@klitchevo/code-council 0.0.8 → 0.0.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -18,6 +18,8 @@ An MCP (Model Context Protocol) server that provides AI-powered code review usin
18
18
  - 🔒 **Backend Review** - Security, architecture, and performance analysis
19
19
  - 📋 **Plan Review** - Review implementation plans before writing code
20
20
  - 📝 **Git Changes Review** - Review staged, unstaged, branch diffs, or specific commits
21
+ - 💬 **Council Discussions** - Multi-turn conversations with the AI council for deeper exploration
22
+ - 🏭 **TPS Audit** - Toyota Production System analysis for flow, waste, bottlenecks, and quality
21
23
  - ⚡ **Parallel Execution** - All models run concurrently for fast results
22
24
 
23
25
  ## Quick Start
@@ -257,6 +259,72 @@ Use review_git_changes to review my staged changes
257
259
  Use review_git_changes with review_type=commit and commit_hash=abc123 to review that commit
258
260
  ```
259
261
 
262
+ ### `discuss_with_council`
263
+
264
+ Have multi-turn conversations with the AI council. Start a discussion, get feedback from all models, then ask follow-up questions while maintaining context.
265
+
266
+ **Parameters:**
267
+ - `message` (required): Your message or question for the council
268
+ - `session_id` (optional): Session ID to continue an existing discussion (omit to start new)
269
+ - `discussion_type` (optional): `code_review`, `plan_review`, or `general` (default: `general`)
270
+ - `context` (optional): Additional context (code snippets, plan details, etc.)
271
+
272
+ **Example usage in Claude:**
273
+ ```
274
+ Use discuss_with_council to ask: What's the best way to implement error handling in a Node.js API?
275
+ ```
276
+
277
+ **Continuing a discussion:**
278
+ ```
279
+ Use discuss_with_council with session_id=<id-from-previous-response> to ask: Can you elaborate on the circuit breaker pattern you mentioned?
280
+ ```
281
+
282
+ **Key features:**
283
+ - Each model maintains its own conversation history for authentic diverse perspectives
284
+ - Sessions persist for 30 minutes of inactivity
285
+ - Rate limited to 10 requests per minute per session
286
+ - Context windowing keeps conversations efficient
287
+
288
+ ### `tps_audit`
289
+
290
+ Analyze any codebase using Toyota Production System (TPS) principles. Generates beautiful HTML reports with scores for flow, waste, bottlenecks, and quality.
291
+
292
+ **Parameters:**
293
+ - `path` (optional): Path to repository root (auto-detects git root if not provided)
294
+ - `focus_areas` (optional): Specific areas to focus on (e.g., `["flow", "security", "performance"]`)
295
+ - `max_files` (optional): Maximum files to analyze (default: 50, max: 100)
296
+ - `file_types` (optional): File extensions to include (default: common source files)
297
+ - `include_sensitive` (optional): Include potentially sensitive files (default: false)
298
+ - `output_format` (optional): `html`, `markdown`, or `json` (default: `html`)
299
+
300
+ **Example usage in Claude:**
301
+ ```
302
+ Use tps_audit to analyze this repository
303
+ ```
304
+
305
+ ```
306
+ Use tps_audit with output_format=markdown and focus_areas=["security", "performance"]
307
+ ```
308
+
309
+ **What it analyzes:**
310
+ - **Flow**: How data and control flow through the system, entry points, pathways
311
+ - **Muda (Waste)**: The 7 wastes - defects, overproduction, waiting, transportation, inventory, motion, extra-processing
312
+ - **Bottlenecks**: Where flow is constrained, severity and impact
313
+ - **Jidoka**: Built-in quality, fail-fast patterns, error handling
314
+ - **Recommendations**: Prioritized improvements with effort/impact ratings
315
+
316
+ **Security features:**
317
+ - Automatically skips sensitive files (`.env`, credentials, keys, tokens)
318
+ - Scans file contents for embedded secrets (AWS keys, GitHub PATs, etc.)
