@js-draw/math 1.18.0 → 1.19.0
Sign up to get free protection for your applications and to get access to all the features.
- package/dist/cjs/Vec2.d.ts +3 -40
- package/dist/cjs/Vec2.js +8 -46
- package/dist/cjs/Vec3.d.ts +112 -16
- package/dist/cjs/Vec3.js +184 -136
- package/dist/cjs/shapes/PointShape2D.d.ts +33 -1
- package/dist/cjs/shapes/Rect2.d.ts +35 -3
- package/dist/cjs/shapes/Rect2.js +3 -3
- package/dist/mjs/Vec2.d.ts +3 -40
- package/dist/mjs/Vec2.mjs +6 -42
- package/dist/mjs/Vec3.d.ts +112 -16
- package/dist/mjs/Vec3.mjs +183 -134
- package/dist/mjs/shapes/PointShape2D.d.ts +33 -1
- package/dist/mjs/shapes/Rect2.d.ts +35 -3
- package/dist/mjs/shapes/Rect2.mjs +3 -3
- package/package.json +3 -3
- package/src/Vec2.test.ts +5 -3
- package/src/Vec2.ts +7 -47
- package/src/Vec3.ts +408 -121
- package/src/shapes/Rect2.ts +3 -3
package/src/Vec3.ts
CHANGED
@@ -19,49 +19,25 @@
|
|
19
19
|
* console.log('As an array:', Vec3.unitZ.asArray());
|
20
20
|
* ```
|
21
21
|
*/
|
22
|
-
export
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
public readonly z: number
|
27
|
-
) {
|
28
|
-
}
|
29
|
-
|
30
|
-
/** Returns the x, y components of this. */
|
31
|
-
public get xy(): { x: number; y: number } {
|
32
|
-
// Useful for APIs that behave differently if .z is present.
|
33
|
-
return {
|
34
|
-
x: this.x,
|
35
|
-
y: this.y,
|
36
|
-
};
|
37
|
-
}
|
22
|
+
export interface Vec3 {
|
23
|
+
readonly x: number;
|
24
|
+
readonly y: number;
|
25
|
+
readonly z: number;
|
38
26
|
|
39
|
-
/**
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
/** Returns this' `idx`th component. For example, `Vec3.of(1, 2, 3).at(1) → 2`. */
|
45
|
-
public at(idx: number): number {
|
46
|
-
if (idx === 0) return this.x;
|
47
|
-
if (idx === 1) return this.y;
|
48
|
-
if (idx === 2) return this.z;
|
49
|
-
|
50
|
-
throw new Error(`${idx} out of bounds!`);
|
51
|
-
}
|
52
|
-
|
53
|
-
/** Alias for this.magnitude. */
|
54
|
-
public length(): number {
|
55
|
-
return this.magnitude();
|
56
|
-
}
|
27
|
+
/**
|
28
|
+
* Returns the x, y components of this.
|
29
|
+
* May be implemented as a getter method.
|
30
|
+
*/
|
31
|
+
readonly xy: { x: number, y: number };
|
57
32
|
|
58
|
-
|
59
|
-
|
60
|
-
}
|
33
|
+
/** Returns the vector's `idx`th component. For example, `Vec3.of(1, 2, 3).at(1) → 2`. */
|
34
|
+
at(i: number): number;
|
61
35
|
|
62
|
-
|
63
|
-
|
64
|
-
|
36
|
+
/** Alias for `.magnitude`. */
|
37
|
+
length(): number;
|
38
|
+
/** Returns the length of this vector in ℝ^3. */
|
39
|
+
magnitude(): number;
|
40
|
+
magnitudeSquared(): number;
|
65
41
|
|
66
42
|
/**
|
67
43
|
* Interpreting this vector as a point in ℝ^3, computes the square distance
|
@@ -69,12 +45,7 @@ export class Vec3 {
|
|
69
45
|
*
|
70
46
|
* Equivalent to `.minus(p).magnitudeSquared()`.
