@kopai/core 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.cjs ADDED
@@ -0,0 +1,1052 @@
1
+ //#region rolldown:runtime
2
+ var __create = Object.create;
3
+ var __defProp = Object.defineProperty;
4
+ var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
5
+ var __getOwnPropNames = Object.getOwnPropertyNames;
6
+ var __getProtoOf = Object.getPrototypeOf;
7
+ var __hasOwnProp = Object.prototype.hasOwnProperty;
8
+ var __exportAll = (all, symbols) => {
9
+ let target = {};
10
+ for (var name in all) {
11
+ __defProp(target, name, {
12
+ get: all[name],
13
+ enumerable: true
14
+ });
15
+ }
16
+ if (symbols) {
17
+ __defProp(target, Symbol.toStringTag, { value: "Module" });
18
+ }
19
+ return target;
20
+ };
21
+ var __copyProps = (to, from, except, desc) => {
22
+ if (from && typeof from === "object" || typeof from === "function") {
23
+ for (var keys = __getOwnPropNames(from), i = 0, n = keys.length, key; i < n; i++) {
24
+ key = keys[i];
25
+ if (!__hasOwnProp.call(to, key) && key !== except) {
26
+ __defProp(to, key, {
27
+ get: ((k) => from[k]).bind(null, key),
28
+ enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable
29
+ });
30
+ }
31
+ }
32
+ }
33
+ return to;
34
+ };
35
+ var __toESM = (mod, isNodeMode, target) => (target = mod != null ? __create(__getProtoOf(mod)) : {}, __copyProps(isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", {
36
+ value: mod,
37
+ enumerable: true
38
+ }) : target, mod));
39
+
40
+ //#endregion
41
+ let zod = require("zod");
42
+ zod = __toESM(zod);
43
+
44
+ //#region src/denormalized-signals-zod.ts
45
+ var denormalized_signals_zod_exports = /* @__PURE__ */ __exportAll({
46
+ otelExponentialHistogramSchema: () => otelExponentialHistogramSchema,
47
+ otelGaugeSchema: () => otelGaugeSchema,
48
+ otelHistogramSchema: () => otelHistogramSchema,
49
+ otelLogsSchema: () => otelLogsSchema,
50
+ otelMetricsSchema: () => otelMetricsSchema,
51
+ otelSumSchema: () => otelSumSchema,
52
+ otelSummarySchema: () => otelSummarySchema,
53
+ otelTracesSchema: () => otelTracesSchema
54
+ });
55
+ const attributeValue = zod.z.union([
56
+ zod.z.string(),
57
+ zod.z.number(),
58
+ zod.z.boolean()
59
+ ]);
60
+ const otelTracesSchema = zod.z.object({
61
+ SpanId: zod.z.string().describe("Unique identifier for a span within a trace. The ID is an 8-byte array."),
62
+ Timestamp: zod.z.string().describe("Start time of the span. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
63
+ TraceId: zod.z.string().describe("Unique identifier for a trace. All spans from the same trace share the same trace_id. The ID is a 16-byte array."),
64
+ Duration: zod.z.string().optional().describe("Duration of the span in nanoseconds (end_time - start_time). Expressed as string in JSON."),
65
+ "Events.Attributes": zod.z.array(zod.z.record(zod.z.string(), attributeValue)).optional().describe("Attribute key/value pairs on the event (one object per event)."),
66
+ "Events.Name": zod.z.array(zod.z.string()).optional().describe("Name of the event. Semantically required to be non-empty."),
67
+ "Events.Timestamp": zod.z.array(zod.z.string()).optional().describe("Time the event occurred (nanoseconds). Expressed as strings in JSON."),
68
+ "Links.Attributes": zod.z.array(zod.z.record(zod.z.string(), attributeValue)).optional().describe("Attribute key/value pairs on the link (one object per link)."),
69
+ "Links.SpanId": zod.z.array(zod.z.string()).optional().describe("Unique identifier for the linked span. The ID is an 8-byte array."),
70
+ "Links.TraceId": zod.z.array(zod.z.string()).optional().describe("Unique identifier of a trace that the linked span is part of. The ID is a 16-byte array."),
71
+ "Links.TraceState": zod.z.array(zod.z.string()).optional().describe("The trace_state associated with the link."),
72
+ ParentSpanId: zod.z.string().optional().describe("The span_id of this span's parent span. Empty if this is a root span."),
73
+ ResourceAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Attributes that describe the resource."),
74
+ ScopeName: zod.z.string().optional().describe("Name denoting the instrumentation scope."),
75
+ ScopeVersion: zod.z.string().optional().describe("Version of the instrumentation scope."),
76
+ ServiceName: zod.z.string().optional().describe("Service name from resource attributes (service.name)."),
77
+ SpanAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Key/value pairs describing the span."),
78
+ SpanKind: zod.z.string().optional().describe("Type of span (INTERNAL, SERVER, CLIENT, PRODUCER, CONSUMER). Used to identify relationships between spans."),
79
+ SpanName: zod.z.string().optional().describe("Description of the span's operation. E.g., qualified method name or file name with line number."),
80
+ StatusCode: zod.z.string().optional().describe("Status code (UNSET, OK, ERROR)."),
81
+ StatusMessage: zod.z.string().optional().describe("Developer-facing human readable error message."),
82
+ TraceState: zod.z.string().optional().describe("Conveys information about request position in multiple distributed tracing graphs. W3C trace-context format.")
83
+ });
84
+ const otelLogsSchema = zod.z.object({
85
+ Timestamp: zod.z.string().describe("Time when the event occurred. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
86
+ Body: zod.z.string().optional().describe("Body of the log record. Can be a human-readable string message or structured data."),
87
+ LogAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Additional attributes that describe the specific event occurrence."),
88
+ ResourceAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Attributes that describe the resource."),
89
+ ResourceSchemaUrl: zod.z.string().optional().describe("Schema URL for the resource data."),
90
+ ScopeAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Attributes of the instrumentation scope."),
91
+ ScopeName: zod.z.string().optional().describe("Name denoting the instrumentation scope."),
92
+ ScopeSchemaUrl: zod.z.string().optional().describe("Schema URL for the scope data."),
93
+ ScopeVersion: zod.z.string().optional().describe("Version of the instrumentation scope."),
94
+ ServiceName: zod.z.string().optional().describe("Service name from resource attributes (service.name)."),
95
+ SeverityNumber: zod.z.number().optional().describe("Numerical value of the severity, normalized to values described in Log Data Model."),
96
+ SeverityText: zod.z.string().optional().describe("Severity text (also known as log level). Original string representation as known at the source."),
97
+ SpanId: zod.z.string().optional().describe("Unique identifier for a span within a trace. The ID is an 8-byte array."),
98
+ TraceFlags: zod.z.number().optional().describe("Bit field. 8 least significant bits are trace flags as defined in W3C Trace Context."),
99
+ TraceId: zod.z.string().optional().describe("Unique identifier for a trace. All logs from the same trace share the same trace_id. The ID is a 16-byte array.")
