@justinelliottcobb/amari-wasm 0.12.3 → 0.14.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/amari_wasm.d.ts CHANGED
@@ -1165,6 +1165,86 @@ export class WasmFourVelocity {
1165
1165
  */
1166
1166
  to_string(): string;
1167
1167
  }
1168
+ /**
1169
+ * WASM wrapper for Gaussian distribution on Cl(3,0,0) multivector space
1170
+ *
1171
+ * A Gaussian distribution over 8-dimensional multivector space with
1172
+ * configurable mean and per-component standard deviation.
1173
+ */
1174
+ export class WasmGaussianMultivector {
1175
+ free(): void;
1176
+ /**
1177
+ * Get the standard deviations
1178
+ *
1179
+ * Returns 8 values
1180
+ */
1181
+ getStdDevs(): Float64Array;
1182
+ /**
1183
+ * Get the variance (square of std devs)
1184
+ *
1185
+ * Returns 8 values
1186
+ */
1187
+ getVariance(): Float64Array;
1188
+ /**
1189
+ * Draw multiple samples from this distribution
1190
+ *
1191
+ * Returns flat array of coefficients: num_samples * 8
1192
+ */
1193
+ sampleBatch(num_samples: number): Float64Array;
1194
+ /**
1195
+ * Get the full covariance matrix (flattened, row-major)
1196
+ *
1197
+ * Returns 64 values (8x8 matrix)
1198
+ */
1199
+ getCovariance(): Float64Array;
1200
+ /**
1201
+ * Create a Gaussian with specified mean and standard deviation
1202
+ *
1203
+ * # Arguments
1204
+ * * `mean` - 8 coefficients for the mean multivector
1205
+ * * `std_dev` - 8 coefficients for per-coefficient standard deviation
1206
+ */
1207
+ static withParameters(mean: Float64Array, std_dev: Float64Array): WasmGaussianMultivector;
1208
+ /**
1209
+ * Create a Gaussian concentrated on a specific grade
1210
+ *
1211
+ * # Arguments
1212
+ * * `grade` - The grade to concentrate on (0=scalar, 1=vectors, 2=bivectors, 3=pseudoscalar)
1213
+ * * `variance` - Variance for coefficients of that grade
1214
+ */
1215
+ static gradeConcentrated(grade: number, variance: number): WasmGaussianMultivector;
1216
+ /**
1217
+ * Create a standard Gaussian (zero mean, unit variance per coefficient)
1218
+ */
1219
+ constructor();
1220
+ /**
1221
+ * Draw a sample from this distribution
1222
+ *
1223
+ * Returns 8 coefficients for the sampled multivector
1224
+ */
1225
+ sample(): Float64Array;
1226
+ /**
1227
+ * Get the mean of this distribution
1228
+ *
1229
+ * Returns 8 coefficients
1230
+ */
1231
+ getMean(): Float64Array;
1232
+ /**
1233
+ * Compute log probability of a multivector
1234
+ *
1235
+ * # Arguments
1236
+ * * `coefficients` - 8 coefficients of the multivector
1237
+ */
1238
+ logProb(coefficients: Float64Array): number;
1239
+ /**
1240
+ * Create an isotropic Gaussian with given mean and variance
1241
+ *
1242
+ * # Arguments
1243
+ * * `mean` - 8 coefficients for the mean multivector
1244
+ * * `variance` - Variance (same for all components)
1245
+ */
1246
+ static isotropic(mean: Float64Array, variance: number): WasmGaussianMultivector;
1247
+ }
1168
1248
  /**
1169
1249
  * WASM wrapper for geodesic integration
1170
1250
  */
@@ -1180,6 +1260,56 @@ export class WasmGeodesicIntegrator {
1180
1260
  */
1181
1261
  static with_schwarzschild(metric: WasmSchwarzschildMetric): WasmGeodesicIntegrator;
1182
1262
  }
1263
+ /**
1264
+ * WASM wrapper for Geometric Brownian Motion on multivector space
1265
+ *
1266
+ * dX = μX dt + σX dW
1267
+ *
1268
+ * Useful for modeling multiplicative noise processes in geometric algebra.