|
71
47
|
*/
|
72
|
-
|
73
|
-
const dx = this.x - p.x;
|
74
|
-
const dy = this.y - p.y;
|
75
|
-
const dz = this.z - p.z;
|
76
|
-
return dx * dx + dy * dy + dz * dz;
|
77
|
-
}
|
48
|
+
squareDistanceTo(other: Vec3): number;
|
78
49
|
|
79
50
|
/**
|
80
51
|
* Interpreting this vector as a point in ℝ³, returns the distance to the point
|
@@ -82,9 +53,7 @@ export class Vec3 {
|
|
82
53
|
*
|
83
54
|
* Equivalent to `.minus(p).magnitude()`.
|
84
55
|
*/
|
85
|
-
|
86
|
-
return Math.sqrt(this.squareDistanceTo(p));
|
87
|
-
}
|
56
|
+
distanceTo(p: Vec3): number;
|
88
57
|
|
89
58
|
/**
|
90
59
|
* Returns the entry of this with the greatest magnitude.
|
@@ -98,9 +67,7 @@ export class Vec3 {
|
|
98
67
|
* console.log(Vec3.of(-1, -10, 8).maximumEntryMagnitude()); // -> 10
|
99
68
|
* ```
|
100
69
|
*/
|
101
|
-
|
102
|
-
return Math.max(Math.abs(this.x), Math.max(Math.abs(this.y), Math.abs(this.z)));
|
103
|
-
}
|
70
|
+
maximumEntryMagnitude(): number;
|
104
71
|
|
105
72
|
/**
|
106
73
|
* Return this' angle in the XY plane (treats this as a Vec2).
|
@@ -117,23 +84,175 @@ export class Vec3 {
|
|
117
84
|
* console.log(Vec2.of(-1, 0).angle()); // atan2(0, -1)
|
118
85
|
* ```
|
119
86
|
*/
|
120
|
-
|
121
|
-
return Math.atan2(this.y, this.x);
|
122
|
-
}
|
87
|
+
angle(): number;
|
123
88
|
|
124
89
|
/**
|
125
90
|
* Returns a unit vector in the same direction as this.
|
126
91
|
*
|
127
92
|
* If `this` has zero length, the resultant vector has `NaN` components.
|
128
93
|
*/
|
94
|
+
normalized(): Vec3;
|
95
|
+
|
96
|
+
/**
|
97
|
+
* Like {@link normalized}, except returns zero if this has zero magnitude.
|
98
|
+
*/
|
99
|
+
normalizedOrZero(): Vec3;
|
100
|
+
|
101
|
+
/** @returns A copy of `this` multiplied by a scalar. */
|
102
|
+
times(c: number): Vec3;
|
103
|
+
|
104
|
+
/** Performs vector addition. */
|
105
|
+
plus(v: Vec3): Vec3;
|
106
|
+
minus(v: Vec3): Vec3;
|
107
|
+
|
108
|
+
/**
|
109
|
+
* Computes the scalar product between this and `v`.
|
110
|
+
*
|
111
|
+
* In particular, `a.dot(b)` is equivalent to `a.x * b.x + a.y * b.y + a.z * b.z`.
|
112
|
+
*/
|
113
|
+
dot(v: Vec3): number;
|
114
|
+
|
115
|
+
/** Computes the cross product between this and `v` */
|
116
|
+
cross(v: Vec3): Vec3;
|
117
|
+
|
118
|
+
/**
|
119
|
+
* If `other` is a `Vec3`, multiplies `this` component-wise by `other`. Otherwise,
|
120
|
+
* if `other is a `number`, returns the result of scalar multiplication.
|
121
|
+
*
|
122
|
+
* @example
|
123
|
+
* ```
|
124
|
+
* Vec3.of(1, 2, 3).scale(Vec3.of(2, 4, 6)); // → Vec3(2, 8, 18)
|
125
|
+
* ```
|
126
|
+
*/
|
127
|
+
scale(other: Vec3|number): Vec3;
|
128
|
+
|
129
|
+
/**
|
130
|
+
* Returns a vector orthogonal to this. If this is a Vec2, returns `this` rotated
|
131
|
+
* 90 degrees counter-clockwise.
