@justinelliottcobb/amari-wasm 0.12.2 → 0.13.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,4 +1,4 @@
1
- # @justinelliottcobb/amari-wasm v0.9.10
1
+ # @justinelliottcobb/amari-wasm v0.13.0
2
2
 
3
3
  **Unified Mathematical Computing Library with High-Precision WebAssembly Support**
4
4
 
@@ -16,7 +16,8 @@ Amari is a comprehensive mathematical computing library that brings advanced alg
16
16
  - **Tropical Algebra**: Max-plus semiring operations for optimization and neural network applications
17
17
  - **Automatic Differentiation**: Forward-mode AD with dual numbers for exact derivatives
18
18
  - **Measure Theory** *(v0.10.0)*: Lebesgue integration, probability measures, and measure-theoretic foundations
19
- - **Holographic Memory** *(v0.12.2)*: Vector Symbolic Architecture for associative memory with binding and bundling operations
19
+ - **Holographic Memory** *(v0.12.3)*: Vector Symbolic Architecture for associative memory with binding and bundling operations
20
+ - **Probability Theory** *(v0.13.0)*: Distributions on multivector spaces, MCMC sampling, and Monte Carlo estimation
20
21
  - **Relativistic Physics**: Spacetime algebra (Cl(1,3)) with WebAssembly-compatible precision
21
22
  - **Spacecraft Orbital Mechanics**: Full-precision trajectory calculations in browsers
22
23
  - **Cellular Automata**: Geometric cellular automata with multivector states
@@ -275,6 +276,82 @@ async function holographicDemo() {
275
276
  holographicDemo();
276
277
  ```
277
278
 
279
+ ### Probability on Geometric Algebra *(v0.13.0)*
280
+
281
+ Sample from distributions on multivector spaces and perform Monte Carlo estimation:
282
+
283
+ ```typescript
284
+ import init, {
285
+ WasmGaussianMultivector,
286
+ WasmUniformMultivector,
287
+ WasmMonteCarloEstimator
288
+ } from '@justinelliottcobb/amari-wasm';
289
+
290
+ async function probabilisticDemo() {
291
+ await init();
292
+
293
+ // Create a standard Gaussian distribution on Cl(3,0,0)
294
+ const gaussian = WasmGaussianMultivector.standard();
295
+
296
+ // Draw samples
297
+ const samples = [];
298
+ for (let i = 0; i < 1000; i++) {
299
+ samples.push(gaussian.sample());
300
+ }
301
+ console.log(`Drew ${samples.length} Gaussian samples`);
302
+
303
+ // Compute log probability
304
+ const sample = gaussian.sample();
305
+ const logProb = gaussian.logProb(sample);
306
+ console.log(`Log probability: ${logProb}`);
307
+
308
+ // Grade-concentrated distribution (e.g., only on bivectors)
309
+ const bivectorDist = WasmGaussianMultivector.gradeConcentrated(2, 1.0);
310
+ const bivectorSample = bivectorDist.sample();
311
+
312
+ // Uniform distribution on unit multivectors
313
+ const uniform = WasmUniformMultivector.unitSphere();
314
+ const unitSample = uniform.sample();
315
+
316
+ // Monte Carlo estimation
317
+ const estimator = new WasmMonteCarloEstimator();
318
+
319
+ // Estimate expectation of a function
320
+ const estimate = estimator.estimate((mv) => mv.norm(), gaussian, 10000);
321
+ console.log(`Expected norm: ${estimate.mean} ± ${estimate.stdError}`);
322
+
323
+ // Clean up WASM memory
324
+ gaussian.free();
325
+ bivectorDist.free();
326
+ uniform.free();
327
+ sample.free();
328
+ bivectorSample.free();
329
+ unitSample.free();
330
+ estimator.free();
331
+ samples.forEach(s => s.free());
332
+ }
333
+
334
+ probabilisticDemo();
335
+ ```
336
+
337
+ #### Probability API
338
+
339
+ **WasmGaussianMultivector:**
340
+ - `standard()`: Create standard Gaussian on full multivector space
341
+ - `new(mean, covariance)`: Create with specified mean and covariance
