@justinelliottcobb/amari-wasm 0.12.3 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +91 -2
- package/amari_wasm.d.ts +515 -5
- package/amari_wasm.js +1087 -14
- package/amari_wasm_bg.wasm +0 -0
- package/package.json +1 -1
package/amari_wasm.d.ts
CHANGED
|
@@ -1165,6 +1165,86 @@ export class WasmFourVelocity {
|
|
|
1165
1165
|
*/
|
|
1166
1166
|
to_string(): string;
|
|
1167
1167
|
}
|
|
1168
|
+
/**
|
|
1169
|
+
* WASM wrapper for Gaussian distribution on Cl(3,0,0) multivector space
|
|
1170
|
+
*
|
|
1171
|
+
* A Gaussian distribution over 8-dimensional multivector space with
|
|
1172
|
+
* configurable mean and per-component standard deviation.
|
|
1173
|
+
*/
|
|
1174
|
+
export class WasmGaussianMultivector {
|
|
1175
|
+
free(): void;
|
|
1176
|
+
/**
|
|
1177
|
+
* Get the standard deviations
|
|
1178
|
+
*
|
|
1179
|
+
* Returns 8 values
|
|
1180
|
+
*/
|
|
1181
|
+
getStdDevs(): Float64Array;
|
|
1182
|
+
/**
|
|
1183
|
+
* Get the variance (square of std devs)
|
|
1184
|
+
*
|
|
1185
|
+
* Returns 8 values
|
|
1186
|
+
*/
|
|
1187
|
+
getVariance(): Float64Array;
|
|
1188
|
+
/**
|
|
1189
|
+
* Draw multiple samples from this distribution
|
|
1190
|
+
*
|
|
1191
|
+
* Returns flat array of coefficients: num_samples * 8
|
|
1192
|
+
*/
|
|
1193
|
+
sampleBatch(num_samples: number): Float64Array;
|
|
1194
|
+
/**
|
|
1195
|
+
* Get the full covariance matrix (flattened, row-major)
|
|
1196
|
+
*
|
|
1197
|
+
* Returns 64 values (8x8 matrix)
|
|
1198
|
+
*/
|
|
1199
|
+
getCovariance(): Float64Array;
|
|
1200
|
+
/**
|
|
1201
|
+
* Create a Gaussian with specified mean and standard deviation
|
|
1202
|
+
*
|
|
1203
|
+
* # Arguments
|
|
1204
|
+
* * `mean` - 8 coefficients for the mean multivector
|
|
1205
|
+
* * `std_dev` - 8 coefficients for per-coefficient standard deviation
|
|
1206
|
+
*/
|
|
1207
|
+
static withParameters(mean: Float64Array, std_dev: Float64Array): WasmGaussianMultivector;
|
|
1208
|
+
/**
|
|
1209
|
+
* Create a Gaussian concentrated on a specific grade
|
|
1210
|
+
*
|
|
1211
|
+
* # Arguments
|
|
1212
|
+
* * `grade` - The grade to concentrate on (0=scalar, 1=vectors, 2=bivectors, 3=pseudoscalar)
|
|
1213
|
+
* * `variance` - Variance for coefficients of that grade
|
|
1214
|
+
*/
|
|
1215
|
+
static gradeConcentrated(grade: number, variance: number): WasmGaussianMultivector;
|
|
1216
|
+
/**
|
|
1217
|
+
* Create a standard Gaussian (zero mean, unit variance per coefficient)
|
|
1218
|
+
*/
|
|
1219
|
+
constructor();
|
|
1220
|
+
/**
|
|
1221
|
+
* Draw a sample from this distribution
|
|
1222
|
+
*
|
|
1223
|
+
* Returns 8 coefficients for the sampled multivector
|
|
1224
|
+
*/
|
|
1225
|
+
sample(): Float64Array;
|
|
1226
|
+
/**
|
|
1227
|
+
* Get the mean of this distribution
|
|
1228
|
+
*
|
|
1229
|
+
* Returns 8 coefficients
|
|
1230
|
+
*/
|
|
1231
|
+
getMean(): Float64Array;
|
|
1232
|
+
/**
|
|
1233
|
+
* Compute log probability of a multivector
|
|
1234
|
+
*
|
|
1235
|
+
* # Arguments
|
|
1236
|
+
* * `coefficients` - 8 coefficients of the multivector
|
|
1237
|
+
*/
|
|
1238
|
+
logProb(coefficients: Float64Array): number;
|
|
1239
|
+
/**
|
|
1240
|
+
* Create an isotropic Gaussian with given mean and variance
|
|
1241
|
+
*
|
|
1242
|
+
* # Arguments
|
|
1243
|
+
* * `mean` - 8 coefficients for the mean multivector
|
|
1244
|
+
* * `variance` - Variance (same for all components)
|
|
1245
|
+
*/
|
|
1246
|
+
static isotropic(mean: Float64Array, variance: number): WasmGaussianMultivector;
|
|
1247
|
+
}
|
|
1168
1248
|
/**
|
|
1169
1249
|
* WASM wrapper for geodesic integration
|
|
1170
1250
|
*/
|
|
@@ -1180,6 +1260,56 @@ export class WasmGeodesicIntegrator {
|
|
|
1180
1260
|
*/
|
|
1181
1261
|
static with_schwarzschild(metric: WasmSchwarzschildMetric): WasmGeodesicIntegrator;
|
|
1182
1262
|
}
|
|
1263
|
+
/**
|
|
1264
|
+
* WASM wrapper for Geometric Brownian Motion on multivector space
|
|
1265
|
+
*
|
|
1266
|
+
* dX = μX dt + σX dW
|
|
1267
|
+
*
|
|
1268
|
+
* Useful for modeling multiplicative noise processes in geometric algebra.