1269
+ */
1270
+ export class WasmGeometricBrownianMotion {
1271
+ free(): void;
1272
+ /**
1273
+ * Sample a single path of the process
1274
+ *
1275
+ * # Arguments
1276
+ * * `initial` - Initial multivector (8 coefficients)
1277
+ * * `t_end` - End time
1278
+ * * `num_steps` - Number of time steps
1279
+ *
1280
+ * Returns flat array: (num_steps + 1) * 9 values
1281
+ * Each point is [time, coeff0, coeff1, ..., coeff7]
1282
+ */
1283
+ samplePath(initial: Float64Array, t_end: number, num_steps: number): Float64Array;
1284
+ /**
1285
+ * Compute expected value at time t given initial value
1286
+ *
1287
+ * E[X(t)] = X(0) * exp(μt)
1288
+ */
1289
+ expectedValue(initial: Float64Array, t: number): Float64Array;
1290
+ /**
1291
+ * Create a new Geometric Brownian Motion process
1292
+ *
1293
+ * # Arguments
1294
+ * * `mu` - Drift coefficient (expected growth rate)
1295
+ * * `sigma` - Diffusion coefficient (volatility)
1296
+ */
1297
+ constructor(mu: number, sigma: number);
1298
+ /**
1299
+ * Get drift coefficient
1300
+ */
1301
+ getMu(): number;
1302
+ /**
1303
+ * Compute variance at time t given initial value
1304
+ *
1305
+ * Var(X(t)) = X(0)² * exp(2μt) * (exp(σ²t) - 1)
1306
+ */
1307
+ variance(initial: Float64Array, t: number): Float64Array;
1308
+ /**
1309
+ * Get diffusion coefficient
1310
+ */
1311
+ getSigma(): number;
1312
+ }
1183
1313
  /**
1184
1314
  * WASM wrapper for Geometric Cellular Automaton
1185
1315
  */
@@ -1380,6 +1510,50 @@ export class WasmGpuOptimizer {
1380
1510
  */
1381
1511
  constructor();
1382
1512
  }
1513
+ /**
1514
+ * WASM wrapper for grade-projected distribution
1515
+ *
1516
+ * A distribution that only operates on components of a specific grade.
1517
+ */
1518
+ export class WasmGradeProjectedDistribution {
1519
+ free(): void;
1520
+ /**
1521
+ * Sample and embed into full multivector (other grades are zero)
1522
+ *
1523
+ * Returns 8 coefficients
1524
+ */
1525
+ sampleFull(): Float64Array;
1526
+ /**
1527
+ * Get standard deviations
1528
+ */
1529
+ getStdDevs(): Float64Array;
1530
+ /**
1531
+ * Get number of components in this grade
1532
+ */
1533
+ getNumComponents(): number;
1534
+ /**
1535
+ * Create a grade-projected distribution from a Gaussian
1536
+ *
1537
+ * # Arguments
1538
+ * * `gaussian` - Source Gaussian distribution
1539
+ * * `grade` - Grade to project onto (0, 1, 2, or 3 for Cl(3,0,0))
1540
+ */
1541
+ constructor(gaussian: WasmGaussianMultivector, grade: number);
1542
+ /**
1543
+ * Sample from this grade-projected distribution
1544
+ *
1545
+ * Returns components for just this grade
1546
+ */
1547
+ sample(): Float64Array;
1548
+ /**
1549
+ * Get the mean for this grade's components
1550
+ */
1551
+ getMean(): Float64Array;
1552
+ /**
1553
+ * Get the grade
1554
+ */
1555
+ getGrade(): number;
1556
+ }
1383
1557
  /**
1384
1558
  * WASM wrapper for Grassmannian varieties
1385
1559
  */
@@ -1505,6 +1679,77 @@ export class WasmLebesgueMeasure {
1505
1679
  */
1506
1680
  constructor(dimension: number);
1507
1681
  }
1682
+ /**
1683
+ * WASM wrapper for MCMC diagnostics
1684
+ */
1685
+ export class WasmMCMCDiagnostics {
1686
+ private constructor();
1687
+ free(): void;
1688
+ /**
1689
+ * Check if the sampler has converged (R-hat < 1.1)
1690
+ */
1691
+ isConverged(): boolean;
1692
+ /**
1693
+ * Get effective sample size (or -1 if not computed)
1694
+ */
1695
+ getEffectiveSampleSize(): number;
1696
+ /**
1697
+ * Get R-hat statistic (or -1 if not computed)
1698
+ */
1699
+ getRHat(): number;
1700
+ /**
1701
+ * Total number of steps
1702
+ */
1703
+ num_steps: number;
1704
+ /**
1705
+ * Acceptance rate
1706
+ */
1707
+ acceptance_rate: number;
1708
+ }
1709
+ /**
1710
+ * WASM wrapper for Metropolis-Hastings MCMC sampler
1711
+ *
1712
+ * Samples from a target distribution using random-walk proposals.