|
132
|
+
*/
|
133
|
+
orthog(): Vec3;
|
134
|
+
|
135
|
+
/** Returns this plus a vector of length `distance` in `direction`. */
|
136
|
+
extend(distance: number, direction: Vec3): Vec3;
|
137
|
+
|
138
|
+
/** Returns a vector `fractionTo` of the way to target from this. */
|
139
|
+
lerp(target: Vec3, fractionTo: number): Vec3;
|
140
|
+
|
141
|
+
/**
|
142
|
+
* `zip` Maps a component of this and a corresponding component of
|
143
|
+
* `other` to a component of the output vector.
|
144
|
+
*
|
145
|
+
* @example
|
146
|
+
* ```
|
147
|
+
* const a = Vec3.of(1, 2, 3);
|
148
|
+
* const b = Vec3.of(0.5, 2.1, 2.9);
|
149
|
+
*
|
150
|
+
* const zipped = a.zip(b, (aComponent, bComponent) => {
|
151
|
+
* return Math.min(aComponent, bComponent);
|
152
|
+
* });
|
153
|
+
*
|
154
|
+
* console.log(zipped.toString()); // → Vec(0.5, 2, 2.9)
|
155
|
+
* ```
|
156
|
+
*/
|
157
|
+
zip(
|
158
|
+
other: Vec3, zip: (componentInThis: number, componentInOther: number)=> number
|
159
|
+
): Vec3;
|
160
|
+
|
161
|
+
/**
|
162
|
+
* Returns a vector with each component acted on by `fn`.
|
163
|
+
*
|
164
|
+
* @example
|
165
|
+
* ```ts,runnable,console
|
166
|
+
* import { Vec3 } from '@js-draw/math';
|
167
|
+
* console.log(Vec3.of(1, 2, 3).map(val => val + 1)); // → Vec(2, 3, 4)
|
168
|
+
* ```
|
169
|
+
*/
|
170
|
+
map(fn: (component: number, index: number)=> number): Vec3;
|
171
|
+
|
172
|
+
asArray(): [ number, number, number ];
|
173
|
+
|
174
|
+
|
175
|
+
/**
|
176
|
+
* [fuzz] The maximum difference between two components for this and [other]
|
177
|
+
* to be considered equal.
|
178
|
+
*
|
179
|
+
* @example
|
180
|
+
* ```
|
181
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 100); // → true
|
182
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 0.1); // → false
|
183
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3); // → true
|
184
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3.01); // → true
|
185
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 2.99); // → false
|
186
|
+
* ```
|
187
|
+
*/
|
188
|
+
eq(other: Vec3, tolerance?: number): boolean;
|
189
|
+
|
190
|
+
toString(): string;
|
191
|
+
}
|
192
|
+
|
193
|
+
const defaultEqlTolerance = 1e-10;
|
194
|
+
|
195
|
+
class Vec3Impl implements Vec3 {
|
196
|
+
public constructor(
|
197
|
+
public readonly x: number,
|
198
|
+
public readonly y: number,
|
199
|
+
public readonly z: number
|
200
|
+
) {
|
201
|
+
}
|
202
|
+
|
203
|
+
public get xy(): { x: number; y: number } {
|
204
|
+
// Useful for APIs that behave differently if .z is present.