|
|
1269
|
+
*/
|
|
1270
|
+
export class WasmGeometricBrownianMotion {
|
|
1271
|
+
free(): void;
|
|
1272
|
+
/**
|
|
1273
|
+
* Sample a single path of the process
|
|
1274
|
+
*
|
|
1275
|
+
* # Arguments
|
|
1276
|
+
* * `initial` - Initial multivector (8 coefficients)
|
|
1277
|
+
* * `t_end` - End time
|
|
1278
|
+
* * `num_steps` - Number of time steps
|
|
1279
|
+
*
|
|
1280
|
+
* Returns flat array: (num_steps + 1) * 9 values
|
|
1281
|
+
* Each point is [time, coeff0, coeff1, ..., coeff7]
|
|
1282
|
+
*/
|
|
1283
|
+
samplePath(initial: Float64Array, t_end: number, num_steps: number): Float64Array;
|
|
1284
|
+
/**
|
|
1285
|
+
* Compute expected value at time t given initial value
|
|
1286
|
+
*
|
|
1287
|
+
* E[X(t)] = X(0) * exp(μt)
|
|
1288
|
+
*/
|
|
1289
|
+
expectedValue(initial: Float64Array, t: number): Float64Array;
|
|
1290
|
+
/**
|
|
1291
|
+
* Create a new Geometric Brownian Motion process
|
|
1292
|
+
*
|
|
1293
|
+
* # Arguments
|
|
1294
|
+
* * `mu` - Drift coefficient (expected growth rate)
|
|
1295
|
+
* * `sigma` - Diffusion coefficient (volatility)
|
|
1296
|
+
*/
|
|
1297
|
+
constructor(mu: number, sigma: number);
|
|
1298
|
+
/**
|
|
1299
|
+
* Get drift coefficient
|
|
1300
|
+
*/
|
|
1301
|
+
getMu(): number;
|
|
1302
|
+
/**
|
|
1303
|
+
* Compute variance at time t given initial value
|
|
1304
|
+
*
|
|
1305
|
+
* Var(X(t)) = X(0)² * exp(2μt) * (exp(σ²t) - 1)
|
|
1306
|
+
*/
|
|
1307
|
+
variance(initial: Float64Array, t: number): Float64Array;
|
|
1308
|
+
/**
|
|
1309
|
+
* Get diffusion coefficient
|
|
1310
|
+
*/
|
|
1311
|
+
getSigma(): number;
|
|
1312
|
+
}
|
|
1183
1313
|
/**
|
|
1184
1314
|
* WASM wrapper for Geometric Cellular Automaton
|
|
1185
1315
|
*/
|
|
@@ -1380,6 +1510,50 @@ export class WasmGpuOptimizer {
|
|
|
1380
1510
|
*/
|
|
1381
1511
|
constructor();
|
|
1382
1512
|
}
|
|
1513
|
+
/**
|
|
1514
|
+
* WASM wrapper for grade-projected distribution
|
|
1515
|
+
*
|
|
1516
|
+
* A distribution that only operates on components of a specific grade.
|
|
1517
|
+
*/
|
|
1518
|
+
export class WasmGradeProjectedDistribution {
|
|
1519
|
+
free(): void;
|
|
1520
|
+
/**
|
|
1521
|
+
* Sample and embed into full multivector (other grades are zero)
|
|
1522
|
+
*
|
|
1523
|
+
* Returns 8 coefficients
|
|
1524
|
+
*/
|
|
1525
|
+
sampleFull(): Float64Array;
|
|
1526
|
+
/**
|
|
1527
|
+
* Get standard deviations
|
|
1528
|
+
*/
|
|
1529
|
+
getStdDevs(): Float64Array;
|
|
1530
|
+
/**
|
|
1531
|
+
* Get number of components in this grade
|
|
1532
|
+
*/
|
|
1533
|
+
getNumComponents(): number;
|
|
1534
|
+
/**
|
|
1535
|
+
* Create a grade-projected distribution from a Gaussian
|
|
1536
|
+
*
|
|
1537
|
+
* # Arguments
|
|
1538
|
+
* * `gaussian` - Source Gaussian distribution
|
|
1539
|
+
* * `grade` - Grade to project onto (0, 1, 2, or 3 for Cl(3,0,0))
|
|
1540
|
+
*/
|
|
1541
|
+
constructor(gaussian: WasmGaussianMultivector, grade: number);
|
|
1542
|
+
/**
|
|
1543
|
+
* Sample from this grade-projected distribution
|
|
1544
|
+
*
|
|
1545
|
+
* Returns components for just this grade
|
|
1546
|
+
*/
|
|
1547
|
+
sample(): Float64Array;
|
|
1548
|
+
/**
|
|
1549
|
+
* Get the mean for this grade's components
|
|
1550
|
+
*/
|
|
1551
|
+
getMean(): Float64Array;
|
|
1552
|
+
/**
|
|
1553
|
+
* Get the grade
|
|
1554
|
+
*/
|
|
1555
|
+
getGrade(): number;
|
|
1556
|
+
}
|
|
1383
1557
|
/**
|
|
1384
1558
|
* WASM wrapper for Grassmannian varieties
|
|
1385
1559
|
*/
|
|
@@ -1505,6 +1679,77 @@ export class WasmLebesgueMeasure {
|
|
|
1505
1679
|
*/
|
|
1506
1680
|
constructor(dimension: number);
|
|
1507
1681
|
}
|
|
1682
|
+
/**
|
|
1683
|
+
* WASM wrapper for MCMC diagnostics
|
|
1684
|
+
*/
|
|
1685
|
+
export class WasmMCMCDiagnostics {
|
|
1686
|
+
private constructor();
|
|
1687
|
+
free(): void;
|
|
1688
|
+
/**
|
|
1689
|
+
* Check if the sampler has converged (R-hat < 1.1)
|
|
1690
|
+
*/
|
|
1691
|
+
isConverged(): boolean;
|
|
1692
|
+
/**
|
|
1693
|
+
* Get effective sample size (or -1 if not computed)
|
|
1694
|
+
*/
|
|
1695
|
+
getEffectiveSampleSize(): number;
|
|
1696
|
+
/**
|
|
1697
|
+
* Get R-hat statistic (or -1 if not computed)
|
|
1698
|
+
*/
|
|
1699
|
+
getRHat(): number;
|
|
1700
|
+
/**
|
|
1701
|
+
* Total number of steps
|
|
1702
|
+
*/
|
|
1703
|
+
num_steps: number;
|
|
1704
|
+
/**
|
|
1705
|
+
* Acceptance rate
|
|
1706
|
+
*/
|
|
1707
|
+
acceptance_rate: number;
|
|
1708
|
+
}
|
|
1709
|
+
/**
|
|
1710
|
+
* WASM wrapper for Metropolis-Hastings MCMC sampler
|
|
1711
|
+
*
|
|
1712
|
+
* Samples from a target distribution using random-walk proposals.