1713
+ */
1714
+ export class WasmMetropolisHastings {
1715
+ free(): void;
1716
+ /**
1717
+ * Get sampling diagnostics
1718
+ */
1719
+ diagnostics(): WasmMCMCDiagnostics;
1720
+ /**
1721
+ * Get current sample
1722
+ */
1723
+ getCurrent(): Float64Array;
1724
+ /**
1725
+ * Get current acceptance rate
1726
+ */
1727
+ getAcceptanceRate(): number;
1728
+ /**
1729
+ * Create a new Metropolis-Hastings sampler for a Gaussian target
1730
+ *
1731
+ * # Arguments
1732
+ * * `target` - The target Gaussian distribution to sample from
1733
+ * * `proposal_std` - Standard deviation for the proposal distribution
1734
+ */
1735
+ constructor(target: WasmGaussianMultivector, proposal_std: number);
1736
+ /**
1737
+ * Run the sampler for multiple steps
1738
+ *
1739
+ * # Arguments
1740
+ * * `num_samples` - Number of samples to collect
1741
+ * * `burnin` - Number of burn-in steps to discard
1742
+ *
1743
+ * Returns flat array of samples (num_samples * 8)
1744
+ */
1745
+ run(num_samples: number, burnin: number): Float64Array;
1746
+ /**
1747
+ * Take a single MCMC step
1748
+ *
1749
+ * Returns the new sample (8 coefficients)
1750
+ */
1751
+ step(): Float64Array;
1752
+ }
1508
1753
  /**
1509
1754
  * WASM wrapper for moduli spaces (simplified)
1510
1755
  */
@@ -1536,6 +1781,49 @@ export class WasmModuliSpace {
1536
1781
  */
1537
1782
  static ofCurves(genus: number, marked_points: number): WasmModuliSpace;
1538
1783
  }
1784
+ /**
1785
+ * Monte Carlo estimation utilities
1786
+ */
1787
+ export class WasmMonteCarloEstimator {
1788
+ private constructor();
1789
+ free(): void;
1790
+ /**
1791
+ * Compute sample mean from batch samples
1792
+ *
1793
+ * # Arguments
1794
+ * * `samples` - Flat array of samples (num_samples * 8)
1795
+ *
1796
+ * # Returns
1797
+ * 8 coefficients for the mean
1798
+ */
1799
+ static sampleMean(samples: Float64Array): Float64Array;
1800
+ /**
1801
+ * Compute sample variance from batch samples
1802
+ *
1803
+ * # Arguments
1804
+ * * `samples` - Flat array of samples (num_samples * 8)
1805
+ *
1806
+ * # Returns
1807
+ * 8 values for per-coefficient variance
1808
+ */
1809
+ static sampleVariance(samples: Float64Array): Float64Array;
1810
+ /**
1811
+ * Compute sample covariance matrix from batch samples
1812
+ *
1813
+ * # Arguments
1814
+ * * `samples` - Flat array of samples (num_samples * 8)
1815
+ *
1816
+ * # Returns
1817
+ * 64 values for 8x8 covariance matrix (row-major)
1818
+ */
1819
+ static sampleCovariance(samples: Float64Array): Float64Array;
1820
+ /**
1821
+ * Monte Carlo estimate of expectation E[f(X)] where f is the geometric product
1822
+ *
1823
+ * Estimates E[X * Y] for independent X ~ dist_x, Y ~ dist_y
1824
+ */
1825
+ static expectationGeometricProduct(dist_x: WasmGaussianMultivector, dist_y: WasmGaussianMultivector, num_samples: number): Float64Array;
1826
+ }
1539
1827
  /**
1540
1828
  * WASM wrapper for multi-variable dual numbers
1541
1829
  */
@@ -2509,30 +2797,185 @@ export class WasmTropicalViterbi {
2509
2797
  */
2510
2798
  decode(observations: Uint32Array): any;
2511
2799
  }
2800
+ /**
2801
+ * WASM wrapper for uncertain multivector (mean + covariance)
2802
+ *
2803
+ * Represents a multivector with associated uncertainty, useful for
2804
+ * error propagation through geometric operations.