100
+ });
101
+ const metricsBaseSchema = zod.z.object({
102
+ TimeUnix: zod.z.string().describe("Time when the data point was recorded. UNIX Epoch time in nanoseconds. Expressed as string in JSON."),
103
+ StartTimeUnix: zod.z.string().describe("Start time for cumulative/delta metrics. UNIX Epoch time in nanoseconds. Expressed as string in JSON."),
104
+ Attributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Key/value pairs that uniquely identify the timeseries."),
105
+ MetricName: zod.z.string().optional().describe("The name of the metric."),
106
+ MetricDescription: zod.z.string().optional().describe("A description of the metric, which can be used in documentation."),
107
+ MetricUnit: zod.z.string().optional().describe("The unit in which the metric value is reported (UCUM format)."),
108
+ ResourceAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Attributes that describe the resource."),
109
+ ResourceSchemaUrl: zod.z.string().optional().describe("Schema URL for the resource data."),
110
+ ScopeAttributes: zod.z.record(zod.z.string(), attributeValue).optional().describe("Attributes of the instrumentation scope."),
111
+ ScopeDroppedAttrCount: zod.z.number().optional().describe("Number of attributes dropped from the scope."),
112
+ ScopeName: zod.z.string().optional().describe("Name denoting the instrumentation scope."),
113
+ ScopeSchemaUrl: zod.z.string().optional().describe("Schema URL for the scope data."),
114
+ ScopeVersion: zod.z.string().optional().describe("Version of the instrumentation scope."),
115
+ ServiceName: zod.z.string().optional().describe("Service name from resource attributes (service.name)."),
116
+ "Exemplars.FilteredAttributes": zod.z.array(zod.z.record(zod.z.string(), attributeValue)).optional().describe("Filtered attributes of exemplars."),
117
+ "Exemplars.SpanId": zod.z.array(zod.z.string()).optional().describe("Span IDs associated with exemplars."),
118
+ "Exemplars.TimeUnix": zod.z.array(zod.z.string()).optional().describe("Timestamps of exemplars (nanoseconds). Expressed as strings in JSON."),
119
+ "Exemplars.TraceId": zod.z.array(zod.z.string()).optional().describe("Trace IDs associated with exemplars."),
120
+ "Exemplars.Value": zod.z.array(zod.z.number()).optional().describe("Values of exemplars.")
121
+ });
122
+ const otelGaugeSchema = metricsBaseSchema.extend({
123
+ MetricType: zod.z.literal("Gauge").describe("Gauge metric type."),
124
+ Value: zod.z.number().describe("Current scalar value."),
125
+ Flags: zod.z.number().optional().describe("Flags that apply to this data point (see DataPointFlags).")
126
+ });
127
+ const otelSumSchema = metricsBaseSchema.extend({
128
+ MetricType: zod.z.literal("Sum").describe("Sum metric type."),
129
+ Value: zod.z.number().describe("Scalar sum value."),
130
+ Flags: zod.z.number().optional().describe("Flags that apply to this data point (see DataPointFlags)."),
131
+ AggTemporality: zod.z.string().optional().describe("Aggregation temporality (DELTA or CUMULATIVE)."),
132
+ IsMonotonic: zod.z.number().optional().describe("Whether the sum is monotonic (0 = false, 1 = true).")
133
+ });
134
+ const otelHistogramSchema = metricsBaseSchema.extend({
135
+ MetricType: zod.z.literal("Histogram").describe("Histogram metric type."),
136
+ Count: zod.z.number().optional().describe("Number of values in the histogram."),
137
+ Sum: zod.z.number().optional().describe("Sum of all values."),
138
+ Min: zod.z.number().nullable().optional().describe("Minimum value recorded."),
139
+ Max: zod.z.number().nullable().optional().describe("Maximum value recorded."),
140
+ BucketCounts: zod.z.array(zod.z.number()).optional().describe("Count of values in each bucket."),
141
+ ExplicitBounds: zod.z.array(zod.z.number()).optional().describe("Bucket boundaries."),
142
+ AggTemporality: zod.z.string().optional().describe("Aggregation temporality (DELTA or CUMULATIVE).")
143
+ });
144
+ const otelExponentialHistogramSchema = metricsBaseSchema.extend({
145
+ MetricType: zod.z.literal("ExponentialHistogram").describe("Exponential histogram metric type."),
146
+ Count: zod.z.number().optional().describe("Number of values in the histogram."),
147
+ Sum: zod.z.number().optional().describe("Sum of all values."),
148
+ Min: zod.z.number().nullable().optional().describe("Minimum value recorded."),
149
+ Max: zod.z.number().nullable().optional().describe("Maximum value recorded."),
150
+ Scale: zod.z.number().optional().describe("Resolution of the histogram. Boundaries are at powers of base."),
151
+ ZeroCount: zod.z.number().optional().describe("Count of values that are exactly zero."),
152
+ PositiveBucketCounts: zod.z.array(zod.z.number()).optional().describe("Counts for positive value buckets."),
153
+ PositiveOffset: zod.z.number().optional().describe("Offset for positive bucket indices."),
154
+ NegativeBucketCounts: zod.z.array(zod.z.number()).optional().describe("Counts for negative value buckets."),
155
+ NegativeOffset: zod.z.number().optional().describe("Offset for negative bucket indices."),
156
+ AggTemporality: zod.z.string().optional().describe("Aggregation temporality (DELTA or CUMULATIVE).")
157
+ });
158
+ const otelSummarySchema = metricsBaseSchema.extend({
159
+ MetricType: zod.z.literal("Summary").describe("Summary metric type."),
160
+ Count: zod.z.number().optional().describe("Number of values in the summary."),
161
+ Sum: zod.z.number().optional().describe("Sum of all values."),
162
+ "ValueAtQuantiles.Quantile": zod.z.array(zod.z.number()).optional().describe("Quantile values (0.0 to 1.0)."),
163
+ "ValueAtQuantiles.Value": zod.z.array(zod.z.number()).optional().describe("Values at each quantile.")
164
+ });
165
+ const otelMetricsSchema = zod.z.discriminatedUnion("MetricType", [
166
+ otelGaugeSchema,
167
+ otelSumSchema,
168
+ otelHistogramSchema,
169
+ otelExponentialHistogramSchema,
170
+ otelSummarySchema
171
+ ]);
172
+
173
+ //#endregion
174
+ //#region src/telemetry-datasource.ts
175
+ var telemetry_datasource_exports = {};
176
+
177
+ //#endregion
178
+ //#region src/otlp-generated.ts
179
+ var otlp_generated_exports = /* @__PURE__ */ __exportAll({
180
+ AggregationTemporality: () => AggregationTemporality,
181
+ DataPointFlags: () => DataPointFlags,
182
+ LogRecordFlags: () => LogRecordFlags,
183
+ SeverityNumber: () => SeverityNumber,
184
+ SpanFlags: () => SpanFlags,
185
+ SpanKind: () => SpanKind,
186
+ StatusCode: () => StatusCode
187
+ });
188
+ /**
189
+ * SpanFlags represents constants used to interpret the
190
+ * Span.flags field, which is protobuf 'fixed32' type and is to
191
+ * be used as bit-fields. Each non-zero value defined in this enum is
192
+ * a bit-mask. To extract the bit-field, for example, use an
193
+ * expression like:
194
+ *
195
+ * (span.flags & SPAN_FLAGS_TRACE_FLAGS_MASK)
196
+ *
197
+ * See https://www.w3.org/TR/trace-context-2/#trace-flags for the flag definitions.
198
+ *
199
+ * Note that Span flags were introduced in version 1.1 of the
200
+ * OpenTelemetry protocol. Older Span producers do not set this
201
+ * field, consequently consumers should not rely on the absence of a
202
+ * particular flag bit to indicate the presence of a particular feature.
203
+ */
204
+ let SpanFlags = /* @__PURE__ */ function(SpanFlags) {
205
+ /**
206
+ * SPAN_FLAGS_DO_NOT_USE - The zero value for the enum. Should not be used for comparisons.
207
+ * Instead use bitwise "and" with the appropriate mask as shown above.
208
+ */
209
+ SpanFlags[SpanFlags["SPAN_FLAGS_DO_NOT_USE"] = 0] = "SPAN_FLAGS_DO_NOT_USE";
210
+ /** SPAN_FLAGS_TRACE_FLAGS_MASK - Bits 0-7 are used for trace flags. */
211
+ SpanFlags[SpanFlags["SPAN_FLAGS_TRACE_FLAGS_MASK"] = 255] = "SPAN_FLAGS_TRACE_FLAGS_MASK";
212
+ /**
213
+ * SPAN_FLAGS_CONTEXT_HAS_IS_REMOTE_MASK - Bits 8 and 9 are used to indicate that the parent span or link span is remote.
214
+ * Bit 8 (`HAS_IS_REMOTE`) indicates whether the value is known.
215
+ * Bit 9 (`IS_REMOTE`) indicates whether the span or link is remote.