|
|
1713
|
+
*/
|
|
1714
|
+
export class WasmMetropolisHastings {
|
|
1715
|
+
free(): void;
|
|
1716
|
+
/**
|
|
1717
|
+
* Get sampling diagnostics
|
|
1718
|
+
*/
|
|
1719
|
+
diagnostics(): WasmMCMCDiagnostics;
|
|
1720
|
+
/**
|
|
1721
|
+
* Get current sample
|
|
1722
|
+
*/
|
|
1723
|
+
getCurrent(): Float64Array;
|
|
1724
|
+
/**
|
|
1725
|
+
* Get current acceptance rate
|
|
1726
|
+
*/
|
|
1727
|
+
getAcceptanceRate(): number;
|
|
1728
|
+
/**
|
|
1729
|
+
* Create a new Metropolis-Hastings sampler for a Gaussian target
|
|
1730
|
+
*
|
|
1731
|
+
* # Arguments
|
|
1732
|
+
* * `target` - The target Gaussian distribution to sample from
|
|
1733
|
+
* * `proposal_std` - Standard deviation for the proposal distribution
|
|
1734
|
+
*/
|
|
1735
|
+
constructor(target: WasmGaussianMultivector, proposal_std: number);
|
|
1736
|
+
/**
|
|
1737
|
+
* Run the sampler for multiple steps
|
|
1738
|
+
*
|
|
1739
|
+
* # Arguments
|
|
1740
|
+
* * `num_samples` - Number of samples to collect
|
|
1741
|
+
* * `burnin` - Number of burn-in steps to discard
|
|
1742
|
+
*
|
|
1743
|
+
* Returns flat array of samples (num_samples * 8)
|
|
1744
|
+
*/
|
|
1745
|
+
run(num_samples: number, burnin: number): Float64Array;
|
|
1746
|
+
/**
|
|
1747
|
+
* Take a single MCMC step
|
|
1748
|
+
*
|
|
1749
|
+
* Returns the new sample (8 coefficients)
|
|
1750
|
+
*/
|
|
1751
|
+
step(): Float64Array;
|
|
1752
|
+
}
|
|
1508
1753
|
/**
|
|
1509
1754
|
* WASM wrapper for moduli spaces (simplified)
|
|
1510
1755
|
*/
|
|
@@ -1536,6 +1781,49 @@ export class WasmModuliSpace {
|
|
|
1536
1781
|
*/
|
|
1537
1782
|
static ofCurves(genus: number, marked_points: number): WasmModuliSpace;
|
|
1538
1783
|
}
|
|
1784
|
+
/**
|
|
1785
|
+
* Monte Carlo estimation utilities
|
|
1786
|
+
*/
|
|
1787
|
+
export class WasmMonteCarloEstimator {
|
|
1788
|
+
private constructor();
|
|
1789
|
+
free(): void;
|
|
1790
|
+
/**
|
|
1791
|
+
* Compute sample mean from batch samples
|
|
1792
|
+
*
|
|
1793
|
+
* # Arguments
|
|
1794
|
+
* * `samples` - Flat array of samples (num_samples * 8)
|
|
1795
|
+
*
|
|
1796
|
+
* # Returns
|
|
1797
|
+
* 8 coefficients for the mean
|
|
1798
|
+
*/
|
|
1799
|
+
static sampleMean(samples: Float64Array): Float64Array;
|
|
1800
|
+
/**
|
|
1801
|
+
* Compute sample variance from batch samples
|
|
1802
|
+
*
|
|
1803
|
+
* # Arguments
|
|
1804
|
+
* * `samples` - Flat array of samples (num_samples * 8)
|
|
1805
|
+
*
|
|
1806
|
+
* # Returns
|
|
1807
|
+
* 8 values for per-coefficient variance
|
|
1808
|
+
*/
|
|
1809
|
+
static sampleVariance(samples: Float64Array): Float64Array;
|
|
1810
|
+
/**
|
|
1811
|
+
* Compute sample covariance matrix from batch samples
|
|
1812
|
+
*
|
|
1813
|
+
* # Arguments
|
|
1814
|
+
* * `samples` - Flat array of samples (num_samples * 8)
|
|
1815
|
+
*
|
|
1816
|
+
* # Returns
|
|
1817
|
+
* 64 values for 8x8 covariance matrix (row-major)
|
|
1818
|
+
*/
|
|
1819
|
+
static sampleCovariance(samples: Float64Array): Float64Array;
|
|
1820
|
+
/**
|
|
1821
|
+
* Monte Carlo estimate of expectation E[f(X)] where f is the geometric product
|
|
1822
|
+
*
|
|
1823
|
+
* Estimates E[X * Y] for independent X ~ dist_x, Y ~ dist_y
|
|
1824
|
+
*/
|
|
1825
|
+
static expectationGeometricProduct(dist_x: WasmGaussianMultivector, dist_y: WasmGaussianMultivector, num_samples: number): Float64Array;
|
|
1826
|
+
}
|
|
1539
1827
|
/**
|
|
1540
1828
|
* WASM wrapper for multi-variable dual numbers
|
|
1541
1829
|
*/
|
|
@@ -2509,30 +2797,185 @@ export class WasmTropicalViterbi {
|
|
|
2509
2797
|
*/
|
|
2510
2798
|
decode(observations: Uint32Array): any;
|
|
2511
2799
|
}
|
|
2800
|
+
/**
|
|
2801
|
+
* WASM wrapper for uncertain multivector (mean + covariance)
|
|
2802
|
+
*
|
|
2803
|
+
* Represents a multivector with associated uncertainty, useful for
|
|
2804
|
+
* error propagation through geometric operations.
