@justinelliottcobb/amari-wasm 0.13.0 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/amari_wasm.d.ts +304 -3
- package/amari_wasm.js +631 -8
- package/amari_wasm_bg.wasm +0 -0
- package/package.json +1 -1
package/amari_wasm.d.ts
CHANGED
|
@@ -1260,6 +1260,56 @@ export class WasmGeodesicIntegrator {
|
|
|
1260
1260
|
*/
|
|
1261
1261
|
static with_schwarzschild(metric: WasmSchwarzschildMetric): WasmGeodesicIntegrator;
|
|
1262
1262
|
}
|
|
1263
|
+
/**
|
|
1264
|
+
* WASM wrapper for Geometric Brownian Motion on multivector space
|
|
1265
|
+
*
|
|
1266
|
+
* dX = μX dt + σX dW
|
|
1267
|
+
*
|
|
1268
|
+
* Useful for modeling multiplicative noise processes in geometric algebra.
|
|
1269
|
+
*/
|
|
1270
|
+
export class WasmGeometricBrownianMotion {
|
|
1271
|
+
free(): void;
|
|
1272
|
+
/**
|
|
1273
|
+
* Sample a single path of the process
|
|
1274
|
+
*
|
|
1275
|
+
* # Arguments
|
|
1276
|
+
* * `initial` - Initial multivector (8 coefficients)
|
|
1277
|
+
* * `t_end` - End time
|
|
1278
|
+
* * `num_steps` - Number of time steps
|
|
1279
|
+
*
|
|
1280
|
+
* Returns flat array: (num_steps + 1) * 9 values
|
|
1281
|
+
* Each point is [time, coeff0, coeff1, ..., coeff7]
|
|
1282
|
+
*/
|
|
1283
|
+
samplePath(initial: Float64Array, t_end: number, num_steps: number): Float64Array;
|
|
1284
|
+
/**
|
|
1285
|
+
* Compute expected value at time t given initial value
|
|
1286
|
+
*
|
|
1287
|
+
* E[X(t)] = X(0) * exp(μt)
|
|
1288
|
+
*/
|
|
1289
|
+
expectedValue(initial: Float64Array, t: number): Float64Array;
|
|
1290
|
+
/**
|
|
1291
|
+
* Create a new Geometric Brownian Motion process
|
|
1292
|
+
*
|
|
1293
|
+
* # Arguments
|
|
1294
|
+
* * `mu` - Drift coefficient (expected growth rate)
|
|
1295
|
+
* * `sigma` - Diffusion coefficient (volatility)
|
|
1296
|
+
*/
|
|
1297
|
+
constructor(mu: number, sigma: number);
|
|
1298
|
+
/**
|
|
1299
|
+
* Get drift coefficient
|
|
1300
|
+
*/
|
|
1301
|
+
getMu(): number;
|
|
1302
|
+
/**
|
|
1303
|
+
* Compute variance at time t given initial value
|
|
1304
|
+
*
|
|
1305
|
+
* Var(X(t)) = X(0)² * exp(2μt) * (exp(σ²t) - 1)
|
|
1306
|
+
*/
|
|
1307
|
+
variance(initial: Float64Array, t: number): Float64Array;
|
|
1308
|
+
/**
|
|
1309
|
+
* Get diffusion coefficient
|
|
1310
|
+
*/
|
|
1311
|
+
getSigma(): number;
|
|
1312
|
+
}
|
|
1263
1313
|
/**
|
|
1264
1314
|
* WASM wrapper for Geometric Cellular Automaton
|
|
1265
1315
|
*/
|
|
@@ -1460,6 +1510,50 @@ export class WasmGpuOptimizer {
|
|
|
1460
1510
|
*/
|
|
1461
1511
|
constructor();
|
|
1462
1512
|
}
|
|
1513
|
+
/**
|
|
1514
|
+
* WASM wrapper for grade-projected distribution
|
|
1515
|
+
*
|
|
1516
|
+
* A distribution that only operates on components of a specific grade.
|
|
1517
|
+
*/
|
|
1518
|
+
export class WasmGradeProjectedDistribution {
|
|
1519
|
+
free(): void;
|
|
1520
|
+
/**
|
|
1521
|
+
* Sample and embed into full multivector (other grades are zero)
|
|
1522
|
+
*
|
|
1523
|
+
* Returns 8 coefficients
|
|
1524
|
+
*/
|
|
1525
|
+
sampleFull(): Float64Array;
|
|
1526
|
+
/**
|
|
1527
|
+
* Get standard deviations
|
|
1528
|
+
*/
|
|
1529
|
+
getStdDevs(): Float64Array;
|
|
1530
|
+
/**
|
|
1531
|
+
* Get number of components in this grade
|
|
1532
|
+
*/
|
|
1533
|
+
getNumComponents(): number;
|
|
1534
|
+
/**
|
|
1535
|
+
* Create a grade-projected distribution from a Gaussian
|
|
1536
|
+
*
|
|
1537
|
+
* # Arguments
|
|
1538
|
+
* * `gaussian` - Source Gaussian distribution
|
|
1539
|
+
* * `grade` - Grade to project onto (0, 1, 2, or 3 for Cl(3,0,0))
|
|
1540
|
+
*/
|
|
1541
|
+
constructor(gaussian: WasmGaussianMultivector, grade: number);
|
|
1542
|
+
/**
|
|
1543
|
+
* Sample from this grade-projected distribution
|
|
1544
|
+
*
|
|
1545
|
+
* Returns components for just this grade
|
|
1546
|
+
*/
|
|
1547
|
+
sample(): Float64Array;
|
|
1548
|
+
/**
|
|
1549
|
+
* Get the mean for this grade's components
|
|
1550
|
+
*/
|
|
1551
|
+
getMean(): Float64Array;
|
|
1552
|
+
/**
|
|
1553
|
+
* Get the grade
|
|
1554
|
+
*/
|
|
1555
|
+
getGrade(): number;
|
|
1556
|
+
}
|
|
1463
1557
|
/**
|
|
1464
1558
|
* WASM wrapper for Grassmannian varieties
|
|
1465
1559
|
*/
|
|
@@ -1585,6 +1679,77 @@ export class WasmLebesgueMeasure {
|
|
|
1585
1679
|
*/
|
|
1586
1680
|
constructor(dimension: number);
|
|
1587
1681
|
}
|
|
1682
|
+
/**
|
|
1683
|
+
* WASM wrapper for MCMC diagnostics
|
|
1684
|
+
*/
|
|
1685
|
+
export class WasmMCMCDiagnostics {
|
|
1686
|
+
private constructor();
|
|
1687
|
+
free(): void;
|
|
1688
|
+
/**
|
|
1689
|
+
* Check if the sampler has converged (R-hat < 1.1)
|
|
1690
|
+
*/
|
|
1691
|
+
isConverged(): boolean;
|
|
1692
|
+
/**
|
|
1693
|
+
* Get effective sample size (or -1 if not computed)
|
|
1694
|
+
*/
|
|
1695
|
+
getEffectiveSampleSize(): number;
|
|
1696
|
+
/**
|
|
1697
|
+
* Get R-hat statistic (or -1 if not computed)
|
|
1698
|
+
*/
|
|
1699
|
+
getRHat(): number;
|
|
1700
|
+
/**
|
|
1701
|
+
* Total number of steps
|
|
1702
|
+
*/
|
|
1703
|
+
num_steps: number;
|
|
1704
|
+
/**
|
|
1705
|
+
* Acceptance rate
|
|
1706
|
+
*/
|
|
1707
|
+
acceptance_rate: number;
|
|
1708
|
+
}
|
|
1709
|
+
/**
|
|
1710
|
+
* WASM wrapper for Metropolis-Hastings MCMC sampler
|
|
1711
|
+
*
|
|
1712
|
+
* Samples from a target distribution using random-walk proposals.
|
|
1713
|
+
*/
|
|
1714
|
+
export class WasmMetropolisHastings {
|
|
1715
|
+
free(): void;
|
|
1716
|
+
/**
|
|
1717
|
+
* Get sampling diagnostics
|
|
1718
|
+
*/
|
|
1719
|
+
diagnostics(): WasmMCMCDiagnostics;
|
|
1720
|
+
/**
|
|
1721
|
+
* Get current sample
|
|
1722
|
+
*/
|
|
1723
|
+
getCurrent(): Float64Array;
|
|
1724
|
+
/**
|
|
1725
|
+
* Get current acceptance rate
|
|
1726
|
+
*/
|
|
1727
|
+
getAcceptanceRate(): number;
|
|
1728
|
+
/**
|
|
1729
|
+
* Create a new Metropolis-Hastings sampler for a Gaussian target
|
|
1730
|
+
*
|
|
1731
|
+
* # Arguments
|
|
1732
|
+
* * `target` - The target Gaussian distribution to sample from
|
|
1733
|
+
* * `proposal_std` - Standard deviation for the proposal distribution
|
|
1734
|
+
*/
|
|
1735
|
+
constructor(target: WasmGaussianMultivector, proposal_std: number);
|
|
1736
|
+
/**
|
|
1737
|
+
* Run the sampler for multiple steps
|
|
1738
|
+
*
|
|
1739
|
+
* # Arguments
|
|
1740
|
+
* * `num_samples` - Number of samples to collect
|
|
1741
|
+
* * `burnin` - Number of burn-in steps to discard
|
|
1742
|
+
*
|
|
1743
|
+
* Returns flat array of samples (num_samples * 8)
|
|
1744
|
+
*/
|
|
1745
|
+
run(num_samples: number, burnin: number): Float64Array;
|
|
1746
|
+
/**
|
|
1747
|
+
* Take a single MCMC step
|
|
1748
|
+
*
|
|
1749
|
+
* Returns the new sample (8 coefficients)
|
|
1750
|
+
*/
|
|
1751
|
+
step(): Float64Array;
|
|
1752
|
+
}
|
|
1588
1753
|
/**
|
|
1589
1754
|
* WASM wrapper for moduli spaces (simplified)
|
|
1590
1755
|
*/
|
|
@@ -2632,6 +2797,67 @@ export class WasmTropicalViterbi {
|
|
|
2632
2797
|
*/
|
|
2633
2798
|
decode(observations: Uint32Array): any;
|
|
2634
2799
|
}
|
|
2800
|
+
/**
|
|
2801
|
+
* WASM wrapper for uncertain multivector (mean + covariance)
|
|
2802
|
+
*
|
|
2803
|
+
* Represents a multivector with associated uncertainty, useful for
|
|
2804
|
+
* error propagation through geometric operations.