2805
+ */
2806
+ export class WasmUncertainMultivector {
2807
+ free(): void;
2808
+ /**
2809
+ * Get standard deviations
2810
+ */
2811
+ getStdDevs(): Float64Array;
2812
+ /**
2813
+ * Create a deterministic (zero variance) uncertain multivector
2814
+ */
2815
+ static deterministic(value: Float64Array): WasmUncertainMultivector;
2816
+ /**
2817
+ * Get variances (diagonal of covariance)
2818
+ */
2819
+ getVariances(): Float64Array;
2820
+ /**
2821
+ * Get the covariance matrix (64 values, row-major)
2822
+ */
2823
+ getCovariance(): Float64Array;
2824
+ /**
2825
+ * Create with full covariance matrix
2826
+ *
2827
+ * # Arguments
2828
+ * * `mean` - 8 coefficients for the mean
2829
+ * * `covariance` - 64 values for 8x8 covariance matrix (row-major)
2830
+ */
2831
+ static withCovariance(mean: Float64Array, covariance: Float64Array): WasmUncertainMultivector;
2832
+ /**
2833
+ * Get total variance (trace of covariance)
2834
+ */
2835
+ getTotalVariance(): number;
2836
+ /**
2837
+ * Add two uncertain multivectors (assuming independence)
2838
+ *
2839
+ * For Z = X + Y: E[Z] = E[X] + E[Y], Var(Z) = Var(X) + Var(Y)
2840
+ */
2841
+ add(other: WasmUncertainMultivector): WasmUncertainMultivector;
2842
+ /**
2843
+ * Create an uncertain multivector with diagonal covariance
2844
+ *
2845
+ * # Arguments
2846
+ * * `mean` - 8 coefficients for the mean
2847
+ * * `variances` - 8 values for per-coefficient variance
2848
+ */
2849
+ constructor(mean: Float64Array, variances: Float64Array);
2850
+ /**
2851
+ * Linear propagation: scale by a constant
2852
+ *
2853
+ * For Y = aX: E[Y] = aE[X], Var(Y) = a²Var(X)
2854
+ */
2855
+ scale(scalar: number): WasmUncertainMultivector;
2856
+ /**
2857
+ * Get the mean
2858
+ */
2859
+ getMean(): Float64Array;
2860
+ }
2861
+ /**
2862
+ * WASM wrapper for Uniform distribution on Cl(3,0,0) multivector space
2863
+ *
2864
+ * A uniform distribution over a hyperrectangle in 8-dimensional multivector space.
2865
+ */
2866
+ export class WasmUniformMultivector {
2867
+ free(): void;
2868
+ /**
2869
+ * Create a uniform distribution with specified bounds
2870
+ *
2871
+ * # Arguments
2872
+ * * `lower` - 8 coefficients for lower bounds
2873
+ * * `upper` - 8 coefficients for upper bounds
2874
+ */
2875
+ static withBounds(lower: Float64Array, upper: Float64Array): WasmUniformMultivector;
2876
+ /**
2877
+ * Get the variance of this distribution
2878
+ */
2879
+ getVariance(): Float64Array;
2880
+ /**
2881
+ * Draw multiple samples from this distribution
2882
+ *
2883
+ * Returns flat array of coefficients: num_samples * 8
2884
+ */
2885
+ sampleBatch(num_samples: number): Float64Array;
2886
+ /**
2887
+ * Create a standard uniform distribution on [-1, 1]^8
2888
+ */
2889
+ constructor();
2890
+ /**
2891
+ * Draw a sample from this distribution
2892
+ *
2893
+ * Returns 8 coefficients for the sampled multivector
2894
+ */
2895
+ sample(): Float64Array;
2896
+ /**
2897
+ * Get the mean of this distribution
2898
+ */
2899
+ getMean(): Float64Array;
2900
+ /**
2901
+ * Compute log probability of a multivector
2902
+ *
2903
+ * Returns log(1/volume) if inside bounds, error otherwise
2904
+ */
2905
+ logProb(coefficients: Float64Array): number;
2906
+ /**
2907
+ * Get the lower bounds
2908
+ */
2909
+ getLower(): Float64Array;
2910
+ /**
2911
+ * Get the upper bounds
2912
+ */
2913
+ getUpper(): Float64Array;
2914
+ /**
2915
+ * Create a uniform distribution on a hypercube [min, max]^8
2916
+ */
2917
+ static hypercube(min: number, max: number): WasmUniformMultivector;
2918
+ }
2919
+ /**
2920
+ * WASM wrapper for Wiener process (Brownian motion)
2921
+ *
2922
+ * Standard Brownian motion W(t) with W(0) = 0
2923
+ */
2924
+ export class WasmWienerProcess {
2925
+ free(): void;
2926
+ /**
2927
+ * Sample a path of the Wiener process
2928
+ *
2929
+ * # Arguments
2930
+ * * `t_end` - End time
2931
+ * * `num_steps` - Number of time steps
2932
+ *
2933
+ * Returns flat array: (num_steps + 1) * (dim + 1) values
2934
+ * Each point is [time, w0, w1, ...]