342
+ - `gradeConcentrated(grade, scale)`: Gaussian concentrated on specific grade
343
+ - `sample()`: Draw a random sample
344
+ - `logProb(sample)`: Compute log probability density
345
+
346
+ **WasmUniformMultivector:**
347
+ - `unitSphere()`: Uniform distribution on unit multivectors
348
+ - `gradeSimplex(grade)`: Uniform on grade components summing to 1
349
+ - `sample()`: Draw a random sample
350
+
351
+ **WasmMonteCarloEstimator:**
352
+ - `estimate(fn, distribution, nSamples)`: Estimate expectation
353
+ - `estimateVariance(fn, distribution, nSamples)`: Estimate variance
354
+
278
355
  #### Holographic Memory API
279
356
 
280
357
  **TropicalDualClifford Operations:**
@@ -307,6 +384,8 @@ holographicDemo();
307
384
  - **Optimization**: Tropical algebra for shortest path and scheduling problems
308
385
  - **Scientific Computing**: High-performance mathematical operations with orbital-grade precision
309
386
  - **Probability & Statistics**: Measure theory and numerical integration for statistical computations
387
+ - **Bayesian Inference**: Probabilistic modeling on geometric algebra spaces
388
+ - **Uncertainty Quantification**: Monte Carlo methods for error propagation
310
389
  - **Game Development**: Efficient spatial transformations and physics
311
390
  - **Spacecraft Trajectory Planning**: High-precision orbital mechanics in web applications
312
391
  - **Symbolic AI**: Holographic memory for associative reasoning and concept binding
@@ -348,6 +427,16 @@ holographicDemo();
348
427
  - `WasmHolographicMemory.retrieve(key)`: Retrieve by key
349
428
  - `WasmResonator.cleanup(input)`: Clean up noisy input
350
429
 
430
+ ### Probabilistic Operations
431
+
432
+ - `WasmGaussianMultivector.standard()`: Standard Gaussian distribution
433
+ - `WasmGaussianMultivector.gradeConcentrated(grade, scale)`: Grade-specific Gaussian
434
+ - `WasmGaussianMultivector.sample()`: Draw random sample
435
+ - `WasmGaussianMultivector.logProb(sample)`: Log probability density
436
+ - `WasmUniformMultivector.unitSphere()`: Uniform on unit sphere
437
+ - `WasmUniformMultivector.sample()`: Draw random sample
438
+ - `WasmMonteCarloEstimator.estimate(fn, dist, n)`: Monte Carlo expectation
439
+
351
440
  ## Examples
352
441
 
353
442
  Check out the [examples directory](https://github.com/justinelliottcobb/Amari/tree/master/examples) for more detailed usage:
package/amari_wasm.d.ts CHANGED
@@ -877,29 +877,6 @@ export class WasmChowClass {
877
877
  */
878
878
  multiply(other: WasmChowClass): WasmChowClass;
879
879
  }
880
- /**
881
- * WASM wrapper for cleanup results
882
- */
883
- export class WasmCleanupResult {
884
- private constructor();
885
- free(): void;
886
- /**
887
- * Get the cleaned (denoised) value
888
- */
889
- getCleaned(): WasmTropicalDualClifford;
890
- /**
891
- * Check if the cleanup converged
892
- */
893
- didConverge(): boolean;
894
- /**
895
- * Get the number of iterations used
896
- */
897
- getIterations(): number;
898
- /**
899
- * Get the index of the best matching codebook item
900
- */
901
- getBestMatchIndex(): number;
902
- }
903
880
  /**
904
881
  * WASM wrapper for community detection results
905
882
  */
@@ -1188,6 +1165,86 @@ export class WasmFourVelocity {
1188
1165
  */
1189
1166
  to_string(): string;
1190
1167
  }
1168
+ /**
1169
+ * WASM wrapper for Gaussian distribution on Cl(3,0,0) multivector space
1170
+ *
1171
+ * A Gaussian distribution over 8-dimensional multivector space with
1172
+ * configurable mean and per-component standard deviation.
