1.20.0-alpha.1 → 1.20.0-alpha.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1 +1,2 @@
1
- "use strict";var React=require("react"),antd=require("antd"),reactI18next=require("react-i18next"),icons=require("@ant-design/icons");function _interopDefaultLegacy(e){return e&&typeof e=="object"&&"default"in e?e:{default:e}}var React__default=_interopDefaultLegacy(React);const TextEditor=e=>{const{checkMode:o,newAnswer:l,textEditObject:u,updateValue:i}=e,{max:s,min:t}=u,{TextArea:c}=antd.Input,[a]=antd.Form.useForm(),{t:n}=reactI18next.useTranslation(),m=n("LeastCharacterError",{num:t});return React.useEffect(()=>{a.setFieldsValue({value:l}),o||a.validateFields()},[l]),React__default.default.createElement(antd.Form,{form:a,onValuesChange:(d,r)=>{const f=r.value;i(f)},style:{marginBottom:"16px"}},React__default.default.createElement(antd.Form.Item,{name:"title",style:{marginBottom:"16px"},label:" ",colon:!1,required:!!t},n("AnswerTextEdit"),React__default.default.createElement(antd.Popover,{placement:"bottom",content:n("ShowEditingResultDifferencesInTextModeOnly")},React__default.default.createElement(icons.InfoCircleOutlined,{style:{margin:"0px 4px",cursor:"pointer"}}))),React__default.default.createElement(antd.Form.Item,{name:"value",style:{marginBottom:8},rules:[{validator:(d,r="")=>t&&(r==null?void 0:r.length)<Number(t)?Promise.reject(m):Promise.resolve()}]},React__default.default.createElement(c,{maxLength:s,autoSize:{minRows:4,maxRows:10},allowClear:!0,disabled:o,showCount:!!s,style:{width:"100%"}})))};module.exports=TextEditor;
1
+ "use strict";var React=require("react"),antd=require("antd"),reactI18next=require("react-i18next"),icons=require("@ant-design/icons"),index$1=require("../../../../markdownView/index.js"),index=require("../../../../latexEditor/index.js"),index_module=require("./index.module.scss.js");function _interopDefaultLegacy(r){return r&&typeof r=="object"&&"default"in r?r:{default:r}}var React__default=_interopDefaultLegacy(React);const TextEditor=r=>{const{checkMode:d,newAnswer:f,textEditObject:E,updateValue:x}=r,{max:n,min:i,isLaText:v}=E,{TextArea:g}=antd.Input,[l]=antd.Form.useForm(),{t:u}=reactI18next.useTranslation(),p=u("LeastCharacterError",{num:i});React.useEffect(()=>{l.setFieldsValue({value:f}),d||l.validateFields()},[f]);const h=t=>{var e,c;const a=document.getElementById("inputTextarea"),o=a.value||"",m=(e=a==null?void 0:a.selectionStart)!=null?e:o.length,b=(c=a.selectionEnd)!=null?c:o.length,w=o.substring(0,m),y=o.substring(b,o.length),s=w+t+y;if(n&&(s==null?void 0:s.length)>n){antd.message.error(u("MaximumCharacterError",{num:n}));return}a.value=s,l.setFieldsValue({value:s}),x(s),a.selectionStart=m+t.length,a.selectionEnd=m+t.length,a.focus()};return React__default.default.createElement(antd.Form,{form:l,onValuesChange:(t,e)=>{const c=e.value;x(c)},className:index_module.form},React__default.default.createElement(antd.Form.Item,{name:"title",style:{marginBottom:"16px"},label:React__default.default.createElement(React__default.default.Fragment,null,u("AnswerTextEdit"),React__default.default.createElement(antd.Popover,{placement:"bottom",content:u("ShowEditingResultDifferencesInTextModeOnly")},React__default.default.createElement(icons.InfoCircleOutlined,{style:{margin:"0px 4px",cursor:"pointer"}}))),colon:!1,required:!!i}),v&&React__default.default.createElement(index,{onSelectLatex:h,disabled:d}),React__default.default.createElement(antd.Form.Item,{name:"value",style:{marginBottom:24},rules:[{validator:(t,e="")=>i&&(e==null?void 0:e.length)<Number(i)?Promise.reject(p):Promise.resolve()}]},React__default.default.createElement(g,{maxLength:n,autoSize:{minRows:4,maxRows:10},allowClear:!0,disabled:d,showCount:!!n,style:{width:"100%"},id:"inputTextarea"})),v&&React__default.default.createElement(antd.Form.Item,{shouldUpdate:!0,noStyle:!0},()=>{const t=l.getFieldValue("value")||"",e=t.replace(/\n/g,`
2
+ `);return React__default.default.createElement("div",{className:index_module.outputDisplay},React__default.default.createElement("div",{className:index_module.title},u("OutputDisplay")),React__default.default.createElement("div",{className:index_module.content},t?React__default.default.createElement(index$1,{value:e}):""))}))};module.exports=TextEditor;
@@ -0,0 +1 @@
1
+ "use strict";var styles={form:"index-module_form__IypXc",outputDisplay:"index-module_outputDisplay__5dS48",title:"index-module_title__vhMCp",content:"index-module_content__Iml6l"};module.exports=styles;
@@ -0,0 +1 @@
1
+ "use strict";Object.defineProperty(exports,"__esModule",{value:!0});const common={key:"commonSymbols",label:"CommonSymbols",children:[{key:"binaryOperator",label:"BinaryOperations",children:[{key:"+",remark:""},{key:"-"},{key:"\\times"},{key:"{\\div}"},{key:"\\pm"},{key:"\\mp"},{key:"\\triangleleft"},{key:"\\triangleright"},{key:"\\cdot"},{key:"\\setminus"},{key:"\\star"},{key:"\\ast"},{key:"\\cup"},{key:"\\cap"},{key:"\\sqcup"},{key:"\\sqcap"},{key:"\\vee"},{key:"\\wedge"},{key:"\\circ"},{key:"\\bullet"},{key:"\\oplus"},{key:"\\ominus"},{key:"\\odot"},{key:"\\oslash"},{key:"\\otimes"},{key:"\\bigcirc"},{key:"\\diamond"},{key:"\\uplus"},{key:"\\bigtriangleup"},{key:"\\bigtriangledown"},{key:"\\lhd"},{key:"\\rhd"},{key:"\\unlhd"},{key:"\\unrhd"},{key:"\\amalg"},{key:"\\wr"},{key:"\\dagger"},{key:"\\ddagger"}]},{key:"binaryRelation",label:"BinaryRelations",children:[{key:"<"},{key:">"},{key:"="},{key:"\\le"},{key:"\\ge"},{key:"\\equiv"},{key:"\\ll"},{key:"\\gg"},{key:"\\doteq"},{key:"\\prec"},{key:"\\succ"},{key:"\\sim"},{key:"\\preceq"},{key:"\\succeq"},{key:"\\simeq"},{key:"\\approx"},{key:"\\subset"},{key:"\\supset"},{key:"\\subseteq"},{key:"\\supseteq"},{key:"\\sqsubset"},{key:"\\sqsupset"},{key:"\\sqsubseteq"},{key:"\\sqsupseteq"},{key:"\\cong"},{key:"\\Join"},{key:"\\bowtie"},{key:"\\propto"},{key:"\\in"},{key:"\\ni"},{key:"\\vdash"},{key:"\\dashv"},{key:"\\models"},{key:"\\mid"},{key:"\\parallel"},{key