216
+ */
217
+ SpanFlags[SpanFlags["SPAN_FLAGS_CONTEXT_HAS_IS_REMOTE_MASK"] = 256] = "SPAN_FLAGS_CONTEXT_HAS_IS_REMOTE_MASK";
218
+ SpanFlags[SpanFlags["SPAN_FLAGS_CONTEXT_IS_REMOTE_MASK"] = 512] = "SPAN_FLAGS_CONTEXT_IS_REMOTE_MASK";
219
+ SpanFlags[SpanFlags["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
220
+ return SpanFlags;
221
+ }({});
222
+ /**
223
+ * SpanKind is the type of span. Can be used to specify additional relationships between spans
224
+ * in addition to a parent/child relationship.
225
+ */
226
+ let SpanKind = /* @__PURE__ */ function(SpanKind) {
227
+ /**
228
+ * SPAN_KIND_UNSPECIFIED - Unspecified. Do NOT use as default.
229
+ * Implementations MAY assume SpanKind to be INTERNAL when receiving UNSPECIFIED.
230
+ */
231
+ SpanKind[SpanKind["SPAN_KIND_UNSPECIFIED"] = 0] = "SPAN_KIND_UNSPECIFIED";
232
+ /**
233
+ * SPAN_KIND_INTERNAL - Indicates that the span represents an internal operation within an application,
234
+ * as opposed to an operation happening at the boundaries. Default value.
235
+ */
236
+ SpanKind[SpanKind["SPAN_KIND_INTERNAL"] = 1] = "SPAN_KIND_INTERNAL";
237
+ /**
238
+ * SPAN_KIND_SERVER - Indicates that the span covers server-side handling of an RPC or other
239
+ * remote network request.
240
+ */
241
+ SpanKind[SpanKind["SPAN_KIND_SERVER"] = 2] = "SPAN_KIND_SERVER";
242
+ /** SPAN_KIND_CLIENT - Indicates that the span describes a request to some remote service. */
243
+ SpanKind[SpanKind["SPAN_KIND_CLIENT"] = 3] = "SPAN_KIND_CLIENT";
244
+ /**
245
+ * SPAN_KIND_PRODUCER - Indicates that the span describes a producer sending a message to a broker.
246
+ * Unlike CLIENT and SERVER, there is often no direct critical path latency relationship
247
+ * between producer and consumer spans. A PRODUCER span ends when the message was accepted
248
+ * by the broker while the logical processing of the message might span a much longer time.
249
+ */
250
+ SpanKind[SpanKind["SPAN_KIND_PRODUCER"] = 4] = "SPAN_KIND_PRODUCER";
251
+ /**
252
+ * SPAN_KIND_CONSUMER - Indicates that the span describes consumer receiving a message from a broker.
253
+ * Like the PRODUCER kind, there is often no direct critical path latency relationship
254
+ * between producer and consumer spans.
255
+ */
256
+ SpanKind[SpanKind["SPAN_KIND_CONSUMER"] = 5] = "SPAN_KIND_CONSUMER";
257
+ SpanKind[SpanKind["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
258
+ return SpanKind;
259
+ }({});
260
+ /**
261
+ * For the semantics of status codes see
262
+ * https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/api.md#set-status
263
+ */
264
+ let StatusCode = /* @__PURE__ */ function(StatusCode) {
265
+ /** STATUS_CODE_UNSET - The default status. */
266
+ StatusCode[StatusCode["STATUS_CODE_UNSET"] = 0] = "STATUS_CODE_UNSET";
267
+ /**
268
+ * STATUS_CODE_OK - The Span has been validated by an Application developer or Operator to
269
+ * have completed successfully.
270
+ */
271
+ StatusCode[StatusCode["STATUS_CODE_OK"] = 1] = "STATUS_CODE_OK";
272
+ /** STATUS_CODE_ERROR - The Span contains an error. */
273
+ StatusCode[StatusCode["STATUS_CODE_ERROR"] = 2] = "STATUS_CODE_ERROR";
274
+ StatusCode[StatusCode["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
275
+ return StatusCode;
276
+ }({});
277
+ /** Possible values for LogRecord.SeverityNumber. */
278
+ let SeverityNumber = /* @__PURE__ */ function(SeverityNumber) {
279
+ /** SEVERITY_NUMBER_UNSPECIFIED - UNSPECIFIED is the default SeverityNumber, it MUST NOT be used. */
280
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_UNSPECIFIED"] = 0] = "SEVERITY_NUMBER_UNSPECIFIED";
281
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_TRACE"] = 1] = "SEVERITY_NUMBER_TRACE";
282
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_TRACE2"] = 2] = "SEVERITY_NUMBER_TRACE2";
283
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_TRACE3"] = 3] = "SEVERITY_NUMBER_TRACE3";
284
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_TRACE4"] = 4] = "SEVERITY_NUMBER_TRACE4";
285
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_DEBUG"] = 5] = "SEVERITY_NUMBER_DEBUG";
286
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_DEBUG2"] = 6] = "SEVERITY_NUMBER_DEBUG2";
287
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_DEBUG3"] = 7] = "SEVERITY_NUMBER_DEBUG3";
288
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_DEBUG4"] = 8] = "SEVERITY_NUMBER_DEBUG4";
289
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_INFO"] = 9] = "SEVERITY_NUMBER_INFO";
290
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_INFO2"] = 10] = "SEVERITY_NUMBER_INFO2";
291
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_INFO3"] = 11] = "SEVERITY_NUMBER_INFO3";
292
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_INFO4"] = 12] = "SEVERITY_NUMBER_INFO4";
293
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_WARN"] = 13] = "SEVERITY_NUMBER_WARN";
294
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_WARN2"] = 14] = "SEVERITY_NUMBER_WARN2";
295
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_WARN3"] = 15] = "SEVERITY_NUMBER_WARN3";
296
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_WARN4"] = 16] = "SEVERITY_NUMBER_WARN4";
297
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_ERROR"] = 17] = "SEVERITY_NUMBER_ERROR";
298
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_ERROR2"] = 18] = "SEVERITY_NUMBER_ERROR2";
299
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_ERROR3"] = 19] = "SEVERITY_NUMBER_ERROR3";
300
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_ERROR4"] = 20] = "SEVERITY_NUMBER_ERROR4";
301
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_FATAL"] = 21] = "SEVERITY_NUMBER_FATAL";
302
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_FATAL2"] = 22] = "SEVERITY_NUMBER_FATAL2";
303
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_FATAL3"] = 23] = "SEVERITY_NUMBER_FATAL3";
304
+ SeverityNumber[SeverityNumber["SEVERITY_NUMBER_FATAL4"] = 24] = "SEVERITY_NUMBER_FATAL4";
305
+ SeverityNumber[SeverityNumber["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
306
+ return SeverityNumber;
307
+ }({});
308
+ /**
309
+ * LogRecordFlags represents constants used to interpret the
310
+ * LogRecord.flags field, which is protobuf 'fixed32' type and is to
311
+ * be used as bit-fields. Each non-zero value defined in this enum is
312
+ * a bit-mask. To extract the bit-field, for example, use an
313
+ * expression like:
314
+ *
315
+ * (logRecord.flags & LOG_RECORD_FLAGS_TRACE_FLAGS_MASK)
316
+ */
317
+ let LogRecordFlags = /* @__PURE__ */ function(LogRecordFlags) {
318
+ /**
319
+ * LOG_RECORD_FLAGS_DO_NOT_USE - The zero value for the enum. Should not be used for comparisons.
320
+ * Instead use bitwise "and" with the appropriate mask as shown above.
321
+ */
322
+ LogRecordFlags[LogRecordFlags["LOG_RECORD_FLAGS_DO_NOT_USE"] = 0] = "LOG_RECORD_FLAGS_DO_NOT_USE";
323
+ /** LOG_RECORD_FLAGS_TRACE_FLAGS_MASK - Bits 0-7 are used for trace flags. */
324
+ LogRecordFlags[LogRecordFlags["LOG_RECORD_FLAGS_TRACE_FLAGS_MASK"] = 255] = "LOG_RECORD_FLAGS_TRACE_FLAGS_MASK";
325
+ LogRecordFlags[LogRecordFlags["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
326
+ return LogRecordFlags;
327
+ }({});
328
+ /**
329
+ * AggregationTemporality defines how a metric aggregator reports aggregated
330
+ * values. It describes how those values relate to the time interval over
331
+ * which they are aggregated.