|
|
2805
|
+
*/
|
|
2806
|
+
export class WasmUncertainMultivector {
|
|
2807
|
+
free(): void;
|
|
2808
|
+
/**
|
|
2809
|
+
* Get standard deviations
|
|
2810
|
+
*/
|
|
2811
|
+
getStdDevs(): Float64Array;
|
|
2812
|
+
/**
|
|
2813
|
+
* Create a deterministic (zero variance) uncertain multivector
|
|
2814
|
+
*/
|
|
2815
|
+
static deterministic(value: Float64Array): WasmUncertainMultivector;
|
|
2816
|
+
/**
|
|
2817
|
+
* Get variances (diagonal of covariance)
|
|
2818
|
+
*/
|
|
2819
|
+
getVariances(): Float64Array;
|
|
2820
|
+
/**
|
|
2821
|
+
* Get the covariance matrix (64 values, row-major)
|
|
2822
|
+
*/
|
|
2823
|
+
getCovariance(): Float64Array;
|
|
2824
|
+
/**
|
|
2825
|
+
* Create with full covariance matrix
|
|
2826
|
+
*
|
|
2827
|
+
* # Arguments
|
|
2828
|
+
* * `mean` - 8 coefficients for the mean
|
|
2829
|
+
* * `covariance` - 64 values for 8x8 covariance matrix (row-major)
|
|
2830
|
+
*/
|
|
2831
|
+
static withCovariance(mean: Float64Array, covariance: Float64Array): WasmUncertainMultivector;
|
|
2832
|
+
/**
|
|
2833
|
+
* Get total variance (trace of covariance)
|
|
2834
|
+
*/
|
|
2835
|
+
getTotalVariance(): number;
|
|
2836
|
+
/**
|
|
2837
|
+
* Add two uncertain multivectors (assuming independence)
|
|
2838
|
+
*
|
|
2839
|
+
* For Z = X + Y: E[Z] = E[X] + E[Y], Var(Z) = Var(X) + Var(Y)
|
|
2840
|
+
*/
|
|
2841
|
+
add(other: WasmUncertainMultivector): WasmUncertainMultivector;
|
|
2842
|
+
/**
|
|
2843
|
+
* Create an uncertain multivector with diagonal covariance
|
|
2844
|
+
*
|
|
2845
|
+
* # Arguments
|
|
2846
|
+
* * `mean` - 8 coefficients for the mean
|
|
2847
|
+
* * `variances` - 8 values for per-coefficient variance
|
|
2848
|
+
*/
|
|
2849
|
+
constructor(mean: Float64Array, variances: Float64Array);
|
|
2850
|
+
/**
|
|
2851
|
+
* Linear propagation: scale by a constant
|
|
2852
|
+
*
|
|
2853
|
+
* For Y = aX: E[Y] = aE[X], Var(Y) = a²Var(X)
|
|
2854
|
+
*/
|
|
2855
|
+
scale(scalar: number): WasmUncertainMultivector;
|
|
2856
|
+
/**
|
|
2857
|
+
* Get the mean
|
|
2858
|
+
*/
|
|
2859
|
+
getMean(): Float64Array;
|
|
2860
|
+
}
|
|
2861
|
+
/**
|
|
2862
|
+
* WASM wrapper for Uniform distribution on Cl(3,0,0) multivector space
|
|
2863
|
+
*
|
|
2864
|
+
* A uniform distribution over a hyperrectangle in 8-dimensional multivector space.
|
|
2865
|
+
*/
|
|
2866
|
+
export class WasmUniformMultivector {
|
|
2867
|
+
free(): void;
|
|
2868
|
+
/**
|
|
2869
|
+
* Create a uniform distribution with specified bounds
|
|
2870
|
+
*
|
|
2871
|
+
* # Arguments
|
|
2872
|
+
* * `lower` - 8 coefficients for lower bounds
|
|
2873
|
+
* * `upper` - 8 coefficients for upper bounds
|
|
2874
|
+
*/
|
|
2875
|
+
static withBounds(lower: Float64Array, upper: Float64Array): WasmUniformMultivector;
|
|
2876
|
+
/**
|
|
2877
|
+
* Get the variance of this distribution
|
|
2878
|
+
*/
|
|
2879
|
+
getVariance(): Float64Array;
|
|
2880
|
+
/**
|
|
2881
|
+
* Draw multiple samples from this distribution
|
|
2882
|
+
*
|
|
2883
|
+
* Returns flat array of coefficients: num_samples * 8
|
|
2884
|
+
*/
|
|
2885
|
+
sampleBatch(num_samples: number): Float64Array;
|
|
2886
|
+
/**
|
|
2887
|
+
* Create a standard uniform distribution on [-1, 1]^8
|
|
2888
|
+
*/
|
|
2889
|
+
constructor();
|
|
2890
|
+
/**
|
|
2891
|
+
* Draw a sample from this distribution
|
|
2892
|
+
*
|
|
2893
|
+
* Returns 8 coefficients for the sampled multivector
|
|
2894
|
+
*/
|
|
2895
|
+
sample(): Float64Array;
|
|
2896
|
+
/**
|
|
2897
|
+
* Get the mean of this distribution
|
|
2898
|
+
*/
|
|
2899
|
+
getMean(): Float64Array;
|
|
2900
|
+
/**
|
|
2901
|
+
* Compute log probability of a multivector
|
|
2902
|
+
*
|
|
2903
|
+
* Returns log(1/volume) if inside bounds, error otherwise
|
|
2904
|
+
*/
|
|
2905
|
+
logProb(coefficients: Float64Array): number;
|
|
2906
|
+
/**
|
|
2907
|
+
* Get the lower bounds
|
|
2908
|
+
*/
|
|
2909
|
+
getLower(): Float64Array;
|
|
2910
|
+
/**
|
|
2911
|
+
* Get the upper bounds
|
|
2912
|
+
*/
|
|
2913
|
+
getUpper(): Float64Array;
|
|
2914
|
+
/**
|
|
2915
|
+
* Create a uniform distribution on a hypercube [min, max]^8
|
|
2916
|
+
*/
|
|
2917
|
+
static hypercube(min: number, max: number): WasmUniformMultivector;
|
|
2918
|
+
}
|
|
2919
|
+
/**
|
|
2920
|
+
* WASM wrapper for Wiener process (Brownian motion)
|
|
2921
|
+
*
|
|
2922
|
+
* Standard Brownian motion W(t) with W(0) = 0
|
|
2923
|
+
*/
|
|
2924
|
+
export class WasmWienerProcess {
|
|
2925
|
+
free(): void;
|
|
2926
|
+
/**
|
|
2927
|
+
* Sample a path of the Wiener process
|
|
2928
|
+
*
|
|
2929
|
+
* # Arguments
|
|
2930
|
+
* * `t_end` - End time
|
|
2931
|
+
* * `num_steps` - Number of time steps
|
|
2932
|
+
*
|
|
2933
|
+
* Returns flat array: (num_steps + 1) * (dim + 1) values
|
|
2934
|
+
* Each point is [time, w0, w1, ...]