319
+ - Validates paths to prevent directory traversal attacks
320
+ - Enforces size limits to prevent resource exhaustion
321
+
322
+ **Output:**
323
+ Reports are saved to `.code-council/` directory:
324
+ - `tps-audit.html` - Interactive styled report with glass-morphism dark theme
325
+ - `tps-audit.md` - Markdown version
326
+ - `tps-audit.json` - Raw JSON data
327
+
260
328
  ### `list_review_config`
261
329
 
262
330
  Show which AI models are currently configured for each review type.
@@ -272,6 +340,8 @@ You can customize which AI models are used for reviews by setting environment va
272
340
  - `FRONTEND_REVIEW_MODELS` - Models for frontend reviews
273
341
  - `BACKEND_REVIEW_MODELS` - Models for backend reviews
274
342
  - `PLAN_REVIEW_MODELS` - Models for plan reviews
343
+ - `DISCUSSION_MODELS` - Models for council discussions
344
+ - `TPS_AUDIT_MODELS` - Models for TPS codebase audits
275
345
  - `TEMPERATURE` - Control response randomness (0.0-2.0, default: 0.3)
276
346
  - `MAX_TOKENS` - Maximum response tokens (default: 16384)
277
347
 
@@ -299,9 +369,10 @@ You can customize which AI models are used for reviews by setting environment va
299
369
 
300
370
  **Default Models:**
301
371
  If you don't specify models, the server uses these defaults:
302
- - `minimax/minimax-m2.1`
303
- - `z-ai/glm-4.7`
304
- - `x-ai/grok-code-fast-1`
372
+ - `minimax/minimax-m2.1` - Fast, cost-effective reasoning
373
+ - `z-ai/glm-4.7` - Strong multilingual capabilities
374
+ - `moonshotai/kimi-k2-thinking` - Advanced reasoning with thinking
375
+ - `deepseek/deepseek-v3.2` - State-of-the-art open model
305
376
 
306
377
  **Finding Models:**
307
378
  Browse all available models at [OpenRouter Models](https://openrouter.ai/models). Popular choices include:
@@ -0,0 +1,142 @@
1
+ // src/prompts/tps-audit.ts
2
+ var SYSTEM_PROMPT = `You are an expert Toyota Production System (TPS) consultant analyzing software codebases. Your role is to "walk the production line" - examining how code flows from input to output, identifying waste (muda), spotting bottlenecks, and suggesting continuous improvement (kaizen).
3
+
4
+ ## TPS Principles for Software
5
+
6
+ ### 1. FLOW (Nagare)
7
+ Analyze how data and control flow through the system:
8
+ - Identify entry points and exit points
9
+ - Map the critical paths
10
+ - Look for smooth, uninterrupted flow
11
+ - Identify where flow is blocked or redirected
12
+ - Check for single-piece flow vs batch processing
13
+
14
+ ### 2. WASTE (Muda) - The 7 Wastes in Software
15
+ Identify instances of each waste type:
16
+
17
+ **Defects**: Bugs, error-prone code, missing validation
18
+ **Overproduction**: Features nobody uses, over-engineered solutions
19
+ **Waiting**: Blocking I/O, synchronous when async would work, slow tests
20
+ **Non-utilized Talent**: Manual tasks that could be automated, repetitive code
21
+ **Transportation**: Unnecessary data transformation, excessive API calls
22
+ **Inventory**: Dead code, unused imports/exports, stale dependencies
23
+ **Motion**: Complex navigation, scattered related code, poor organization
24
+ **Extra-processing**: Premature optimization, unnecessary abstraction layers
25
+
26
+ ### 3. BOTTLENECKS
27
+ Identify constraints that limit throughput:
28
+ - Synchronous operations that block
29
+ - Single points of failure
30
+ - Resource contention
31
+ - N+1 queries or API calls
32
+ - Sequential operations that could be parallel
33
+
34
+ ### 4. PULL vs PUSH
35
+ Evaluate if work is demand-driven:
36
+ - Lazy evaluation vs eager computation
37
+ - On-demand loading vs preloading everything
38
+ - Event-driven vs polling
39
+ - Streaming vs buffering all data
40
+
41
+ ### 5. JIDOKA (Built-in Quality)
42
+ Assess quality mechanisms:
43
+ - Error handling and recovery
44
+ - Validation at boundaries
45
+ - Fail-fast patterns
46
+ - Type safety usage
47
+ - Test coverage signals
48
+
49
+ ### 6. STANDARDIZATION
50
+ Look for consistency:
51
+ - Code style consistency
52
+ - Pattern usage consistency
53
+ - Error handling patterns
54
+ - Naming conventions
55
+ - File organization
56
+
57
+ ## Scoring Guidelines
58
+
59
+ **Overall Score (0-100)**:
60
+ - 90-100: Exceptional flow, minimal waste, excellent quality
61
+ - 70-89: Good practices, some waste, room for improvement
62
+ - 50-69: Average, significant waste or flow issues
63
+ - 30-49: Poor flow, excessive waste, quality concerns
64
+ - 0-29: Critical issues, major redesign needed
65
+
66
+ **Flow Score**: How smoothly does data/control move through the system?