:"\\perp"},{key:"\\smile"},{key:"\\frown"},{key:"\\asymp"},{key:":"},{key:"\\notin"},{key:"\\ne"}]},{key:"arrowSymbol",label:"Arrows",children:[{key:"\\gets"},{key:"\\to"},{key:"\\longleftarrow"},{key:"\\longrightarrow"},{key:"\\uparrow"},{key:"\\downarrow"},{key:"\\updownarrow"},{key:"\\leftrightarrow"},{key:"\\Uparrow"},{key:"\\Downarrow"},{key:"\\Updownarrow"},{key:"\\longleftrightarrow"},{key:"\\Leftarrow"},{key:"\\Longleftarrow"},{key:"\\Rightarrow"},{key:"\\Longrightarrow"},{key:"\\Leftrightarrow"},{key:"\\Longleftrightarrow"},{key:"\\mapsto"},{key:"\\longmapsto"},{key:"\\nearrow"},{key:"\\searrow"},{key:"\\swarrow"},{key:"\\nwarrow"},{key:"\\hookleftarrow"},{key:"\\hookrightarrow"},{key:"\\rightleftharpoons"},{key:"\\iff"},{key:"\\leftharpoonup"},{key:"\\rightharpoonup"},{key:"\\leftharpoondown"},{key:"\\rightharpoondown"}]},{key:"otherSymbol",label:"Others",children:[{key:"\\because"},{key:"\\therefore"},{key:"\\dots"},{key:"\\cdots"},{key:"\\vdots"},{key:"\\ddots"},{key:"\\forall"},{key:"\\exists"},{key:"\\nexists"},{key:"\\Finv"},{key:"\\neg"},{key:"\\prime"},{key:"\\emptyset"},{key:"\\infty"},{key:"\\nabla"},{key:"\\triangle"},{key:"\\Box"},{key:"\\Diamond"},{key:"\\bot"},{key:"\\top"},{key:"\\angle"},{key:"\\measuredangle"},{key:"\\sphericalangle"},{key:"\\surd"},{key:"\\diamondsuit"},{key:"\\heartsuit"},{key:"\\clubsuit"},{key:"\\spadesuit"},{key:"\\flat"},{key:"\\natural"},{key:"\\sharp"}]}]},greek={key:"greek",label:"Greek",children:[{key:"lower",label:"Lowercase",children:[{key:"\\alpha"},{key:"\\beta"},{key:"\\gamma"},{key:"\\delta"},{key:"\\epsilon"},{key:"\\varepsilon"},{key:"\\zeta"},{key:"\\eta"},{key:"\\theta"},{key:"\\vartheta"},{key:"\\iota"},{key:"\\kappa"},{key:"\\lambda"},{key:"\\mu"},{key:"\\nu"},{key:"\\xi"},{key:"o"},{key:"\\pi"},{key:"\\varpi"},{key:"\\rho"},{key:"\\varrho"},{key:"\\sigma"},{key:"\\varsigma"},{key:"\\tau"},{key:"\\upsilon"},{key:"\\phi"},{key:"\\varphi"},{key:"\\chi"},{key:"\\psi"},{key:"\\omega"}]},{key:"uppercase",label:"Uppercase",children:[{key:"\\Gamma"},{key:"\\Delta"},{key:"\\Theta"},{key:"\\Lambda"},{key:"\\Xi"},{key:"\\Pi"},{key:"\\Sigma"},{key:"\\Upsilon"},{key:"\\Phi"},{key:"\\Psi"},{key:"\\Omega"}]}]},advancedMathematics={key:"advancedMathematics",label:"AdvancedMathematics",children:[{key:"fractionalDifferentiation",label:"FractionalDifferentiation",children:[{key:"fraction",label:"Fraction",children:[{key:"\\frac{a}{b}"},{key:"\\tfrac{a}{b}"},{key:"\\mathrm{d}t"},{key:"\\frac{\\mathrm{d}y}{\\mathrm{d}x}"},{key:"\\partial t"},{key:"\\frac{\\partial y}{\\partial x}"},{key:"\\nabla\\psi"},{key:"\\frac{\\partial^2}{\\partial x_1\\partial x_2}y"}]},{key:"derivative",label:"Derivative",children:[{key:"\\dot{a}"},{key:"\\ddot{a}"},{key:"{f}'"},{key:"{f}''"},{key:"{f}^{(n)}"}]},{key:"modularArithmetic",label:"ModularArithmetic",children:[{key:"a \\bmod b"},{key:"a \\equiv b \\pmod{m}"},{key:"\\gcd(m, n)"},{key:"\\operatorname{lcm}(m, n)"}]}]},{key:"radical",label:"Radical",children:[{key:"radicalItem",label:"Radical",children:[{key:"\\sqrt{x}"},{key:"\\sqrt[n]{x}"}]},{key:"mark",label:"SupAndSub",children:[{key:"x^{a}"},{key:"x_{a}"},{key:"x_{a}^{b}"}]}]},{key:"limitLogarithm",label:"LimitLogarithm",children:[{key:"limits",label:"Limits",children:[{key:"\\lim a"},{key:"\\displaystyle \\lim_{x \\to 0}"},{key:"\\lim_{x \\to \\infty}"},{key:"\\textstyle \\lim_{x \\to 0}"},{key:"\\max_{}"},{key:"\\min_{}"}]},{key:"maLogarithmsAndExponentsrk",label:"LogarithmsAndExponents",children:[{key:"\\log_{a}{b}"},{key:"\\lg_{a}{b}"},{key:"\\ln_{a}{b}"},{key:"\\exp a"}]},{key:"bounds",label:"Bounds",children:[{key:"\\min x"},{key:"\\max y"},{key:"\\sup t"},{key:"\\inf s"},{key:"\\lim u"},{key:"\\limsup w"},{key:"\\liminf v"},{key:"\\dim p"},{key:"\\ker\\phi"}]}]},{key:"integralOperation",label:"IntegralOperation",children:[{key:"integral",label:"Integral",children:[{key:"\\int"},{key:"\\int_{a}^{b}"},{key:"\\int\\limits_{a}^{b}"}]},{key:"doubleIntegral",label:"DoubleIntegral",children:[{key:"\\iint"},{key:"\\iint_{a}^{b}"},{key:"\\iint\\limits_{a}^{b}"}]},{key:"tripleIntegral",label:"TripleIntegral",children:[{key:"\\iiint"},{key:"\\iiint_{a}^{b}"},{key:"\\iiint\\limits_{a}^{b}"}]}]},{key:"largeOperations",label:"LargeOperations",children:[{key:"summation",label:"\u6C42\u548C",children:[{key:"\\sum"},{key:"\\displaystyle \\sum_{a}^{b}"},{key:"{\\textstyle \\sum_{a}^{b}}"}]},{key:"productsAndCoproducts",label:"ProductsAndCoproducts",children:[{key:"\\prod"},{key:"\\displaystyle \\prod_{a}^{b}"},{key:"{\\textstyle \\prod_{a}^{b}}"},{key:"\\coprod"},{key:"\\displaystyle \\coprod_{a}^{b}"},{key:"{\\textstyle \\coprod_{a}^{b}}"}]},{key:"intersectionAndUnion",label:"IntersectionAndUnion",children:[{key:"\\bigcup"},{key:"\\displaystyle \\bigcup_{a}^{b}"},{key:"{\\textstyle \\bigcup_{a}^{b}}"},{key:"\\bigcap"},{key:"\\displaystyle \\bigcap_{a}^{b}"},{key:"{\\textstyle \\bigcap_{a}^{b}}"}]}]}]},linearAlgebra={key:"linearAlgebra",label:"LinearAlgebra",children:[{key:"bracketForensics",label:"BracketForensics",children:[{key:"bracket",label:"Bracket",children:[{key:"\\left ( a \\right )"},{key:"\\left [ a \\right ]"},{key:"\\left \\langle a \\right \\rangle"},{key:"\\left \\{ a \\right \\}"},{key:"\\left | a \\right |"},{key:"\\left \\| a \\right \\|"}]},{key:"common",label:"Common",children:[{key:"\\binom{n}{r}"},{key:"\\left [ 0,1 \\right )"},{key:"\\left \\langle \\psi \\right |"},{key:"\\left | \\psi \\right \\rangle"},{key:"\\left \\langle \\psi | \\psi \\right \\rangle"}]}]},{key:"arrayMatrix",label:"ArrayMatrix",children:[{key:"\\begin{matrix} 11& 11 &11 \\\\ 11& 11 &11 \\end{matrix}"},{key:"\\begin{bmatrix} 11 & 11\\\\ 11 & 11 \\end{bmatrix}"},{key:"\\begin{pmatrix} 11& 11& 11\\\\ 11& 11& 11 \\end{pmatrix}"},{key:"\\begin{vmatrix} 11& 11\\\\ 11&11 \\end{vmatrix}"},{key:"\\begin{Bmatrix} 11& 11\\\\ 11&11 \\end{Bmatrix}"}]}]},trigonometric={key:"trigonometric",label:"TrigonometricFunctions",children:[{key:"trigonometricFunctions",label:"TrigonometricFunctions",children:[{key:"\\sin\\alpha"},{key:"\\cos\\alpha"},{key:"\\tan\\alpha"},{key:"\\cot\\alpha"},{key:"\\sec\\alpha"},{key:"\\csc\\alpha"}]},{key:"inverseTrigonometricFunctions",label:"InverseTrigonometricFunctions",children:[{key:"\\sin^{-1}\\alpha"},{key:"\\cos^{-1}\\alpha"},{key:"\\tan^{-1}\\alpha"},{key:"\\cot^{-1}\\alpha"},{key:"\\sec^{-1}\\alpha"},{key:"\\csc^{-1}\\alpha"},{key:"\\arcsin\\alpha"},{key:"\\arccos\\alpha"},{key:"\\arctan\\alpha"},{key:"\\operatorname{arccot}\\alpha"},{key:"\\operatorname{arccsc}\\alpha"}]},{key:"hyperblicFunctions",label:"HyperblicFunctions",children:[{key:"\\sinh\\alpha"},{key:"\\cosh\\alpha"},{key:"\\tanh\\alpha"},{key:"\\coth\\alpha"},{key:"\\operatorname{sech}\\alpha"},{key:"\\operatorname{csch}\\alpha"}]},{key:"inverseHyperblicFunctions",label:"InverseHyperblicFunctions",children:[{key:"\\sinh^{-1}\\alpha"},{key:"\\cosh^{-1}\\alpha"},{key:"\\tanh^{-1}\\alpha"},{key:"\\coth^{-1}\\alpha"},{key:"\\operatorname{sech}^{-1}\\alpha"},{key:"\\operatorname{csch}^{-1}\\alpha"}]}]},formulaTemplate={key:"formulaTemplate",label:"FormulaTemplate",children:[{key:"algebraFormula",label:"Algebra",children:[{key:"\\left(x-1\\right)\\left(x+3\\right)"},{key:"\\frac{a}{b}\\pm \\frac{c}{d}= \\frac{ad \\pm bc}{bd}"},{key:"x ={-b \\pm \\sqrt{b^2-4ac}\\over 2a}"},{key:"\\left\\{\\begin{matrix} x=a + r\\text{cos}\\theta \\\\ y=b + r\\text{sin}\\theta \\end{matrix}\\right."}]},{key:"geometryFormula",label:"Geometry",children:[{key:"\\Delta ABC"},{key:"a \\parallel c,b \\parallel c \\Rightarrow a \\parallel b"},{key:"\\left.\\begin{matrix} a \\perp \\alpha \\\\ b \\perp \\alpha \\end{matrix}\\right\\}\\Rightarrow a \\parallel b"},{key:"\\begin{array}{c} \\text{\u76F4\u89D2\u4E09\u89D2\u5F62\u4E2D,\u76F4\u89D2\u8FB9\u957Fa,b,\u659C\u8FB9\u8FB9\u957Fc} \\\\ a^{2}+b^{2}=c^{2} \\end{array}"}]},{key:"inequalityFormula",label:"Inequality",children:[{key:"a > b,b > c \\Rightarrow a > c"},{key:"\\left | a-b \\right | \\geqslant \\left | a \\right | -\\left | b \\right |"},{key:"-\\left | a \\right |\\leq a\\leqslant \\left | a \\right |"},{key:"\\begin{array}{c} a,b \\in \\mathbb{R}^{+} \\\\ \\Rightarrow \\frac{a+b}{{2}}\\ge \\sqrt{ab} \\\\ \\left( \\text{\u5F53\u4E14\u4EC5\u5F53}a=b\\text{\u65F6\u53D6\u201C}=\\text{\u201D\u53F7}\\right) \\end{array}"},{key:"\\begin{array}{c} a,b \\in \\mathbb{R} \\\\ \\Rightarrow a^{2}+b^{2}\\gt 2ab \\\\ \\left( \\text{\u5F53\u4E14\u4EC5\u5F53}a=b\\text{\u65F6\u53D6\u201C}=\\text{\u201D\u53F7}\\right) \\end{array}"}]},{key:"integralFormula",label:"Integral",children:[{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}x^n=nx^{n-1}"},{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}\\sin x=\\cos x"},{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}\\cos x=-\\sin x"},{key:"\\int k\\mathrm{d}x = kx+C"}]},{key:"matrixFormula",label:"Matrix",children:[{key:"\\begin{pmatrix} 1 & 0 \\\\ 0 & 1\\end{pmatrix}"},{key:"\\begin{pmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33}\\end{pmatrix}"},{key:"A_{m\\times n}=\\begin{bmatrix} a_{11}& a_{12}& \\cdots & a_{1n} \\\\ a_{21}& a_{22}& \\cdots & a_{2n} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ a_{m1}& a_{m2}& \\cdots & a_{mn}\\end{bmatrix}=\\left [ a_{ij}\\right ]"},{key:"\\mathbf{V}_1 \\times \\mathbf{V}_2 =\\begin{vmatrix} \\mathbf{i}& \\mathbf{j}& \\mathbf{k} \\\\ \\frac{\\partial X}{\\partial u}& \\frac{\\partial Y}{\\partial u}& 0 \\\\ \\frac{\\partial X}{\\partial v}& \\frac{\\partial Y}{\\partial v}& 0 \\\\ \\end{vmatrix}"}]},{key:"triangleFormula",label:"Triangle",children:[{key:"e^{i \\theta}"},{key:"\\text{sin}^{2}\\frac{\\alpha}{2}=\\frac{1- \\text{cos}\\alpha}{2}"},{key:"\\sin \\alpha + \\sin \\beta =2 \\sin \\frac{\\alpha + \\beta}{2}\\cos \\frac{\\alpha - \\beta}{2}"},{key:"\\cos \\alpha + \\cos \\beta =2 \\cos \\frac{\\alpha + \\beta}{2}\\cos \\frac{\\alpha - \\beta}{2}"}]},{key:"statisticsFormula",label:"Statistics",children:[{key:"C_{r}^{n}"},{key:"\\sum_{i=1}^{n}{X_i}"},{key:"\\begin{array}{c} \\text{\u82E5}P \\left( AB \\right) =P \\left( A \\right) P \\left( B \\right) \\\\ \\text{\u5219}P \\left( A \\left| B\\right. \\right) =P \\left({B}\\right) \\end{array}"},{key:"P \\left( A \\right) = \\lim \\limits_{n \\to \\infty}f_{n}\\left ( A \\right )"}]},{key:"sequenceFormula",label:"Sequence",children:[{key:"a_{n}=a_{1}q^{n-1}"},{key:"S_{n}=\\frac{n \\left( a_{1}+a_{n}\\right)}{2}"},{key:"\\frac{1}{4n^{2}-1}=\\frac{1}{2}\\left( \\frac{1}{2n-1}-\\frac{1}{2n+1}\\right)"},{key:"\\begin{array}{c} \\text{\u82E5}\\left \\{a_{n}\\right \\}\u3001\\left \\{b_{n}\\right \\}\\text{\u4E3A\u7B49\u5DEE\u6570\u5217}, \\\\ \\text{\u5219}\\left \\{a_{n}+ b_{n}\\right \\}\\text{\u4E3A\u7B49\u5DEE\u6570\u5217} \\end{array}"}]},{key:"physicsFormula",label:"Physics",children:[{key:"\\sum \\vec{F}_i = \\frac{d\\vec{v}}{dt} = 0"},{key:"{E_p} = -\\frac{{GMm}}{r}"},{key:"d \\vec{F}= Id \\vec{l} \\times \\vec{B}"},{key:"\\begin{array}{l} \\nabla \\cdot \\mathbf{D} =\\rho _f \\\\ \\nabla \\cdot \\mathbf{B} = 0 \\\\ \\nabla \\times \\mathbf{E} = -\\cfrac{\\partial \\mathbf{B}}{\\partial t } \\\\ \\nabla \\times \\mathbf{H} = \\mathbf{J}_f + \\cfrac{\\partial \\mathbf{D}}{\\partial t } \\end{array}"}]}]},latexList=[common,greek,advancedMathematics,linearAlgebra,trigonometric,formulaTemplate];exports.latexList=latexList;
@@ -0,0 +1 @@
1