|
|
2935
|
+
*/
|
|
2936
|
+
samplePath(t_end: number, num_steps: number): Float64Array;
|
|
2937
|
+
/**
|
|
2938
|
+
* Create a new Wiener process
|
|
2939
|
+
*
|
|
2940
|
+
* # Arguments
|
|
2941
|
+
* * `dim` - Dimension of the process (default 8 for multivector space)
|
|
2942
|
+
*/
|
|
2943
|
+
constructor(dim?: number | null);
|
|
2944
|
+
/**
|
|
2945
|
+
* Get dimension
|
|
2946
|
+
*/
|
|
2947
|
+
getDim(): number;
|
|
2948
|
+
}
|
|
2512
2949
|
|
|
2513
2950
|
export type InitInput = RequestInfo | URL | Response | BufferSource | WebAssembly.Module;
|
|
2514
2951
|
|
|
2515
2952
|
export interface InitOutput {
|
|
2516
2953
|
readonly memory: WebAssembly.Memory;
|
|
2517
2954
|
readonly __wbg_autodiff_free: (a: number, b: number) => void;
|
|
2518
|
-
readonly
|
|
2955
|
+
readonly __wbg_get_wasmmcmcdiagnostics_acceptance_rate: (a: number) => number;
|
|
2956
|
+
readonly __wbg_get_wasmmcmcdiagnostics_num_steps: (a: number) => number;
|
|
2519
2957
|
readonly __wbg_numericalderivative_free: (a: number, b: number) => void;
|
|
2520
2958
|
readonly __wbg_riemannianmanifold_free: (a: number, b: number) => void;
|
|
2521
2959
|
readonly __wbg_scalarfield_free: (a: number, b: number) => void;
|
|
2522
|
-
readonly
|
|
2960
|
+
readonly __wbg_set_wasmmcmcdiagnostics_acceptance_rate: (a: number, b: number) => void;
|
|
2961
|
+
readonly __wbg_set_wasmmcmcdiagnostics_num_steps: (a: number, b: number) => void;
|
|
2523
2962
|
readonly __wbg_wasmchowclass_free: (a: number, b: number) => void;
|
|
2524
2963
|
readonly __wbg_wasmcommunity_free: (a: number, b: number) => void;
|
|
2525
2964
|
readonly __wbg_wasmduallyflatmanifold_free: (a: number, b: number) => void;
|
|
2526
2965
|
readonly __wbg_wasmevaluationresult_free: (a: number, b: number) => void;
|
|
2527
2966
|
readonly __wbg_wasmfisherinformationmatrix_free: (a: number, b: number) => void;
|
|
2528
2967
|
readonly __wbg_wasmfishermeasure_free: (a: number, b: number) => void;
|
|
2968
|
+
readonly __wbg_wasmgaussianmultivector_free: (a: number, b: number) => void;
|
|
2529
2969
|
readonly __wbg_wasmgeodesicintegrator_free: (a: number, b: number) => void;
|
|
2530
2970
|
readonly __wbg_wasmgeometricca_free: (a: number, b: number) => void;
|
|
2531
2971
|
readonly __wbg_wasmgeometricnetwork_free: (a: number, b: number) => void;
|
|
2972
|
+
readonly __wbg_wasmgradeprojecteddistribution_free: (a: number, b: number) => void;
|
|
2532
2973
|
readonly __wbg_wasmgrassmannian_free: (a: number, b: number) => void;
|
|
2533
2974
|
readonly __wbg_wasmholographicmemory_free: (a: number, b: number) => void;
|
|
2534
2975
|
readonly __wbg_wasminversecadesigner_free: (a: number, b: number) => void;
|
|
2535
2976
|
readonly __wbg_wasmlebesguemeasure_free: (a: number, b: number) => void;
|
|
2977
|
+
readonly __wbg_wasmmcmcdiagnostics_free: (a: number, b: number) => void;
|
|
2978
|
+
readonly __wbg_wasmmetropolishastings_free: (a: number, b: number) => void;
|
|
2536
2979
|
readonly __wbg_wasmmodulispace_free: (a: number, b: number) => void;
|
|
2537
2980
|
readonly __wbg_wasmmultidualnumber_free: (a: number, b: number) => void;
|
|
2538
2981
|
readonly __wbg_wasmmultivector_free: (a: number, b: number) => void;
|
|
@@ -2541,7 +2984,6 @@ export interface InitOutput {
|
|
|
2541
2984
|
readonly __wbg_wasmpropagationanalysis_free: (a: number, b: number) => void;
|
|
2542
2985
|
readonly __wbg_wasmrelativisticparticle_free: (a: number, b: number) => void;
|
|
2543
2986
|
readonly __wbg_wasmresonator_free: (a: number, b: number) => void;
|
|
2544
|
-
readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
|
|
2545
2987
|
readonly __wbg_wasmselfassembler_free: (a: number, b: number) => void;
|
|
2546
2988
|
readonly __wbg_wasmsensitivitymap_free: (a: number, b: number) => void;
|
|
2547
2989
|
readonly __wbg_wasmtrajectorypoint_free: (a: number, b: number) => void;
|
|
@@ -2549,6 +2991,8 @@ export interface InitOutput {
|
|
|
2549
2991
|
readonly __wbg_wasmtropicalnetwork_free: (a: number, b: number) => void;
|
|
2550
2992
|
readonly __wbg_wasmtropicalpolynomial_free: (a: number, b: number) => void;
|
|
2551
2993
|
readonly __wbg_wasmtropicalviterbi_free: (a: number, b: number) => void;
|
|
2994
|
+
readonly __wbg_wasmuncertainmultivector_free: (a: number, b: number) => void;
|
|
2995
|
+
readonly __wbg_wasmuniformmultivector_free: (a: number, b: number) => void;
|
|
2552
2996
|
readonly autodiff_evaluatePolynomial: (a: number, b: number, c: number) => number;
|
|
2553
2997
|
readonly autodiff_linearLayer: (a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number) => [number, number, number, number];