2935
+ */
2936
+ samplePath(t_end: number, num_steps: number): Float64Array;
2937
+ /**
2938
+ * Create a new Wiener process
2939
+ *
2940
+ * # Arguments
2941
+ * * `dim` - Dimension of the process (default 8 for multivector space)
2942
+ */
2943
+ constructor(dim?: number | null);
2944
+ /**
2945
+ * Get dimension
2946
+ */
2947
+ getDim(): number;
2948
+ }
2512
2949
 
2513
2950
  export type InitInput = RequestInfo | URL | Response | BufferSource | WebAssembly.Module;
2514
2951
 
2515
2952
  export interface InitOutput {
2516
2953
  readonly memory: WebAssembly.Memory;
2517
2954
  readonly __wbg_autodiff_free: (a: number, b: number) => void;
2518
- readonly __wbg_get_wasmtrajectorypoint_time: (a: number) => number;
2955
+ readonly __wbg_get_wasmmcmcdiagnostics_acceptance_rate: (a: number) => number;
2956
+ readonly __wbg_get_wasmmcmcdiagnostics_num_steps: (a: number) => number;
2519
2957
  readonly __wbg_numericalderivative_free: (a: number, b: number) => void;
2520
2958
  readonly __wbg_riemannianmanifold_free: (a: number, b: number) => void;
2521
2959
  readonly __wbg_scalarfield_free: (a: number, b: number) => void;
2522
- readonly __wbg_set_wasmtrajectorypoint_time: (a: number, b: number) => void;
2960
+ readonly __wbg_set_wasmmcmcdiagnostics_acceptance_rate: (a: number, b: number) => void;
2961
+ readonly __wbg_set_wasmmcmcdiagnostics_num_steps: (a: number, b: number) => void;
2523
2962
  readonly __wbg_wasmchowclass_free: (a: number, b: number) => void;
2524
2963
  readonly __wbg_wasmcommunity_free: (a: number, b: number) => void;
2525
2964
  readonly __wbg_wasmduallyflatmanifold_free: (a: number, b: number) => void;
2526
2965
  readonly __wbg_wasmevaluationresult_free: (a: number, b: number) => void;
2527
2966
  readonly __wbg_wasmfisherinformationmatrix_free: (a: number, b: number) => void;
2528
2967
  readonly __wbg_wasmfishermeasure_free: (a: number, b: number) => void;
2968
+ readonly __wbg_wasmgaussianmultivector_free: (a: number, b: number) => void;
2529
2969
  readonly __wbg_wasmgeodesicintegrator_free: (a: number, b: number) => void;
2530
2970
  readonly __wbg_wasmgeometricca_free: (a: number, b: number) => void;
2531
2971
  readonly __wbg_wasmgeometricnetwork_free: (a: number, b: number) => void;
2972
+ readonly __wbg_wasmgradeprojecteddistribution_free: (a: number, b: number) => void;
2532
2973
  readonly __wbg_wasmgrassmannian_free: (a: number, b: number) => void;
2533
2974
  readonly __wbg_wasmholographicmemory_free: (a: number, b: number) => void;
2534
2975
  readonly __wbg_wasminversecadesigner_free: (a: number, b: number) => void;
2535
2976
  readonly __wbg_wasmlebesguemeasure_free: (a: number, b: number) => void;
2977
+ readonly __wbg_wasmmcmcdiagnostics_free: (a: number, b: number) => void;
2978
+ readonly __wbg_wasmmetropolishastings_free: (a: number, b: number) => void;
2536
2979
  readonly __wbg_wasmmodulispace_free: (a: number, b: number) => void;
2537
2980
  readonly __wbg_wasmmultidualnumber_free: (a: number, b: number) => void;
2538
2981
  readonly __wbg_wasmmultivector_free: (a: number, b: number) => void;
@@ -2541,7 +2984,6 @@ export interface InitOutput {
2541
2984
  readonly __wbg_wasmpropagationanalysis_free: (a: number, b: number) => void;
2542
2985
  readonly __wbg_wasmrelativisticparticle_free: (a: number, b: number) => void;
2543
2986
  readonly __wbg_wasmresonator_free: (a: number, b: number) => void;
2544
- readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
2545
2987
  readonly __wbg_wasmselfassembler_free: (a: number, b: number) => void;
2546
2988
  readonly __wbg_wasmsensitivitymap_free: (a: number, b: number) => void;
2547
2989
  readonly __wbg_wasmtrajectorypoint_free: (a: number, b: number) => void;
@@ -2549,6 +2991,8 @@ export interface InitOutput {
2549
2991
  readonly __wbg_wasmtropicalnetwork_free: (a: number, b: number) => void;
2550
2992
  readonly __wbg_wasmtropicalpolynomial_free: (a: number, b: number) => void;
2551
2993
  readonly __wbg_wasmtropicalviterbi_free: (a: number, b: number) => void;
2994
+ readonly __wbg_wasmuncertainmultivector_free: (a: number, b: number) => void;
2995
+ readonly __wbg_wasmuniformmultivector_free: (a: number, b: number) => void;
2552
2996
  readonly autodiff_evaluatePolynomial: (a: number, b: number, c: number) => number;
2553
2997
  readonly autodiff_linearLayer: (a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number) => [number, number, number, number];