332
+ */
333
+ let AggregationTemporality = /* @__PURE__ */ function(AggregationTemporality) {
334
+ /** AGGREGATION_TEMPORALITY_UNSPECIFIED - UNSPECIFIED is the default AggregationTemporality, it MUST not be used. */
335
+ AggregationTemporality[AggregationTemporality["AGGREGATION_TEMPORALITY_UNSPECIFIED"] = 0] = "AGGREGATION_TEMPORALITY_UNSPECIFIED";
336
+ /**
337
+ * AGGREGATION_TEMPORALITY_DELTA - DELTA is an AggregationTemporality for a metric aggregator which reports
338
+ * changes since last report time. Successive metrics contain aggregation of
339
+ * values from continuous and non-overlapping intervals.
340
+ *
341
+ * The values for a DELTA metric are based only on the time interval
342
+ * associated with one measurement cycle. There is no dependency on
343
+ * previous measurements like is the case for CUMULATIVE metrics.
344
+ *
345
+ * For example, consider a system measuring the number of requests that
346
+ * it receives and reports the sum of these requests every second as a
347
+ * DELTA metric:
348
+ *
349
+ * 1. The system starts receiving at time=t_0.
350
+ * 2. A request is received, the system measures 1 request.
351
+ * 3. A request is received, the system measures 1 request.
352
+ * 4. A request is received, the system measures 1 request.
353
+ * 5. The 1 second collection cycle ends. A metric is exported for the
354
+ * number of requests received over the interval of time t_0 to
355
+ * t_0+1 with a value of 3.
356
+ * 6. A request is received, the system measures 1 request.
357
+ * 7. A request is received, the system measures 1 request.
358
+ * 8. The 1 second collection cycle ends. A metric is exported for the
359
+ * number of requests received over the interval of time t_0+1 to
360
+ * t_0+2 with a value of 2.
361
+ */
362
+ AggregationTemporality[AggregationTemporality["AGGREGATION_TEMPORALITY_DELTA"] = 1] = "AGGREGATION_TEMPORALITY_DELTA";
363
+ /**
364
+ * AGGREGATION_TEMPORALITY_CUMULATIVE - CUMULATIVE is an AggregationTemporality for a metric aggregator which
365
+ * reports changes since a fixed start time. This means that current values
366
+ * of a CUMULATIVE metric depend on all previous measurements since the
367
+ * start time. Because of this, the sender is required to retain this state
368
+ * in some form. If this state is lost or invalidated, the CUMULATIVE metric
369
+ * values MUST be reset and a new fixed start time following the last
370
+ * reported measurement time sent MUST be used.
371
+ *
372
+ * For example, consider a system measuring the number of requests that
373
+ * it receives and reports the sum of these requests every second as a
374
+ * CUMULATIVE metric:
375
+ *
376
+ * 1. The system starts receiving at time=t_0.
377
+ * 2. A request is received, the system measures 1 request.
378
+ * 3. A request is received, the system measures 1 request.
379
+ * 4. A request is received, the system measures 1 request.
380
+ * 5. The 1 second collection cycle ends. A metric is exported for the
381
+ * number of requests received over the interval of time t_0 to
382
+ * t_0+1 with a value of 3.
383
+ * 6. A request is received, the system measures 1 request.
384
+ * 7. A request is received, the system measures 1 request.
385
+ * 8. The 1 second collection cycle ends. A metric is exported for the
386
+ * number of requests received over the interval of time t_0 to
387
+ * t_0+2 with a value of 5.
388
+ * 9. The system experiences a fault and loses state.
389
+ * 10. The system recovers and resumes receiving at time=t_1.
390
+ * 11. A request is received, the system measures 1 request.
391
+ * 12. The 1 second collection cycle ends. A metric is exported for the
392
+ * number of requests received over the interval of time t_1 to
393
+ * t_0+1 with a value of 1.
394
+ *
395
+ * Note: Even though, when reporting changes since last report time, using
396
+ * CUMULATIVE is valid, it is not recommended. This may cause problems for
397
+ * systems that do not use start_time to determine when the aggregation
398
+ * value was reset (e.g. Prometheus).
399
+ */
400
+ AggregationTemporality[AggregationTemporality["AGGREGATION_TEMPORALITY_CUMULATIVE"] = 2] = "AGGREGATION_TEMPORALITY_CUMULATIVE";
401
+ AggregationTemporality[AggregationTemporality["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
402
+ return AggregationTemporality;
403
+ }({});
404
+ /**
405
+ * DataPointFlags is defined as a protobuf 'uint32' type and is to be used as a
406
+ * bit-field representing 32 distinct boolean flags. Each flag defined in this
407
+ * enum is a bit-mask. To test the presence of a single flag in the flags of
408
+ * a data point, for example, use an expression like:
409
+ *
410
+ * (point.flags & DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK) == DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK
411
+ */
412
+ let DataPointFlags = /* @__PURE__ */ function(DataPointFlags) {
413
+ /**
414
+ * DATA_POINT_FLAGS_DO_NOT_USE - The zero value for the enum. Should not be used for comparisons.
415
+ * Instead use bitwise "and" with the appropriate mask as shown above.
416
+ */
417
+ DataPointFlags[DataPointFlags["DATA_POINT_FLAGS_DO_NOT_USE"] = 0] = "DATA_POINT_FLAGS_DO_NOT_USE";
418
+ /**
419
+ * DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK - This DataPoint is valid but has no recorded value. This value
420
+ * SHOULD be used to reflect explicitly missing data in a series, as
421
+ * for an equivalent to the Prometheus "staleness marker".