|
|
2554
2998
|
readonly autodiff_meanSquaredError: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
@@ -2707,8 +3151,22 @@ export interface InitOutput {
|
|
|
2707
3151
|
readonly wasmfourvelocity_rapidity: (a: number) => number;
|
|
2708
3152
|
readonly wasmfourvelocity_spatial_velocity_magnitude: (a: number) => number;
|
|
2709
3153
|
readonly wasmfourvelocity_to_string: (a: number) => [number, number];
|
|
3154
|
+
readonly wasmgaussianmultivector_getCovariance: (a: number) => [number, number];
|
|
3155
|
+
readonly wasmgaussianmultivector_getMean: (a: number) => [number, number];
|
|
3156
|
+
readonly wasmgaussianmultivector_getStdDevs: (a: number) => [number, number];
|
|
3157
|
+
readonly wasmgaussianmultivector_getVariance: (a: number) => [number, number];
|
|
3158
|
+
readonly wasmgaussianmultivector_gradeConcentrated: (a: number, b: number) => [number, number, number];
|
|
3159
|
+
readonly wasmgaussianmultivector_isotropic: (a: number, b: number, c: number) => [number, number, number];
|
|
3160
|
+
readonly wasmgaussianmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
|
|
3161
|
+
readonly wasmgaussianmultivector_new: () => number;
|
|
3162
|
+
readonly wasmgaussianmultivector_sample: (a: number) => [number, number];
|
|
3163
|
+
readonly wasmgaussianmultivector_sampleBatch: (a: number, b: number) => [number, number];
|
|
3164
|
+
readonly wasmgaussianmultivector_withParameters: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
2710
3165
|
readonly wasmgeodesicintegrator_propagate_particle: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
2711
3166
|
readonly wasmgeodesicintegrator_with_schwarzschild: (a: number) => number;
|
|
3167
|
+
readonly wasmgeometricbrownianmotion_expectedValue: (a: number, b: number, c: number, d: number) => [number, number, number, number];
|
|
3168
|
+
readonly wasmgeometricbrownianmotion_samplePath: (a: number, b: number, c: number, d: number, e: number) => [number, number, number, number];
|
|
3169
|
+
readonly wasmgeometricbrownianmotion_variance: (a: number, b: number, c: number, d: number) => [number, number, number, number];
|
|
2712
3170
|
readonly wasmgeometricca_addGlider: (a: number, b: number, c: number) => [number, number];
|
|
2713
3171
|
readonly wasmgeometricca_addRandomPattern: (a: number, b: number) => [number, number];
|
|
2714
3172
|
readonly wasmgeometricca_generation: (a: number) => number;
|
|
@@ -2751,6 +3209,12 @@ export interface InitOutput {
|
|
|
2751
3209
|
readonly wasmgpuoptimizer_isGpuAvailable: (a: number) => number;
|
|
2752
3210
|
readonly wasmgpuoptimizer_optimizeBatch: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
|
|
2753
3211
|
readonly wasmgpuoptimizer_optimizeQuadraticGpu: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => any;
|
|
3212
|
+
readonly wasmgradeprojecteddistribution_getMean: (a: number) => [number, number];
|
|
3213
|
+
readonly wasmgradeprojecteddistribution_getNumComponents: (a: number) => number;
|
|
3214
|
+
readonly wasmgradeprojecteddistribution_getStdDevs: (a: number) => [number, number];
|
|
3215
|
+
readonly wasmgradeprojecteddistribution_new: (a: number, b: number) => [number, number, number];
|
|
3216
|
+
readonly wasmgradeprojecteddistribution_sample: (a: number) => [number, number];
|
|
3217
|
+
readonly wasmgradeprojecteddistribution_sampleFull: (a: number) => [number, number];
|
|
2754
3218
|
readonly wasmgrassmannian_getDimension: (a: number) => number;
|
|
2755
3219
|
readonly wasmgrassmannian_getParameters: (a: number) => [number, number];
|
|
2756
3220
|
readonly wasmgrassmannian_new: (a: number, b: number) => [number, number, number];
|
|
@@ -2773,11 +3237,24 @@ export interface InitOutput {
|
|
|
2773
3237
|
readonly wasmlebesguemeasure_measureBox: (a: number, b: number, c: number) => [number, number, number];
|
|
2774
3238
|
readonly wasmlebesguemeasure_measureInterval: (a: number, b: number, c: number, d: number, e: number) => [number, number, number];
|
|
2775
3239
|
readonly wasmlebesguemeasure_new: (a: number) => [number, number, number];
|
|
3240
|
+
readonly wasmmcmcdiagnostics_getEffectiveSampleSize: (a: number) => number;
|
|
3241
|
+
readonly wasmmcmcdiagnostics_getRHat: (a: number) => number;
|
|
3242
|
+
readonly wasmmcmcdiagnostics_isConverged: (a: number) => number;
|
|
3243
|
+
readonly wasmmetropolishastings_diagnostics: (a: number) => number;
|
|
3244
|
+
readonly wasmmetropolishastings_getAcceptanceRate: (a: number) => number;
|
|
3245
|
+