2554
2998
  readonly autodiff_meanSquaredError: (a: number, b: number, c: number, d: number) => [number, number, number];
@@ -2707,8 +3151,22 @@ export interface InitOutput {
2707
3151
  readonly wasmfourvelocity_rapidity: (a: number) => number;
2708
3152
  readonly wasmfourvelocity_spatial_velocity_magnitude: (a: number) => number;
2709
3153
  readonly wasmfourvelocity_to_string: (a: number) => [number, number];
3154
+ readonly wasmgaussianmultivector_getCovariance: (a: number) => [number, number];
3155
+ readonly wasmgaussianmultivector_getMean: (a: number) => [number, number];
3156
+ readonly wasmgaussianmultivector_getStdDevs: (a: number) => [number, number];
3157
+ readonly wasmgaussianmultivector_getVariance: (a: number) => [number, number];
3158
+ readonly wasmgaussianmultivector_gradeConcentrated: (a: number, b: number) => [number, number, number];
3159
+ readonly wasmgaussianmultivector_isotropic: (a: number, b: number, c: number) => [number, number, number];
3160
+ readonly wasmgaussianmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
3161
+ readonly wasmgaussianmultivector_new: () => number;
3162
+ readonly wasmgaussianmultivector_sample: (a: number) => [number, number];
3163
+ readonly wasmgaussianmultivector_sampleBatch: (a: number, b: number) => [number, number];
3164
+ readonly wasmgaussianmultivector_withParameters: (a: number, b: number, c: number, d: number) => [number, number, number];
2710
3165
  readonly wasmgeodesicintegrator_propagate_particle: (a: number, b: number, c: number, d: number) => [number, number, number];
2711
3166
  readonly wasmgeodesicintegrator_with_schwarzschild: (a: number) => number;
3167
+ readonly wasmgeometricbrownianmotion_expectedValue: (a: number, b: number, c: number, d: number) => [number, number, number, number];
3168
+ readonly wasmgeometricbrownianmotion_samplePath: (a: number, b: number, c: number, d: number, e: number) => [number, number, number, number];
3169
+ readonly wasmgeometricbrownianmotion_variance: (a: number, b: number, c: number, d: number) => [number, number, number, number];
2712
3170
  readonly wasmgeometricca_addGlider: (a: number, b: number, c: number) => [number, number];
2713
3171
  readonly wasmgeometricca_addRandomPattern: (a: number, b: number) => [number, number];
2714
3172
  readonly wasmgeometricca_generation: (a: number) => number;
@@ -2751,6 +3209,12 @@ export interface InitOutput {
2751
3209
  readonly wasmgpuoptimizer_isGpuAvailable: (a: number) => number;
2752
3210
  readonly wasmgpuoptimizer_optimizeBatch: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
2753
3211
  readonly wasmgpuoptimizer_optimizeQuadraticGpu: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
3212
+ readonly wasmgradeprojecteddistribution_getMean: (a: number) => [number, number];
3213
+ readonly wasmgradeprojecteddistribution_getNumComponents: (a: number) => number;
3214
+ readonly wasmgradeprojecteddistribution_getStdDevs: (a: number) => [number, number];
3215
+ readonly wasmgradeprojecteddistribution_new: (a: number, b: number) => [number, number, number];
3216
+ readonly wasmgradeprojecteddistribution_sample: (a: number) => [number, number];
3217
+ readonly wasmgradeprojecteddistribution_sampleFull: (a: number) => [number, number];
2754
3218
  readonly wasmgrassmannian_getDimension: (a: number) => number;
2755
3219
  readonly wasmgrassmannian_getParameters: (a: number) => [number, number];
2756
3220
  readonly wasmgrassmannian_new: (a: number, b: number) => [number, number, number];
@@ -2773,11 +3237,24 @@ export interface InitOutput {
2773
3237
  readonly wasmlebesguemeasure_measureBox: (a: number, b: number, c: number) => [number, number, number];
2774
3238
  readonly wasmlebesguemeasure_measureInterval: (a: number, b: number, c: number, d: number, e: number) => [number, number, number];
2775
3239
  readonly wasmlebesguemeasure_new: (a: number) => [number, number, number];
3240
+ readonly wasmmcmcdiagnostics_getEffectiveSampleSize: (a: number) => number;
3241
+ readonly wasmmcmcdiagnostics_getRHat: (a: number) => number;
3242
+ readonly wasmmcmcdiagnostics_isConverged: (a: number) => number;
3243
+ readonly wasmmetropolishastings_diagnostics: (a: number) => number;
3244
+ readonly wasmmetropolishastings_getAcceptanceRate: (a: number) => number;
3245
+ readonly wasmmetropolishastings_getCurrent: (a: number) => [number, number];