+ "use strict";var React=require("react"),antd=require("antd"),icons=require("@ant-design/icons"),config=require("./constant/config.js"),index=require("../markdownView/index.js"),index_module=require("./index.module.scss.js"),classNames=require("classnames"),reactI18next=require("react-i18next");function _interopDefaultLegacy(n){return n&&typeof n=="object"&&"default"in n?n:{default:n}}var React__default=_interopDefaultLegacy(React),classNames__default=_interopDefaultLegacy(classNames);const LatexItem=({data:n,columnIndex:m,onSelectLatex:d,setActiveKeys:a,activeKeys:i,getInitActiveKey:s,disabled:o})=>{var u,t;const{t:r}=reactI18next.useTranslation();return((u=n==null?void 0:n.children)==null?void 0:u.some(e=>!(e==null?void 0:e.children)))&&(n==null?void 0:n.children)?React__default.default.createElement("div",{className:index_module.lastNode},n.children.map(e=>{const c=` $$${e.key}$$ `;return(e==null?void 0:e.remark)?React__default.default.createElement(antd.Tooltip,{placement:"top",title:e==null?void 0:e.remark,key:e.key},React__default.default.createElement(antd.Button,{key:e.key,className:index_module.markdownItem,onClick:()=>{d(c)},disabled:o},React__default.default.createElement(index,{value:c}))):React__default.default.createElement(antd.Button,{key:e.key,className:index_module.markdownItem,onClick:()=>{d(c)},disabled:o},React__default.default.createElement(index,{value:c}))})):React__default.default.createElement("div",{className:index_module.itemList},(t=n==null?void 0:n.children)==null?void 0:t.map(e=>React__default.default.createElement("div",{key:e.key,onClick:()=>{const c=s(e),f=[...i.slice(0,m+1),...c];a(f)},className:classNames__default.default({[`${index_module.item}`]:!0,[`${index_module.itemActive}`]:i.includes(e.key)})},r(e.label||""),React__default.default.createElement(icons.RightOutlined,{style:{marginLeft:4,fontSize:10}}))))},LatexEditor=({onSelectLatex:n,disabled:m})=>{const{t:d}=reactI18next.useTranslation(),[a,i]=React.useState([]),s=React.useRef(null),o=(t,r)=>{for(const l of t){if((l==null?void 0:l.key)===r)return l;if(l==null?void 0:l.children){const e=o(l.children,r);if(e)return e}}return null},u=(t,r=[])=>{var l;const e=r;return e.push(t.key),(t==null?void 0:t.children)&&((l=t==null?void 0:t.children)==null?void 0:l.length)>0&&u(t.children[0],e),e};return React__default.default.createElement("div",{className:index_module.latexEditor,ref:s},config.latexList.map(t=>React__default.default.createElement(antd.Dropdown,{dropdownRender:()=>React__default.default.createElement(antd.Spin,{spinning:a.length===0},React__default.default.createElement("div",{className:index_module.dropContent},a.map((r,l)=>{const e=o(config.latexList,r);return React__default.default.createElement("div",{key:r},React__default.default.createElement(LatexItem,{data:e,columnIndex:l,onSelectLatex:n,setActiveKeys:i,activeKeys:a,getInitActiveKey:u,disabled:m}))}))),key:t.key,className:classNames__default.default({[`${index_module.latexHeaderTitle}`]:!0,[`${index_module.itemActive}`]:a.includes(t.key)}),getPopupContainer:()=>(s==null?void 0:s.current)||document.body,trigger:["click"],onOpenChange:r=>{if(r){const l=u(t);i(l)}else i([])}},React__default.default.createElement("span",null,d(t.label)))))};module.exports=LatexEditor;
@@ -0,0 +1 @@
1
+ "use strict";var styles={latexEditor:"index-module_latexEditor__0fK8G",latexHeaderTitle:"index-module_latexHeaderTitle__JIpOj",dropContent:"index-module_dropContent__XVBYH",itemList:"index-module_itemList__Y3q0e",item:"index-module_item__q4v2V",itemActive:"index-module_itemActive__a5EPl",lastNode:"index-module_lastNode__TXbWG",markdownItem:"index-module_markdownItem__AkW22"};module.exports=styles;
package/dist/index.css CHANGED
@@ -24,6 +24,79 @@
24
24
  .index-module_imgView__wmxDk .index-module_item__-80YI .index-module_image__V49oW .ant-image {
25
25
  display: flex;
26
26
  }
27
+ .index-module_latexEditor__0fK8G {
28
+ line-height: 32px;
29
+ background-color: #ededed;
30
+ border-radius: 2px;
31
+ position: relative;
32
+ }
33
+
34
+ .index-module_latexHeaderTitle__JIpOj {
35
+ cursor: pointer;
36
+ padding: 0px 12px;
37
+ display: inline-block;
38
+ }
39
+
40
+ .index-module_dropContent__XVBYH {
41
+ display: flex;
42
+ box-shadow: 0px 2px 14px 2px rgba(204, 204, 204, 0.5);
43
+ min-width: 400px;
44
+ overflow: auto;
45
+ min-height: 300px;
46
+ max-height: 600px;
47
+ background: #fff;
48
+ }
49
+
50
+ .index-module_itemList__Y3q0e {
51
+ height: 100%;
52
+ border-right: 1px solid #eee;
53
+ }
54
+ .index-module_itemList__Y3q0e .index-module_item__q4v2V {
55
+ padding: 6px 12px;
56
+ cursor: pointer;
57
+ display: flex;
58
+ justify-content: space-between;
59
+ }
60
+
61
+ .index-module_itemActive__a5EPl {
62
+ background: #e6f7ff;
63
+ font-weight: 700;
64
+ }
65
+
66
+ .index-module_lastNode__TXbWG {
67
+ width: 380px;
68
+ display: flex;
69
+ padding: 4px;
70
+ flex-wrap: wrap;
71
+ }
72
+ .index-module_lastNode__TXbWG .index-module_markdownItem__AkW22 {
73
+ padding: 2px 4px;
74
+ margin: 4px;
75
+ min-width: 40px;
76
+ height: auto;
77
+ background-color: #ebebeb;
78
+ }
79
+ .index-module_lastNode__TXbWG .index-module_markdownItem__AkW22 .markdown-body {
80
+ background-color: #ebebeb;
81
+ }
82
+ .index-module_form__IypXc {
83
+ margin-bottom: 16px;
84
+ }
85
+
86
+ .index-module_outputDisplay__5dS48 .index-module_title__vhMCp {
87
+ line-height: 32px;
88
+ margin-bottom: 8px;
89
+ }
90
+ .index-module_outputDisplay__5dS48 .index-module_content__Iml6l {
91
+ min-height: 100px;
92
+ overflow: auto;
93
+ max-height: 200px;
94
+ background-color: #ffffff;
95
+ padding: 4px 12px;
96
+ }
97
+ .index-module_outputDisplay__5dS48 .index-module_content__Iml6l .markdown-body {
98
+ font-size: 14px;
99
+ }
27
100
  .index-module_speedControllerWrap__aFz7r {
28
101
  display: flex;
29
102
  color: white;
@@ -2454,6 +2527,8 @@
2454
2527
  font-weight: 500;
2455
2528
  font-size: 18px;
2456
2529
  margin-bottom: 24px;
2530
+ display: flex;
2531
+ align-items: center;
2457
2532
  }
2458
2533
  .bee-LLMView__content {
2459
2534
  font-weight: 500;
@@ -62,6 +62,7 @@ export interface ITextList {
62
62
  value?: string;
63
63
  isFillAnswer?: boolean;
64
64
  textControl?: boolean;
65
+ isLaText?: boolean;
65
66
  }
66
67
  export interface IWaitAnswerSort {
67
68
  title: number;
@@ -0,0 +1,18 @@
1
+ /**
2
+ * @file Latex config
3
+ * Markdown renders introverted formulas by default('\\textstyle').
