@juspay/neurolink 8.17.0 → 8.18.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +6 -0
- package/dist/lib/utils/csvProcessor.js +55 -1
- package/dist/utils/csvProcessor.js +55 -1
- package/package.json +1 -1
package/CHANGELOG.md
CHANGED
|
@@ -1,3 +1,9 @@
|
|
|
1
|
+
## [8.18.0](https://github.com/juspay/neurolink/compare/v8.17.0...v8.18.0) (2025-12-16)
|
|
2
|
+
|
|
3
|
+
### Features
|
|
4
|
+
|
|
5
|
+
- **(utils):** standardize logging levels in CSVProcessor ([1c348b2](https://github.com/juspay/neurolink/commit/1c348b28d1212cd8ec33eb0100acddaa5a3df2bd))
|
|
6
|
+
|
|
1
7
|
## [8.17.0](https://github.com/juspay/neurolink/compare/v8.16.0...v8.17.0) (2025-12-16)
|
|
2
8
|
|
|
3
9
|
### Features
|
|
@@ -64,12 +64,21 @@ export class CSVProcessor {
|
|
|
64
64
|
static async process(content, options) {
|
|
65
65
|
const { maxRows: rawMaxRows = 1000, formatStyle = "raw", includeHeaders = true, sampleDataFormat = "json", } = options || {};
|
|
66
66
|
const maxRows = Math.max(1, Math.min(10000, rawMaxRows));
|
|
67
|
+
logger.debug("[CSVProcessor] Starting CSV processing", {
|
|
68
|
+
contentSize: content.length,
|
|
69
|
+
formatStyle,
|
|
70
|
+
maxRows,
|
|
71
|
+
includeHeaders,
|
|
72
|
+
});
|
|
67
73
|
const csvString = content.toString("utf-8");
|
|
68
74
|
// For raw format, return original CSV with row limit (no parsing needed)
|
|
69
75
|
// This preserves the exact original format which works best for LLMs
|
|
70
76
|
if (formatStyle === "raw") {
|
|
71
77
|
const lines = csvString.split("\n");
|
|
72
78
|
const hasMetadataLine = isMetadataLine(lines);
|
|
79
|
+
if (hasMetadataLine) {
|
|
80
|
+
logger.debug("[CSVProcessor] Detected metadata line, skipping first line");
|
|
81
|
+
}
|
|
73
82
|
// Skip metadata line if present, then take header + maxRows data rows
|
|
74
83
|
const csvLines = hasMetadataLine
|
|
75
84
|
? lines.slice(1) // Skip metadata line
|
|
@@ -78,11 +87,21 @@ export class CSVProcessor {
|
|
|
78
87
|
const limitedCSV = limitedLines.join("\n");
|
|
79
88
|
const rowCount = limitedLines.length - 1; // Subtract header
|
|
80
89
|
const originalRowCount = csvLines.length - 1; // Subtract header from original
|
|
90
|
+
const wasTruncated = rowCount < originalRowCount;
|
|
91
|
+
if (wasTruncated) {
|
|
92
|
+
logger.warn(`[CSVProcessor] CSV data truncated: showing ${rowCount} of ${originalRowCount} rows (limit: ${maxRows})`);
|
|
93
|
+
}
|
|
81
94
|
logger.debug(`[CSVProcessor] raw format: ${rowCount} rows (original: ${originalRowCount}) → ${limitedCSV.length} chars`, {
|
|
82
95
|
formatStyle: "raw",
|
|
83
96
|
originalSize: csvString.length,
|
|
84
97
|
limitedSize: limitedCSV.length,
|
|
85
98
|
});
|
|
99
|
+
logger.info("[CSVProcessor] ✅ Processed CSV file", {
|
|
100
|
+
formatStyle: "raw",
|
|
101
|
+
rowCount,
|
|
102
|
+
columnCount: (limitedLines[0] || "").split(",").length,
|
|
103
|
+
truncated: wasTruncated,
|
|
104
|
+
});
|
|
86
105
|
return {
|
|
87
106
|
type: "csv",
|
|
88
107
|
content: limitedCSV,
|
|
@@ -96,6 +115,10 @@ export class CSVProcessor {
|
|
|
96
115
|
};
|
|
97
116
|
}
|
|
98
117
|
// Parse CSV for JSON and Markdown formats only
|
|
118
|
+
logger.debug("[CSVProcessor] Parsing CSV for structured format conversion", {
|
|
119
|
+
formatStyle,
|
|
120
|
+
maxRows,
|
|
121
|
+
});
|
|
99
122
|
const rows = await this.parseCSVString(csvString, maxRows);
|
|
100
123
|
// Extract metadata from parsed results
|
|
101
124
|
const rowCount = rows.length;
|
|
@@ -104,9 +127,24 @@ export class CSVProcessor {
|
|
|
104
127
|