|
205
|
+
return {
|
206
|
+
x: this.x,
|
207
|
+
y: this.y,
|
208
|
+
};
|
209
|
+
}
|
210
|
+
|
211
|
+
/** Returns this' `idx`th component. For example, `Vec3.of(1, 2, 3).at(1) → 2`. */
|
212
|
+
public at(idx: number): number {
|
213
|
+
if (idx === 0) return this.x;
|
214
|
+
if (idx === 1) return this.y;
|
215
|
+
if (idx === 2) return this.z;
|
216
|
+
|
217
|
+
throw new Error(`${idx} out of bounds!`);
|
218
|
+
}
|
219
|
+
|
220
|
+
public length(): number {
|
221
|
+
return this.magnitude();
|
222
|
+
}
|
223
|
+
|
224
|
+
public magnitude(): number {
|
225
|
+
return Math.sqrt(this.magnitudeSquared());
|
226
|
+
}
|
227
|
+
|
228
|
+
public magnitudeSquared(): number {
|
229
|
+
return this.x * this.x + this.y * this.y + this.z * this.z;
|
230
|
+
}
|
231
|
+
|
232
|
+
public squareDistanceTo(p: Vec3) {
|
233
|
+
const dx = this.x - p.x;
|
234
|
+
const dy = this.y - p.y;
|
235
|
+
const dz = this.z - p.z;
|
236
|
+
return dx * dx + dy * dy + dz * dz;
|
237
|
+
}
|
238
|
+
|
239
|
+
public distanceTo(p: Vec3) {
|
240
|
+
return Math.sqrt(this.squareDistanceTo(p));
|
241
|
+
}
|
242
|
+
|
243
|
+
public maximumEntryMagnitude(): number {
|
244
|
+
return Math.max(Math.abs(this.x), Math.max(Math.abs(this.y), Math.abs(this.z)));
|
245
|
+
}
|
246
|
+
|
247
|
+
public angle(): number {
|
248
|
+
return Math.atan2(this.y, this.x);
|
249
|
+
}
|
250
|
+
|
129
251
|
public normalized(): Vec3 {
|
130
252
|
const norm = this.magnitude();
|
131
253
|
return Vec3.of(this.x / norm, this.y / norm, this.z / norm);
|
132
254
|
}
|
133
255
|
|
134
|
-
/**
|
135
|
-
* Like {@link normalized}, except returns zero if this has zero magnitude.
|
136
|
-
*/
|
137
256
|
public normalizedOrZero(): Vec3 {
|
138
257
|
if (this.eq(Vec3.zero)) {
|
139
258
|
return Vec3.zero;
|
@@ -142,7 +261,6 @@ export class Vec3 {
|
|
142
261
|
return this.normalized();
|
143
262
|
}
|
144
263
|
|
145
|
-
/** @returns A copy of `this` multiplied by a scalar. */
|
146
264
|
public times(c: number): Vec3 {
|
147
265
|
return Vec3.of(this.x * c, this.y * c, this.z * c);
|
148
266
|
}
|
@@ -166,19 +284,10 @@ export class Vec3 {
|
|
166
284
|
return Vec3.of(
|
167
285
|
this.y * other.z - other.y * this.z,
|
168
286
|
other.x * this.z - this.x * other.z,
|
169
|
-
this.x * other.y - other.x * this.y
|
287
|
+
this.x * other.y - other.x * this.y,
|
170
288
|
);
|
171
289
|
}
|
172
290
|
|
173
|
-
/**
|
174
|
-
* If `other` is a `Vec3`, multiplies `this` component-wise by `other`. Otherwise,
|
175
|
-
* if `other is a `number`, returns the result of scalar multiplication.
|
176
|
-
*
|
177
|
-
* @example
|
178
|
-
* ```
|
179
|
-
* Vec3.of(1, 2, 3).scale(Vec3.of(2, 4, 6)); // → Vec3(2, 8, 18)
|
180
|
-
* ```
|
181
|
-
*/
|
182
291
|
public scale(other: Vec3|number): Vec3 {
|
183
292
|
if (typeof other === 'number') {
|
184
293
|
return this.times(other);
|
@@ -191,10 +300,6 @@ export class Vec3 {
|
|
191
300
|
);
|
192
301
|
}
|
193
302
|
|
194
|
-
/**
|
195
|
-
* Returns a vector orthogonal to this. If this is a Vec2, returns `this` rotated
|
196
|
-
* 90 degrees counter-clockwise.