4
+ * If special formulas need to be displayed up and down, you need to add '\\displaystyle'
5
+ * @author lixinghua <lixinghua_vendor@sensetime.com>
6
+ * @date 2023-11-28
7
+ */
8
+ export declare const latexList: {
9
+ key: string;
10
+ label: string;
11
+ children: {
12
+ key: string;
13
+ label: string;
14
+ children: {
15
+ key: string;
16
+ }[];
17
+ }[];
18
+ }[];
@@ -0,0 +1,12 @@
1
+ /**
2
+ * @file LatexEditor
3
+ * @author lixinghua <lixinghua_vendor@sensetime.com>
4
+ * @date 2023.11.28
5
+ */
6
+ import React from 'react';
7
+ interface IProps {
8
+ onSelectLatex: (value: string) => void;
9
+ disabled?: boolean;
10
+ }
11
+ declare const LatexEditor: ({ onSelectLatex, disabled }: IProps) => React.JSX.Element;
12
+ export default LatexEditor;
@@ -1 +1,2 @@
1
- import e,{useEffect as E}from"react";import{Form as o,Popover as g,Input as w}from"antd";import{useTranslation as h}from"react-i18next";import{InfoCircleOutlined as v}from"@ant-design/icons";const y=i=>{const{checkMode:l,newAnswer:s,textEditObject:c,updateValue:u}=i,{max:m,min:t}=c,{TextArea:d}=w,[n]=o.useForm(),{t:a}=h(),f=a("LeastCharacterError",{num:t});return E(()=>{n.setFieldsValue({value:s}),l||n.validateFields()},[s]),e.createElement(o,{form:n,onValuesChange:(p,r)=>{const x=r.value;u(x)},style:{marginBottom:"16px"}},e.createElement(o.Item,{name:"title",style:{marginBottom:"16px"},label:" ",colon:!1,required:!!t},a("AnswerTextEdit"),e.createElement(g,{placement:"bottom",content:a("ShowEditingResultDifferencesInTextModeOnly")},e.createElement(v,{style:{margin:"0px 4px",cursor:"pointer"}}))),e.createElement(o.Item,{name:"value",style:{marginBottom:8},rules:[{validator:(p,r="")=>t&&(r==null?void 0:r.length)<Number(t)?Promise.reject(f):Promise.resolve()}]},e.createElement(d,{maxLength:m,autoSize:{minRows:4,maxRows:10},allowClear:!0,disabled:l,showCount:!!m,style:{width:"100%"}})))};export{y as default};
1
+ import e,{useEffect as I}from"react";import{Form as m,Popover as C,Input as S,message as j}from"antd";import{useTranslation as L}from"react-i18next";import{InfoCircleOutlined as N}from"@ant-design/icons";import k from"../../../../markdownView/index.js";import M from"../../../../latexEditor/index.js";import d from"./index.module.scss.js";const O=v=>{const{checkMode:E,newAnswer:x,textEditObject:h,updateValue:f}=v,{max:a,min:c,isLaText:g}=h,{TextArea:w}=S,[l]=m.useForm(),{t:o}=L(),b=o("LeastCharacterError",{num:c});I(()=>{l.setFieldsValue({value:x}),E||l.validateFields()},[x]);const y=n=>{var t,u;const r=document.getElementById("inputTextarea"),s=r.value||"",p=(t=r==null?void 0:r.selectionStart)!=null?t:s.length,V=(u=r.selectionEnd)!=null?u:s.length,T=s.substring(0,p),F=s.substring(V,s.length),i=T+n+F;if(a&&(i==null?void 0:i.length)>a){j.error(o("MaximumCharacterError",{num:a}));return}r.value=i,l.setFieldsValue({value:i}),f(i),r.selectionStart=p+n.length,r.selectionEnd=p+n.length,r.focus()};return e.createElement(m,{form:l,onValuesChange:(n,t)=>{const u=t.value;f(u)},className:d.form},e.createElement(m.Item,{name:"title",style:{marginBottom:"16px"},label:e.createElement(e.Fragment,null,o("AnswerTextEdit"),e.createElement(C,{placement:"bottom",content:o("ShowEditingResultDifferencesInTextModeOnly")},e.createElement(N,{style:{margin:"0px 4px",cursor:"pointer"}}))),colon:!1,required:!!c}),g&&e.createElement(M,{onSelectLatex:y,disabled:E}),e.createElement(m.Item,{name:"value",style:{marginBottom:24},rules:[{validator:(n,t="")=>c&&(t==null?void 0:t.length)<Number(c)?Promise.reject(b):Promise.resolve()}]},e.createElement(w,{maxLength:a,autoSize:{minRows:4,maxRows:10},allowClear:!0,disabled:E,showCount:!!a,style:{width:"100%"},id:"inputTextarea"})),g&&e.createElement(m.Item,{shouldUpdate:!0,noStyle:!0},()=>{const n=l.getFieldValue("value")||"",t=n.replace(/\n/g,`
2
+ `);return e.createElement("div",{className:d.outputDisplay},e.createElement("div",{className:d.title},o("OutputDisplay")),e.createElement("div",{className:d.content},n?e.createElement(k,{value:t}):""))}))};export{O as default};
@@ -0,0 +1 @@
1
+ var e={form:"index-module_form__IypXc",outputDisplay:"index-module_outputDisplay__5dS48",title:"index-module_title__vhMCp",content:"index-module_content__Iml6l"};export{e as default};
@@ -0,0 +1 @@
1
+ const e={key:"commonSymbols",label:"CommonSymbols",children:[{key:"binaryOperator",label:"BinaryOperations",children:[{key:"+",remark:""},{key:"-"},{key:"\\times"},{key:"{\\div}"},{key:"\\pm"},{key:"\\mp"},{key:"\\triangleleft"},{key:"\\triangleright"},{key:"\\cdot"},{key:"\\setminus"},{key:"\\star"},{key:"\\ast"},{key:"\\cup"},{key:"\\cap"},{key:"\\sqcup"},{key:"\\sqcap"},{key:"\\vee"},{key:"\\wedge"},{key:"\\circ"},{key:"\\bullet"},{key:"\\oplus"},{key:"\\ominus"},{key:"\\odot"},{key:"\\oslash"},{key:"\\otimes"},{key:"\\bigcirc"},{key:"\\diamond"},{key:"\\uplus"},{key:"\\bigtriangleup"},{key:"\\bigtriangledown"},{key:"\\lhd"},{key:"\\rhd"},{key:"\\unlhd"},{key:"\\unrhd"},{key:"\\amalg"},{key:"\\wr"},{key:"\\dagger"},{key:"\\ddagger"}]},{key:"binaryRelation",label:"BinaryRelations",children:[{key:"<"},{key:">"},{key:"="},{key:"\\le"},{key:"\\ge"},{key:"\\equiv"},{key:"\\ll"},{key:"\\gg"},{key:"\\doteq"},{key:"\\prec"},{key:"\\succ"},{key:"\\sim"},{key:"\\preceq"},{key:"\\succeq"},{key:"\\simeq"},{key:"\\approx"},{key:"\\subset"},{key:"\\supset"},{key:"\\subseteq"},{key:"\\supseteq"},{key:"\\sqsubset"},{key:"\\sqsupset"},{key:"\\sqsubseteq"},{key:"\\sqsupseteq"},{key:"\\cong"},{key:"\\Join"},{key:"\\bowtie"},{key:"\\propto"},{key:"\\in"},{key:"\\ni"},{key:"\\vdash"},{key:"\\dashv"},{key:"\\models"},{key:"\\mid"},{key:"\\parallel"},{key:"\\perp"},{key:"\\smile"},{key:"\\frown"},{key:"\\asymp"},{key:":"},