const hasEmptyColumns = columnNames.some((col) => !col || col.trim() === "");
|
|
105
128
|
const sampleRows = rows.slice(0, 3);
|
|
106
129
|
const sampleData = this.formatSampleData(sampleRows, sampleDataFormat, includeHeaders);
|
|
130
|
+
if (hasEmptyColumns) {
|
|
131
|
+
logger.warn("[CSVProcessor] CSV contains empty or blank column headers", {
|
|
132
|
+
columnNames,
|
|
133
|
+
});
|
|
134
|
+
}
|
|
135
|
+
if (rowCount === 0) {
|
|
136
|
+
logger.warn("[CSVProcessor] CSV file contains no data rows");
|
|
137
|
+
}
|
|
107
138
|
// Format parsed data
|
|
139
|
+
logger.debug(`[CSVProcessor] Converting ${rowCount} rows to ${formatStyle} format`);
|
|
108
140
|
const formatted = this.formatForLLM(rows, formatStyle, includeHeaders);
|
|
109
|
-
logger.info(
|
|
141
|
+
logger.info("[CSVProcessor] ✅ Processed CSV file", {
|
|
142
|
+
formatStyle,
|
|
143
|
+
rowCount,
|
|
144
|
+
columnCount,
|
|
145
|
+
outputLength: formatted.length,
|
|
146
|
+
hasEmptyColumns,
|
|
147
|
+
});
|
|
110
148
|
return {
|
|
111
149
|
type: "csv",
|
|
112
150
|
content: formatted,
|
|
@@ -136,6 +174,10 @@ export class CSVProcessor {
|
|
|
136
174
|
static async parseCSVFile(filePath, maxRows = 1000) {
|
|
137
175
|
const clampedMaxRows = Math.max(1, Math.min(10000, maxRows));
|
|
138
176
|
const fs = await import("fs");
|
|
177
|
+
logger.debug("[CSVProcessor] Starting file parsing", {
|
|
178
|
+
filePath,
|
|
179
|
+
maxRows: clampedMaxRows,
|
|
180
|
+
});
|
|
139
181
|
// Read first 2 lines to detect metadata
|
|
140
182
|
const fileHandle = await fs.promises.open(filePath, "r");
|
|
141
183
|
const firstLines = [];
|
|
@@ -156,6 +198,9 @@ export class CSVProcessor {
|
|
|
156
198
|
await fileHandle.close();
|
|
157
199
|
const hasMetadataLine = isMetadataLine(firstLines);
|
|
158
200
|
const skipLines = hasMetadataLine ? 1 : 0;
|
|
201
|
+
if (hasMetadataLine) {
|
|
202
|
+
logger.debug("[CSVProcessor] Detected metadata line in file, will skip first line");
|
|
203
|
+
}
|
|
159
204
|
return new Promise((resolve, reject) => {
|
|
160
205
|
const rows = [];
|
|
161
206
|
let count = 0;
|
|
@@ -182,6 +227,7 @@ export class CSVProcessor {
|
|
|
182
227
|
}
|
|
183
228
|
})
|
|
184
229
|
.on("end", () => {
|
|
230
|
+
logger.debug(`[CSVProcessor] File parsing complete: ${rows.length} rows parsed`);
|
|
185
231
|
resolve(rows);
|
|
186
232
|
})
|
|
187
233
|
.on("error", (error) => {
|
|
@@ -200,10 +246,17 @@ export class CSVProcessor {
|
|
|
200
246
|
*/
|
|
201
247
|
static async parseCSVString(csvString, maxRows = 1000) {
|
|
202
248
|
const clampedMaxRows = Math.max(1, Math.min(10000, maxRows));
|
|
249
|
+
logger.debug("[CSVProcessor] Starting string parsing", {
|
|
250
|
+
inputLength: csvString.length,
|
|
251
|
+
maxRows: clampedMaxRows,
|
|
252
|
+
});
|
|
203
253
|
// Detect and skip metadata line
|
|
204
254
|
const lines = csvString.split("\n");
|
|
205
255
|
const hasMetadataLine = isMetadataLine(lines);
|
|
206
256
|
const csvData = hasMetadataLine ? lines.slice(1).join("\n") : csvString;
|
|
257
|
+
if (hasMetadataLine) {
|
|
258
|
+
logger.debug("[CSVProcessor] Detected metadata line in string, skipping");
|
|
259
|
+
}
|
|
207
260
|
return new Promise((resolve, reject) => {
|
|
208
261
|
const rows = [];
|
|
209
262
|
let count = 0;
|
|
@@ -225,6 +278,7 @@ export class CSVProcessor {
|
|
|
225
278
|
}
|
|
226
279
|
})
|
|
227
280
|
.on("end", () => {
|
|
281
|
+
logger.debug(`[CSVProcessor] String parsing complete: ${rows.length} rows parsed`);
|
|
228
282
|
resolve(rows);
|
|
229