|
|
2805
|
+
*/
|
|
2806
|
+
export class WasmUncertainMultivector {
|
|
2807
|
+
free(): void;
|
|
2808
|
+
/**
|
|
2809
|
+
* Get standard deviations
|
|
2810
|
+
*/
|
|
2811
|
+
getStdDevs(): Float64Array;
|
|
2812
|
+
/**
|
|
2813
|
+
* Create a deterministic (zero variance) uncertain multivector
|
|
2814
|
+
*/
|
|
2815
|
+
static deterministic(value: Float64Array): WasmUncertainMultivector;
|
|
2816
|
+
/**
|
|
2817
|
+
* Get variances (diagonal of covariance)
|
|
2818
|
+
*/
|
|
2819
|
+
getVariances(): Float64Array;
|
|
2820
|
+
/**
|
|
2821
|
+
* Get the covariance matrix (64 values, row-major)
|
|
2822
|
+
*/
|
|
2823
|
+
getCovariance(): Float64Array;
|
|
2824
|
+
/**
|
|
2825
|
+
* Create with full covariance matrix
|
|
2826
|
+
*
|
|
2827
|
+
* # Arguments
|
|
2828
|
+
* * `mean` - 8 coefficients for the mean
|
|
2829
|
+
* * `covariance` - 64 values for 8x8 covariance matrix (row-major)
|
|
2830
|
+
*/
|
|
2831
|
+
static withCovariance(mean: Float64Array, covariance: Float64Array): WasmUncertainMultivector;
|
|
2832
|
+
/**
|
|
2833
|
+
* Get total variance (trace of covariance)
|
|
2834
|
+
*/
|
|
2835
|
+
getTotalVariance(): number;
|
|
2836
|
+
/**
|
|
2837
|
+
* Add two uncertain multivectors (assuming independence)
|
|
2838
|
+
*
|
|
2839
|
+
* For Z = X + Y: E[Z] = E[X] + E[Y], Var(Z) = Var(X) + Var(Y)
|
|
2840
|
+
*/
|
|
2841
|
+
add(other: WasmUncertainMultivector): WasmUncertainMultivector;
|
|
2842
|
+
/**
|
|
2843
|
+
* Create an uncertain multivector with diagonal covariance
|
|
2844
|
+
*
|
|
2845
|
+
* # Arguments
|
|
2846
|
+
* * `mean` - 8 coefficients for the mean
|
|
2847
|
+
* * `variances` - 8 values for per-coefficient variance
|
|
2848
|
+
*/
|
|
2849
|
+
constructor(mean: Float64Array, variances: Float64Array);
|
|
2850
|
+
/**
|
|
2851
|
+
* Linear propagation: scale by a constant
|
|
2852
|
+
*
|
|
2853
|
+
* For Y = aX: E[Y] = aE[X], Var(Y) = a²Var(X)
|
|
2854
|
+
*/
|
|
2855
|
+
scale(scalar: number): WasmUncertainMultivector;
|
|
2856
|
+
/**
|
|
2857
|
+
* Get the mean
|
|
2858
|
+
*/
|
|
2859
|
+
getMean(): Float64Array;
|
|
2860
|
+
}
|
|
2635
2861
|
/**
|
|
2636
2862
|
* WASM wrapper for Uniform distribution on Cl(3,0,0) multivector space
|
|
2637
2863
|
*
|
|
@@ -2690,17 +2916,49 @@ export class WasmUniformMultivector {
|
|
|
2690
2916
|
*/
|
|
2691
2917
|
static hypercube(min: number, max: number): WasmUniformMultivector;
|
|
2692
2918
|
}
|
|
2919
|
+
/**
|
|
2920
|
+
* WASM wrapper for Wiener process (Brownian motion)
|
|
2921
|
+
*
|
|
2922
|
+
* Standard Brownian motion W(t) with W(0) = 0
|
|
2923
|
+
*/
|
|
2924
|
+
export class WasmWienerProcess {
|
|
2925
|
+
free(): void;
|
|
2926
|
+
/**
|
|
2927
|
+
* Sample a path of the Wiener process
|
|
2928
|
+
*
|
|
2929
|
+
* # Arguments
|
|
2930
|
+
* * `t_end` - End time
|
|
2931
|
+
* * `num_steps` - Number of time steps
|
|
2932
|
+
*
|
|
2933
|
+
* Returns flat array: (num_steps + 1) * (dim + 1) values
|
|
2934
|
+
* Each point is [time, w0, w1, ...]
|
|
2935
|
+
*/
|
|
2936
|
+
samplePath(t_end: number, num_steps: number): Float64Array;
|
|
2937
|
+
/**
|
|
2938
|
+
* Create a new Wiener process
|
|
2939
|
+
*
|
|
2940
|
+
* # Arguments
|
|
2941
|
+
* * `dim` - Dimension of the process (default 8 for multivector space)
|
|
2942
|
+
*/
|
|
2943
|
+
constructor(dim?: number | null);
|
|
2944
|
+
/**
|
|
2945
|
+
* Get dimension
|
|
2946
|
+
*/
|
|
2947
|
+
getDim(): number;
|
|
2948
|
+
}
|
|
2693
2949
|
|
|
2694
2950
|
export type InitInput = RequestInfo | URL | Response | BufferSource | WebAssembly.Module;
|
|
2695
2951
|
|
|
2696
2952
|
export interface InitOutput {
|
|
2697
2953
|
readonly memory: WebAssembly.Memory;
|
|
2698
2954
|
readonly __wbg_autodiff_free: (a: number, b: number) => void;
|
|
2699
|
-
readonly
|
|
2955
|
+
readonly __wbg_get_wasmmcmcdiagnostics_acceptance_rate: (a: number) => number;
|
|
2956
|
+
readonly __wbg_get_wasmmcmcdiagnostics_num_steps: (a: number) => number;
|
|
2700
2957
|
readonly __wbg_numericalderivative_free: (a: number, b: number) => void;
|
|
2701
2958
|
readonly __wbg_riemannianmanifold_free: (a: number, b: number) => void;
|
|
2702
2959
|
readonly __wbg_scalarfield_free: (a: number, b: number) => void;
|
|
2703
|
-
readonly
|
|
2960
|
+
readonly __wbg_set_wasmmcmcdiagnostics_acceptance_rate: (a: number, b: number) => void;
|
|
2961
|
+
readonly __wbg_set_wasmmcmcdiagnostics_num_steps: (a: number, b: number) => void;
|
|
2704
2962
|
readonly __wbg_wasmchowclass_free: (a: number, b: number) => void;
|
|
2705
2963
|
readonly __wbg_wasmcommunity_free: (a: number, b: number) => void;
|
|
2706
2964
|
readonly __wbg_wasmduallyflatmanifold_free: (a: number, b: number) => void;
|
|
@@ -2711,10 +2969,13 @@ export interface InitOutput {
|
|
|
2711
2969
|
readonly __wbg_wasmgeodesicintegrator_free: (a: number, b: number) => void;
|
|
2712
2970
|
readonly __wbg_wasmgeometricca_free: (a: number, b: number) => void;
|
|
2713
2971
|
readonly __wbg_wasmgeometricnetwork_free: (a: number, b: number) => void;
|
|
2972
|
+
readonly __wbg_wasmgradeprojecteddistribution_free: (a: number, b: number) => void;
|
|
2714
2973
|
readonly __wbg_wasmgrassmannian_free: (a: number, b: number) => void;
|
|
2715
2974
|
readonly __wbg_wasmholographicmemory_free: (a: number, b: number) => void;
|
|
2716
2975
|
readonly __wbg_wasminversecadesigner_free: (a: number, b: number) => void;
|
|
2717
2976
|
readonly __wbg_wasmlebesguemeasure_free: (a: number, b: number) => void;
|
|
2977
|
+
readonly __wbg_wasmmcmcdiagnostics_free: (a: number, b: number) => void;
|
|
2978
|
+
readonly __wbg_wasmmetropolishastings_free: (a: number, b: number) => void;
|
|
2718
2979
|
readonly __wbg_wasmmodulispace_free: (a: number, b: number) => void;
|
|
2719
2980
|
readonly __wbg_wasmmultidualnumber_free: (a: number, b: number) => void;
|
|
2720
2981
|
readonly __wbg_wasmmultivector_free: (a: number, b: number) => void;
|
|
@@ -2723,7 +2984,6 @@ export interface InitOutput {
|
|
|
2723
2984
|
readonly __wbg_wasmpropagationanalysis_free: (a: number, b: number) => void;
|
|
2724
2985
|
readonly __wbg_wasmrelativisticparticle_free: (a: number, b: number) => void;
|
|
2725
2986
|
readonly __wbg_wasmresonator_free: (a: number, b: number) => void;
|
|
2726
|
-
readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
|
|
2727
2987
|
readonly __wbg_wasmselfassembler_free: (a: number, b: number) => void;
|
|
2728
2988
|
readonly __wbg_wasmsensitivitymap_free: (a: number, b: number) => void;
|
|
2729
2989
|
readonly __wbg_wasmtrajectorypoint_free: (a: number, b: number) => void;
|
|
@@ -2731,6 +2991,7 @@ export interface InitOutput {
|
|
|
2731
2991
|
readonly __wbg_wasmtropicalnetwork_free: (a: number, b: number) => void;
|
|
2732
2992
|
readonly __wbg_wasmtropicalpolynomial_free: (a: number, b: number) => void;
|
|
2733
2993
|
readonly __wbg_wasmtropicalviterbi_free: (a: number, b: number) => void;
|
|
2994
|
+
readonly __wbg_wasmuncertainmultivector_free: (a: number, b: number) => void;
|
|
2734
2995
|