{key:"\\notin"},{key:"\\ne"}]},{key:"arrowSymbol",label:"Arrows",children:[{key:"\\gets"},{key:"\\to"},{key:"\\longleftarrow"},{key:"\\longrightarrow"},{key:"\\uparrow"},{key:"\\downarrow"},{key:"\\updownarrow"},{key:"\\leftrightarrow"},{key:"\\Uparrow"},{key:"\\Downarrow"},{key:"\\Updownarrow"},{key:"\\longleftrightarrow"},{key:"\\Leftarrow"},{key:"\\Longleftarrow"},{key:"\\Rightarrow"},{key:"\\Longrightarrow"},{key:"\\Leftrightarrow"},{key:"\\Longleftrightarrow"},{key:"\\mapsto"},{key:"\\longmapsto"},{key:"\\nearrow"},{key:"\\searrow"},{key:"\\swarrow"},{key:"\\nwarrow"},{key:"\\hookleftarrow"},{key:"\\hookrightarrow"},{key:"\\rightleftharpoons"},{key:"\\iff"},{key:"\\leftharpoonup"},{key:"\\rightharpoonup"},{key:"\\leftharpoondown"},{key:"\\rightharpoondown"}]},{key:"otherSymbol",label:"Others",children:[{key:"\\because"},{key:"\\therefore"},{key:"\\dots"},{key:"\\cdots"},{key:"\\vdots"},{key:"\\ddots"},{key:"\\forall"},{key:"\\exists"},{key:"\\nexists"},{key:"\\Finv"},{key:"\\neg"},{key:"\\prime"},{key:"\\emptyset"},{key:"\\infty"},{key:"\\nabla"},{key:"\\triangle"},{key:"\\Box"},{key:"\\Diamond"},{key:"\\bot"},{key:"\\top"},{key:"\\angle"},{key:"\\measuredangle"},{key:"\\sphericalangle"},{key:"\\surd"},{key:"\\diamondsuit"},{key:"\\heartsuit"},{key:"\\clubsuit"},{key:"\\spadesuit"},{key:"\\flat"},{key:"\\natural"},{key:"\\sharp"}]}]},a={key:"greek",label:"Greek",children:[{key:"lower",label:"Lowercase",children:[{key:"\\alpha"},{key:"\\beta"},{key:"\\gamma"},{key:"\\delta"},{key:"\\epsilon"},{key:"\\varepsilon"},{key:"\\zeta"},{key:"\\eta"},{key:"\\theta"},{key:"\\vartheta"},{key:"\\iota"},{key:"\\kappa"},{key:"\\lambda"},{key:"\\mu"},{key:"\\nu"},{key:"\\xi"},{key:"o"},{key:"\\pi"},{key:"\\varpi"},{key:"\\rho"},{key:"\\varrho"},{key:"\\sigma"},{key:"\\varsigma"},{key:"\\tau"},{key:"\\upsilon"},{key:"\\phi"},{key:"\\varphi"},{key:"\\chi"},{key:"\\psi"},{key:"\\omega"}]},{key:"uppercase",label:"Uppercase",children:[{key:"\\Gamma"},{key:"\\Delta"},{key:"\\Theta"},{key:"\\Lambda"},{key:"\\Xi"},{key:"\\Pi"},{key:"\\Sigma"},{key:"\\Upsilon"},{key:"\\Phi"},{key:"\\Psi"},{key:"\\Omega"}]}]},t={key:"advancedMathematics",label:"AdvancedMathematics",children:[{key:"fractionalDifferentiation",label:"FractionalDifferentiation",children:[{key:"fraction",label:"Fraction",children:[{key:"\\frac{a}{b}"},{key:"\\tfrac{a}{b}"},{key:"\\mathrm{d}t"},{key:"\\frac{\\mathrm{d}y}{\\mathrm{d}x}"},{key:"\\partial t"},{key:"\\frac{\\partial y}{\\partial x}"},{key:"\\nabla\\psi"},{key:"\\frac{\\partial^2}{\\partial x_1\\partial x_2}y"}]},{key:"derivative",label:"Derivative",children:[{key:"\\dot{a}"},{key:"\\ddot{a}"},{key:"{f}'"},{key:"{f}''"},{key:"{f}^{(n)}"}]},{key:"modularArithmetic",label:"ModularArithmetic",children:[{key:"a \\bmod b"},{key:"a \\equiv b \\pmod{m}"},{key:"\\gcd(m, n)"},{key:"\\operatorname{lcm}(m, n)"}]}]},{key:"radical",label:"Radical",children:[{key:"radicalItem",label:"Radical",children:[{key:"\\sqrt{x}"},{key:"\\sqrt[n]{x}"}]},{key:"mark",label:"SupAndSub",children:[{key:"x^{a}"},{key:"x_{a}"},{key:"x_{a}^{b}"}]}]},{key:"limitLogarithm",label:"LimitLogarithm",children:[{key:"limits",label:"Limits",children:[{key:"\\lim a"},{key:"\\displaystyle \\lim_{x \\to 0}"},{key:"\\lim_{x \\to \\infty}"},{key:"\\textstyle \\lim_{x \\to 0}"},{key:"\\max_{}"},{key:"\\min_{}"}]},{key:"maLogarithmsAndExponentsrk",label:"LogarithmsAndExponents",children:[{key:"\\log_{a}{b}"},{key:"\\lg_{a}{b}"},{key:"\\ln_{a}{b}"},{key:"\\exp a"}]},{key:"bounds",label:"Bounds",children:[{key:"\\min x"},{key:"\\max y"},{key:"\\sup t"},{key:"\\inf s"},{key:"\\lim u"},{key:"\\limsup w"},{key:"\\liminf v"},{key:"\\dim p"},{key:"\\ker\\phi"}]}]},{key:"integralOperation",label:"IntegralOperation",children:[{key:"integral",label:"Integral",children:[{key:"\\int"},{key:"\\int_{a}^{b}"},{key:"\\int\\limits_{a}^{b}"}]},{key:"doubleIntegral",label:"DoubleIntegral",children:[{key:"\\iint"},{key:"\\iint_{a}^{b}"},{key:"\\iint\\limits_{a}^{b}"}]},{key:"tripleIntegral",label:"TripleIntegral",children:[{key:"\\iiint"},{key:"\\iiint_{a}^{b}"},{key:"\\iiint\\limits_{a}^{b}"}]}]},{key:"largeOperations",label:"LargeOperations",children:[{key:"summation",label:"\u6C42\u548C",children:[{key:"\\sum"},{key:"\\displaystyle \\sum_{a}^{b}"},{key:"{\\textstyle \\sum_{a}^{b}}"}]},{key:"productsAndCoproducts",label:"ProductsAndCoproducts",children:[{key:"\\prod"},{key:"\\displaystyle \\prod_{a}^{b}"},{key:"{\\textstyle \\prod_{a}^{b}}"},{key:"\\coprod"},{key:"\\displaystyle \\coprod_{a}^{b}"},{key:"{\\textstyle \\coprod_{a}^{b}}"}]},{key:"intersectionAndUnion",label:"IntersectionAndUnion",children:[{key:"\\bigcup"},{key:"\\displaystyle \\bigcup_{a}^{b}"},{key:"{\\textstyle \\bigcup_{a}^{b}}"},{key:"\\bigcap"},{key:"\\displaystyle \\bigcap_{a}^{b}"},{key:"{\\textstyle \\bigcap_{a}^{b}}"}]}]}]},r={key:"linearAlgebra",label:"LinearAlgebra",children:[{key:"bracketForensics",label:"BracketForensics",children:[{key:"bracket",label:"Bracket",children:[{key:"\\left ( a \\right )"},{key:"\\left [ a \\right ]"},{key:"\\left \\langle a \\right \\rangle"},{key:"\\left \\{ a \\right \\}"},{key:"\\left | a \\right |"},{key:"\\left \\| a \\right \\|"}]},{key:"common",label:"Common",children:[{key:"\\binom{n}{r}"},{key:"\\left [ 0,1 \\right )"},{key:"\\left \\langle \\psi \\right |"},{key:"\\left | \\psi \\right \\rangle"},{key:"\\left \\langle \\psi | \\psi \\right \\rangle"}]}]},{key:"arrayMatrix",label:"ArrayMatrix",children:[{key:"\\begin{matrix} 11& 11 &11 \\\\ 11& 11 &11 \\end{matrix}"},{key:"\\begin{bmatrix} 11 & 11\\\\ 11 & 11 \\end{bmatrix}"},{key:"\\begin{pmatrix} 11& 11& 11\\\\ 11& 11& 11 \\end{pmatrix}"},{key:"\\begin{vmatrix} 11& 