67
+ **Waste Score**: Higher = less waste (100 = no waste identified)
68
+ **Quality Score**: Built-in quality mechanisms, error handling, type safety
69
+
70
+ ## Output Requirements
71
+
72
+ You MUST respond with valid JSON matching the TpsAnalysis interface. Do not include any text before or after the JSON.
73
+
74
+ Focus on:
75
+ 1. Actionable findings with specific file/line references
76
+ 2. Prioritized recommendations (quick wins first)
77
+ 3. Concrete suggestions, not vague advice
78
+ 4. Balanced assessment - acknowledge strengths too
79
+ 5. Effort estimates for recommendations`;
80
+ function buildUserMessage(aggregatedContent, options) {
81
+ const parts = [];
82
+ if (options?.repoName) {
83
+ parts.push(`## Repository: ${options.repoName}`);
84
+ }
85
+ if (options?.focusAreas && options.focusAreas.length > 0) {
86
+ parts.push(
87
+ `## Focus Areas
88
+ Pay special attention to: ${options.focusAreas.join(", ")}`
89
+ );
90
+ }
91
+ if (options?.additionalContext) {
92
+ parts.push(`## Additional Context
93
+ ${options.additionalContext}`);
94
+ }
95
+ parts.push(`## Codebase to Audit
96
+
97
+ Analyze this codebase using Toyota Production System principles. Walk the production line from entry points through to outputs. Identify waste, bottlenecks, and improvement opportunities.
98
+
99
+ ${aggregatedContent}
100
+
101
+ ## Response Format
102
+
103
+ Respond with ONLY valid JSON matching the TpsAnalysis interface. Include:
104
+ - Scores for overall, flow, waste, and quality (0-100)
105
+ - Flow analysis with entry points and pathways
106
+ - Specific bottlenecks with locations and suggestions
107
+ - Waste items categorized by the 7 types
108
+ - Jidoka (built-in quality) assessment
109
+ - Prioritized recommendations
110
+ - Summary with strengths, concerns, and quick wins
111
+
112
+ Your JSON response:`);
113
+ return parts.join("\n\n");
114
+ }
115
+ function parseTpsAnalysis(response) {
116
+ try {
117
+ let jsonStr = response.trim();
118
+ if (jsonStr.startsWith("```json")) {
119
+ jsonStr = jsonStr.slice(7);
120
+ } else if (jsonStr.startsWith("```")) {
121
+ jsonStr = jsonStr.slice(3);
122
+ }
123
+ if (jsonStr.endsWith("```")) {
124
+ jsonStr = jsonStr.slice(0, -3);
125
+ }
126
+ jsonStr = jsonStr.trim();
127
+ const parsed = JSON.parse(jsonStr);
128
+ if (typeof parsed.scores?.overall !== "number" || !Array.isArray(parsed.bottlenecks) || !Array.isArray(parsed.recommendations)) {
129
+ return null;
130
+ }
131
+ return parsed;
132
+ } catch {
133
+ return null;
134
+ }
135
+ }
136
+
137
+ export {
138
+ SYSTEM_PROMPT,
139
+ buildUserMessage,
140
+ parseTpsAnalysis
141
+ };
142
+ //# sourceMappingURL=chunk-Y77R7523.js.map