422
+ */
423
+ DataPointFlags[DataPointFlags["DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK"] = 1] = "DATA_POINT_FLAGS_NO_RECORDED_VALUE_MASK";
424
+ DataPointFlags[DataPointFlags["UNRECOGNIZED"] = -1] = "UNRECOGNIZED";
425
+ return DataPointFlags;
426
+ }({});
427
+
428
+ //#endregion
429
+ //#region src/otlp-metrics-generated.ts
430
+ var otlp_metrics_generated_exports = {};
431
+
432
+ //#endregion
433
+ //#region src/otlp-zod.ts
434
+ var otlp_zod_exports = /* @__PURE__ */ __exportAll({
435
+ aggregationTemporalitySchema: () => aggregationTemporalitySchema,
436
+ anyValueSchema: () => anyValueSchema,
437
+ arrayValueSchema: () => arrayValueSchema,
438
+ dataPointFlagsSchema: () => dataPointFlagsSchema,
439
+ entityRefSchema: () => entityRefSchema,
440
+ exponentialHistogramDataPointBucketsSchema: () => exponentialHistogramDataPointBucketsSchema$1,
441
+ instrumentationScopeSchema: () => instrumentationScopeSchema,
442
+ keyValueListSchema: () => keyValueListSchema,
443
+ keyValueSchema: () => keyValueSchema,
444
+ logRecordFlagsSchema: () => logRecordFlagsSchema,
445
+ logRecordSchema: () => logRecordSchema,
446
+ logsDataSchema: () => logsDataSchema,
447
+ resourceLogsSchema: () => resourceLogsSchema,
448
+ resourceSchema: () => resourceSchema,
449
+ resourceSpansSchema: () => resourceSpansSchema,
450
+ scopeLogsSchema: () => scopeLogsSchema,
451
+ scopeSpansSchema: () => scopeSpansSchema,
452
+ severityNumberSchema: () => severityNumberSchema,
453
+ spanEventSchema: () => spanEventSchema,
454
+ spanFlagsSchema: () => spanFlagsSchema,
455
+ spanKindSchema: () => spanKindSchema,
456
+ spanLinkSchema: () => spanLinkSchema,
457
+ spanSchema: () => spanSchema,
458
+ statusCodeSchema: () => statusCodeSchema,
459
+ statusSchema: () => statusSchema,
460
+ summaryDataPointSchema: () => summaryDataPointSchema$1,
461
+ summaryDataPointValueAtQuantileSchema: () => summaryDataPointValueAtQuantileSchema$1,
462
+ summarySchema: () => summarySchema$1,
463
+ tracesDataSchema: () => tracesDataSchema
464
+ });
465
+ const entityRefSchema = zod.z.object({
466
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
467
+ type: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
468
+ idKeys: zod.z.union([zod.z.array(zod.z.string()), zod.z.undefined()]).optional(),
469
+ descriptionKeys: zod.z.union([zod.z.array(zod.z.string()), zod.z.undefined()]).optional()
470
+ });
471
+ const spanFlagsSchema = zod.z.enum(SpanFlags);
472
+ const spanKindSchema = zod.z.enum(SpanKind);
473
+ const statusCodeSchema = zod.z.enum(StatusCode);
474
+ const severityNumberSchema = zod.z.enum(SeverityNumber);
475
+ const logRecordFlagsSchema = zod.z.enum(LogRecordFlags);
476
+ const aggregationTemporalitySchema = zod.z.union([zod.z.enum(AggregationTemporality), zod.z.number()]);
477
+ const dataPointFlagsSchema = zod.z.union([zod.z.enum(DataPointFlags), zod.z.number()]);
478
+ const exponentialHistogramDataPointBucketsSchema$1 = zod.z.object({
479
+ offset: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
480
+ bucketCounts: zod.z.union([zod.z.array(zod.z.union([zod.z.string(), zod.z.number()])), zod.z.undefined()]).optional()
481
+ });
482
+ const summaryDataPointValueAtQuantileSchema$1 = zod.z.object({
483
+ quantile: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
484
+ value: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
485
+ });
486
+ const statusSchema = zod.z.object({
487
+ message: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
488
+ code: zod.z.union([statusCodeSchema, zod.z.undefined()]).optional()
489
+ });
490
+ const anyValueSchema = zod.z.lazy(() => zod.z.object({
491
+ stringValue: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
492
+ boolValue: zod.z.union([zod.z.boolean(), zod.z.undefined()]).optional(),
493
+ intValue: zod.z.union([
494
+ zod.z.string(),
495
+ zod.z.number(),
496
+ zod.z.undefined()
497
+ ]).optional(),
498
+ doubleValue: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
499
+ arrayValue: zod.z.union([arrayValueSchema, zod.z.undefined()]).optional(),
500
+ kvlistValue: zod.z.union([keyValueListSchema, zod.z.undefined()]).optional(),
501
+ bytesValue: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
502
+ }));
503
+ const arrayValueSchema = zod.z.lazy(() => zod.z.object({ values: zod.z.union([zod.z.array(anyValueSchema), zod.z.undefined()]).optional() }));
504
+ const keyValueListSchema = zod.z.lazy(() => zod.z.object({ values: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional() }));
505
+ const keyValueSchema = zod.z.lazy(() => zod.z.object({
506
+ key: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
507
+ value: zod.z.union([anyValueSchema, zod.z.undefined()]).optional()
508
+ }));
509
+ const instrumentationScopeSchema = zod.z.lazy(() => zod.z.object({
510
+ name: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
511
+ version: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
512
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
513
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
514
+ }));
515
+ const resourceSchema = zod.z.lazy(() => zod.z.object({
516
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
517
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
518
+ entityRefs: zod.z.union([zod.z.array(entityRefSchema), zod.z.undefined()]).optional()
519
+ }));
520
+ const tracesDataSchema = zod.z.lazy(() => zod.z.object({ resourceSpans: zod.z.union([zod.z.array(resourceSpansSchema), zod.z.undefined()]).optional() }));
521
+ const resourceSpansSchema = zod.z.lazy(() => zod.z.object({
522
+ resource: zod.z.union([resourceSchema, zod.z.undefined()]).optional(),
523
+ scopeSpans: zod.z.union([zod.z.array(scopeSpansSchema), zod.z.undefined()]).optional(),
524
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
525
+ }));
526
+ const scopeSpansSchema = zod.z.lazy(() => zod.z.object({
527
+ scope: zod.z.union([instrumentationScopeSchema, zod.z.undefined()]).optional(),
528
+ spans: zod.z.union([zod.z.array(spanSchema), zod.z.undefined()]).optional(),
529
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
530
+ }));
531
+ const spanSchema = zod.z.lazy(() => zod.z.object({
532
+ traceId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
533
+ spanId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
534
+ traceState: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
535
+ parentSpanId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
536
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
537
+ name: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
538
+ kind: zod.z.union([spanKindSchema, zod.z.undefined()]).optional(),
539
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
540
+ endTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
541
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
542
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
543
+ events: zod.z.union([zod.z.array(spanEventSchema), zod.z.undefined()]).optional(),
544
+ droppedEventsCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
545
+ links: zod.z.union([zod.z.array(spanLinkSchema), zod.z.undefined()]).optional(),
546
+ droppedLinksCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
547
+ status: zod.z.union([statusSchema, zod.z.undefined()]).optional()
548
+ }));
549
+ const spanEventSchema = zod.z.lazy(() => zod.z.object({
550
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
551
+ name: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
552
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
553
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
554
+ }));
555
+ const spanLinkSchema = zod.z.lazy(() => zod.z.object({
556
+ traceId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
557
+ spanId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
558
+ traceState: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
559
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
560
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
561
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
562
+ }));
563
+ const logsDataSchema = zod.z.lazy(() => zod.z.object({ resourceLogs: zod.z.union([zod.z.array(resourceLogsSchema), zod.z.undefined()]).optional() }));
564
+ const resourceLogsSchema = zod.z.lazy(() => zod.z.object({
565
+ resource: zod.z.union([resourceSchema, zod.z.undefined()]).optional(),
566
+ scopeLogs: zod.z.union([zod.z.array(scopeLogsSchema), zod.z.undefined()]).optional(),
567
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
568
+ }));
569
+ const scopeLogsSchema = zod.z.lazy(() => zod.z.object({
570
+ scope: zod.z.union([instrumentationScopeSchema, zod.z.undefined()]).optional(),
571
+ logRecords: zod.z.union([zod.z.array(logRecordSchema), zod.z.undefined()]).optional(),
572
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
573
+ }));
574
+ const logRecordSchema = zod.z.lazy(() => zod.z.object({
575
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
576
+ observedTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
577
+ severityNumber: zod.z.union([severityNumberSchema, zod.z.undefined()]).optional(),
578
+ severityText: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
579
+ body: zod.z.union([anyValueSchema, zod.z.undefined()]).optional(),
580
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
581
+ droppedAttributesCount: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
582
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
583
+ traceId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
584
+ spanId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
585
+ eventName: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
586
+ }));
587
+ const summarySchema$1 = zod.z.lazy(() => zod.z.object({ dataPoints: zod.z.union([zod.z.array(summaryDataPointSchema$1), zod.z.undefined()]).optional() }));
588
+ const summaryDataPointSchema$1 = zod.z.lazy(() => zod.z.object({
589
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
590
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
591
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
592
+ count: zod.z.union([
593
+ zod.z.string(),
594
+ zod.z.number(),
595
+ zod.z.undefined()
596
+ ]).optional(),
597
+ sum: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
598
+ quantileValues: zod.z.union([zod.z.array(summaryDataPointValueAtQuantileSchema$1), zod.z.undefined()]).optional(),
599
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
600
+ }));
601
+
602
+ //#endregion
603
+ //#region src/otlp-metrics-zod.ts
604
+ var otlp_metrics_zod_exports = /* @__PURE__ */ __exportAll({
605
+ exemplarSchema: () => exemplarSchema,
606
+ exponentialHistogramDataPointBucketsSchema: () => exponentialHistogramDataPointBucketsSchema,
607
+ exponentialHistogramDataPointSchema: () => exponentialHistogramDataPointSchema,
608
+ exponentialHistogramSchema: () => exponentialHistogramSchema,
609
+ gaugeSchema: () => gaugeSchema,
610
+ histogramDataPointSchema: () => histogramDataPointSchema,
611
+ histogramSchema: () => histogramSchema,
612
+ metricSchema: () => metricSchema,
613
+ metricsDataSchema: () => metricsDataSchema,
614
+ numberDataPointSchema: () => numberDataPointSchema,
615
+ resourceMetricsSchema: () => resourceMetricsSchema,
616
+ scopeMetricsSchema: () => scopeMetricsSchema,
617
+ sumSchema: () => sumSchema,
618
+ summaryDataPointSchema: () => summaryDataPointSchema,
619
+ summaryDataPointValueAtQuantileSchema: () => summaryDataPointValueAtQuantileSchema,
620
+ summarySchema: () => summarySchema
621
+ });
622
+ /**
623
+ * Represents the value at a given quantile of a distribution.