readonly wasmmetropolishastings_getCurrent: (a: number) => [number, number];
|
|
3246
|
+
readonly wasmmetropolishastings_new: (a: number, b: number) => number;
|
|
3247
|
+
readonly wasmmetropolishastings_run: (a: number, b: number, c: number) => [number, number];
|
|
3248
|
+
readonly wasmmetropolishastings_step: (a: number) => [number, number];
|
|
2776
3249
|
readonly wasmmodulispace_expectedDimension: (a: number) => number;
|
|
2777
3250
|
readonly wasmmodulispace_getMarkedPoints: (a: number) => number;
|
|
2778
3251
|
readonly wasmmodulispace_isProper: (a: number) => number;
|
|
2779
3252
|
readonly wasmmodulispace_ofCurves: (a: number, b: number) => number;
|
|
2780
3253
|
readonly wasmmodulispace_ofStableCurves: (a: number, b: number) => number;
|
|
3254
|
+
readonly wasmmontecarloestimator_expectationGeometricProduct: (a: number, b: number, c: number) => [number, number];
|
|
3255
|
+
readonly wasmmontecarloestimator_sampleCovariance: (a: number, b: number) => [number, number, number, number];
|
|
3256
|
+
readonly wasmmontecarloestimator_sampleMean: (a: number, b: number) => [number, number, number, number];
|
|
3257
|
+
readonly wasmmontecarloestimator_sampleVariance: (a: number, b: number) => [number, number, number, number];
|
|
2781
3258
|
readonly wasmmultidualnumber_add: (a: number, b: number) => [number, number, number];
|
|
2782
3259
|
readonly wasmmultidualnumber_constant: (a: number, b: number) => number;
|
|
2783
3260
|
readonly wasmmultidualnumber_getGradient: (a: number) => [number, number];
|
|
@@ -2938,9 +3415,32 @@ export interface InitOutput {
|
|
|
2938
3415
|
readonly wasmtropicalviterbi_decode: (a: number, b: number, c: number) => [number, number, number];
|
|
2939
3416
|
readonly wasmtropicalviterbi_forward_probabilities: (a: number, b: number, c: number) => [number, number, number];
|
|
2940
3417
|
readonly wasmtropicalviterbi_new: (a: any, b: any) => [number, number, number];
|
|
3418
|
+
readonly wasmuncertainmultivector_add: (a: number, b: number) => number;
|
|
3419
|
+
readonly wasmuncertainmultivector_deterministic: (a: number, b: number) => [number, number, number];
|
|
3420
|
+
readonly wasmuncertainmultivector_getCovariance: (a: number) => [number, number];
|
|
3421
|
+
readonly wasmuncertainmultivector_getMean: (a: number) => [number, number];
|
|
3422
|
+
readonly wasmuncertainmultivector_getStdDevs: (a: number) => [number, number];
|
|
3423
|
+
readonly wasmuncertainmultivector_getTotalVariance: (a: number) => number;
|
|
3424
|
+
readonly wasmuncertainmultivector_getVariances: (a: number) => [number, number];
|
|
3425
|
+
readonly wasmuncertainmultivector_new: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3426
|
+
readonly wasmuncertainmultivector_scale: (a: number, b: number) => number;
|
|
3427
|
+
readonly wasmuncertainmultivector_withCovariance: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3428
|
+
readonly wasmuniformmultivector_getLower: (a: number) => [number, number];
|
|
3429
|
+
readonly wasmuniformmultivector_getMean: (a: number) => [number, number];
|
|
3430
|
+
readonly wasmuniformmultivector_getUpper: (a: number) => [number, number];
|
|
3431
|
+
readonly wasmuniformmultivector_getVariance: (a: number) => [number, number];
|
|
3432
|
+
readonly wasmuniformmultivector_hypercube: (a: number, b: number) => [number, number, number];
|
|
3433
|
+
readonly wasmuniformmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
|
|
3434
|
+
readonly wasmuniformmultivector_new: () => [number, number, number];
|
|
3435
|
+
readonly wasmuniformmultivector_sample: (a: number) => [number, number];
|
|
3436
|
+
readonly wasmuniformmultivector_sampleBatch: (a: number, b: number) => [number, number];
|
|
3437
|
+
readonly wasmuniformmultivector_withBounds: (a: number, b: number, c: number, d: number) => [number, number, number];
|
|
3438
|
+
readonly wasmwienerprocess_new: (a: number) => number;
|
|
3439
|
+
readonly wasmwienerprocess_samplePath: (a: number, b: number, c: number) => [number, number];
|
|
2941
3440
|
readonly wasmtropicalnumber_new: (a: number) => number;
|
|
2942
3441
|
readonly vectorfield_fromFunction2D: (a: any) => number;
|
|
2943
3442
|
readonly vectorfield_fromFunction3D: (a: any) => number;
|
|
3443
|
+
readonly __wbg_set_wasmtrajectorypoint_time: (a: number, b: number) => void;
|
|
2944
3444
|
readonly wasmmultivector_norm: (a: number) => number;
|
|
2945
3445
|
readonly wasmspacetimevector_t: (a: number) => number;
|
|
2946
3446
|
readonly wasmtropicalnumber_zero: () => number;
|
|
@@ -2952,13 +3452,18 @@ export interface InitOutput {
|
|
|
2952