1173
+ */
1174
+ export class WasmGaussianMultivector {
1175
+ free(): void;
1176
+ /**
1177
+ * Get the standard deviations
1178
+ *
1179
+ * Returns 8 values
1180
+ */
1181
+ getStdDevs(): Float64Array;
1182
+ /**
1183
+ * Get the variance (square of std devs)
1184
+ *
1185
+ * Returns 8 values
1186
+ */
1187
+ getVariance(): Float64Array;
1188
+ /**
1189
+ * Draw multiple samples from this distribution
1190
+ *
1191
+ * Returns flat array of coefficients: num_samples * 8
1192
+ */
1193
+ sampleBatch(num_samples: number): Float64Array;
1194
+ /**
1195
+ * Get the full covariance matrix (flattened, row-major)
1196
+ *
1197
+ * Returns 64 values (8x8 matrix)
1198
+ */
1199
+ getCovariance(): Float64Array;
1200
+ /**
1201
+ * Create a Gaussian with specified mean and standard deviation
1202
+ *
1203
+ * # Arguments
1204
+ * * `mean` - 8 coefficients for the mean multivector
1205
+ * * `std_dev` - 8 coefficients for per-coefficient standard deviation
1206
+ */
1207
+ static withParameters(mean: Float64Array, std_dev: Float64Array): WasmGaussianMultivector;
1208
+ /**
1209
+ * Create a Gaussian concentrated on a specific grade
1210
+ *
1211
+ * # Arguments
1212
+ * * `grade` - The grade to concentrate on (0=scalar, 1=vectors, 2=bivectors, 3=pseudoscalar)
1213
+ * * `variance` - Variance for coefficients of that grade
1214
+ */
1215
+ static gradeConcentrated(grade: number, variance: number): WasmGaussianMultivector;
1216
+ /**
1217
+ * Create a standard Gaussian (zero mean, unit variance per coefficient)
1218
+ */
1219
+ constructor();
1220
+ /**
1221
+ * Draw a sample from this distribution
1222
+ *
1223
+ * Returns 8 coefficients for the sampled multivector
1224
+ */
1225
+ sample(): Float64Array;
1226
+ /**
1227
+ * Get the mean of this distribution
1228
+ *
1229
+ * Returns 8 coefficients
1230
+ */
1231
+ getMean(): Float64Array;
1232
+ /**
1233
+ * Compute log probability of a multivector
1234
+ *
1235
+ * # Arguments
1236
+ * * `coefficients` - 8 coefficients of the multivector
1237
+ */
1238
+ logProb(coefficients: Float64Array): number;
1239
+ /**
1240
+ * Create an isotropic Gaussian with given mean and variance
1241
+ *
1242
+ * # Arguments
1243
+ * * `mean` - 8 coefficients for the mean multivector
1244
+ * * `variance` - Variance (same for all components)
1245
+ */
1246
+ static isotropic(mean: Float64Array, variance: number): WasmGaussianMultivector;
1247
+ }
1191
1248
  /**
1192
1249
  * WASM wrapper for geodesic integration
1193
1250
  */
@@ -1422,7 +1479,7 @@ export class WasmGrassmannian {
1422
1479
  constructor(k: number, n: number);
1423
1480
  }
1424
1481
  /**
1425
- * WASM wrapper for HolographicMemory
1482
+ * WASM wrapper for HolographicMemory using ProductClifford algebra
1426
1483
  */
1427
1484
  export class WasmHolographicMemory {
1428
1485
  free(): void;
@@ -1430,38 +1487,30 @@ export class WasmHolographicMemory {
1430
1487
  * Get the number of stored items
1431
1488
  */
1432
1489
  itemCount(): number;
1433
- /**
1434
- * Batch store multiple key-value pairs
1435
- */
1436
- storeBatch(keys: Float64Array, values: Float64Array): void;
1437
1490
  /**
1438
1491
  * Get the estimated SNR (signal-to-noise ratio)
1439
1492
  */
1440
1493
  estimatedSnr(): number;
1441
1494
  /**
1442
- * Check if memory is near capacity
1495
+ * Generate a random versor (for use as key/value)
1443
1496
  */
1444
- isNearCapacity(): boolean;
1497
+ static randomVersor(num_factors: number): Float64Array;
1445
1498
  /**
1446
- * Check if memory probably contains a key
1499
+ * Check if memory is near capacity
1447
1500
  */
1448
- probablyContains(key: WasmTropicalDualClifford): boolean;
1501
+ isNearCapacity(): boolean;
1449
1502
  /**
1450
1503
  * Create with key tracking enabled (for attribution)
1451
1504
  */
1452
1505
  static withKeyTracking(): WasmHolographicMemory;
1453
1506
  /**
1454
- * Get the theoretical capacity
1507
+ * Get retrieval confidence for a key
1455
1508
  */
1456
- theoreticalCapacity(): number;
1509
+ retrieveConfidence(key: Float64Array): number;
1457
1510
  /**
1458
- * Retrieve with custom temperature
1511
+ * Get capacity information
1459
1512
  */
1460
- retrieveAtTemperature(key: WasmTropicalDualClifford, beta: number): WasmRetrievalResult;
1461
- /**
1462
- * Create with custom bundle temperature
1463
- */
1464
- static withBundleTemperature(beta: number): WasmHolographicMemory;
1513
+ theoreticalCapacity(): number;
1465
1514
  /**
1466
1515
  * Create a new holographic memory with default settings
1467
1516
  */
@@ -1471,17 +1520,17 @@ export class WasmHolographicMemory {
1471
1520
  */
1472
1521
  clear(): void;
1473
1522
  /**
1474
- * Merge another memory into this one
1475
- */
1476
- merge(other: WasmHolographicMemory): void;
1477
- /**
1478
- * Store a key-value pair in memory
1523
+ * Store a key-value pair in memory (using flat coefficient arrays)
1524
+ *
1525
+ * Each array should have 256 coefficients for ProductCl3x32.