11\\\\ 11&11 \\end{vmatrix}"},{key:"\\begin{Bmatrix} 11& 11\\\\ 11&11 \\end{Bmatrix}"}]}]},y={key:"trigonometric",label:"TrigonometricFunctions",children:[{key:"trigonometricFunctions",label:"TrigonometricFunctions",children:[{key:"\\sin\\alpha"},{key:"\\cos\\alpha"},{key:"\\tan\\alpha"},{key:"\\cot\\alpha"},{key:"\\sec\\alpha"},{key:"\\csc\\alpha"}]},{key:"inverseTrigonometricFunctions",label:"InverseTrigonometricFunctions",children:[{key:"\\sin^{-1}\\alpha"},{key:"\\cos^{-1}\\alpha"},{key:"\\tan^{-1}\\alpha"},{key:"\\cot^{-1}\\alpha"},{key:"\\sec^{-1}\\alpha"},{key:"\\csc^{-1}\\alpha"},{key:"\\arcsin\\alpha"},{key:"\\arccos\\alpha"},{key:"\\arctan\\alpha"},{key:"\\operatorname{arccot}\\alpha"},{key:"\\operatorname{arccsc}\\alpha"}]},{key:"hyperblicFunctions",label:"HyperblicFunctions",children:[{key:"\\sinh\\alpha"},{key:"\\cosh\\alpha"},{key:"\\tanh\\alpha"},{key:"\\coth\\alpha"},{key:"\\operatorname{sech}\\alpha"},{key:"\\operatorname{csch}\\alpha"}]},{key:"inverseHyperblicFunctions",label:"InverseHyperblicFunctions",children:[{key:"\\sinh^{-1}\\alpha"},{key:"\\cosh^{-1}\\alpha"},{key:"\\tanh^{-1}\\alpha"},{key:"\\coth^{-1}\\alpha"},{key:"\\operatorname{sech}^{-1}\\alpha"},{key:"\\operatorname{csch}^{-1}\\alpha"}]}]},l={key:"formulaTemplate",label:"FormulaTemplate",children:[{key:"algebraFormula",label:"Algebra",children:[{key:"\\left(x-1\\right)\\left(x+3\\right)"},{key:"\\frac{a}{b}\\pm \\frac{c}{d}= \\frac{ad \\pm bc}{bd}"},{key:"x ={-b \\pm \\sqrt{b^2-4ac}\\over 2a}"},{key:"\\left\\{\\begin{matrix} x=a + r\\text{cos}\\theta \\\\ y=b + r\\text{sin}\\theta \\end{matrix}\\right."}]},{key:"geometryFormula",label:"Geometry",children:[{key:"\\Delta ABC"},{key:"a \\parallel c,b \\parallel c \\Rightarrow a \\parallel b"},{key:"\\left.\\begin{matrix} a \\perp \\alpha \\\\ b \\perp \\alpha \\end{matrix}\\right\\}\\Rightarrow a \\parallel b"},{key:"\\begin{array}{c} \\text{\u76F4\u89D2\u4E09\u89D2\u5F62\u4E2D,\u76F4\u89D2\u8FB9\u957Fa,b,\u659C\u8FB9\u8FB9\u957Fc} \\\\ a^{2}+b^{2}=c^{2} \\end{array}"}]},{key:"inequalityFormula",label:"Inequality",children:[{key:"a > b,b > c \\Rightarrow a > c"},{key:"\\left | a-b \\right | \\geqslant \\left | a \\right | -\\left | b \\right |"},{key:"-\\left | a \\right |\\leq a\\leqslant \\left | a \\right |"},{key:"\\begin{array}{c} a,b \\in \\mathbb{R}^{+} \\\\ \\Rightarrow \\frac{a+b}{{2}}\\ge \\sqrt{ab} \\\\ \\left( \\text{\u5F53\u4E14\u4EC5\u5F53}a=b\\text{\u65F6\u53D6\u201C}=\\text{\u201D\u53F7}\\right) \\end{array}"},{key:"\\begin{array}{c} a,b \\in \\mathbb{R} \\\\ \\Rightarrow a^{2}+b^{2}\\gt 2ab \\\\ \\left( \\text{\u5F53\u4E14\u4EC5\u5F53}a=b\\text{\u65F6\u53D6\u201C}=\\text{\u201D\u53F7}\\right) \\end{array}"}]},{key:"integralFormula",label:"Integral",children:[{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}x^n=nx^{n-1}"},{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}\\sin x=\\cos x"},{key:"\\frac{\\mathrm{d}}{\\mathrm{d}x}\\cos x=-\\sin x"},{key:"\\int k\\mathrm{d}x = kx+C"}]},{key:"matrixFormula",label:"Matrix",children:[{key:"\\begin{pmatrix} 1 & 0 \\\\ 0 & 1\\end{pmatrix}"},{key:"\\begin{pmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33}\\end{pmatrix}"},{key:"A_{m\\times n}=\\begin{bmatrix} a_{11}& a_{12}& \\cdots & a_{1n} \\\\ a_{21}& a_{22}& \\cdots & a_{2n} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ a_{m1}& a_{m2}& \\cdots & a_{mn}\\end{bmatrix}=\\left [ a_{ij}\\right ]"},{key:"\\mathbf{V}_1 \\times \\mathbf{V}_2 =\\begin{vmatrix} \\mathbf{i}& \\mathbf{j}& \\mathbf{k} \\\\ \\frac{\\partial X}{\\partial u}& \\frac{\\partial Y}{\\partial u}& 0 \\\\ \\frac{\\partial X}{\\partial v}& \\frac{\\partial Y}{\\partial v}& 0 \\\\ \\end{vmatrix}"}]},{key:"triangleFormula",label:"Triangle",children:[{key:"e^{i \\theta}"},{key:"\\text{sin}^{2}\\frac{\\alpha}{2}=\\frac{1- \\text{cos}\\alpha}{2}"},{key:"\\sin \\alpha + \\sin \\beta =2 \\sin \\frac{\\alpha + \\beta}{2}\\cos \\frac{\\alpha - \\beta}{2}"},{key:"\\cos \\alpha + \\cos \\beta =2 \\cos \\frac{\\alpha + \\beta}{2}\\cos \\frac{\\alpha - \\beta}{2}"}]},{key:"statisticsFormula",label:"Statistics",children:[{key:"C_{r}^{n}"},{key:"\\sum_{i=1}^{n}{X_i}"},{key:"\\begin{array}{c} \\text{\u82E5}P \\left( AB \\right) =P \\left( A \\right) P \\left( B \\right) \\\\ \\text{\u5219}P \\left( A \\left| B\\right. \\right) =P \\left({B}\\right) \\end{array}"},{key:"P \\left( A \\right) = \\lim \\limits_{n \\to \\infty}f_{n}\\left ( A \\right )"}]},{key:"sequenceFormula",label:"Sequence",children:[{key:"a_{n}=a_{1}q^{n-1}"},{key:"S_{n}=\\frac{n \\left( a_{1}+a_{n}\\right)}{2}"},{key:"\\frac{1}{4n^{2}-1}=\\frac{1}{2}\\left( \\frac{1}{2n-1}-\\frac{1}{2n+1}\\right)"},{key:"\\begin{array}{c} \\text{\u82E5}\\left \\{a_{n}\\right \\}\u3001\\left \\{b_{n}\\right \\}\\text{\u4E3A\u7B49\u5DEE\u6570\u5217}, \\\\ \\text{\u5219}\\left \\{a_{n}+ b_{n}\\right \\}\\text{\u4E3A\u7B49\u5DEE\u6570\u5217} \\end{array}"}]},{key:"physicsFormula",label:"Physics",children:[{key:"\\sum \\vec{F}_i = \\frac{d\\vec{v}}{dt} = 0"},{key:"{E_p} = -\\frac{{GMm}}{r}"},{key:"d \\vec{F}= Id \\vec{l} \\times \\vec{B}"},{key:"\\begin{array}{l} \\nabla \\cdot \\mathbf{D} =\\rho _f \\\\ \\nabla \\cdot \\mathbf{B} = 0 \\\\ \\nabla \\times \\mathbf{E} = -\\cfrac{\\partial \\mathbf{B}}{\\partial t } \\\\ \\nabla \\times \\mathbf{H} = \\mathbf{J}_f + \\cfrac{\\partial \\mathbf{D}}{\\partial t } \\end{array}"}]}]},i=[e,a,t,r,y,l];export{i as latexList};
@@ -0,0 +1 @@
1