readonly __wbg_wasmuniformmultivector_free: (a: number, b: number) => void;
|
|
2735
2996
|
readonly autodiff_evaluatePolynomial: (a: number, b: number, c: number) => number;
|
|
2736
2997
|
readonly autodiff_linearLayer: (a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number) => [number, number, number, number];
|
|
@@ -2903,6 +3164,9 @@ export interface InitOutput {
|
|
|
2903
3164
|
readonly wasmgaussianmultivector_withParameters: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
2904
3165
|
readonly wasmgeodesicintegrator_propagate_particle: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
2905
3166
|
readonly wasmgeodesicintegrator_with_schwarzschild: (a: number) => number;
|
|
3167
|
+
readonly wasmgeometricbrownianmotion_expectedValue: (a: number, b: number, c: number, d: number) => [number, number, number, number];
|
|
3168
|
+
readonly wasmgeometricbrownianmotion_samplePath: (a: number, b: number, c: number, d: number, e: number) => [number, number, number, number];
|
|
3169
|
+
readonly wasmgeometricbrownianmotion_variance: (a: number, b: number, c: number, d: number) => [number, number, number, number];
|
|
2906
3170
|
readonly wasmgeometricca_addGlider: (a: number, b: number, c: number) => [number, number];
|
|
2907
3171
|
readonly wasmgeometricca_addRandomPattern: (a: number, b: number) => [number, number];
|
|
2908
3172
|
readonly wasmgeometricca_generation: (a: number) => number;
|
|
@@ -2945,6 +3209,12 @@ export interface InitOutput {
|
|
|
2945
3209
|
readonly wasmgpuoptimizer_isGpuAvailable: (a: number) => number;
|
|
2946
3210
|
readonly wasmgpuoptimizer_optimizeBatch: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
|
|
2947
3211
|
readonly wasmgpuoptimizer_optimizeQuadraticGpu: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
|
|
3212
|
+
readonly wasmgradeprojecteddistribution_getMean: (a: number) => [number, number];
|
|
3213
|
+
readonly wasmgradeprojecteddistribution_getNumComponents: (a: number) => number;
|
|
3214
|
+
readonly wasmgradeprojecteddistribution_getStdDevs: (a: number) => [number, number];
|
|
3215
|
+
readonly wasmgradeprojecteddistribution_new: (a: number, b: number) => [number, number, number];
|
|
3216
|
+
readonly wasmgradeprojecteddistribution_sample: (a: number) => [number, number];
|
|
3217
|
+
readonly wasmgradeprojecteddistribution_sampleFull: (a: number) => [number, number];
|
|
2948
3218
|
readonly wasmgrassmannian_getDimension: (a: number) => number;
|
|
2949
3219
|
readonly wasmgrassmannian_getParameters: (a: number) => [number, number];
|
|
2950
3220
|
readonly wasmgrassmannian_new: (a: number, b: number) => [number, number, number];
|
|
@@ -2967,6 +3237,15 @@ export interface InitOutput {
|
|
|
2967
3237
|
readonly wasmlebesguemeasure_measureBox: (a: number, b: number, c: number) => [number, number, number];
|
|
2968
3238
|
readonly wasmlebesguemeasure_measureInterval: (a: number, b: number, c: number, d: number, e: number) => [number, number, number];
|
|
2969
3239
|
readonly wasmlebesguemeasure_new: (a: number) => [number, number, number];
|
|
3240
|
+
readonly wasmmcmcdiagnostics_getEffectiveSampleSize: (a: number) => number;
|
|
3241
|
+
readonly wasmmcmcdiagnostics_getRHat: (a: number) => number;
|
|
3242
|
+
readonly wasmmcmcdiagnostics_isConverged: (a: number) => number;
|
|
3243
|
+
readonly wasmmetropolishastings_diagnostics: (a: number) => number;
|
|
3244
|
+
readonly wasmmetropolishastings_getAcceptanceRate: (a: number) => number;
|
|
3245
|
+
readonly wasmmetropolishastings_getCurrent: (a: number) => [number, number];
|
|
3246
|
+
readonly wasmmetropolishastings_new: (a: number, b: number) => number;
|
|
3247
|
+
readonly wasmmetropolishastings_run: (a: number, b: number, c: number) => [number, number];
|
|
3248
|
+
readonly wasmmetropolishastings_step: (a: number) => [number, number];
|
|
2970
3249
|
readonly wasmmodulispace_expectedDimension: (a: number) => number;
|
|
2971
3250
|
readonly wasmmodulispace_getMarkedPoints: (a: number) => number;
|
|
2972
3251
|
readonly wasmmodulispace_isProper: (a: number) => number;
|
|
@@ -3136,6 +3415,16 @@ export interface InitOutput {
|
|
|
3136
3415
|
readonly wasmtropicalviterbi_decode: (a: number, b: number, c: number) => [number, number, number];
|
|
3137
3416
|
readonly wasmtropicalviterbi_forward_probabilities: (a: number, b: number, c: number) => [number, number, number];
|
|
3138
3417
|
readonly wasmtropicalviterbi_new: (a: any, b: any) => [number, number, number];
|
|
3418
|
+
readonly wasmuncertainmultivector_add: (a: number, b: number) => number;
|
|
3419
|
+
readonly wasmuncertainmultivector_deterministic: (a: number, b: number) => [number, number, number];
|
|
3420
|
+
readonly wasmuncertainmultivector_getCovariance: (a: number) => [number, number];
|
|
3421
|
+
readonly wasmuncertainmultivector_getMean: (a: number) => [number, number];
|
|
3422
|
+
readonly wasmuncertainmultivector_getStdDevs: (a: number) => [number, number];
|
|
3423
|
+
readonly wasmuncertainmultivector_getTotalVariance: (a: number) => number;
|
|
3424
|
+
readonly wasmuncertainmultivector_getVariances: (a: number) => [number, number];
|
|
3425
|
+
readonly wasmuncertainmultivector_new: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3426
|
+
readonly wasmuncertainmultivector_scale: (a: number, b: number) => number;
|
|
3427
|
+
readonly wasmuncertainmultivector_withCovariance: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3139
3428
|
readonly wasmuniformmultivector_getLower: (a: number) => [number, number];
|
|
3140
3429
|
readonly wasmuniformmultivector_getMean: (a: number) => [number, number];
|
|
3141
3430
|
readonly wasmuniformmultivector_getUpper: (a: number) => [number, number];
|
|
@@ -3146,9 +3435,12 @@ export interface InitOutput {
|
|
|
3146
3435
|
readonly wasmuniformmultivector_sample: (a: number) => [number, number];
|
|
3147
3436
|
readonly wasmuniformmultivector_sampleBatch: (a: number, b: number) => [number, number];
|
|
3148
3437
|
readonly wasmuniformmultivector_withBounds: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3438
|
+
readonly wasmwienerprocess_new: (a: number) => number;
|
|
3439
|
+
readonly wasmwienerprocess_samplePath: (a: number, b: number, c: number) => [number, number];
|
|
3149
3440
|
readonly wasmtropicalnumber_new: (a: number) => number;
|
|
3150
3441
|
readonly vectorfield_fromFunction2D: (a: any) => number;
|
|
3151
3442
|
readonly vectorfield_fromFunction3D: (a: any) => number;
|
|
3443
|
+
readonly __wbg_set_wasmtrajectorypoint_time: (a: number, b: number) => void;
|
|
3152
3444
|
readonly wasmmultivector_norm: (a: number) => number;
|
|
3153
3445
|
readonly wasmspacetimevector_t: (a: number) => number;
|
|
3154
3446
|
readonly wasmtropicalnumber_zero: () => number;
|
|
@@ -3160,13 +3452,18 @@ export interface InitOutput {
|
|
|
3160
3452
|
readonly __wbg_wasmprobabilitymeasure_free: (a: number, b: number) => void;
|
|
3161
3453
|
readonly __wbg_vectorfield_free: (a: number, b: number) => void;
|
|
3162
3454
|