3246
+ readonly wasmmetropolishastings_new: (a: number, b: number) => number;
3247
+ readonly wasmmetropolishastings_run: (a: number, b: number, c: number) => [number, number];
3248
+ readonly wasmmetropolishastings_step: (a: number) => [number, number];
2776
3249
  readonly wasmmodulispace_expectedDimension: (a: number) => number;
2777
3250
  readonly wasmmodulispace_getMarkedPoints: (a: number) => number;
2778
3251
  readonly wasmmodulispace_isProper: (a: number) => number;
2779
3252
  readonly wasmmodulispace_ofCurves: (a: number, b: number) => number;
2780
3253
  readonly wasmmodulispace_ofStableCurves: (a: number, b: number) => number;
3254
+ readonly wasmmontecarloestimator_expectationGeometricProduct: (a: number, b: number, c: number) => [number, number];
3255
+ readonly wasmmontecarloestimator_sampleCovariance: (a: number, b: number) => [number, number, number, number];
3256
+ readonly wasmmontecarloestimator_sampleMean: (a: number, b: number) => [number, number, number, number];
3257
+ readonly wasmmontecarloestimator_sampleVariance: (a: number, b: number) => [number, number, number, number];
2781
3258
  readonly wasmmultidualnumber_add: (a: number, b: number) => [number, number, number];
2782
3259
  readonly wasmmultidualnumber_constant: (a: number, b: number) => number;
2783
3260
  readonly wasmmultidualnumber_getGradient: (a: number) => [number, number];
@@ -2938,9 +3415,32 @@ export interface InitOutput {
2938
3415
  readonly wasmtropicalviterbi_decode: (a: number, b: number, c: number) => [number, number, number];
2939
3416
  readonly wasmtropicalviterbi_forward_probabilities: (a: number, b: number, c: number) => [number, number, number];
2940
3417
  readonly wasmtropicalviterbi_new: (a: any, b: any) => [number, number, number];
3418
+ readonly wasmuncertainmultivector_add: (a: number, b: number) => number;
3419
+ readonly wasmuncertainmultivector_deterministic: (a: number, b: number) => [number, number, number];
3420
+ readonly wasmuncertainmultivector_getCovariance: (a: number) => [number, number];
3421
+ readonly wasmuncertainmultivector_getMean: (a: number) => [number, number];
3422
+ readonly wasmuncertainmultivector_getStdDevs: (a: number) => [number, number];
3423
+ readonly wasmuncertainmultivector_getTotalVariance: (a: number) => number;
3424
+ readonly wasmuncertainmultivector_getVariances: (a: number) => [number, number];
3425
+ readonly wasmuncertainmultivector_new: (a: number, b: number, c: number, d: number) => [number, number, number];
3426
+ readonly wasmuncertainmultivector_scale: (a: number, b: number) => number;
3427
+ readonly wasmuncertainmultivector_withCovariance: (a: number, b: number, c: number, d: number) => [number, number, number];
3428
+ readonly wasmuniformmultivector_getLower: (a: number) => [number, number];
3429
+ readonly wasmuniformmultivector_getMean: (a: number) => [number, number];
3430
+ readonly wasmuniformmultivector_getUpper: (a: number) => [number, number];
3431
+ readonly wasmuniformmultivector_getVariance: (a: number) => [number, number];
3432
+ readonly wasmuniformmultivector_hypercube: (a: number, b: number) => [number, number, number];
3433
+ readonly wasmuniformmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
3434
+ readonly wasmuniformmultivector_new: () => [number, number, number];
3435
+ readonly wasmuniformmultivector_sample: (a: number) => [number, number];
3436
+ readonly wasmuniformmultivector_sampleBatch: (a: number, b: number) => [number, number];
3437
+ readonly wasmuniformmultivector_withBounds: (a: number, b: number, c: number, d: number) => [number, number, number];
3438
+ readonly wasmwienerprocess_new: (a: number) => number;
3439
+ readonly wasmwienerprocess_samplePath: (a: number, b: number, c: number) => [number, number];
2941
3440
  readonly wasmtropicalnumber_new: (a: number) => number;
2942
3441
  readonly vectorfield_fromFunction2D: (a: any) => number;
2943
3442
  readonly vectorfield_fromFunction3D: (a: any) => number;
3443
+ readonly __wbg_set_wasmtrajectorypoint_time: (a: number, b: number) => void;
2944
3444
  readonly wasmmultivector_norm: (a: number) => number;
2945
3445
  readonly wasmspacetimevector_t: (a: number) => number;
2946
3446
  readonly wasmtropicalnumber_zero: () => number;
@@ -2952,13 +3452,18 @@ export interface InitOutput {
2952
3452
  readonly __wbg_wasmprobabilitymeasure_free: (a: number, b: number) => void;