1479
1526
  */
1480
- store(key: WasmTropicalDualClifford, value: WasmTropicalDualClifford): void;
1527
+ store(key: Float64Array, value: Float64Array): void;
1481
1528
  /**
1482
1529
  * Retrieve a value by key
1530
+ *
1531
+ * Returns the retrieved coefficients as a Float64Array.
1483
1532
  */
1484
- retrieve(key: WasmTropicalDualClifford): WasmRetrievalResult;
1533
+ retrieve(key: Float64Array): Float64Array;
1485
1534
  }
1486
1535
  /**
1487
1536
  * WASM wrapper for Inverse CA Designer (simplified)
@@ -1567,6 +1616,49 @@ export class WasmModuliSpace {
1567
1616
  */
1568
1617
  static ofCurves(genus: number, marked_points: number): WasmModuliSpace;
1569
1618
  }
1619
+ /**
1620
+ * Monte Carlo estimation utilities
1621
+ */
1622
+ export class WasmMonteCarloEstimator {
1623
+ private constructor();
1624
+ free(): void;
1625
+ /**
1626
+ * Compute sample mean from batch samples
1627
+ *
1628
+ * # Arguments
1629
+ * * `samples` - Flat array of samples (num_samples * 8)
1630
+ *
1631
+ * # Returns
1632
+ * 8 coefficients for the mean
1633
+ */
1634
+ static sampleMean(samples: Float64Array): Float64Array;
1635
+ /**
1636
+ * Compute sample variance from batch samples
1637
+ *
1638
+ * # Arguments
1639
+ * * `samples` - Flat array of samples (num_samples * 8)
1640
+ *
1641
+ * # Returns
1642
+ * 8 values for per-coefficient variance
1643
+ */
1644
+ static sampleVariance(samples: Float64Array): Float64Array;
1645
+ /**
1646
+ * Compute sample covariance matrix from batch samples
1647
+ *
1648
+ * # Arguments
1649
+ * * `samples` - Flat array of samples (num_samples * 8)
1650
+ *
1651
+ * # Returns
1652
+ * 64 values for 8x8 covariance matrix (row-major)
1653
+ */
1654
+ static sampleCovariance(samples: Float64Array): Float64Array;
1655
+ /**
1656
+ * Monte Carlo estimate of expectation E[f(X)] where f is the geometric product
1657
+ *
1658
+ * Estimates E[X * Y] for independent X ~ dist_x, Y ~ dist_y
1659
+ */
1660
+ static expectationGeometricProduct(dist_x: WasmGaussianMultivector, dist_y: WasmGaussianMultivector, num_samples: number): Float64Array;
1661
+ }
1570
1662
  /**
1571
1663
  * WASM wrapper for multi-variable dual numbers
1572
1664
  */
@@ -1987,45 +2079,28 @@ export class WasmRelativisticParticle {
1987
2079
  to_string(): string;
1988
2080
  }
1989
2081
  /**
1990
- * WASM wrapper for Resonator (iterative cleanup)
2082
+ * WASM wrapper for Resonator using ProductClifford algebra
1991
2083
  */
1992
2084
  export class WasmResonator {
1993
2085
  free(): void;
1994
- /**
1995
- * Create with custom configuration
1996
- */
1997
- static withConfig(codebook_flat: Float64Array, max_iterations: number, convergence_threshold: number): WasmResonator;
1998
2086
  /**
1999
2087
  * Get the codebook size
2000
2088
  */
2001
2089
  codebookSize(): number;
2002
2090
  /**
2003
- * Create a resonator from a codebook of TDC vectors
2004
- */
2005
- constructor(codebook_flat: Float64Array);
2006
- /**
2007
- * Clean up a noisy input to find the closest codebook item
2091
+ * Get cleanup result with metadata
2008
2092
  */
2009
- cleanup(input: WasmTropicalDualClifford): WasmCleanupResult;
2010
- }
2011
- /**
2012
- * WASM wrapper for retrieval results
2013
- */
2014
- export class WasmRetrievalResult {
2015
- private constructor();
2016
- free(): void;
2093
+ cleanupWithInfo(input: Float64Array): any;
2017
2094
  /**
2018
- * Get the retrieval confidence (0 to 1)
2019
- */
2020
- getConfidence(): number;
2021
- /**
2022
- * Get attribution as arrays of [index, weight] pairs
2095
+ * Create a resonator from a flat codebook array
2096
+ *
2097
+ * Each item should have 256 coefficients for ProductCl3x32.