283
|
})
|
|
230
284
|
.on("error", (error) => {
|
|
@@ -64,12 +64,21 @@ export class CSVProcessor {
|
|
|
64
64
|
static async process(content, options) {
|
|
65
65
|
const { maxRows: rawMaxRows = 1000, formatStyle = "raw", includeHeaders = true, sampleDataFormat = "json", } = options || {};
|
|
66
66
|
const maxRows = Math.max(1, Math.min(10000, rawMaxRows));
|
|
67
|
+
logger.debug("[CSVProcessor] Starting CSV processing", {
|
|
68
|
+
contentSize: content.length,
|
|
69
|
+
formatStyle,
|
|
70
|
+
maxRows,
|
|
71
|
+
includeHeaders,
|
|
72
|
+
});
|
|
67
73
|
const csvString = content.toString("utf-8");
|
|
68
74
|
// For raw format, return original CSV with row limit (no parsing needed)
|
|
69
75
|
// This preserves the exact original format which works best for LLMs
|
|
70
76
|
if (formatStyle === "raw") {
|
|
71
77
|
const lines = csvString.split("\n");
|
|
72
78
|
const hasMetadataLine = isMetadataLine(lines);
|
|
79
|
+
if (hasMetadataLine) {
|
|
80
|
+
logger.debug("[CSVProcessor] Detected metadata line, skipping first line");
|
|
81
|
+
}
|
|
73
82
|
// Skip metadata line if present, then take header + maxRows data rows
|
|
74
83
|
const csvLines = hasMetadataLine
|
|
75
84
|
? lines.slice(1) // Skip metadata line
|
|
@@ -78,11 +87,21 @@ export class CSVProcessor {
|
|
|
78
87
|
const limitedCSV = limitedLines.join("\n");
|
|
79
88
|
const rowCount = limitedLines.length - 1; // Subtract header
|
|
80
89
|
const originalRowCount = csvLines.length - 1; // Subtract header from original
|
|
90
|
+
const wasTruncated = rowCount < originalRowCount;
|
|
91
|
+
if (wasTruncated) {
|
|
92
|
+
logger.warn(`[CSVProcessor] CSV data truncated: showing ${rowCount} of ${originalRowCount} rows (limit: ${maxRows})`);
|
|
93
|
+
}
|
|
81
94
|
logger.debug(`[CSVProcessor] raw format: ${rowCount} rows (original: ${originalRowCount}) → ${limitedCSV.length} chars`, {
|
|
82
95
|
formatStyle: "raw",
|
|
83
96
|
originalSize: csvString.length,
|
|
84
97
|
limitedSize: limitedCSV.length,
|
|
85
98
|
});
|
|
99
|
+
logger.info("[CSVProcessor] ✅ Processed CSV file", {
|
|
100
|
+
formatStyle: "raw",
|
|
101
|
+
rowCount,
|
|
102
|
+
columnCount: (limitedLines[0] || "").split(",").length,
|
|
103
|
+
truncated: wasTruncated,
|
|
104
|
+
});
|
|
86
105
|
return {
|
|
87
106
|
type: "csv",
|
|
88
107
|
content: limitedCSV,
|
|
@@ -96,6 +115,10 @@ export class CSVProcessor {
|
|
|
96
115
|
};
|
|
97
116
|
}
|
|
98
117
|
// Parse CSV for JSON and Markdown formats only
|
|
118
|
+
logger.debug("[CSVProcessor] Parsing CSV for structured format conversion", {
|
|
119
|
+
formatStyle,
|
|
120
|
+
maxRows,
|
|
121
|
+
});
|
|
99
122
|
const rows = await this.parseCSVString(csvString, maxRows);
|
|
100
123
|
// Extract metadata from parsed results
|
|
101
124
|
const rowCount = rows.length;
|
|
@@ -104,9 +127,24 @@ export class CSVProcessor {
|
|
|
104
127
|
const hasEmptyColumns = columnNames.some((col) => !col || col.trim() === "");
|
|
105
128
|
const sampleRows = rows.slice(0, 3);
|
|
106
129
|
const sampleData = this.formatSampleData(sampleRows, sampleDataFormat, includeHeaders);
|
|
130
|
+
if (hasEmptyColumns) {
|
|
131
|
+
logger.warn("[CSVProcessor] CSV contains empty or blank column headers", {
|
|
132
|
+
columnNames,
|
|
133
|
+
});
|
|
134
|
+
}
|
|
135
|
+
if (rowCount === 0) {
|
|
136
|
+
logger.warn("[CSVProcessor] CSV file contains no data rows");
|
|
137
|
+
}
|
|
107
138
|
// Format parsed data
|
|
139
|
+
logger.debug(`[CSVProcessor] Converting ${rowCount} rows to ${formatStyle} format`);