3452
|
readonly __wbg_wasmprobabilitymeasure_free: (a: number, b: number) => void;
|
|
2953
3453
|
readonly __wbg_vectorfield_free: (a: number, b: number) => void;
|
|
2954
3454
|
readonly vectorfield_new: (a: any, b: number) => number;
|
|
3455
|
+
readonly wasmgeometricbrownianmotion_new: (a: number, b: number) => number;
|
|
2955
3456
|
readonly wasmtropicalnumber_isZero: (a: number) => number;
|
|
2956
3457
|
readonly wasmtropicalnumber_tropicalAdd: (a: number, b: number) => number;
|
|
3458
|
+
readonly __wbg_get_wasmtrajectorypoint_time: (a: number) => number;
|
|
2957
3459
|
readonly wasmcommunity_cohesion_score: (a: number) => number;
|
|
2958
3460
|
readonly wasmdualnumber_getReal: (a: number) => number;
|
|
2959
3461
|
readonly wasmevaluationresult_getBestPathScore: (a: number) => number;
|
|
2960
3462
|
readonly wasmevaluationresult_getGradientNorm: (a: number) => number;
|
|
3463
|
+
readonly wasmgeometricbrownianmotion_getMu: (a: number) => number;
|
|
3464
|
+
readonly wasmgeometricbrownianmotion_getSigma: (a: number) => number;
|
|
2961
3465
|
readonly wasmgeometricedge_weight: (a: number) => number;
|
|
3466
|
+
readonly wasmgradeprojecteddistribution_getGrade: (a: number) => number;
|
|
2962
3467
|
readonly wasmmodulispace_getGenus: (a: number) => number;
|
|
2963
3468
|
readonly wasmmultidualnumber_getReal: (a: number) => number;
|
|
2964
3469
|
readonly wasmoptimizationresult_iterations: (a: number) => number;
|
|
@@ -2972,6 +3477,7 @@ export interface InitOutput {
|
|
|
2972
3477
|
readonly wasmtropicalcurve_getGenus: (a: number) => number;
|
|
2973
3478
|
readonly wasmtropicalnetwork_getSize: (a: number) => number;
|
|
2974
3479
|
readonly wasmtropicalnumber_getValue: (a: number) => number;
|
|
3480
|
+
readonly wasmwienerprocess_getDim: (a: number) => number;
|
|
2975
3481
|
readonly __wbg_automatabatchoperations_free: (a: number, b: number) => void;
|
|
2976
3482
|
readonly __wbg_automatautils_free: (a: number, b: number) => void;
|
|
2977
3483
|
readonly __wbg_batchoperations_free: (a: number, b: number) => void;
|
|
@@ -2991,17 +3497,21 @@ export interface InitOutput {
|
|
|
2991
3497
|
readonly __wbg_wasmcountingmeasure_free: (a: number, b: number) => void;
|
|
2992
3498
|
readonly __wbg_wasmdualnumber_free: (a: number, b: number) => void;
|
|
2993
3499
|
readonly __wbg_wasmfourvelocity_free: (a: number, b: number) => void;
|
|
3500
|
+
readonly __wbg_wasmgeometricbrownianmotion_free: (a: number, b: number) => void;
|
|
2994
3501
|
readonly __wbg_wasmgeometricedge_free: (a: number, b: number) => void;
|
|
2995
3502
|
readonly __wbg_wasmgpuoptimizer_free: (a: number, b: number) => void;
|
|
3503
|
+
readonly __wbg_wasmmontecarloestimator_free: (a: number, b: number) => void;
|
|
2996
3504
|
readonly __wbg_wasmmultiobjectiveoptimizer_free: (a: number, b: number) => void;
|
|
2997
3505
|
readonly __wbg_wasmoptimizationutils_free: (a: number, b: number) => void;
|
|
2998
3506
|
readonly __wbg_wasmprojectivespace_free: (a: number, b: number) => void;
|
|
2999
3507
|
readonly __wbg_wasmrelativisticconstants_free: (a: number, b: number) => void;
|
|
3508
|
+
readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
|
|
3000
3509
|
readonly __wbg_wasmsimpleoptimizer_free: (a: number, b: number) => void;
|
|
3001
3510
|
readonly __wbg_wasmspacetimevector_free: (a: number, b: number) => void;
|
|
3002
3511
|
readonly __wbg_wasmtropicalcurve_free: (a: number, b: number) => void;
|
|
3003
3512
|
readonly __wbg_wasmtropicalmeasure_free: (a: number, b: number) => void;
|
|
3004
3513
|
readonly __wbg_wasmtropicalnumber_free: (a: number, b: number) => void;
|
|
3514
|
+
readonly __wbg_wasmwienerprocess_free: (a: number, b: number) => void;
|
|
3005
3515
|
readonly __wbg_wasmmultiobjectiveresult_free: (a: number, b: number) => void;
|
|
3006
3516
|
readonly wasmrotor_inverse: (a: number) => number;
|
|
3007
3517
|
readonly __wbg_wasmrotor_free: (a: number, b: number) => void;
|
|
@@ -3017,8 +3527,8 @@ export interface InitOutput {
|
|
|
3017
3527
|
readonly __wbindgen_realloc: (a: number, b: number, c: number, d: number) => number;
|
|
3018
3528
|
readonly __wbindgen_export_6: WebAssembly.Table;
|
|
3019
3529
|
readonly __externref_table_dealloc: (a: number) => void;
|
|
3020
|
-
readonly
|
|
3021
|
-
readonly
|
|
3530
|
+
readonly closure41_externref_shim: (a: number, b: number, c: any) => void;
|
|
3531
|
+
readonly closure34_externref_shim: (a: number, b: number, c: any, d: any) => void;
|
|
3022
3532
|
readonly __wbindgen_start: () => void;
|
|
3023
3533
|
}
|
|
3024
3534
|
|