2023
2098
  */
2024
- getAttribution(): any;
2099
+ constructor(codebook_flat: Float64Array);
2025
2100
  /**
2026
- * Get the retrieved value
2101
+ * Clean up a noisy input to find the closest codebook item
2027
2102
  */
2028
- getValue(): WasmTropicalDualClifford;
2103
+ cleanup(input: Float64Array): Float64Array;
2029
2104
  }
2030
2105
  /**
2031
2106
  * Rotor operations for WASM
@@ -2557,6 +2632,64 @@ export class WasmTropicalViterbi {
2557
2632
  */
2558
2633
  decode(observations: Uint32Array): any;
2559
2634
  }
2635
+ /**
2636
+ * WASM wrapper for Uniform distribution on Cl(3,0,0) multivector space
2637
+ *
2638
+ * A uniform distribution over a hyperrectangle in 8-dimensional multivector space.
2639
+ */
2640
+ export class WasmUniformMultivector {
2641
+ free(): void;
2642
+ /**
2643
+ * Create a uniform distribution with specified bounds
2644
+ *
2645
+ * # Arguments
2646
+ * * `lower` - 8 coefficients for lower bounds
2647
+ * * `upper` - 8 coefficients for upper bounds
2648
+ */
2649
+ static withBounds(lower: Float64Array, upper: Float64Array): WasmUniformMultivector;
2650
+ /**
2651
+ * Get the variance of this distribution
2652
+ */
2653
+ getVariance(): Float64Array;
2654
+ /**
2655
+ * Draw multiple samples from this distribution
2656
+ *
2657
+ * Returns flat array of coefficients: num_samples * 8
2658
+ */
2659
+ sampleBatch(num_samples: number): Float64Array;
2660
+ /**
2661
+ * Create a standard uniform distribution on [-1, 1]^8
2662
+ */
2663
+ constructor();
2664
+ /**
2665
+ * Draw a sample from this distribution
2666
+ *
2667
+ * Returns 8 coefficients for the sampled multivector
2668
+ */
2669
+ sample(): Float64Array;
2670
+ /**
2671
+ * Get the mean of this distribution
2672
+ */
2673
+ getMean(): Float64Array;
2674
+ /**
2675
+ * Compute log probability of a multivector
2676
+ *
2677
+ * Returns log(1/volume) if inside bounds, error otherwise
2678
+ */
2679
+ logProb(coefficients: Float64Array): number;
2680
+ /**
2681
+ * Get the lower bounds
2682
+ */
2683
+ getLower(): Float64Array;
2684
+ /**
2685
+ * Get the upper bounds
2686
+ */
2687
+ getUpper(): Float64Array;
2688
+ /**
2689
+ * Create a uniform distribution on a hypercube [min, max]^8
2690
+ */
2691
+ static hypercube(min: number, max: number): WasmUniformMultivector;
2692
+ }
2560
2693
 
2561
2694
  export type InitInput = RequestInfo | URL | Response | BufferSource | WebAssembly.Module;
2562
2695
 
@@ -2569,12 +2702,12 @@ export interface InitOutput {
2569
2702
  readonly __wbg_scalarfield_free: (a: number, b: number) => void;
2570
2703
  readonly __wbg_set_wasmtrajectorypoint_time: (a: number, b: number) => void;
2571
2704
  readonly __wbg_wasmchowclass_free: (a: number, b: number) => void;
2572
- readonly __wbg_wasmcleanupresult_free: (a: number, b: number) => void;
2573
2705
  readonly __wbg_wasmcommunity_free: (a: number, b: number) => void;
2574
2706
  readonly __wbg_wasmduallyflatmanifold_free: (a: number, b: number) => void;
2575
2707
  readonly __wbg_wasmevaluationresult_free: (a: number, b: number) => void;
2576
2708
  readonly __wbg_wasmfisherinformationmatrix_free: (a: number, b: number) => void;
2577
2709
  readonly __wbg_wasmfishermeasure_free: (a: number, b: number) => void;
2710
+ readonly __wbg_wasmgaussianmultivector_free: (a: number, b: number) => void;
2578
2711
  readonly __wbg_wasmgeodesicintegrator_free: (a: number, b: number) => void;
2579
2712
  readonly __wbg_wasmgeometricca_free: (a: number, b: number) => void;
2580
2713
  readonly __wbg_wasmgeometricnetwork_free: (a: number, b: number) => void;
@@ -2590,7 +2723,6 @@ export interface InitOutput {
2590
2723