+ import n,{useState as N,useRef as x}from"react";import{Dropdown as $,Spin as w,Tooltip as L,Button as f}from"antd";import{RightOutlined as A}from"@ant-design/icons";import{latexList as k}from"./constant/config.js";import y from"../markdownView/index.js";import o from"./index.module.scss.js";import E from"classnames";import{useTranslation as h}from"react-i18next";const C=({data:i,columnIndex:p,onSelectLatex:v,setActiveKeys:c,activeKeys:s,getInitActiveKey:u,disabled:d})=>{var a,t;const{t:r}=h();return((a=i==null?void 0:i.children)==null?void 0:a.some(e=>!(e==null?void 0:e.children)))&&(i==null?void 0:i.children)?n.createElement("div",{className:o.lastNode},i.children.map(e=>{const m=` $$${e.key}$$ `;return(e==null?void 0:e.remark)?n.createElement(L,{placement:"top",title:e==null?void 0:e.remark,key:e.key},n.createElement(f,{key:e.key,className:o.markdownItem,onClick:()=>{v(m)},disabled:d},n.createElement(y,{value:m}))):n.createElement(f,{key:e.key,className:o.markdownItem,onClick:()=>{v(m)},disabled:d},n.createElement(y,{value:m}))})):n.createElement("div",{className:o.itemList},(t=i==null?void 0:i.children)==null?void 0:t.map(e=>n.createElement("div",{key:e.key,onClick:()=>{const m=u(e),g=[...s.slice(0,p+1),...m];c(g)},className:E({[`${o.item}`]:!0,[`${o.itemActive}`]:s.includes(e.key)})},r(e.label||""),n.createElement(A,{style:{marginLeft:4,fontSize:10}}))))},I=({onSelectLatex:i,disabled:p})=>{const{t:v}=h(),[c,s]=N([]),u=x(null),d=(t,r)=>{for(const l of t){if((l==null?void 0:l.key)===r)return l;if(l==null?void 0:l.children){const e=d(l.children,r);if(e)return e}}return null},a=(t,r=[])=>{var l;const e=r;return e.push(t.key),(t==null?void 0:t.children)&&((l=t==null?void 0:t.children)==null?void 0:l.length)>0&&a(t.children[0],e),e};return n.createElement("div",{className:o.latexEditor,ref:u},k.map(t=>n.createElement($,{dropdownRender:()=>n.createElement(w,{spinning:c.length===0},n.createElement("div",{className:o.dropContent},c.map((r,l)=>{const e=d(k,r);return n.createElement("div",{key:r},n.createElement(C,{data:e,columnIndex:l,onSelectLatex:i,setActiveKeys:s,activeKeys:c,getInitActiveKey:a,disabled:p}))}))),key:t.key,className:E({[`${o.latexHeaderTitle}`]:!0,[`${o.itemActive}`]:c.includes(t.key)}),getPopupContainer:()=>(u==null?void 0:u.current)||document.body,trigger:["click"],onOpenChange:r=>{if(r){const l=a(t);s(l)}else s([])}},n.createElement("span",null,v(t.label)))))};export{I as default};
@@ -0,0 +1 @@
1
+ var e={latexEditor:"index-module_latexEditor__0fK8G",latexHeaderTitle:"index-module_latexHeaderTitle__JIpOj",dropContent:"index-module_dropContent__XVBYH",itemList:"index-module_itemList__Y3q0e",item:"index-module_item__q4v2V",itemActive:"index-module_itemActive__a5EPl",lastNode:"index-module_lastNode__TXbWG",markdownItem:"index-module_markdownItem__AkW22"};export{e as default};
package/es/index.css CHANGED
@@ -24,6 +24,79 @@
24
24
  .index-module_imgView__wmxDk .index-module_item__-80YI .index-module_image__V49oW .ant-image {
25
25
  display: flex;
26
26
  }
27
+ .index-module_latexEditor__0fK8G {
28
+ line-height: 32px;
29
+ background-color: #ededed;
30
+ border-radius: 2px;
31
+ position: relative;
32
+ }
33
+
34
+ .index-module_latexHeaderTitle__JIpOj {
35
+ cursor: pointer;
36
+ padding: 0px 12px;
37
+ display: inline-block;
38
+ }
39
+
40
+ .index-module_dropContent__XVBYH {
41
+ display: flex;
42
+ box-shadow: 0px 2px 14px 2px rgba(204, 204, 204, 0.5);
43
+ min-width: 400px;
44
+ overflow: auto;
45
+ min-height: 300px;
46
+ max-height: 600px;
47
+ background: #fff;
48
+ }
49
+
50
+ .index-module_itemList__Y3q0e {
51
+ height: 100%;
52
+ border-right: 1px solid #eee;
53
+ }
54
+ .index-module_itemList__Y3q0e .index-module_item__q4v2V {
55
+ padding: 6px 12px;
56
+ cursor: pointer;
57
+ display: flex;
58
+ justify-content: space-between;
59
+ }
60
+
61
+ .index-module_itemActive__a5EPl {
62
+ background: #e6f7ff;
63
+ font-weight: 700;
64
+ }
65
+
66
+ .index-module_lastNode__TXbWG {
67
+ width: 380px;
68
+ display: flex;
69
+ padding: 4px;
70
+ flex-wrap: wrap;
71
+ }
72
+ .index-module_lastNode__TXbWG .index-module_markdownItem__AkW22 {
73
+ padding: 2px 4px;
74
+ margin: 4px;
75
+ min-width: 40px;
76
+ height: auto;
77
+ background-color: #ebebeb;
78
+ }
79
+ .index-module_lastNode__TXbWG .index-module_markdownItem__AkW22 .markdown-body {
80
+ background-color: #ebebeb;
81
+ }
82
+ .index-module_form__IypXc {
83
+ margin-bottom: 16px;
84
+ }
85
+
86
+ .index-module_outputDisplay__5dS48 .index-module_title__vhMCp {
87
+ line-height: 32px;
88
+ margin-bottom: 8px;
89
+ }
90
+ .index-module_outputDisplay__5dS48 .index-module_content__Iml6l {
91
+ min-height: 100px;
92
+ overflow: auto;
93
+ max-height: 200px;
94
+ background-color: #ffffff;
95
+ padding: 4px 12px;
96
+ }
97
+ .index-module_outputDisplay__5dS48 .index-module_content__Iml6l .markdown-body {
98
+ font-size: 14px;
99
+ }
27
100
  .index-module_speedControllerWrap__aFz7r {
28
101
  display: flex;
29
102
  color: white;
@@ -2454,6 +2527,8 @@
2454
2527
  font-weight: 500;
2455
2528
  font-size: 18px;
2456
2529
  margin-bottom: 24px;
2530
+ display: flex;
2531
+ align-items: center;
2457
2532
  }
2458
2533
  .bee-LLMView__content {
2459
2534
  font-weight: 500;
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@labelbee/lb-components",
3
- "version": "1.20.0-alpha.1",
3
+ "version": "1.20.0-alpha.3",
4
4
  "description": "Provide a complete library of annotation components",
5
5
  "main": "./dist/index.js",
6
6
  "es": "./es/index.js",
@@ -43,8 +43,8 @@
43
43
  },
44
44
  "dependencies": {
45
45
  "@ant-design/icons": "^4.6.2",
46
- "@labelbee/lb-annotation": "1.24.0-alpha.1",
47
- "@labelbee/lb-utils": "1.16.0-alpha.1",
46
+ "@labelbee/lb-annotation": "1.24.0-alpha.3",
47
+ "@labelbee/lb-utils": "1.16.0-alpha.2",
48
48
  "@labelbee/wavesurfer": "1.0.0",
49
49
  "@types/react-dom": "^18.2.7",
50
50
  "ahooks": "^3.4.0",