@juspay/neurolink 7.35.0 → 7.36.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +6 -0
- package/dist/adapters/providerImageAdapter.d.ts +56 -0
- package/dist/adapters/providerImageAdapter.js +257 -0
- package/dist/cli/commands/config.d.ts +20 -20
- package/dist/cli/factories/commandFactory.d.ts +1 -0
- package/dist/cli/factories/commandFactory.js +26 -3
- package/dist/core/baseProvider.js +99 -45
- package/dist/core/types.d.ts +3 -0
- package/dist/lib/adapters/providerImageAdapter.d.ts +56 -0
- package/dist/lib/adapters/providerImageAdapter.js +257 -0
- package/dist/lib/core/baseProvider.js +99 -45
- package/dist/lib/core/types.d.ts +3 -0
- package/dist/lib/neurolink.js +8 -3
- package/dist/lib/types/content.d.ts +78 -0
- package/dist/lib/types/content.js +5 -0
- package/dist/lib/types/conversation.d.ts +19 -0
- package/dist/lib/types/generateTypes.d.ts +4 -1
- package/dist/lib/types/streamTypes.d.ts +6 -3
- package/dist/lib/utils/imageProcessor.d.ts +84 -0
- package/dist/lib/utils/imageProcessor.js +362 -0
- package/dist/lib/utils/messageBuilder.d.ts +8 -1
- package/dist/lib/utils/messageBuilder.js +279 -0
- package/dist/neurolink.js +8 -3
- package/dist/types/content.d.ts +78 -0
- package/dist/types/content.js +5 -0
- package/dist/types/conversation.d.ts +19 -0
- package/dist/types/generateTypes.d.ts +4 -1
- package/dist/types/streamTypes.d.ts +6 -3
- package/dist/utils/imageProcessor.d.ts +84 -0
- package/dist/utils/imageProcessor.js +362 -0
- package/dist/utils/messageBuilder.d.ts +8 -1
- package/dist/utils/messageBuilder.js +279 -0
- package/package.json +1 -1
@@ -1,8 +1,13 @@
|
|
1
1
|
/**
|
2
2
|
* Message Builder Utility
|
3
3
|
* Centralized logic for building message arrays from TextGenerationOptions
|
4
|
+
* Enhanced with multimodal support for images
|
4
5
|
*/
|
5
6
|
import { CONVERSATION_INSTRUCTIONS } from "../config/conversationMemory.js";
|
7
|
+
import { ProviderImageAdapter, MultimodalLogger, } from "../adapters/providerImageAdapter.js";
|
8
|
+
import { logger } from "./logger.js";
|
9
|
+
import { request } from "undici";
|
10
|
+
import { readFileSync, existsSync } from "fs";
|
6
11
|
/**
|
7
12
|
* Build a properly formatted message array for AI providers
|
8
13
|
* Combines system prompt, conversation history, and current user prompt
|
@@ -46,3 +51,277 @@ export function buildMessagesArray(options) {
|
|
46
51
|
}
|
47
52
|
return messages;
|
48
53
|
}
|
54
|
+
/**
|
55
|
+
* Build multimodal message array with image support
|
56
|
+
* Detects when images are present and routes through provider adapter
|
57
|
+
*/
|
58
|
+
export async function buildMultimodalMessagesArray(options, provider, model) {
|
59
|
+
// Check if this is a multimodal request
|
60
|
+
const hasImages = (options.input.images && options.input.images.length > 0) ||
|
61
|
+
(options.input.content &&
|
62
|
+
options.input.content.some((c) => c.type === "image"));
|
63
|
+
// If no images, use standard message building and convert to MultimodalChatMessage[]
|
64
|
+
if (!hasImages) {
|
65
|
+
const standardMessages = buildMessagesArray(options);
|
66
|
+
return standardMessages.map((msg) => ({ ...msg, content: msg.content }));
|
67
|
+
}
|
68
|
+
// Validate provider supports vision
|
69
|
+
if (!ProviderImageAdapter.supportsVision(provider, model)) {
|
70
|
+
throw new Error(`Provider ${provider} with model ${model} does not support vision processing. ` +
|
71
|
+
`Supported providers: ${ProviderImageAdapter.getVisionProviders().join(", ")}`);
|
72
|
+
}
|
73
|
+
const messages = [];
|
74
|
+