624
+ *
625
+ * To record Min and Max values following conventions are used:
626
+ * - The 1.0 quantile is equivalent to the maximum value observed.
627
+ * - The 0.0 quantile is equivalent to the minimum value observed.
628
+ *
629
+ * See the following issue for more context:
630
+ * https://github.com/open-telemetry/opentelemetry-proto/issues/125
631
+ */
632
+ const summaryDataPointValueAtQuantileSchema = zod.z.object({
633
+ quantile: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
634
+ value: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
635
+ });
636
+ /**
637
+ * Buckets are a set of bucket counts, encoded in a contiguous array
638
+ * of counts.
639
+ */
640
+ const exponentialHistogramDataPointBucketsSchema = zod.z.object({
641
+ offset: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
642
+ bucketCounts: zod.z.union([zod.z.array(zod.z.union([zod.z.string(), zod.z.number()])), zod.z.undefined()]).optional()
643
+ });
644
+ /**
645
+ * A representation of an exemplar, which is a sample input measurement.
646
+ * Exemplars also hold information about the environment when the measurement
647
+ * was recorded, for example the span and trace ID of the active span when the
648
+ * exemplar was recorded.
649
+ */
650
+ const exemplarSchema = zod.z.lazy(() => zod.z.object({
651
+ filteredAttributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
652
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
653
+ asDouble: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
654
+ asInt: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
655
+ spanId: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
656
+ traceId: zod.z.union([zod.z.instanceof(Uint8Array), zod.z.undefined()]).optional()
657
+ }));
658
+ /**
659
+ * NumberDataPoint is a single data point in a timeseries that describes the
660
+ * time-varying scalar value of a metric.
661
+ */
662
+ const numberDataPointSchema = zod.z.lazy(() => zod.z.object({
663
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
664
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
665
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
666
+ asDouble: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
667
+ asInt: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
668
+ exemplars: zod.z.union([zod.z.array(exemplarSchema), zod.z.undefined()]).optional(),
669
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
670
+ }));
671
+ /**
672
+ * HistogramDataPoint is a single data point in a timeseries that describes the
673
+ * time-varying values of a Histogram. A Histogram contains summary statistics
674
+ * for a population of values, it may optionally contain the distribution of
675
+ * those values across a set of buckets.
676
+ *
677
+ * If the histogram contains the distribution of values, then both
678
+ * "explicit_bounds" and "bucket counts" fields must be defined.
679
+ * If the histogram does not contain the distribution of values, then both
680
+ * "explicit_bounds" and "bucket_counts" must be omitted and only "count" and
681
+ * "sum" are known.
682
+ */
683
+ const histogramDataPointSchema = zod.z.lazy(() => zod.z.object({
684
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
685
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
686
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
687
+ count: zod.z.union([
688
+ zod.z.string(),
689
+ zod.z.number(),
690
+ zod.z.undefined()
691
+ ]).optional(),
692
+ sum: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
693
+ bucketCounts: zod.z.union([zod.z.array(zod.z.union([zod.z.string(), zod.z.number()])), zod.z.undefined()]).optional(),
694
+ explicitBounds: zod.z.union([zod.z.array(zod.z.number()), zod.z.undefined()]).optional(),
695
+ exemplars: zod.z.union([zod.z.array(exemplarSchema), zod.z.undefined()]).optional(),
696
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
697
+ min: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
698
+ max: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
699
+ }));
700
+ /**
701
+ * ExponentialHistogramDataPoint is a single data point in a timeseries that describes the
702
+ * time-varying values of a ExponentialHistogram of double values. A ExponentialHistogram contains
703
+ * summary statistics for a population of values, it may optionally contain the
704
+ * distribution of those values across a set of buckets.
705
+ */
706
+ const exponentialHistogramDataPointSchema = zod.z.lazy(() => zod.z.object({
707
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
708
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
709
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
710
+ count: zod.z.union([
711
+ zod.z.string(),
712
+ zod.z.number(),
713
+ zod.z.undefined()
714
+ ]).optional(),
715
+ sum: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
716
+ scale: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
717
+ zeroCount: zod.z.union([
718
+ zod.z.string(),
719
+ zod.z.number(),
720
+ zod.z.undefined()
721
+ ]).optional(),
722
+ positive: zod.z.union([exponentialHistogramDataPointBucketsSchema, zod.z.undefined()]).optional(),
723
+ negative: zod.z.union([exponentialHistogramDataPointBucketsSchema, zod.z.undefined()]).optional(),
724
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
725
+ exemplars: zod.z.union([zod.z.array(exemplarSchema), zod.z.undefined()]).optional(),
726
+ min: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
727
+ max: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
728
+ zeroThreshold: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
729
+ }));
730
+ /**
731
+ * SummaryDataPoint is a single data point in a timeseries that describes the
732
+ * time-varying values of a Summary metric. The count and sum fields represent
733
+ * cumulative values.
734
+ */
735
+ const summaryDataPointSchema = zod.z.lazy(() => zod.z.object({
736
+ attributes: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional(),
737
+ startTimeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
738
+ timeUnixNano: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
739
+ count: zod.z.union([
740
+ zod.z.string(),
741
+ zod.z.number(),
742
+ zod.z.undefined()
743
+ ]).optional(),
744
+ sum: zod.z.union([zod.z.number(), zod.z.undefined()]).optional(),
745
+ quantileValues: zod.z.union([zod.z.array(summaryDataPointValueAtQuantileSchema), zod.z.undefined()]).optional(),
746
+ flags: zod.z.union([zod.z.number(), zod.z.undefined()]).optional()
747
+ }));
748
+ /**
749
+ * Gauge represents the type of a scalar metric that always exports the
750
+ * "current value" for every data point. It should be used for an "unknown"
751
+ * aggregation.
752
+ *
753
+ * A Gauge does not support different aggregation temporalities. Given the
754
+ * aggregation is unknown, points cannot be combined using the same
755
+ * aggregation, regardless of aggregation temporalities. Therefore,
756
+ * AggregationTemporality is not included. Consequently, this also means
757
+ * "StartTimeUnixNano" is ignored for all data points.
758
+ */
759
+ const gaugeSchema = zod.z.lazy(() => zod.z.object({ dataPoints: zod.z.union([zod.z.array(numberDataPointSchema), zod.z.undefined()]).optional() }));
760
+ /**
761
+ * Sum represents the type of a scalar metric that is calculated as a sum of all
762
+ * reported measurements over a time interval.
763
+ */
764
+ const sumSchema = zod.z.lazy(() => zod.z.object({
765
+ dataPoints: zod.z.union([zod.z.array(numberDataPointSchema), zod.z.undefined()]).optional(),
766
+ aggregationTemporality: zod.z.union([aggregationTemporalitySchema, zod.z.undefined()]).optional(),
767
+ isMonotonic: zod.z.union([zod.z.boolean(), zod.z.undefined()]).optional()
768
+ }));
769
+ /**
770
+ * Histogram represents the type of a metric that is calculated by aggregating
771
+ * as a Histogram of all reported measurements over a time interval.