|
197
|
-
*/
|
198
303
|
public orthog(): Vec3 {
|
199
304
|
// If parallel to the z-axis
|
200
305
|
if (this.dot(Vec3.unitX) === 0 && this.dot(Vec3.unitY) === 0) {
|
@@ -204,32 +309,14 @@ export class Vec3 {
|
|
204
309
|
return this.cross(Vec3.unitZ.times(-1)).normalized();
|
205
310
|
}
|
206
311
|
|
207
|
-
/** Returns this plus a vector of length `distance` in `direction`. */
|
208
312
|
public extend(distance: number, direction: Vec3): Vec3 {
|
209
313
|
return this.plus(direction.normalized().times(distance));
|
210
314
|
}
|
211
315
|
|
212
|
-
/** Returns a vector `fractionTo` of the way to target from this. */
|
213
316
|
public lerp(target: Vec3, fractionTo: number): Vec3 {
|
214
317
|
return this.times(1 - fractionTo).plus(target.times(fractionTo));
|
215
318
|
}
|
216
319
|
|
217
|
-
/**
|
218
|
-
* `zip` Maps a component of this and a corresponding component of
|
219
|
-
* `other` to a component of the output vector.
|
220
|
-
*
|
221
|
-
* @example
|
222
|
-
* ```
|
223
|
-
* const a = Vec3.of(1, 2, 3);
|
224
|
-
* const b = Vec3.of(0.5, 2.1, 2.9);
|
225
|
-
*
|
226
|
-
* const zipped = a.zip(b, (aComponent, bComponent) => {
|
227
|
-
* return Math.min(aComponent, bComponent);
|
228
|
-
* });
|
229
|
-
*
|
230
|
-
* console.log(zipped.toString()); // → Vec(0.5, 2, 2.9)
|
231
|
-
* ```
|
232
|
-
*/
|
233
320
|
public zip(
|
234
321
|
other: Vec3, zip: (componentInThis: number, componentInOther: number)=> number
|
235
322
|
): Vec3 {
|
@@ -240,39 +327,15 @@ export class Vec3 {
|
|
240
327
|
);
|
241
328
|
}
|
242
329
|
|
243
|
-
/**
|
244
|
-
* Returns a vector with each component acted on by `fn`.
|
245
|
-
*
|
246
|
-
* @example
|
247
|
-
* ```ts,runnable,console
|
248
|
-
* import { Vec3 } from '@js-draw/math';
|
249
|
-
* console.log(Vec3.of(1, 2, 3).map(val => val + 1)); // → Vec(2, 3, 4)
|
250
|
-
* ```
|
251
|
-
*/
|
252
330
|
public map(fn: (component: number, index: number)=> number): Vec3 {
|
253
|
-
return Vec3.of(
|
254
|
-
fn(this.x, 0), fn(this.y, 1), fn(this.z, 2)
|
255
|
-
);
|
331
|
+
return Vec3.of(fn(this.x, 0), fn(this.y, 1), fn(this.z, 2));
|
256
332
|
}
|
257
333
|
|
258
334
|
public asArray(): [ number, number, number ] {
|
259
335
|
return [this.x, this.y, this.z];
|
260
336
|
}
|
261
337
|
|
262
|
-
|
263
|
-
* [fuzz] The maximum difference between two components for this and [other]
|
264
|
-
* to be considered equal.