|
|
108
140
|
const formatted = this.formatForLLM(rows, formatStyle, includeHeaders);
|
|
109
|
-
logger.info(
|
|
141
|
+
logger.info("[CSVProcessor] ✅ Processed CSV file", {
|
|
142
|
+
formatStyle,
|
|
143
|
+
rowCount,
|
|
144
|
+
columnCount,
|
|
145
|
+
outputLength: formatted.length,
|
|
146
|
+
hasEmptyColumns,
|
|
147
|
+
});
|
|
110
148
|
return {
|
|
111
149
|
type: "csv",
|
|
112
150
|
content: formatted,
|
|
@@ -136,6 +174,10 @@ export class CSVProcessor {
|
|
|
136
174
|
static async parseCSVFile(filePath, maxRows = 1000) {
|
|
137
175
|
const clampedMaxRows = Math.max(1, Math.min(10000, maxRows));
|
|
138
176
|
const fs = await import("fs");
|
|
177
|
+
logger.debug("[CSVProcessor] Starting file parsing", {
|
|
178
|
+
filePath,
|
|
179
|
+
maxRows: clampedMaxRows,
|
|
180
|
+
});
|
|
139
181
|
// Read first 2 lines to detect metadata
|
|
140
182
|
const fileHandle = await fs.promises.open(filePath, "r");
|
|
141
183
|
const firstLines = [];
|
|
@@ -156,6 +198,9 @@ export class CSVProcessor {
|
|
|
156
198
|
await fileHandle.close();
|
|
157
199
|
const hasMetadataLine = isMetadataLine(firstLines);
|
|
158
200
|
const skipLines = hasMetadataLine ? 1 : 0;
|
|
201
|
+
if (hasMetadataLine) {
|
|
202
|
+
logger.debug("[CSVProcessor] Detected metadata line in file, will skip first line");
|
|
203
|
+
}
|
|
159
204
|
return new Promise((resolve, reject) => {
|
|
160
205
|
const rows = [];
|
|
161
206
|
let count = 0;
|
|
@@ -182,6 +227,7 @@ export class CSVProcessor {
|
|
|
182
227
|
}
|
|
183
228
|
})
|
|
184
229
|
.on("end", () => {
|
|
230
|
+
logger.debug(`[CSVProcessor] File parsing complete: ${rows.length} rows parsed`);
|
|
185
231
|
resolve(rows);
|
|
186
232
|
})
|
|
187
233
|
.on("error", (error) => {
|
|
@@ -200,10 +246,17 @@ export class CSVProcessor {
|
|
|
200
246
|
*/
|
|
201
247
|
static async parseCSVString(csvString, maxRows = 1000) {
|
|
202
248
|
const clampedMaxRows = Math.max(1, Math.min(10000, maxRows));
|
|
249
|
+
logger.debug("[CSVProcessor] Starting string parsing", {
|
|
250
|
+
inputLength: csvString.length,
|
|
251
|
+
maxRows: clampedMaxRows,
|
|
252
|
+
});
|
|
203
253
|
// Detect and skip metadata line
|
|
204
254
|
const lines = csvString.split("\n");
|
|
205
255
|
const hasMetadataLine = isMetadataLine(lines);
|
|
206
256
|
const csvData = hasMetadataLine ? lines.slice(1).join("\n") : csvString;
|
|
257
|
+
if (hasMetadataLine) {
|
|
258
|
+
logger.debug("[CSVProcessor] Detected metadata line in string, skipping");
|
|
259
|
+
}
|
|
207
260
|
return new Promise((resolve, reject) => {
|
|
208
261
|
const rows = [];
|
|
209
262
|
let count = 0;
|
|
@@ -225,6 +278,7 @@ export class CSVProcessor {
|
|
|
225
278
|
}
|
|
226
279
|
})
|
|
227
280
|
.on("end", () => {
|
|
281
|
+
logger.debug(`[CSVProcessor] String parsing complete: ${rows.length} rows parsed`);
|
|
228
282
|
resolve(rows);
|
|
229
283
|
})
|
|
230
284
|
.on("error", (error) => {
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@juspay/neurolink",
|
|
3
|
-
"version": "8.
|
|
3
|
+
"version": "8.18.0",
|
|
4
4
|
"description": "Universal AI Development Platform with working MCP integration, multi-provider support, and professional CLI. Built-in tools operational, 58+ external MCP servers discoverable. Connect to filesystem, GitHub, database operations, and more. Build, test, and deploy AI applications with 9 major providers: OpenAI, Anthropic, Google AI, AWS Bedrock, Azure, Hugging Face, Ollama, and Mistral AI.",
|
|
5
5
|
"author": {
|
|
6
6
|
"name": "Juspay Technologies",
|