772
+ */
773
+ const histogramSchema = zod.z.lazy(() => zod.z.object({
774
+ dataPoints: zod.z.union([zod.z.array(histogramDataPointSchema), zod.z.undefined()]).optional(),
775
+ aggregationTemporality: zod.z.union([aggregationTemporalitySchema, zod.z.undefined()]).optional()
776
+ }));
777
+ /**
778
+ * ExponentialHistogram represents the type of a metric that is calculated by aggregating
779
+ * as a ExponentialHistogram of all reported double measurements over a time interval.
780
+ */
781
+ const exponentialHistogramSchema = zod.z.lazy(() => zod.z.object({
782
+ dataPoints: zod.z.union([zod.z.array(exponentialHistogramDataPointSchema), zod.z.undefined()]).optional(),
783
+ aggregationTemporality: zod.z.union([aggregationTemporalitySchema, zod.z.undefined()]).optional()
784
+ }));
785
+ /**
786
+ * Summary metric data are used to convey quantile summaries,
787
+ * a Prometheus (see: https://prometheus.io/docs/concepts/metric_types/#summary)
788
+ * and OpenMetrics (see: https://github.com/prometheus/OpenMetrics/blob/4dbf6075567ab43296eed941037c12951faafb92/protos/prometheus.proto#L45)
789
+ * data type. These data points cannot always be merged in a meaningful way.
790
+ * While they can be useful in some applications, histogram data points are
791
+ * recommended for new applications.
792
+ * Summary metrics do not have an aggregation temporality field. This is
793
+ * because the count and sum fields of a SummaryDataPoint are assumed to be
794
+ * cumulative values.
795
+ */
796
+ const summarySchema = zod.z.lazy(() => zod.z.object({ dataPoints: zod.z.union([zod.z.array(summaryDataPointSchema), zod.z.undefined()]).optional() }));
797
+ /**
798
+ * Defines a Metric which has one or more timeseries. The following is a
799
+ * brief summary of the Metric data model. For more details, see:
800
+ *
801
+ * https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md
802
+ *
803
+ * The data model and relation between entities is shown in the
804
+ * diagram below. Here, "DataPoint" is the term used to refer to any
805
+ * one of the specific data point value types, and "points" is the term used
806
+ * to refer to any one of the lists of points contained in the Metric.
807
+ *
808
+ * - Metric is composed of a metadata and data.
809
+ * - Metadata part contains a name, description, unit.
810
+ * - Data is one of the possible types (Sum, Gauge, Histogram, Summary).
811
+ * - DataPoint contains timestamps, attributes, and one of the possible value type
812
+ * fields.
813
+ *
814
+ * Metric
815
+ * +------------+
816
+ * |name |
817
+ * |description |
818
+ * |unit | +------------------------------------+
819
+ * |data |---> |Gauge, Sum, Histogram, Summary, ... |
820
+ * +------------+ +------------------------------------+
821
+ *
822
+ * Data [One of Gauge, Sum, Histogram, Summary, ...]
823
+ * +-----------+
824
+ * |... | // Metadata about the Data.
825
+ * |points |--+
826
+ * +-----------+ |
827
+ * | +---------------------------+
828
+ * | |DataPoint 1 |
829
+ * v |+------+------+ +------+ |
830
+ * +-----+ ||label |label |...|label | |
831
+ * | 1 |-->||value1|value2|...|valueN| |
832
+ * +-----+ |+------+------+ +------+ |
833
+ * | . | |+-----+ |
834
+ * | . | ||value| |
835
+ * | . | |+-----+ |
836
+ * | . | +---------------------------+
837
+ * | . | .
838
+ * | . | .
839
+ * | . | .
840
+ * | . | +---------------------------+
841
+ * | . | |DataPoint M |
842
+ * +-----+ |+------+------+ +------+ |
843
+ * | M |-->||label |label |...|label | |
844
+ * +-----+ ||value1|value2|...|valueN| |
845
+ * |+------+------+ +------+ |
846
+ * |+-----+ |
847
+ * ||value| |
848
+ * |+-----+ |
849
+ * +---------------------------+
850
+ *
851
+ * Each distinct type of DataPoint represents the output of a specific
852
+ * aggregation function, the result of applying the DataPoint's
853
+ * associated function of to one or more measurements.
854
+ *
855
+ * All DataPoint types have three common fields:
856
+ * - Attributes includes key-value pairs associated with the data point
857
+ * - TimeUnixNano is required, set to the end time of the aggregation
858
+ * - StartTimeUnixNano is optional, but strongly encouraged for DataPoints
859
+ * having an AggregationTemporality field, as discussed below.
860
+ *
861
+ * Both TimeUnixNano and StartTimeUnixNano values are expressed as
862
+ * UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
863
+ *
864
+ * # TimeUnixNano
865
+ *
866
+ * This field is required, having consistent interpretation across
867
+ * DataPoint types. TimeUnixNano is the moment corresponding to when
868
+ * the data point's aggregate value was captured.
869
+ *
870
+ * Data points with the 0 value for TimeUnixNano SHOULD be rejected
871
+ * by consumers.
872
+ *
873
+ * # StartTimeUnixNano
874
+ *
875
+ * StartTimeUnixNano in general allows detecting when a sequence of
876
+ * observations is unbroken. This field indicates to consumers the
877
+ * start time for points with cumulative and delta
878
+ * AggregationTemporality, and it should be included whenever possible
879
+ * to support correct rate calculation. Although it may be omitted
880
+ * when the start time is truly unknown, setting StartTimeUnixNano is
881
+ * strongly encouraged.
882
+ */
883
+ const metricSchema = zod.z.lazy(() => zod.z.object({
884
+ name: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
885
+ description: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
886
+ unit: zod.z.union([zod.z.string(), zod.z.undefined()]).optional(),
887
+ gauge: zod.z.union([gaugeSchema, zod.z.undefined()]).optional(),
888
+ sum: zod.z.union([sumSchema, zod.z.undefined()]).optional(),
889
+ histogram: zod.z.union([histogramSchema, zod.z.undefined()]).optional(),
890
+ exponentialHistogram: zod.z.union([exponentialHistogramSchema, zod.z.undefined()]).optional(),
891
+ summary: zod.z.union([summarySchema, zod.z.undefined()]).optional(),
892
+ metadata: zod.z.union([zod.z.array(keyValueSchema), zod.z.undefined()]).optional()
893
+ }));
894
+ /** A collection of Metrics produced by an Scope. */
895
+ const scopeMetricsSchema = zod.z.lazy(() => zod.z.object({
896
+ scope: zod.z.union([instrumentationScopeSchema, zod.z.undefined()]).optional(),
897
+ metrics: zod.z.union([zod.z.array(metricSchema), zod.z.undefined()]).optional(),
898
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
899
+ }));
900
+ /** A collection of ScopeMetrics from a Resource. */
901
+ const resourceMetricsSchema = zod.z.lazy(() => zod.z.object({
902
+ resource: zod.z.union([resourceSchema, zod.z.undefined()]).optional(),
903
+ scopeMetrics: zod.z.union([zod.z.array(scopeMetricsSchema), zod.z.undefined()]).optional(),
904
+ schemaUrl: zod.z.union([zod.z.string(), zod.z.undefined()]).optional()
905
+ }));
906
+ /**
907
+ * MetricsData represents the metrics data that can be stored in a persistent
908
+ * storage, OR can be embedded by other protocols that transfer OTLP metrics
909
+ * data but do not implement the OTLP protocol.
910
+ *
911
+ * MetricsData
912
+ * └─── ResourceMetrics
913
+ * ├── Resource
914
+ * ├── SchemaURL
915
+ * └── ScopeMetrics
916
+ * ├── Scope
917
+ * ├── SchemaURL
918
+ * └── Metric
919
+ * ├── Name
920
+ * ├── Description
921
+ * ├── Unit
922
+ * └── data
923
+ * ├── Gauge
924
+ * ├── Sum
925
+ * ├── Histogram
926
+ * ├── ExponentialHistogram
927
+ * └── Summary
928
+ *
929
+ * The main difference between this message and collector protocol is that
930
+ * in this message there will not be any "control" or "metadata" specific to
931
+ * OTLP protocol.