readonly vectorfield_new: (a: any, b: number) => number;
|
|
3455
|
+
readonly wasmgeometricbrownianmotion_new: (a: number, b: number) => number;
|
|
3163
3456
|
readonly wasmtropicalnumber_isZero: (a: number) => number;
|
|
3164
3457
|
readonly wasmtropicalnumber_tropicalAdd: (a: number, b: number) => number;
|
|
3458
|
+
readonly __wbg_get_wasmtrajectorypoint_time: (a: number) => number;
|
|
3165
3459
|
readonly wasmcommunity_cohesion_score: (a: number) => number;
|
|
3166
3460
|
readonly wasmdualnumber_getReal: (a: number) => number;
|
|
3167
3461
|
readonly wasmevaluationresult_getBestPathScore: (a: number) => number;
|
|
3168
3462
|
readonly wasmevaluationresult_getGradientNorm: (a: number) => number;
|
|
3463
|
+
readonly wasmgeometricbrownianmotion_getMu: (a: number) => number;
|
|
3464
|
+
readonly wasmgeometricbrownianmotion_getSigma: (a: number) => number;
|
|
3169
3465
|
readonly wasmgeometricedge_weight: (a: number) => number;
|
|
3466
|
+
readonly wasmgradeprojecteddistribution_getGrade: (a: number) => number;
|
|
3170
3467
|
readonly wasmmodulispace_getGenus: (a: number) => number;
|
|
3171
3468
|
readonly wasmmultidualnumber_getReal: (a: number) => number;
|
|
3172
3469
|
readonly wasmoptimizationresult_iterations: (a: number) => number;
|
|
@@ -3180,6 +3477,7 @@ export interface InitOutput {
|
|
|
3180
3477
|
readonly wasmtropicalcurve_getGenus: (a: number) => number;
|
|
3181
3478
|
readonly wasmtropicalnetwork_getSize: (a: number) => number;
|
|
3182
3479
|
readonly wasmtropicalnumber_getValue: (a: number) => number;
|
|
3480
|
+
readonly wasmwienerprocess_getDim: (a: number) => number;
|
|
3183
3481
|
readonly __wbg_automatabatchoperations_free: (a: number, b: number) => void;
|
|
3184
3482
|
readonly __wbg_automatautils_free: (a: number, b: number) => void;
|
|
3185
3483
|
readonly __wbg_batchoperations_free: (a: number, b: number) => void;
|
|
@@ -3199,6 +3497,7 @@ export interface InitOutput {
|
|
|
3199
3497
|
readonly __wbg_wasmcountingmeasure_free: (a: number, b: number) => void;
|
|
3200
3498
|
readonly __wbg_wasmdualnumber_free: (a: number, b: number) => void;
|
|
3201
3499
|
readonly __wbg_wasmfourvelocity_free: (a: number, b: number) => void;
|
|
3500
|
+
readonly __wbg_wasmgeometricbrownianmotion_free: (a: number, b: number) => void;
|
|
3202
3501
|
readonly __wbg_wasmgeometricedge_free: (a: number, b: number) => void;
|
|
3203
3502
|
readonly __wbg_wasmgpuoptimizer_free: (a: number, b: number) => void;
|
|
3204
3503
|
readonly __wbg_wasmmontecarloestimator_free: (a: number, b: number) => void;
|
|
@@ -3206,11 +3505,13 @@ export interface InitOutput {
|
|
|
3206
3505
|
readonly __wbg_wasmoptimizationutils_free: (a: number, b: number) => void;
|
|
3207
3506
|
readonly __wbg_wasmprojectivespace_free: (a: number, b: number) => void;
|
|
3208
3507
|
readonly __wbg_wasmrelativisticconstants_free: (a: number, b: number) => void;
|
|
3508
|
+
readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
|
|
3209
3509
|
readonly __wbg_wasmsimpleoptimizer_free: (a: number, b: number) => void;
|
|
3210
3510
|
readonly __wbg_wasmspacetimevector_free: (a: number, b: number) => void;
|
|
3211
3511
|
readonly __wbg_wasmtropicalcurve_free: (a: number, b: number) => void;
|
|
3212
3512
|
readonly __wbg_wasmtropicalmeasure_free: (a: number, b: number) => void;
|
|
3213
3513
|
readonly __wbg_wasmtropicalnumber_free: (a: number, b: number) => void;
|
|
3514
|
+
readonly __wbg_wasmwienerprocess_free: (a: number, b: number) => void;
|
|
3214
3515
|
readonly __wbg_wasmmultiobjectiveresult_free: (a: number, b: number) => void;
|
|
3215
3516
|
readonly wasmrotor_inverse: (a: number) => number;
|
|
3216
3517
|
readonly __wbg_wasmrotor_free: (a: number, b: number) => void;
|
package/amari_wasm.js
CHANGED
|
@@ -432,7 +432,7 @@ function __wbg_adapter_28(arg0, arg1, arg2) {
|
|
|
432
432
|
wasm.closure41_externref_shim(arg0, arg1, arg2);
|
|
433
433
|
}
|
|
434
434
|
|
|
435
|
-
function
|
|
435
|
+
function __wbg_adapter_550(arg0, arg1, arg2, arg3) {
|
|
436
436
|
wasm.closure34_externref_shim(arg0, arg1, arg2, arg3);
|
|
437
437
|
}
|
|
438
438
|
|
|
@@ -3604,6 +3604,126 @@ export class WasmGeodesicIntegrator {
|
|
|
3604
3604
|
}
|
|
3605
3605
|
}
|
|
3606
3606
|
|
|
3607
|
+
const WasmGeometricBrownianMotionFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
3608
|
+
? { register: () => {}, unregister: () => {} }
|
|
3609
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmgeometricbrownianmotion_free(ptr >>> 0, 1));
|
|
3610
|
+
/**
|
|
3611
|
+
* WASM wrapper for Geometric Brownian Motion on multivector space
|
|
3612
|
+
*
|
|
3613
|
+
* dX = μX dt + σX dW
|
|
3614
|
+
*
|
|
3615
|
+
* Useful for modeling multiplicative noise processes in geometric algebra.
|
|
3616
|
+
*/
|
|
3617
|
+
export class WasmGeometricBrownianMotion {
|
|
3618
|
+
|
|
3619
|
+
__destroy_into_raw() {
|
|
3620
|
+
const ptr = this.__wbg_ptr;
|
|
3621
|
+
this.__wbg_ptr = 0;
|
|
3622
|
+
WasmGeometricBrownianMotionFinalization.unregister(this);
|
|
3623
|
+
return ptr;
|
|
3624
|
+
}
|
|
3625
|
+
|
|
3626
|
+
free() {
|
|
3627
|
+
const ptr = this.__destroy_into_raw();
|
|
3628
|
+
wasm.__wbg_wasmgeometricbrownianmotion_free(ptr, 0);
|
|
3629
|
+
}
|
|
3630
|
+
/**
|
|
3631
|
+
* Sample a single path of the process
|
|
3632
|
+
*
|
|
3633
|
+
* # Arguments
|
|
3634
|
+
* * `initial` - Initial multivector (8 coefficients)
|
|
3635
|
+
* * `t_end` - End time
|
|
3636
|
+
* * `num_steps` - Number of time steps
|
|
3637
|
+
*
|
|
3638
|
+
* Returns flat array: (num_steps + 1) * 9 values
|
|
3639
|
+
* Each point is [time, coeff0, coeff1, ..., coeff7]
|
|
3640
|
+
* @param {Float64Array} initial
|
|
3641
|
+
* @param {number} t_end
|
|
3642
|
+
* @param {number} num_steps
|
|
3643
|
+
* @returns {Float64Array}
|
|
3644
|
+
*/
|
|
3645
|
+
samplePath(initial, t_end, num_steps) {
|
|
3646
|
+
const ptr0 = passArrayF64ToWasm0(initial, wasm.__wbindgen_malloc);
|
|
3647
|
+
const len0 = WASM_VECTOR_LEN;
|
|
3648
|
+
const ret = wasm.wasmgeometricbrownianmotion_samplePath(this.__wbg_ptr, ptr0, len0, t_end, num_steps);
|
|
3649
|
+
if (ret[3]) {
|
|
3650
|
+
throw takeFromExternrefTable0(ret[2]);
|
|
3651
|
+
}
|
|
3652
|
+
var v2 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
3653
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
3654
|
+
return v2;
|
|
3655
|
+
}
|
|
3656
|
+
/**
|
|
3657
|
+
* Compute expected value at time t given initial value
|
|
3658
|
+
*
|
|
3659
|
+
* E[X(t)] = X(0) * exp(μt)
|
|
3660
|
+
* @param {Float64Array} initial
|
|
3661
|
+
* @param {number} t
|
|
3662
|
+
* @returns {Float64Array}
|
|
3663
|
+
*/
|
|
3664
|
+
expectedValue(initial, t) {
|
|
3665
|
+
const ptr0 = passArrayF64ToWasm0(initial, wasm.__wbindgen_malloc);
|
|
3666
|
+
const len0 = WASM_VECTOR_LEN;
|
|
3667
|
+
const ret = wasm.wasmgeometricbrownianmotion_expectedValue(this.__wbg_ptr, ptr0, len0, t);
|
|
3668
|
+
if (ret[3]) {
|
|
3669
|
+
throw takeFromExternrefTable0(ret[2]);
|
|
3670
|
+
}
|
|
3671
|
+