// Build enhanced system prompt
|
75
|
+
let systemPrompt = options.systemPrompt?.trim() || "";
|
76
|
+
// Add conversation-aware instructions when history exists
|
77
|
+
const hasConversationHistory = options.conversationHistory && options.conversationHistory.length > 0;
|
78
|
+
if (hasConversationHistory) {
|
79
|
+
systemPrompt = `${systemPrompt.trim()}${CONVERSATION_INSTRUCTIONS}`;
|
80
|
+
}
|
81
|
+
// Add system message if we have one
|
82
|
+
if (systemPrompt.trim()) {
|
83
|
+
messages.push({
|
84
|
+
role: "system",
|
85
|
+
content: systemPrompt.trim(),
|
86
|
+
});
|
87
|
+
}
|
88
|
+
// Add conversation history if available
|
89
|
+
if (hasConversationHistory && options.conversationHistory) {
|
90
|
+
// Convert conversation history to MultimodalChatMessage format
|
91
|
+
options.conversationHistory.forEach((msg) => {
|
92
|
+
messages.push({
|
93
|
+
role: msg.role,
|
94
|
+
content: msg.content,
|
95
|
+
});
|
96
|
+
});
|
97
|
+
}
|
98
|
+
// Handle multimodal content
|
99
|
+
try {
|
100
|
+
let userContent;
|
101
|
+
if (options.input.content && options.input.content.length > 0) {
|
102
|
+
// Advanced content format - convert to provider-specific format
|
103
|
+
userContent = await convertContentToProviderFormat(options.input.content, provider, model);
|
104
|
+
}
|
105
|
+
else if (options.input.images && options.input.images.length > 0) {
|
106
|
+
// Simple images format - convert to provider-specific format
|
107
|
+
userContent = await convertSimpleImagesToProviderFormat(options.input.text, options.input.images, provider, model);
|
108
|
+
}
|
109
|
+
else {
|
110
|
+
// Text-only fallback
|
111
|
+
userContent = options.input.text;
|
112
|
+
}
|
113
|
+
// 🔧 CRITICAL FIX: Handle multimodal content properly for Vercel AI SDK
|
114
|
+
if (typeof userContent === "string") {
|
115
|
+
// Simple text content - use standard MultimodalChatMessage format
|
116
|
+
messages.push({
|
117
|
+
role: "user",
|
118
|
+
content: userContent,
|
119
|
+
});
|
120
|
+
}
|
121
|
+
else {
|
122
|
+
// 🔧 MULTIMODAL CONTENT: Wrap the content array in a proper message object
|
123
|
+
// The Vercel AI SDK expects messages with multimodal content arrays
|
124
|
+
messages.push({
|
125
|
+
role: "user",
|
126
|
+
content: userContent,
|
127
|
+
});
|
128
|
+
}
|
129
|
+
return messages;
|
130
|
+
}
|
131
|
+
catch (error) {
|
132
|
+
MultimodalLogger.logError("MULTIMODAL_BUILD", error, {
|
133
|
+
provider,
|
134
|
+
model,
|
135
|
+
hasImages,
|
136
|
+
imageCount: options.input.images?.length || 0,
|
137
|
+
});
|
138
|
+
throw error;
|
139
|
+
}
|
140
|
+
}
|
141
|
+
/**
|
142
|
+
* Convert advanced content format to provider-specific format
|
143
|
+
*/
|
144
|
+
async function convertContentToProviderFormat(content, provider, _model) {
|
145
|
+
const textContent = content.find((c) => c.type === "text");
|
146
|
+
const imageContent = content.filter((c) => c.type === "image");
|
147
|
+
if (!textContent) {
|
148
|
+
throw new Error("Multimodal content must include at least one text element");
|
149
|
+
}
|
150
|
+
if (imageContent.length === 0) {
|
151
|
+
return textContent.text;
|
152
|
+
}
|
153
|
+
// Extract images as Buffer | string array
|
154
|
+
const images = imageContent.map((img) => img.data);
|
155
|
+
return await convertSimpleImagesToProviderFormat(textContent.text, images, provider, _model);
|
156
|
+
}
|
157
|
+
/**
|
158
|
+
* Check if a string is an internet URL
|
159
|
+
*/
|
160
|
+
function isInternetUrl(input) {
|
161
|
+
return input.startsWith("http://") || input.startsWith("https://");