  readonly __wbg_wasmpropagationanalysis_free: (a: number, b: number) => void;
2591
2724
  readonly __wbg_wasmrelativisticparticle_free: (a: number, b: number) => void;
2592
2725
  readonly __wbg_wasmresonator_free: (a: number, b: number) => void;
2593
- readonly __wbg_wasmretrievalresult_free: (a: number, b: number) => void;
2594
2726
  readonly __wbg_wasmschwarzschildmetric_free: (a: number, b: number) => void;
2595
2727
  readonly __wbg_wasmselfassembler_free: (a: number, b: number) => void;
2596
2728
  readonly __wbg_wasmsensitivitymap_free: (a: number, b: number) => void;
@@ -2599,6 +2731,7 @@ export interface InitOutput {
2599
2731
  readonly __wbg_wasmtropicalnetwork_free: (a: number, b: number) => void;
2600
2732
  readonly __wbg_wasmtropicalpolynomial_free: (a: number, b: number) => void;
2601
2733
  readonly __wbg_wasmtropicalviterbi_free: (a: number, b: number) => void;
2734
+ readonly __wbg_wasmuniformmultivector_free: (a: number, b: number) => void;
2602
2735
  readonly autodiff_evaluatePolynomial: (a: number, b: number, c: number) => number;
2603
2736
  readonly autodiff_linearLayer: (a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number) => [number, number, number, number];
2604
2737
  readonly autodiff_meanSquaredError: (a: number, b: number, c: number, d: number) => [number, number, number];
@@ -2705,10 +2838,6 @@ export interface InitOutput {
2705
2838
  readonly wasmchowclass_new: (a: number, b: number) => number;
2706
2839
  readonly wasmchowclass_point: () => number;
2707
2840
  readonly wasmchowclass_power: (a: number, b: number) => number;
2708
- readonly wasmcleanupresult_didConverge: (a: number) => number;
2709
- readonly wasmcleanupresult_getBestMatchIndex: (a: number) => number;
2710
- readonly wasmcleanupresult_getCleaned: (a: number) => number;
2711
- readonly wasmcleanupresult_getIterations: (a: number) => number;
2712
2841
  readonly wasmcommunity_centroid_coefficients: (a: number) => [number, number];
2713
2842
  readonly wasmcommunity_nodes: (a: number) => [number, number];
2714
2843
  readonly wasmcountingmeasure_isMeasurable: (a: number) => number;
@@ -2761,6 +2890,17 @@ export interface InitOutput {
2761
2890
  readonly wasmfourvelocity_rapidity: (a: number) => number;
2762
2891
  readonly wasmfourvelocity_spatial_velocity_magnitude: (a: number) => number;
2763
2892
  readonly wasmfourvelocity_to_string: (a: number) => [number, number];
2893
+ readonly wasmgaussianmultivector_getCovariance: (a: number) => [number, number];
2894
+ readonly wasmgaussianmultivector_getMean: (a: number) => [number, number];
2895
+ readonly wasmgaussianmultivector_getStdDevs: (a: number) => [number, number];
2896
+ readonly wasmgaussianmultivector_getVariance: (a: number) => [number, number];
2897
+ readonly wasmgaussianmultivector_gradeConcentrated: (a: number, b: number) => [number, number, number];
2898
+ readonly wasmgaussianmultivector_isotropic: (a: number, b: number, c: number) => [number, number, number];
2899
+ readonly wasmgaussianmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
2900
+ readonly wasmgaussianmultivector_new: () => number;
2901
+ readonly wasmgaussianmultivector_sample: (a: number) => [number, number];
2902
+ readonly wasmgaussianmultivector_sampleBatch: (a: number, b: number) => [number, number];
2903
+ readonly wasmgaussianmultivector_withParameters: (a: number, b: number, c: number, d: number) => [number, number, number];
2764
2904
  readonly wasmgeodesicintegrator_propagate_particle: (a: number, b: number, c: number, d: number) => [number, number, number];
2765
2905
  readonly wasmgeodesicintegrator_with_schwarzschild: (a: number) => number;