var v2 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
3672
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
3673
|
+
return v2;
|
|
3674
|
+
}
|
|
3675
|
+
/**
|
|
3676
|
+
* Create a new Geometric Brownian Motion process
|
|
3677
|
+
*
|
|
3678
|
+
* # Arguments
|
|
3679
|
+
* * `mu` - Drift coefficient (expected growth rate)
|
|
3680
|
+
* * `sigma` - Diffusion coefficient (volatility)
|
|
3681
|
+
* @param {number} mu
|
|
3682
|
+
* @param {number} sigma
|
|
3683
|
+
*/
|
|
3684
|
+
constructor(mu, sigma) {
|
|
3685
|
+
const ret = wasm.wasmdualnumber_new(mu, sigma);
|
|
3686
|
+
this.__wbg_ptr = ret >>> 0;
|
|
3687
|
+
WasmGeometricBrownianMotionFinalization.register(this, this.__wbg_ptr, this);
|
|
3688
|
+
return this;
|
|
3689
|
+
}
|
|
3690
|
+
/**
|
|
3691
|
+
* Get drift coefficient
|
|
3692
|
+
* @returns {number}
|
|
3693
|
+
*/
|
|
3694
|
+
getMu() {
|
|
3695
|
+
const ret = wasm.wasmalphaconnection_getAlpha(this.__wbg_ptr);
|
|
3696
|
+
return ret;
|
|
3697
|
+
}
|
|
3698
|
+
/**
|
|
3699
|
+
* Compute variance at time t given initial value
|
|
3700
|
+
*
|
|
3701
|
+
* Var(X(t)) = X(0)² * exp(2μt) * (exp(σ²t) - 1)
|
|
3702
|
+
* @param {Float64Array} initial
|
|
3703
|
+
* @param {number} t
|
|
3704
|
+
* @returns {Float64Array}
|
|
3705
|
+
*/
|
|
3706
|
+
variance(initial, t) {
|
|
3707
|
+
const ptr0 = passArrayF64ToWasm0(initial, wasm.__wbindgen_malloc);
|
|
3708
|
+
const len0 = WASM_VECTOR_LEN;
|
|
3709
|
+
const ret = wasm.wasmgeometricbrownianmotion_variance(this.__wbg_ptr, ptr0, len0, t);
|
|
3710
|
+
if (ret[3]) {
|
|
3711
|
+
throw takeFromExternrefTable0(ret[2]);
|
|
3712
|
+
}
|
|
3713
|
+
var v2 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
3714
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
3715
|
+
return v2;
|
|
3716
|
+
}
|
|
3717
|
+
/**
|
|
3718
|
+
* Get diffusion coefficient
|
|
3719
|
+
* @returns {number}
|
|
3720
|
+
*/
|
|
3721
|
+
getSigma() {
|
|
3722
|
+
const ret = wasm.wasmdualnumber_getDual(this.__wbg_ptr);
|
|
3723
|
+
return ret;
|
|
3724
|
+
}
|
|
3725
|
+
}
|
|
3726
|
+
|
|
3607
3727
|
const WasmGeometricCAFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
3608
3728
|
? { register: () => {}, unregister: () => {} }
|
|
3609
3729
|
: new FinalizationRegistry(ptr => wasm.__wbg_wasmgeometricca_free(ptr >>> 0, 1));
|
|
@@ -4183,6 +4303,108 @@ export class WasmGpuOptimizer {
|
|
|
4183
4303
|
}
|
|
4184
4304
|
}
|
|
4185
4305
|
|
|
4306
|
+
const WasmGradeProjectedDistributionFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
4307
|
+
? { register: () => {}, unregister: () => {} }
|
|
4308
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmgradeprojecteddistribution_free(ptr >>> 0, 1));
|
|
4309
|
+
/**
|
|
4310
|
+
* WASM wrapper for grade-projected distribution
|
|
4311
|
+
*
|
|
4312
|
+
* A distribution that only operates on components of a specific grade.
|
|
4313
|
+
*/
|
|
4314
|
+
export class WasmGradeProjectedDistribution {
|
|
4315
|
+
|
|
4316
|
+
__destroy_into_raw() {
|
|
4317
|
+
const ptr = this.__wbg_ptr;
|
|
4318
|
+
this.__wbg_ptr = 0;
|
|
4319
|
+
WasmGradeProjectedDistributionFinalization.unregister(this);
|
|
4320
|
+
return ptr;
|
|
4321
|
+
}
|
|
4322
|
+
|
|
4323
|
+
free() {
|
|
4324
|
+
const ptr = this.__destroy_into_raw();
|
|
4325
|
+
wasm.__wbg_wasmgradeprojecteddistribution_free(ptr, 0);
|
|
4326
|
+
}
|
|
4327
|
+
/**
|
|
4328
|
+
* Sample and embed into full multivector (other grades are zero)
|
|
4329
|
+
*
|
|
4330
|
+
* Returns 8 coefficients
|
|
4331
|
+
* @returns {Float64Array}
|
|
4332
|
+
*/
|
|
4333
|
+
sampleFull() {
|
|
4334
|
+
const ret = wasm.wasmgradeprojecteddistribution_sampleFull(this.__wbg_ptr);
|
|
4335
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4336
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4337
|
+
return v1;
|
|
4338
|
+
}
|
|
4339
|
+
/**
|
|
4340
|
+
* Get standard deviations
|
|
4341
|
+
* @returns {Float64Array}
|
|
4342
|
+
*/
|
|
4343
|
+
getStdDevs() {
|
|
4344
|
+
const ret = wasm.wasmgradeprojecteddistribution_getStdDevs(this.__wbg_ptr);
|
|
4345
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4346
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4347
|
+
return v1;
|
|
4348
|
+
}
|
|
4349
|
+
/**
|
|
4350
|
+
* Get number of components in this grade
|
|
4351
|
+
* @returns {number}
|
|
4352
|
+
*/
|
|
4353
|
+
getNumComponents() {
|
|
4354
|
+
const ret = wasm.wasmgradeprojecteddistribution_getNumComponents(this.__wbg_ptr);
|
|
4355
|
+
return ret >>> 0;
|
|
4356
|
+
}
|
|
4357
|
+
/**
|
|
4358
|
+
* Create a grade-projected distribution from a Gaussian
|
|
4359
|
+
*
|
|
4360
|
+
* # Arguments
|
|
4361
|
+
* * `gaussian` - Source Gaussian distribution
|
|
4362
|
+
* * `grade` - Grade to project onto (0, 1, 2, or 3 for Cl(3,0,0))
|
|
4363
|
+
* @param {WasmGaussianMultivector} gaussian
|
|
4364
|
+
* @param {number} grade
|
|
4365
|
+
*/
|
|
4366
|
+
constructor(gaussian, grade) {
|
|
4367
|
+
_assertClass(gaussian, WasmGaussianMultivector);
|
|
4368
|
+
const ret = wasm.wasmgradeprojecteddistribution_new(gaussian.__wbg_ptr, grade);
|
|
4369
|
+
if (ret[2]) {
|
|
4370
|
+
throw takeFromExternrefTable0(ret[1]);
|
|
4371
|
+
}
|
|
4372
|
+
this.__wbg_ptr = ret[0] >>> 0;
|
|
4373
|
+
WasmGradeProjectedDistributionFinalization.register(this, this.__wbg_ptr, this);
|
|
4374
|
+
return this;
|
|
4375
|
+
}
|
|
4376
|
+
/**
|
|
4377
|
+
* Sample from this grade-projected distribution
|
|
4378
|
+
*
|
|
4379
|
+
* Returns components for just this grade
|
|
4380
|
+
* @returns {Float64Array}
|
|
4381
|
+
*/
|
|
4382
|
+
sample() {
|
|
4383
|
+
const ret = wasm.wasmgradeprojecteddistribution_sample(this.__wbg_ptr);
|
|
4384
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4385
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4386
|
+
return v1;
|
|
4387
|
+
}
|
|
4388
|
+
/**
|
|
4389
|
+
* Get the mean for this grade's components
|
|
4390
|
+
* @returns {Float64Array}
|
|
4391
|
+
*/
|
|
4392
|
+
getMean() {
|
|
4393
|
+
const ret = wasm.wasmgradeprojecteddistribution_getMean(this.__wbg_ptr);
|
|
4394
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4395
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4396
|
+
return v1;
|
|
4397
|
+
}
|
|
4398
|
+
/**
|
|
4399
|
+
* Get the grade
|
|
4400
|
+
* @returns {number}
|
|
4401
|
+
*/
|
|
4402
|
+
getGrade() {
|
|
4403
|
+
const ret = wasm.riemannianmanifold_dimension(this.__wbg_ptr);
|
|
4404
|
+
return ret >>> 0;
|
|
4405
|
+
}
|
|
4406
|
+
}
|
|
4407
|
+
|
|
4186
4408
|
const WasmGrassmannianFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
4187
4409
|
? { register: () => {}, unregister: () => {} }
|
|
4188
4410
|
: new FinalizationRegistry(ptr => wasm.__wbg_wasmgrassmannian_free(ptr >>> 0, 1));
|
|
@@ -4535,6 +4757,184 @@ export class WasmLebesgueMeasure {
|
|
|
4535
4757
|
}
|
|
4536
4758
|
}
|
|
4537
4759
|
|
|
4760
|
+
const WasmMCMCDiagnosticsFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
4761
|
+
? { register: () => {}, unregister: () => {} }
|
|
4762