2953
3453
  readonly __wbg_vectorfield_free: (a: number, b: number) => void;
2954
3454
  readonly vectorfield_new: (a: any, b: number) => number;
3455
+ readonly wasmgeometricbrownianmotion_new: (a: number, b: number) => number;
2955
3456
  readonly wasmtropicalnumber_isZero: (a: number) => number;
2956
3457
  readonly wasmtropicalnumber_tropicalAdd: (a: number, b: number) => number;
3458
+ readonly __wbg_get_wasmtrajectorypoint_time: (a: number) => number;
2957
3459
  readonly wasmcommunity_cohesion_score: (a: number) => number;
2958
3460
  readonly wasmdualnumber_getReal: (a: number) => number;
2959
3461
  readonly wasmevaluationresult_getBestPathScore: (a: number) => number;
2960
3462
  readonly wasmevaluationresult_getGradientNorm: (a: number) => number;
3463
+ readonly wasmgeometricbrownianmotion_getMu: (a: number) => number;
3464
+ readonly wasmgeometricbrownianmotion_getSigma: (a: number) => number;
2961
3465
  readonly wasmgeometricedge_weight: (a: number) => number;
3466
+ readonly wasmgradeprojecteddistribution_getGrade: (a: number) => number;
2962
3467
  readonly wasmmodulispace_getGenus: (a: number) => number;
2963
3468
  readonly wasmmultidualnumber_getReal: (a: number) => number;
2964
3469
  readonly wasmoptimizationresult_iterations: (a: number) => number;
@@ -2972,6 +3477,7 @@ export interface InitOutput {
2972
3477
  readonly wasmtropicalcurve_getGenus: (a: number) => number;
2973
3478
  readonly wasmtropicalnetwork_getSize: (a: number) => number;
2974
3479
  readonly wasmtropicalnumber_getValue: (a: number) => number;
3480
+ readonly wasmwienerprocess_getDim: (a: number) => number;
2975
3481
  readonly __wbg_automatabatchoperations_free: (a: number, b: number) => void;
2976
3482
  readonly __wbg_automatautils_free: (a: number, b: number) => void;
2977
3483
  readonly __wbg_batchoperations_free: (a: number, b: number) => void;
@@ -2991,17 +3497,21 @@ export interface InitOutput {
2991
3497
  readonly __wbg_wasmcountingmeasure_free: (a: number, b: number) => void;
2992
3498
  readonly __wbg_wasmdualnumber_free: (a: number, b: number) => void;
2993
3499
  readonly __wbg_wasmfourvelocity_free: (a: number, b: number) => void;
3500
+ readonly __wbg_wasmgeometricbrownianmotion_free: (a: number, b: number) => void;
2994
3501
  readonly __wbg_wasmgeometricedge_free: (a: number, b: number) => void;
2995
3502
  readonly __wbg_wasmgpuoptimizer_free: (a: number, b: number) => void;
3503
+ readonly __wbg_wasmmontecarloestimator_free: (a: number, b: number) => void;
2996
3504
  readonly __wbg_wasmmultiobjectiveoptimizer_free: (a: number, b: number) => void;
2997
3505
  readonly __wbg_wasmoptimizationutils_free: (a: number, b: number) => void;
2998
3506
  readonly __wbg_wasmprojectivespace_free: (a: number, b: number) => void;
2999
3507
  readonly __wbg_wasmrelativisticconstants_free: (a: number, b: number) => void;
3508
+ readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
3000
3509
  readonly __wbg_wasmsimpleoptimizer_free: (a: number, b: number) => void;
3001
3510
  readonly __wbg_wasmspacetimevector_free: (a: number, b: number) => void;
3002
3511
  readonly __wbg_wasmtropicalcurve_free: (a: number, b: number) => void;
3003
3512
  readonly __wbg_wasmtropicalmeasure_free: (a: number, b: number) => void;
3004
3513
  readonly __wbg_wasmtropicalnumber_free: (a: number, b: number) => void;
3514
+ readonly __wbg_wasmwienerprocess_free: (a: number, b: number) => void;
3005
3515
  readonly __wbg_wasmmultiobjectiveresult_free: (a: number, b: number) => void;
3006
3516
  readonly wasmrotor_inverse: (a: number) => number;
3007
3517
  readonly __wbg_wasmrotor_free: (a: number, b: number) => void;
@@ -3017,8 +3527,8 @@ export interface InitOutput {
3017
3527
  readonly __wbindgen_realloc: (a: number, b: number, c: number, d: number) => number;
3018
3528
  readonly __wbindgen_export_6: WebAssembly.Table;
3019
3529
  readonly __externref_table_dealloc: (a: number) => void;
3020
- readonly closure40_externref_shim: (a: number, b: number, c: any) => void;
3021
- readonly closure33_externref_shim: (a: number, b: number, c: any, d: any) => void;
3530
+ readonly closure41_externref_shim: (a: number, b: number, c: any) => void;
3531
+ readonly closure34_externref_shim: (a: number, b: number, c: any, d: any) => void;
3022
3532
  readonly __wbindgen_start: () => void;
3023
3533
  }
3024
3534