|
265
|
-
*
|
266
|
-
* @example
|
267
|
-
* ```
|
268
|
-
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 100); // → true
|
269
|
-
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 0.1); // → false
|
270
|
-
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3); // → true
|
271
|
-
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3.01); // → true
|
272
|
-
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 2.99); // → false
|
273
|
-
* ```
|
274
|
-
*/
|
275
|
-
public eq(other: Vec3, fuzz: number = 1e-10): boolean {
|
338
|
+
public eq(other: Vec3, fuzz: number = defaultEqlTolerance): boolean {
|
276
339
|
return (
|
277
340
|
Math.abs(other.x - this.x) <= fuzz
|
278
341
|
&& Math.abs(other.y - this.y) <= fuzz
|
@@ -283,11 +346,235 @@ export class Vec3 {
|
|
283
346
|
public toString(): string {
|
284
347
|
return `Vec(${this.x}, ${this.y}, ${this.z})`;
|
285
348
|
}
|
349
|
+
}
|
350
|
+
|
351
|
+
class Vec2Impl implements Vec3 {
|
352
|
+
public constructor(
|
353
|
+
public readonly x: number,
|
354
|
+
public readonly y: number,
|
355
|
+
) {
|
356
|
+
}
|
357
|
+
|
358
|
+
public get z() { return 0; }
|
359
|
+
|
360
|
+
public get xy(): { x: number; y: number } {
|
361
|
+
// Useful for APIs that behave differently if .z is present.
|
362
|
+
return {
|
363
|
+
x: this.x,
|
364
|
+
y: this.y,
|
365
|
+
};
|
366
|
+
}
|
367
|
+
|
368
|
+
public at(idx: number): number {
|
369
|
+
if (idx === 0) return this.x;
|
370
|
+
if (idx === 1) return this.y;
|
371
|
+
if (idx === 2) return 0;
|
372
|
+
|
373
|
+
throw new Error(`${idx} out of bounds!`);
|
374
|
+
}
|
375
|
+
|
376
|
+
public length(): number {
|
377
|
+
return this.magnitude();
|
378
|
+
}
|
379
|
+
|
380
|
+
public magnitude(): number {
|
381
|
+
return Math.sqrt(this.x * this.x + this.y * this.y);
|
382
|
+
}
|
383
|
+
|
384
|
+
public magnitudeSquared(): number {
|
385
|
+
return this.x * this.x + this.y * this.y;
|
386
|
+
}
|
387
|
+
|
388
|
+
public squareDistanceTo(p: Vec3) {
|
389
|
+
const dx = this.x - p.x;
|
390
|
+
const dy = this.y - p.y;
|
391
|
+
return dx * dx + dy * dy + p.z * p.z;
|
392
|
+
}
|
286
393
|
|
394
|
+
public distanceTo(p: Vec3) {
|
395
|
+
return Math.sqrt(this.squareDistanceTo(p));
|
396
|
+
}
|
397
|
+
|
398
|
+
public maximumEntryMagnitude(): number {
|
399
|
+
return Math.max(Math.abs(this.x), Math.abs(this.y));
|
400
|
+
}
|
401
|
+
|
402
|
+
public angle(): number {
|
403
|
+
return Math.atan2(this.y, this.x);
|
404
|
+
}
|
405
|
+
|
406
|
+
public normalized(): Vec3 {
|
407
|
+
const norm = this.magnitude();
|
408
|
+
return Vec2.of(this.x / norm, this.y / norm);
|
409
|
+
}
|
410
|
+
|
411
|
+
public normalizedOrZero(): Vec3 {
|
412
|
+
if (this.eq(Vec3.zero)) {
|
413
|
+
return Vec3.zero;
|
414
|
+
}
|
415
|
+
|
416
|
+
return this.normalized();
|
417
|
+
}
|
418
|
+
|
419
|
+
public times(c: number): Vec3 {
|
420
|
+
return Vec2.of(this.x * c, this.y * c);
|
421
|
+
}
|
422
|
+
|
423
|
+
public plus(v: Vec3): Vec3 {
|
424
|
+