|
162
|
+
}
|
163
|
+
/**
|
164
|
+
* Download image from URL and convert to base64 data URI
|
165
|
+
*/
|
166
|
+
async function downloadImageFromUrl(url) {
|
167
|
+
try {
|
168
|
+
const response = await request(url, {
|
169
|
+
method: "GET",
|
170
|
+
headersTimeout: 10000, // 10 second timeout for headers
|
171
|
+
bodyTimeout: 30000, // 30 second timeout for body
|
172
|
+
maxRedirections: 5,
|
173
|
+
});
|
174
|
+
if (response.statusCode !== 200) {
|
175
|
+
throw new Error(`HTTP ${response.statusCode}: Failed to download image from ${url}`);
|
176
|
+
}
|
177
|
+
// Get content type from headers
|
178
|
+
const contentType = response.headers["content-type"] || "image/jpeg";
|
179
|
+
// Validate it's an image
|
180
|
+
if (!contentType.startsWith("image/")) {
|
181
|
+
throw new Error(`URL does not point to an image. Content-Type: ${contentType}`);
|
182
|
+
}
|
183
|
+
// Read the response body
|
184
|
+
const chunks = [];
|
185
|
+
for await (const chunk of response.body) {
|
186
|
+
chunks.push(chunk);
|
187
|
+
}
|
188
|
+
const buffer = Buffer.concat(chunks);
|
189
|
+
// Check file size (limit to 10MB)
|
190
|
+
const maxSize = 10 * 1024 * 1024; // 10MB
|
191
|
+
if (buffer.length > maxSize) {
|
192
|
+
throw new Error(`Image too large: ${buffer.length} bytes (max: ${maxSize} bytes)`);
|
193
|
+
}
|
194
|
+
// Convert to base64 data URI
|
195
|
+
const base64 = buffer.toString("base64");
|
196
|
+
const dataUri = `data:${contentType};base64,${base64}`;
|
197
|
+
return dataUri;
|
198
|
+
}
|
199
|
+
catch (error) {
|
200
|
+
MultimodalLogger.logError("URL_DOWNLOAD_FAILED", error, { url });
|
201
|
+
throw new Error(`Failed to download image from ${url}: ${error instanceof Error ? error.message : String(error)}`);
|
202
|
+
}
|
203
|
+
}
|
204
|
+
/**
|
205
|
+
* Convert simple images format to Vercel AI SDK format with smart auto-detection
|
206
|
+
* - URLs: Downloaded and converted to base64 for Vercel AI SDK compatibility
|
207
|
+
* - Local files: Converted to base64 for Vercel AI SDK compatibility
|
208
|
+
* - Buffers/Data URIs: Processed normally
|
209
|
+
*/
|
210
|
+
async function convertSimpleImagesToProviderFormat(text, images, provider, _model) {
|
211
|
+
// For Vercel AI SDK, we need to return the content in the standard format
|
212
|
+
// The Vercel AI SDK will handle provider-specific formatting internally
|
213
|
+
// Smart auto-detection: separate URLs from actual image data
|
214
|
+
const urlImages = [];
|
215
|
+
const actualImages = [];
|
216
|
+
images.forEach((image, _index) => {
|
217
|
+
if (typeof image === "string" && isInternetUrl(image)) {
|
218
|
+
// Internet URL - will be downloaded and converted to base64
|
219
|
+
urlImages.push(image);
|
220
|
+
}
|
221
|
+
else {
|
222
|
+
// Actual image data (file path, Buffer, data URI) - process for Vercel AI SDK
|
223
|
+
actualImages.push(image);
|
224
|
+
}
|
225
|
+
});
|
226
|
+
// Download URL images and add to actual images
|
227
|
+
for (const url of urlImages) {
|
228
|
+
try {
|
229
|
+
const downloadedDataUri = await downloadImageFromUrl(url);
|
230
|
+
actualImages.push(downloadedDataUri);
|
231
|
+
}
|
232
|
+
catch (error) {
|
233
|
+
MultimodalLogger.logError("URL_DOWNLOAD_FAILED_SKIPPING", error, { url });
|
234
|
+
// Continue processing other images even if one URL fails
|
235
|
+
logger.warn(`Failed to download image from ${url}, skipping: ${error instanceof Error ? error.message : String(error)}`);
|
236
|
+
}
|
237
|
+
}
|
238
|
+
const content = [{ type: "text", text }];
|