2766
2906
  readonly wasmgeometricca_addGlider: (a: number, b: number, c: number) => [number, number];
@@ -2812,15 +2952,12 @@ export interface InitOutput {
2812
2952
  readonly wasmholographicmemory_estimatedSnr: (a: number) => number;
2813
2953
  readonly wasmholographicmemory_isNearCapacity: (a: number) => number;
2814
2954
  readonly wasmholographicmemory_itemCount: (a: number) => number;
2815
- readonly wasmholographicmemory_merge: (a: number, b: number) => void;
2816
2955
  readonly wasmholographicmemory_new: () => number;
2817
- readonly wasmholographicmemory_probablyContains: (a: number, b: number) => number;
2818
- readonly wasmholographicmemory_retrieve: (a: number, b: number) => number;
2819
- readonly wasmholographicmemory_retrieveAtTemperature: (a: number, b: number, c: number) => number;
2820
- readonly wasmholographicmemory_store: (a: number, b: number, c: number) => void;
2821
- readonly wasmholographicmemory_storeBatch: (a: number, b: number, c: number, d: number, e: number) => [number, number];
2956
+ readonly wasmholographicmemory_randomVersor: (a: number) => [number, number];
2957
+ readonly wasmholographicmemory_retrieve: (a: number, b: number, c: number) => [number, number, number, number];
2958
+ readonly wasmholographicmemory_retrieveConfidence: (a: number, b: number, c: number) => [number, number, number];
2959
+ readonly wasmholographicmemory_store: (a: number, b: number, c: number, d: number, e: number) => [number, number];
2822
2960
  readonly wasmholographicmemory_theoreticalCapacity: (a: number) => number;
2823
- readonly wasmholographicmemory_withBundleTemperature: (a: number) => number;
2824
2961
  readonly wasmholographicmemory_withKeyTracking: () => number;
2825
2962
  readonly wasminversecadesigner_evaluateFitness: (a: number, b: number, c: number) => [number, number, number];
2826
2963
  readonly wasminversecadesigner_findSeed: (a: number, b: number, c: number) => [number, number, number, number];
@@ -2835,6 +2972,10 @@ export interface InitOutput {
2835
2972
  readonly wasmmodulispace_isProper: (a: number) => number;
2836
2973
  readonly wasmmodulispace_ofCurves: (a: number, b: number) => number;
2837
2974
  readonly wasmmodulispace_ofStableCurves: (a: number, b: number) => number;
2975
+ readonly wasmmontecarloestimator_expectationGeometricProduct: (a: number, b: number, c: number) => [number, number];
2976
+ readonly wasmmontecarloestimator_sampleCovariance: (a: number, b: number) => [number, number, number, number];
2977
+ readonly wasmmontecarloestimator_sampleMean: (a: number, b: number) => [number, number, number, number];
2978
+ readonly wasmmontecarloestimator_sampleVariance: (a: number, b: number) => [number, number, number, number];
2838
2979
  readonly wasmmultidualnumber_add: (a: number, b: number) => [number, number, number];
2839
2980
  readonly wasmmultidualnumber_constant: (a: number, b: number) => number;
2840
2981
  readonly wasmmultidualnumber_getGradient: (a: number) => [number, number];
@@ -2910,13 +3051,10 @@ export interface InitOutput {
2910
3051
  readonly wasmrelativisticparticle_to_string: (a: number) => [number, number];
2911
3052
  readonly wasmrelativisticparticle_total_energy: (a: number) => number;
2912
3053
  readonly wasmrelativisticparticle_with_energy: (a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number, i: number) => [number, number, number];
2913
- readonly wasmresonator_cleanup: (a: number, b: number) => number;
3054
+ readonly wasmresonator_cleanup: (a: number, b: number, c: number) => [number, number, number, number];
3055
+ readonly wasmresonator_cleanupWithInfo: (a: number, b: number, c: number) => [number, number, number];