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmmcmcdiagnostics_free(ptr >>> 0, 1));
|
|
4763
|
+
/**
|
|
4764
|
+
* WASM wrapper for MCMC diagnostics
|
|
4765
|
+
*/
|
|
4766
|
+
export class WasmMCMCDiagnostics {
|
|
4767
|
+
|
|
4768
|
+
static __wrap(ptr) {
|
|
4769
|
+
ptr = ptr >>> 0;
|
|
4770
|
+
const obj = Object.create(WasmMCMCDiagnostics.prototype);
|
|
4771
|
+
obj.__wbg_ptr = ptr;
|
|
4772
|
+
WasmMCMCDiagnosticsFinalization.register(obj, obj.__wbg_ptr, obj);
|
|
4773
|
+
return obj;
|
|
4774
|
+
}
|
|
4775
|
+
|
|
4776
|
+
__destroy_into_raw() {
|
|
4777
|
+
const ptr = this.__wbg_ptr;
|
|
4778
|
+
this.__wbg_ptr = 0;
|
|
4779
|
+
WasmMCMCDiagnosticsFinalization.unregister(this);
|
|
4780
|
+
return ptr;
|
|
4781
|
+
}
|
|
4782
|
+
|
|
4783
|
+
free() {
|
|
4784
|
+
const ptr = this.__destroy_into_raw();
|
|
4785
|
+
wasm.__wbg_wasmmcmcdiagnostics_free(ptr, 0);
|
|
4786
|
+
}
|
|
4787
|
+
/**
|
|
4788
|
+
* Total number of steps
|
|
4789
|
+
* @returns {number}
|
|
4790
|
+
*/
|
|
4791
|
+
get num_steps() {
|
|
4792
|
+
const ret = wasm.__wbg_get_wasmmcmcdiagnostics_num_steps(this.__wbg_ptr);
|
|
4793
|
+
return ret >>> 0;
|
|
4794
|
+
}
|
|
4795
|
+
/**
|
|
4796
|
+
* Total number of steps
|
|
4797
|
+
* @param {number} arg0
|
|
4798
|
+
*/
|
|
4799
|
+
set num_steps(arg0) {
|
|
4800
|
+
wasm.__wbg_set_wasmmcmcdiagnostics_num_steps(this.__wbg_ptr, arg0);
|
|
4801
|
+
}
|
|
4802
|
+
/**
|
|
4803
|
+
* Acceptance rate
|
|
4804
|
+
* @returns {number}
|
|
4805
|
+
*/
|
|
4806
|
+
get acceptance_rate() {
|
|
4807
|
+
const ret = wasm.__wbg_get_wasmmcmcdiagnostics_acceptance_rate(this.__wbg_ptr);
|
|
4808
|
+
return ret;
|
|
4809
|
+
}
|
|
4810
|
+
/**
|
|
4811
|
+
* Acceptance rate
|
|
4812
|
+
* @param {number} arg0
|
|
4813
|
+
*/
|
|
4814
|
+
set acceptance_rate(arg0) {
|
|
4815
|
+
wasm.__wbg_set_wasmmcmcdiagnostics_acceptance_rate(this.__wbg_ptr, arg0);
|
|
4816
|
+
}
|
|
4817
|
+
/**
|
|
4818
|
+
* Check if the sampler has converged (R-hat < 1.1)
|
|
4819
|
+
* @returns {boolean}
|
|
4820
|
+
*/
|
|
4821
|
+
isConverged() {
|
|
4822
|
+
const ret = wasm.wasmmcmcdiagnostics_isConverged(this.__wbg_ptr);
|
|
4823
|
+
return ret !== 0;
|
|
4824
|
+
}
|
|
4825
|
+
/**
|
|
4826
|
+
* Get effective sample size (or -1 if not computed)
|
|
4827
|
+
* @returns {number}
|
|
4828
|
+
*/
|
|
4829
|
+
getEffectiveSampleSize() {
|
|
4830
|
+
const ret = wasm.wasmmcmcdiagnostics_getEffectiveSampleSize(this.__wbg_ptr);
|
|
4831
|
+
return ret;
|
|
4832
|
+
}
|
|
4833
|
+
/**
|
|
4834
|
+
* Get R-hat statistic (or -1 if not computed)
|
|
4835
|
+
* @returns {number}
|
|
4836
|
+
*/
|
|
4837
|
+
getRHat() {
|
|
4838
|
+
const ret = wasm.wasmmcmcdiagnostics_getRHat(this.__wbg_ptr);
|
|
4839
|
+
return ret;
|
|
4840
|
+
}
|
|
4841
|
+
}
|
|
4842
|
+
|
|
4843
|
+
const WasmMetropolisHastingsFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
4844
|
+
? { register: () => {}, unregister: () => {} }
|
|
4845
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmmetropolishastings_free(ptr >>> 0, 1));
|
|
4846
|
+
/**
|
|
4847
|
+
* WASM wrapper for Metropolis-Hastings MCMC sampler
|
|
4848
|
+
*
|
|
4849
|
+
* Samples from a target distribution using random-walk proposals.
|
|
4850
|
+
*/
|
|
4851
|
+
export class WasmMetropolisHastings {
|
|
4852
|
+
|
|
4853
|
+
__destroy_into_raw() {
|
|
4854
|
+
const ptr = this.__wbg_ptr;
|
|
4855
|
+
this.__wbg_ptr = 0;
|
|
4856
|
+
WasmMetropolisHastingsFinalization.unregister(this);
|
|
4857
|
+
return ptr;
|
|
4858
|
+
}
|
|
4859
|
+
|
|
4860
|
+
free() {
|
|
4861
|
+
const ptr = this.__destroy_into_raw();
|
|
4862
|
+
wasm.__wbg_wasmmetropolishastings_free(ptr, 0);
|
|
4863
|
+
}
|
|
4864
|
+
/**
|
|
4865
|
+
* Get sampling diagnostics
|
|
4866
|
+
* @returns {WasmMCMCDiagnostics}
|
|
4867
|
+
*/
|
|
4868
|
+
diagnostics() {
|
|
4869
|
+
const ret = wasm.wasmmetropolishastings_diagnostics(this.__wbg_ptr);
|
|
4870
|
+
return WasmMCMCDiagnostics.__wrap(ret);
|
|
4871
|
+
}
|
|
4872
|
+
/**
|
|
4873
|
+
* Get current sample
|
|
4874
|
+
* @returns {Float64Array}
|
|
4875
|
+
*/
|
|
4876
|
+
getCurrent() {
|
|
4877
|
+
const ret = wasm.wasmmetropolishastings_getCurrent(this.__wbg_ptr);
|
|
4878
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4879
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4880
|
+
return v1;
|
|
4881
|
+
}
|
|
4882
|
+
/**
|
|
4883
|
+
* Get current acceptance rate
|
|
4884
|
+
* @returns {number}
|
|
4885
|
+
*/
|
|
4886
|
+
getAcceptanceRate() {
|
|
4887
|
+
const ret = wasm.wasmmetropolishastings_getAcceptanceRate(this.__wbg_ptr);
|
|
4888
|
+
return ret;
|
|
4889
|
+
}
|
|
4890
|
+
/**
|
|
4891
|
+
* Create a new Metropolis-Hastings sampler for a Gaussian target
|
|
4892
|
+
*
|
|
4893
|
+
* # Arguments
|
|
4894
|
+
* * `target` - The target Gaussian distribution to sample from
|
|
4895
|
+
* * `proposal_std` - Standard deviation for the proposal distribution
|
|
4896
|
+
* @param {WasmGaussianMultivector} target
|
|
4897
|
+
* @param {number} proposal_std
|
|
4898
|
+
*/
|
|
4899
|
+
constructor(target, proposal_std) {
|
|
4900
|
+
_assertClass(target, WasmGaussianMultivector);
|
|
4901
|
+
const ret = wasm.wasmmetropolishastings_new(target.__wbg_ptr, proposal_std);
|
|
4902
|
+
this.__wbg_ptr = ret >>> 0;
|
|
4903
|
+
WasmMetropolisHastingsFinalization.register(this, this.__wbg_ptr, this);
|
|
4904
|
+
return this;
|
|
4905
|
+
}
|
|
4906
|
+
/**
|
|
4907
|
+
* Run the sampler for multiple steps
|
|
4908
|
+
*
|
|
4909
|
+
* # Arguments
|
|
4910
|
+
* * `num_samples` - Number of samples to collect
|
|
4911
|
+
* * `burnin` - Number of burn-in steps to discard
|
|
4912
|
+
*
|
|
4913
|
+
* Returns flat array of samples (num_samples * 8)
|
|
4914
|
+
* @param {number} num_samples
|
|
4915
|
+
* @param {number} burnin
|
|
4916
|
+
* @returns {Float64Array}
|
|
4917
|
+
*/
|
|
4918
|
+
run(num_samples, burnin) {
|
|
4919
|
+
const ret = wasm.wasmmetropolishastings_run(this.__wbg_ptr, num_samples, burnin);
|
|
4920
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4921
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4922
|
+
return v1;
|
|
4923
|
+
}
|
|
4924
|
+
/**
|
|
4925
|
+
* Take a single MCMC step
|
|
4926
|
+
*
|
|
4927
|
+
* Returns the new sample (8 coefficients)
|
|
4928
|
+
* @returns {Float64Array}
|
|
4929
|
+
*/
|
|
4930
|
+
step() {
|
|
4931
|
+
const ret = wasm.wasmmetropolishastings_step(this.__wbg_ptr);
|
|
4932
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
4933
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
4934
|
+
return v1;
|
|
4935
|
+
}
|
|
4936
|
+
}
|
|
4937
|
+
|
|
4538
4938
|
const WasmModuliSpaceFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
4539
4939
|
? { register: () => {}, unregister: () => {} }
|
|
4540
4940
|
: new FinalizationRegistry(ptr => wasm.__wbg_wasmmodulispace_free(ptr >>> 0, 1));
|
|
@@ -6506,7 +6906,7 @@ export class WasmTrajectoryPoint {
|
|
|
6506
6906
|
* @returns {number}
|
|
6507
6907
|
*/
|
|
6508
6908
|
get time() {
|
|
6509
|
-
const ret = wasm.