239
|
+
// Process all images (including downloaded URLs) for Vercel AI SDK
|
240
|
+
actualImages.forEach((image, index) => {
|
241
|
+
try {
|
242
|
+
// Vercel AI SDK expects { type: 'image', image: Buffer | string, mimeType?: string }
|
243
|
+
// For Vertex AI, we need to include mimeType
|
244
|
+
let imageData;
|
245
|
+
let mimeType = "image/jpeg"; // Default mime type
|
246
|
+
if (typeof image === "string") {
|
247
|
+
if (image.startsWith("data:")) {
|
248
|
+
// Data URI (including downloaded URLs) - extract mime type and use directly
|
249
|
+
const match = image.match(/^data:([^;]+);base64,(.+)$/);
|
250
|
+
if (match) {
|
251
|
+
mimeType = match[1];
|
252
|
+
imageData = image; // Keep as data URI for Vercel AI SDK
|
253
|
+
}
|
254
|
+
else {
|
255
|
+
imageData = image;
|
256
|
+
}
|
257
|
+
}
|
258
|
+
else if (isInternetUrl(image)) {
|
259
|
+
// This should not happen as URLs are processed separately above
|
260
|
+
// But handle it gracefully just in case
|
261
|
+
throw new Error(`Unprocessed URL found in actualImages: ${image}`);
|
262
|
+
}
|
263
|
+
else {
|
264
|
+
// File path string - convert to base64 data URI
|
265
|
+
try {
|
266
|
+
if (existsSync(image)) {
|
267
|
+
const buffer = readFileSync(image);
|
268
|
+
const base64 = buffer.toString("base64");
|
269
|
+
// Detect mime type from file extension
|
270
|
+
const ext = image.toLowerCase().split(".").pop();
|
271
|
+
switch (ext) {
|
272
|
+
case "png":
|
273
|
+
mimeType = "image/png";
|
274
|
+
break;
|
275
|
+
case "gif":
|
276
|
+
mimeType = "image/gif";
|
277
|
+
break;
|
278
|
+
case "webp":
|
279
|
+
mimeType = "image/webp";
|
280
|
+
break;
|
281
|
+
case "bmp":
|
282
|
+
mimeType = "image/bmp";
|
283
|
+
break;
|
284
|
+
case "tiff":
|
285
|
+
case "tif":
|
286
|
+
mimeType = "image/tiff";
|
287
|
+
break;
|
288
|
+
default:
|
289
|
+
mimeType = "image/jpeg";
|
290
|
+
break;
|
291
|
+
}
|
292
|
+
imageData = `data:${mimeType};base64,${base64}`;
|
293
|
+
}
|
294
|
+
else {
|
295
|
+
throw new Error(`Image file not found: ${image}`);
|
296
|
+
}
|
297
|
+
}
|
298
|
+
catch (error) {
|
299
|
+
MultimodalLogger.logError("FILE_PATH_CONVERSION", error, {
|
300
|
+
index,
|
301
|
+
filePath: image,
|
302
|
+
});
|
303
|
+
throw new Error(`Failed to convert file path to base64: ${image}. ${error}`);
|
304
|
+
}
|
305
|
+
}
|
306
|
+
}
|
307
|
+
else {
|
308
|
+
// Buffer - convert to base64 data URI
|
309
|
+
const base64 = image.toString("base64");
|
310
|
+
imageData = `data:${mimeType};base64,${base64}`;
|
311
|
+
}
|
312
|
+
content.push({
|
313
|
+
type: "image",
|
314
|
+
image: imageData,
|
315
|
+
mimeType: mimeType, // Add mimeType for Vertex AI compatibility
|
316
|
+
});
|
317
|
+
}
|
318
|
+
catch (error) {
|
319
|
+
MultimodalLogger.logError("ADD_IMAGE_TO_CONTENT", error, {
|
320
|
+
index,
|
321
|
+
provider,
|
322
|
+
});
|
323
|
+
throw error;
|
324
|
+
}
|
325
|
+
});
|
326
|
+
return content;
|
327
|
+
}
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@juspay/neurolink",
|
3
|
-
"version": "7.
|
3
|
+
"version": "7.36.0",
|
4
4
|
"description": "Universal AI Development Platform with working MCP integration, multi-provider support, and professional CLI. Built-in tools operational, 58+ external MCP servers discoverable. Connect to filesystem, GitHub, database operations, and more. Build, test, and deploy AI applications with 9 major providers: OpenAI, Anthropic, Google AI, AWS Bedrock, Azure, Hugging Face, Ollama, and Mistral AI.",
|
5
5
|
"author": {
|
6
6
|
"name": "Juspay Technologies",
|