2914
3056
  readonly wasmresonator_codebookSize: (a: number) => number;
2915
3057
  readonly wasmresonator_new: (a: number, b: number) => [number, number, number];
2916
- readonly wasmresonator_withConfig: (a: number, b: number, c: number, d: number) => [number, number, number];
2917
- readonly wasmretrievalresult_getAttribution: (a: number) => [number, number, number];
2918
- readonly wasmretrievalresult_getConfidence: (a: number) => number;
2919
- readonly wasmretrievalresult_getValue: (a: number) => number;
2920
3058
  readonly wasmrotor_apply: (a: number, b: number) => number;
2921
3059
  readonly wasmrotor_compose: (a: number, b: number) => number;
2922
3060
  readonly wasmrotor_fromBivector: (a: number, b: number) => number;
@@ -2998,6 +3136,16 @@ export interface InitOutput {
2998
3136
  readonly wasmtropicalviterbi_decode: (a: number, b: number, c: number) => [number, number, number];
2999
3137
  readonly wasmtropicalviterbi_forward_probabilities: (a: number, b: number, c: number) => [number, number, number];
3000
3138
  readonly wasmtropicalviterbi_new: (a: any, b: any) => [number, number, number];
3139
+ readonly wasmuniformmultivector_getLower: (a: number) => [number, number];
3140
+ readonly wasmuniformmultivector_getMean: (a: number) => [number, number];
3141
+ readonly wasmuniformmultivector_getUpper: (a: number) => [number, number];
3142
+ readonly wasmuniformmultivector_getVariance: (a: number) => [number, number];
3143
+ readonly wasmuniformmultivector_hypercube: (a: number, b: number) => [number, number, number];
3144
+ readonly wasmuniformmultivector_logProb: (a: number, b: number, c: number) => [number, number, number];
3145
+ readonly wasmuniformmultivector_new: () => [number, number, number];
3146
+ readonly wasmuniformmultivector_sample: (a: number) => [number, number];
3147
+ readonly wasmuniformmultivector_sampleBatch: (a: number, b: number) => [number, number];
3148
+ readonly wasmuniformmultivector_withBounds: (a: number, b: number, c: number, d: number) => [number, number, number];
3001
3149
  readonly wasmtropicalnumber_new: (a: number) => number;
3002
3150
  readonly vectorfield_fromFunction2D: (a: any) => number;
3003
3151
  readonly vectorfield_fromFunction3D: (a: any) => number;
@@ -3053,6 +3201,7 @@ export interface InitOutput {
3053
3201
  readonly __wbg_wasmfourvelocity_free: (a: number, b: number) => void;
3054
3202
  readonly __wbg_wasmgeometricedge_free: (a: number, b: number) => void;
3055
3203
  readonly __wbg_wasmgpuoptimizer_free: (a: number, b: number) => void;
3204
+ readonly __wbg_wasmmontecarloestimator_free: (a: number, b: number) => void;
3056
3205
  readonly __wbg_wasmmultiobjectiveoptimizer_free: (a: number, b: number) => void;
3057
3206
  readonly __wbg_wasmoptimizationutils_free: (a: number, b: number) => void;
3058
3207
  readonly __wbg_wasmprojectivespace_free: (a: number, b: number) => void;
@@ -3077,8 +3226,8 @@ export interface InitOutput {
3077
3226
  readonly __wbindgen_realloc: (a: number, b: number, c: number, d: number) => number;
3078
3227
  readonly __wbindgen_export_6: WebAssembly.Table;
3079
3228
  readonly __externref_table_dealloc: (a: number) => void;
3080
- readonly closure58_externref_shim: (a: number, b: number, c: any) => void;
3081
- readonly closure49_externref_shim: (a: number, b: number, c: any, d: any) => void;
3229
+ readonly closure41_externref_shim: (a: number, b: number, c: any) => void;
3230
+ readonly closure34_externref_shim: (a: number, b: number, c: any, d: any) => void;
3082
3231
  readonly __wbindgen_start: () => void;
3083
3232
  }
3084
3233