|
|
6909
|
+
const ret = wasm.__wbg_get_wasmmcmcdiagnostics_acceptance_rate(this.__wbg_ptr);
|
|
6510
6910
|
return ret;
|
|
6511
6911
|
}
|
|
6512
6912
|
/**
|
|
@@ -6514,7 +6914,7 @@ export class WasmTrajectoryPoint {
|
|
|
6514
6914
|
* @param {number} arg0
|
|
6515
6915
|
*/
|
|
6516
6916
|
set time(arg0) {
|
|
6517
|
-
wasm.
|
|
6917
|
+
wasm.__wbg_set_wasmmcmcdiagnostics_acceptance_rate(this.__wbg_ptr, arg0);
|
|
6518
6918
|
}
|
|
6519
6919
|
/**
|
|
6520
6920
|
* Get position
|
|
@@ -7402,6 +7802,166 @@ export class WasmTropicalViterbi {
|
|
|
7402
7802
|
}
|
|
7403
7803
|
}
|
|
7404
7804
|
|
|
7805
|
+
const WasmUncertainMultivectorFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
7806
|
+
? { register: () => {}, unregister: () => {} }
|
|
7807
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmuncertainmultivector_free(ptr >>> 0, 1));
|
|
7808
|
+
/**
|
|
7809
|
+
* WASM wrapper for uncertain multivector (mean + covariance)
|
|
7810
|
+
*
|
|
7811
|
+
* Represents a multivector with associated uncertainty, useful for
|
|
7812
|
+
* error propagation through geometric operations.
|
|
7813
|
+
*/
|
|
7814
|
+
export class WasmUncertainMultivector {
|
|
7815
|
+
|
|
7816
|
+
static __wrap(ptr) {
|
|
7817
|
+
ptr = ptr >>> 0;
|
|
7818
|
+
const obj = Object.create(WasmUncertainMultivector.prototype);
|
|
7819
|
+
obj.__wbg_ptr = ptr;
|
|
7820
|
+
WasmUncertainMultivectorFinalization.register(obj, obj.__wbg_ptr, obj);
|
|
7821
|
+
return obj;
|
|
7822
|
+
}
|
|
7823
|
+
|
|
7824
|
+
__destroy_into_raw() {
|
|
7825
|
+
const ptr = this.__wbg_ptr;
|
|
7826
|
+
this.__wbg_ptr = 0;
|
|
7827
|
+
WasmUncertainMultivectorFinalization.unregister(this);
|
|
7828
|
+
return ptr;
|
|
7829
|
+
}
|
|
7830
|
+
|
|
7831
|
+
free() {
|
|
7832
|
+
const ptr = this.__destroy_into_raw();
|
|
7833
|
+
wasm.__wbg_wasmuncertainmultivector_free(ptr, 0);
|
|
7834
|
+
}
|
|
7835
|
+
/**
|
|
7836
|
+
* Get standard deviations
|
|
7837
|
+
* @returns {Float64Array}
|
|
7838
|
+
*/
|
|
7839
|
+
getStdDevs() {
|
|
7840
|
+
const ret = wasm.wasmuncertainmultivector_getStdDevs(this.__wbg_ptr);
|
|
7841
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
7842
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
7843
|
+
return v1;
|
|
7844
|
+
}
|
|
7845
|
+
/**
|
|
7846
|
+
* Create a deterministic (zero variance) uncertain multivector
|
|
7847
|
+
* @param {Float64Array} value
|
|
7848
|
+
* @returns {WasmUncertainMultivector}
|
|
7849
|
+
*/
|
|
7850
|
+
static deterministic(value) {
|
|
7851
|
+
const ptr0 = passArrayF64ToWasm0(value, wasm.__wbindgen_malloc);
|
|
7852
|
+
const len0 = WASM_VECTOR_LEN;
|
|
7853
|
+
const ret = wasm.wasmuncertainmultivector_deterministic(ptr0, len0);
|
|
7854
|
+
if (ret[2]) {
|
|
7855
|
+
throw takeFromExternrefTable0(ret[1]);
|
|
7856
|
+
}
|
|
7857
|
+
return WasmUncertainMultivector.__wrap(ret[0]);
|
|
7858
|
+
}
|
|
7859
|
+
/**
|
|
7860
|
+
* Get variances (diagonal of covariance)
|
|
7861
|
+
* @returns {Float64Array}
|
|
7862
|
+
*/
|
|
7863
|
+
getVariances() {
|
|
7864
|
+
const ret = wasm.wasmuncertainmultivector_getVariances(this.__wbg_ptr);
|
|
7865
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
7866
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
7867
|
+
return v1;
|
|
7868
|
+
}
|
|
7869
|
+
/**
|
|
7870
|
+
* Get the covariance matrix (64 values, row-major)
|
|
7871
|
+
* @returns {Float64Array}
|
|
7872
|
+
*/
|
|
7873
|
+
getCovariance() {
|
|
7874
|
+
const ret = wasm.wasmuncertainmultivector_getCovariance(this.__wbg_ptr);
|
|
7875
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
7876
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
7877
|
+
return v1;
|
|
7878
|
+
}
|
|
7879
|
+
/**
|
|
7880
|
+
* Create with full covariance matrix
|
|
7881
|
+
*
|
|
7882
|
+
* # Arguments
|
|
7883
|
+
* * `mean` - 8 coefficients for the mean
|
|
7884
|
+
* * `covariance` - 64 values for 8x8 covariance matrix (row-major)
|
|
7885
|
+
* @param {Float64Array} mean
|
|
7886
|
+
* @param {Float64Array} covariance
|
|
7887
|
+
* @returns {WasmUncertainMultivector}
|
|
7888
|
+
*/
|
|
7889
|
+
static withCovariance(mean, covariance) {
|
|
7890
|
+
const ptr0 = passArrayF64ToWasm0(mean, wasm.__wbindgen_malloc);
|
|
7891
|
+
const len0 = WASM_VECTOR_LEN;
|
|
7892
|
+
const ptr1 = passArrayF64ToWasm0(covariance, wasm.__wbindgen_malloc);
|
|
7893
|
+
const len1 = WASM_VECTOR_LEN;
|
|
7894
|
+
const ret = wasm.wasmuncertainmultivector_withCovariance(ptr0, len0, ptr1, len1);
|
|
7895
|
+
if (ret[2]) {
|
|
7896
|
+
throw takeFromExternrefTable0(ret[1]);
|
|
7897
|
+
}
|
|
7898
|
+
return WasmUncertainMultivector.__wrap(ret[0]);
|
|
7899
|
+
}
|
|
7900
|
+
/**
|
|
7901
|
+
* Get total variance (trace of covariance)
|
|
7902
|
+
* @returns {number}
|
|
7903
|
+
*/
|
|
7904
|
+
getTotalVariance() {
|
|
7905
|
+
const ret = wasm.wasmuncertainmultivector_getTotalVariance(this.__wbg_ptr);
|
|
7906
|
+
return ret;
|
|
7907
|
+
}
|
|
7908
|
+
/**
|
|
7909
|
+
* Add two uncertain multivectors (assuming independence)
|
|
7910
|
+
*
|
|
7911
|
+
* For Z = X + Y: E[Z] = E[X] + E[Y], Var(Z) = Var(X) + Var(Y)
|
|
7912
|
+
* @param {WasmUncertainMultivector} other
|
|
7913
|
+
* @returns {WasmUncertainMultivector}
|
|
7914
|
+
*/
|
|
7915
|
+
add(other) {
|
|
7916
|
+
_assertClass(other, WasmUncertainMultivector);
|
|
7917
|
+
const ret = wasm.wasmuncertainmultivector_add(this.__wbg_ptr, other.__wbg_ptr);
|
|
7918
|
+
return WasmUncertainMultivector.__wrap(ret);
|
|
7919
|
+
}
|
|
7920
|
+
/**
|
|
7921
|
+
* Create an uncertain multivector with diagonal covariance
|
|
7922
|
+
*
|
|
7923
|
+
* # Arguments
|
|
7924
|
+
* * `mean` - 8 coefficients for the mean
|
|
7925
|
+
* * `variances` - 8 values for per-coefficient variance
|
|
7926
|
+
* @param {Float64Array} mean
|
|
7927
|
+
* @param {Float64Array} variances
|
|
7928
|
+
*/
|
|
7929
|
+
constructor(mean, variances) {
|
|
7930
|
+
const ptr0 = passArrayF64ToWasm0(mean, wasm.__wbindgen_malloc);
|
|
7931
|
+
const len0 = WASM_VECTOR_LEN;
|
|
7932
|
+
const ptr1 = passArrayF64ToWasm0(variances, wasm.__wbindgen_malloc);
|
|
7933