932
+ *
933
+ * When new fields are added into this message, the OTLP request MUST be updated
934
+ * as well.
935
+ */
936
+ const metricsDataSchema = zod.z.lazy(() => zod.z.object({ resourceMetrics: zod.z.union([zod.z.array(resourceMetricsSchema), zod.z.undefined()]).optional() }));
937
+
938
+ //#endregion
939
+ //#region src/data-filters-zod.ts
940
+ var data_filters_zod_exports = /* @__PURE__ */ __exportAll({
941
+ logsDataFilterSchema: () => logsDataFilterSchema,
942
+ metricsDataFilterSchema: () => metricsDataFilterSchema,
943
+ tracesDataFilterSchema: () => tracesDataFilterSchema
944
+ });
945
+ const tracesDataFilterSchema = zod.default.object({
946
+ traceId: zod.default.string().optional().describe("Unique identifier for a trace. All spans from the same trace share the same trace_id. The ID is a 16-byte array."),
947
+ spanId: zod.default.string().optional().describe("Unique identifier for a span within a trace. The ID is an 8-byte array."),
948
+ parentSpanId: zod.default.string().optional().describe("The span_id of this span's parent span. Empty if this is a root span."),
949
+ serviceName: zod.default.string().optional().describe("Service name from resource attributes (service.name)."),
950
+ spanName: zod.default.string().optional().describe("Description of the span's operation. E.g., qualified method name or file name with line number."),
951
+ spanKind: zod.default.string().optional().describe("Type of span (INTERNAL, SERVER, CLIENT, PRODUCER, CONSUMER). Used to identify relationships between spans."),
952
+ statusCode: zod.default.string().optional().describe("Status code (UNSET, OK, ERROR)."),
953
+ scopeName: zod.default.string().optional().describe("Name denoting the instrumentation scope."),
954
+ timestampMin: zod.default.string().optional().describe("Minimum start time of the span. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
955
+ timestampMax: zod.default.string().optional().describe("Maximum start time of the span. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
956
+ durationMin: zod.default.string().optional().describe("Minimum duration of the span in nanoseconds (end_time - start_time). Expressed as string in JSON."),
957
+ durationMax: zod.default.string().optional().describe("Maximum duration of the span in nanoseconds (end_time - start_time). Expressed as string in JSON."),
958
+ spanAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Key/value pairs describing the span."),
959
+ resourceAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attributes that describe the resource."),
960
+ eventsAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attribute key/value pairs on the event."),
961
+ linksAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attribute key/value pairs on the link."),
962
+ limit: zod.default.number().int().positive().max(1e3).optional().describe("Max items to return. Default determined by datasource."),
963
+ cursor: zod.default.string().optional().describe("Opaque cursor from previous response for next page."),
964
+ sortOrder: zod.default.enum(["ASC", "DESC"]).optional().describe("Sort by timestamp. ASC = oldest first, DESC = newest first.")
965
+ });
966
+ const logsDataFilterSchema = zod.default.object({
967
+ traceId: zod.default.string().optional().describe("Unique identifier for a trace. All logs from the same trace share the same trace_id. The ID is a 16-byte array."),
968
+ spanId: zod.default.string().optional().describe("Unique identifier for a span within a trace. The ID is an 8-byte array."),
969
+ serviceName: zod.default.string().optional().describe("Service name from resource attributes (service.name)."),
970
+ scopeName: zod.default.string().optional().describe("Name denoting the instrumentation scope."),
971
+ severityText: zod.default.string().optional().describe("Severity text (also known as log level). Original string representation as known at the source."),
972
+ severityNumberMin: zod.default.number().optional().describe("Minimum severity number (inclusive). Normalized to values described in Log Data Model."),
973
+ severityNumberMax: zod.default.number().optional().describe("Maximum severity number (inclusive). Normalized to values described in Log Data Model."),
974
+ bodyContains: zod.default.string().optional().describe("Filter logs where body contains this substring."),
975
+ timestampMin: zod.default.string().optional().describe("Minimum time when the event occurred. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
976
+ timestampMax: zod.default.string().optional().describe("Maximum time when the event occurred. UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970. Expressed as string in JSON."),
977
+ logAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Additional attributes that describe the specific event occurrence."),
978
+ resourceAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attributes that describe the resource."),
979
+ scopeAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attributes of the instrumentation scope."),
980
+ limit: zod.default.number().int().positive().max(1e3).optional().describe("Max items to return. Default determined by datasource."),
981
+ cursor: zod.default.string().optional().describe("Opaque cursor from previous response for next page."),
982
+ sortOrder: zod.default.enum(["ASC", "DESC"]).optional().describe("Sort by timestamp. ASC = oldest first, DESC = newest first.")
983
+ });
984
+ const metricsDataFilterSchema = zod.default.object({
985
+ metricType: zod.default.enum([
986
+ "Gauge",
987
+ "Sum",
988
+ "Histogram",
989
+ "ExponentialHistogram",
990
+ "Summary"
991
+ ]).describe("Metric type to query."),
992
+ metricName: zod.default.string().optional().describe("The name of the metric."),
993
+ serviceName: zod.default.string().optional().describe("Service name from resource attributes (service.name)."),
994
+ scopeName: zod.default.string().optional().describe("Name denoting the instrumentation scope."),
995
+ timeUnixMin: zod.default.string().optional().describe("Minimum time when the data point was recorded. UNIX Epoch time in nanoseconds. Expressed as string in JSON."),
996
+ timeUnixMax: zod.default.string().optional().describe("Maximum time when the data point was recorded. UNIX Epoch time in nanoseconds. Expressed as string in JSON."),
997
+ attributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Key/value pairs that uniquely identify the timeseries."),
998
+ resourceAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attributes that describe the resource."),
999
+ scopeAttributes: zod.default.record(zod.default.string(), zod.default.string()).optional().describe("Attributes of the instrumentation scope."),
1000
+ limit: zod.default.number().int().positive().max(1e3).optional().describe("Max items to return. Default determined by datasource."),
1001
+ cursor: zod.default.string().optional().describe("Opaque cursor from previous response for next page."),
1002
+ sortOrder: zod.default.enum(["ASC", "DESC"]).optional().describe("Sort by timestamp. ASC = oldest first, DESC = newest first.")
1003
+ });
1004
+
1005
+ //#endregion
1006
+ //#region src/index.ts
1007
+ const name = "@kopai/core";
1008
+
1009
+ //#endregion
1010
+ Object.defineProperty(exports, 'dataFilterSchemas', {
1011
+ enumerable: true,
1012
+ get: function () {
1013
+ return data_filters_zod_exports;
1014
+ }
1015
+ });
1016
+ Object.defineProperty(exports, 'datasource', {
1017
+ enumerable: true,
1018
+ get: function () {
1019
+ return telemetry_datasource_exports;
1020
+ }
1021
+ });
1022
+ Object.defineProperty(exports, 'denormalizedSignals', {
1023
+ enumerable: true,
1024
+ get: function () {
1025
+ return denormalized_signals_zod_exports;
1026
+ }
1027
+ });
1028
+ exports.name = name;
1029
+ Object.defineProperty(exports, 'otlp', {
1030
+ enumerable: true,
1031
+ get: function () {
1032
+ return otlp_generated_exports;
1033
+ }
1034
+ });
1035
+ Object.defineProperty(exports, 'otlpMetrics', {
1036
+ enumerable: true,
1037
+ get: function () {
1038
+ return otlp_metrics_generated_exports;
1039
+ }
1040
+ });
1041
+ Object.defineProperty(exports, 'otlpMetricsZod', {
1042
+ enumerable: true,
1043
+ get: function () {
1044
+ return otlp_metrics_zod_exports;
1045
+ }
1046
+ });
1047
+ Object.defineProperty(exports, 'otlpZod', {
1048
+ enumerable: true,
1049
+ get: function () {
1050
+ return otlp_zod_exports;
1051
+ }
1052
+ });