|
+
const len1 = WASM_VECTOR_LEN;
|
|
7934
|
+
const ret = wasm.wasmuncertainmultivector_new(ptr0, len0, ptr1, len1);
|
|
7935
|
+
if (ret[2]) {
|
|
7936
|
+
throw takeFromExternrefTable0(ret[1]);
|
|
7937
|
+
}
|
|
7938
|
+
this.__wbg_ptr = ret[0] >>> 0;
|
|
7939
|
+
WasmUncertainMultivectorFinalization.register(this, this.__wbg_ptr, this);
|
|
7940
|
+
return this;
|
|
7941
|
+
}
|
|
7942
|
+
/**
|
|
7943
|
+
* Linear propagation: scale by a constant
|
|
7944
|
+
*
|
|
7945
|
+
* For Y = aX: E[Y] = aE[X], Var(Y) = a²Var(X)
|
|
7946
|
+
* @param {number} scalar
|
|
7947
|
+
* @returns {WasmUncertainMultivector}
|
|
7948
|
+
*/
|
|
7949
|
+
scale(scalar) {
|
|
7950
|
+
const ret = wasm.wasmuncertainmultivector_scale(this.__wbg_ptr, scalar);
|
|
7951
|
+
return WasmUncertainMultivector.__wrap(ret);
|
|
7952
|
+
}
|
|
7953
|
+
/**
|
|
7954
|
+
* Get the mean
|
|
7955
|
+
* @returns {Float64Array}
|
|
7956
|
+
*/
|
|
7957
|
+
getMean() {
|
|
7958
|
+
const ret = wasm.wasmuncertainmultivector_getMean(this.__wbg_ptr);
|
|
7959
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
7960
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
7961
|
+
return v1;
|
|
7962
|
+
}
|
|
7963
|
+
}
|
|
7964
|
+
|
|
7405
7965
|
const WasmUniformMultivectorFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
7406
7966
|
? { register: () => {}, unregister: () => {} }
|
|
7407
7967
|
: new FinalizationRegistry(ptr => wasm.__wbg_wasmuniformmultivector_free(ptr >>> 0, 1));
|
|
@@ -7560,6 +8120,69 @@ export class WasmUniformMultivector {
|
|
|
7560
8120
|
}
|
|
7561
8121
|
}
|
|
7562
8122
|
|
|
8123
|
+
const WasmWienerProcessFinalization = (typeof FinalizationRegistry === 'undefined')
|
|
8124
|
+
? { register: () => {}, unregister: () => {} }
|
|
8125
|
+
: new FinalizationRegistry(ptr => wasm.__wbg_wasmwienerprocess_free(ptr >>> 0, 1));
|
|
8126
|
+
/**
|
|
8127
|
+
* WASM wrapper for Wiener process (Brownian motion)
|
|
8128
|
+
*
|
|
8129
|
+
* Standard Brownian motion W(t) with W(0) = 0
|
|
8130
|
+
*/
|
|
8131
|
+
export class WasmWienerProcess {
|
|
8132
|
+
|
|
8133
|
+
__destroy_into_raw() {
|
|
8134
|
+
const ptr = this.__wbg_ptr;
|
|
8135
|
+
this.__wbg_ptr = 0;
|
|
8136
|
+
WasmWienerProcessFinalization.unregister(this);
|
|
8137
|
+
return ptr;
|
|
8138
|
+
}
|
|
8139
|
+
|
|
8140
|
+
free() {
|
|
8141
|
+
const ptr = this.__destroy_into_raw();
|
|
8142
|
+
wasm.__wbg_wasmwienerprocess_free(ptr, 0);
|
|
8143
|
+
}
|
|
8144
|
+
/**
|
|
8145
|
+
* Sample a path of the Wiener process
|
|
8146
|
+
*
|
|
8147
|
+
* # Arguments
|
|
8148
|
+
* * `t_end` - End time
|
|
8149
|
+
* * `num_steps` - Number of time steps
|
|
8150
|
+
*
|
|
8151
|
+
* Returns flat array: (num_steps + 1) * (dim + 1) values
|
|
8152
|
+
* Each point is [time, w0, w1, ...]
|
|
8153
|
+
* @param {number} t_end
|
|
8154
|
+
* @param {number} num_steps
|
|
8155
|
+
* @returns {Float64Array}
|
|
8156
|
+
*/
|
|
8157
|
+
samplePath(t_end, num_steps) {
|
|
8158
|
+
const ret = wasm.wasmwienerprocess_samplePath(this.__wbg_ptr, t_end, num_steps);
|
|
8159
|
+
var v1 = getArrayF64FromWasm0(ret[0], ret[1]).slice();
|
|
8160
|
+
wasm.__wbindgen_free(ret[0], ret[1] * 8, 8);
|
|
8161
|
+
return v1;
|
|
8162
|
+
}
|
|
8163
|
+
/**
|
|
8164
|
+
* Create a new Wiener process
|
|
8165
|
+
*
|
|
8166
|
+
* # Arguments
|
|
8167
|
+
* * `dim` - Dimension of the process (default 8 for multivector space)
|
|
8168
|
+
* @param {number | null} [dim]
|
|
8169
|
+
*/
|
|
8170
|
+
constructor(dim) {
|
|
8171
|
+
const ret = wasm.wasmwienerprocess_new(isLikeNone(dim) ? 0x100000001 : (dim) >>> 0);
|
|
8172
|
+
this.__wbg_ptr = ret >>> 0;
|
|
8173
|
+
WasmWienerProcessFinalization.register(this, this.__wbg_ptr, this);
|
|
8174
|
+
return this;
|
|
8175
|
+
}
|
|
8176
|
+
/**
|
|
8177
|
+
* Get dimension
|
|
8178
|
+
* @returns {number}
|
|
8179
|
+
*/
|
|
8180
|
+
getDim() {
|
|
8181
|
+
const ret = wasm.wasmlebesguemeasure_getDimension(this.__wbg_ptr);
|
|
8182
|
+
return ret >>> 0;
|
|
8183
|
+
}
|
|
8184
|
+
}
|
|
8185
|
+
|
|
7563
8186
|
const EXPECTED_RESPONSE_TYPES = new Set(['basic', 'cors', 'default']);
|
|
7564
8187
|
|
|
7565
8188
|
async function __wbg_load(module, imports) {
|
|
@@ -7641,12 +8264,12 @@ function __wbg_get_imports() {
|
|
|
7641
8264
|
const ret = arg0.length;
|
|
7642
8265
|
return ret;
|
|
7643
8266
|
};
|
|
7644
|
-
imports.wbg.__wbg_log_7696259bf4d9d36d = function(arg0, arg1) {
|
|
7645
|
-
console.log(getStringFromWasm0(arg0, arg1));
|
|
7646
|
-
};
|
|
7647
8267
|
imports.wbg.__wbg_log_ea240990d83e374e = function(arg0) {
|
|
7648
8268
|
console.log(arg0);
|
|
7649
8269
|
};
|
|
8270
|
+
imports.wbg.__wbg_log_fcb816babb5e424a = function(arg0, arg1) {
|
|
8271
|
+
console.log(getStringFromWasm0(arg0, arg1));
|
|
8272
|
+
};
|
|
7650
8273
|
imports.wbg.__wbg_new_07b483f72211fd66 = function() {
|
|
7651
8274
|
const ret = new Object();
|
|
7652
8275
|
return ret;
|
|
@@ -7666,7 +8289,7 @@ function __wbg_get_imports() {
|
|
|
7666
8289
|
const a = state0.a;
|
|
7667
8290
|
state0.a = 0;
|
|
7668
8291
|
try {
|
|
7669
|
-
return
|
|
8292
|
+
return __wbg_adapter_550(a, state0.b, arg0, arg1);
|
|
7670
8293
|
} finally {
|
|
7671
8294
|
state0.a = a;
|
|
7672
8295
|
}
|
|
@@ -7766,7 +8389,7 @@ function __wbg_get_imports() {
|
|
|
7766
8389
|
const ret = false;
|
|
7767
8390
|
return ret;
|
|
7768
8391
|
};
|
|
7769
|
-
imports.wbg.
|
|
8392
|
+
imports.wbg.__wbindgen_closure_wrapper1708 = function(arg0, arg1, arg2) {
|
|
7770
8393
|
const ret = makeMutClosure(arg0, arg1, 40, __wbg_adapter_28);
|
|
7771
8394
|
return ret;
|
|
7772
8395
|
};
|
package/amari_wasm_bg.wasm
CHANGED
|
Binary file
|
package/package.json
CHANGED
|
@@ -5,7 +5,7 @@
|
|
|
5
5
|
"Amari Contributors"
|
|
6
6
|
],
|
|
7
7
|
"description": "WebAssembly bindings for Amari mathematical computing library - geometric algebra, tropical algebra, automatic differentiation, measure theory, fusion systems, and information geometry",
|
|
8
|
-
"version": "0.
|
|
8
|
+
"version": "0.14.0",
|
|
9
9
|
"license": "MIT OR Apache-2.0",
|
|
10
10
|
"repository": {
|
|
11
11
|
"type": "git",
|