return Vec3.of(this.x + v.x, this.y + v.y, v.z);
|
425
|
+
}
|
426
|
+
|
427
|
+
public minus(v: Vec3): Vec3 {
|
428
|
+
return Vec3.of(this.x - v.x, this.y - v.y, -v.z);
|
429
|
+
}
|
287
430
|
|
288
|
-
public
|
289
|
-
|
290
|
-
|
291
|
-
|
431
|
+
public dot(other: Vec3): number {
|
432
|
+
return this.x * other.x + this.y * other.y;
|
433
|
+
}
|
434
|
+
|
435
|
+
public cross(other: Vec3): Vec3 {
|
436
|
+
// | i j k |
|
437
|
+
// | x1 y1 z1| = (i)(y1z2 - y2z1) - (j)(x1z2 - x2z1) + (k)(x1y2 - x2y1)
|
438
|
+
// | x2 y2 z2|
|
439
|
+
return Vec3.of(
|
440
|
+
this.y * other.z,
|
441
|
+
-this.x * other.z,
|
442
|
+
this.x * other.y - other.x * this.y,
|
443
|
+
);
|
444
|
+
}
|
445
|
+
|
446
|
+
public scale(other: Vec3|number): Vec3 {
|
447
|
+
if (typeof other === 'number') {
|
448
|
+
return this.times(other);
|
449
|
+
}
|
450
|
+
|
451
|
+
return Vec2.of(
|
452
|
+
this.x * other.x,
|
453
|
+
this.y * other.y,
|
454
|
+
);
|
455
|
+
}
|
456
|
+
|
457
|
+
public orthog(): Vec3 {
|
458
|
+
// If parallel to the z-axis
|
459
|
+
if (this.dot(Vec3.unitX) === 0 && this.dot(Vec3.unitY) === 0) {
|
460
|
+
return this.dot(Vec3.unitX) === 0 ? Vec3.unitX : this.cross(Vec3.unitX).normalized();
|
461
|
+
}
|
462
|
+
|
463
|
+
return this.cross(Vec3.unitZ.times(-1)).normalized();
|
464
|
+
}
|
465
|
+
|
466
|
+
public extend(distance: number, direction: Vec3): Vec3 {
|
467
|
+
return this.plus(direction.normalized().times(distance));
|
468
|
+
}
|
469
|
+
|
470
|
+
public lerp(target: Vec3, fractionTo: number): Vec3 {
|
471
|
+
return this.times(1 - fractionTo).plus(target.times(fractionTo));
|
472
|
+
}
|
473
|
+
|
474
|
+
public zip(
|
475
|
+
other: Vec3, zip: (componentInThis: number, componentInOther: number)=> number
|
476
|
+
): Vec3 {
|
477
|
+
return Vec3.of(
|
478
|
+
zip(other.x, this.x),
|
479
|
+
zip(other.y, this.y),
|
480
|
+
zip(other.z, 0),
|
481
|
+
);
|
482
|
+
}
|
483
|
+
|
484
|
+
public map(fn: (component: number, index: number)=> number): Vec3 {
|
485
|
+
return Vec3.of(
|
486
|
+
fn(this.x, 0), fn(this.y, 1), fn(0, 2)
|
487
|
+
);
|
488
|
+
}
|
489
|
+
|
490
|
+
public asArray(): [ number, number, number ] {
|
491
|
+
return [this.x, this.y, 0];
|
492
|
+
}
|
493
|
+
|
494
|
+
public eq(other: Vec3, fuzz: number = defaultEqlTolerance): boolean {
|
495
|
+
return (
|
496
|
+
Math.abs(other.x - this.x) <= fuzz
|
497
|
+
&& Math.abs(other.y - this.y) <= fuzz
|
498
|
+
&& Math.abs(other.z) <= fuzz
|
499
|
+
);
|
500
|
+
}
|
501
|
+
|
502
|
+
public toString(): string {
|
503
|
+
return `Vec(${this.x}, ${this.y})`;
|
504
|
+
}
|
505
|
+
}
|
506
|
+
|
507
|
+
/**
|
508
|
+
* A `Vec2` is a `Vec3` optimized for working in a plane. As such, they have an
|
509
|
+
* always-zero `z` component.
|
510
|
+
*
|
511
|
+
* ```ts,runnable,console
|
512
|
+
* import { Vec2 } from '@js-draw/math';
|
513
|
+
* console.log(Vec2.of(1, 2));
|
514
|
+
* ```
|
515
|
+
*/
|
516
|
+
export namespace Vec2 {
|
517
|
+
/**
|
518
|
+
* Creates a `Vec2` from an x and y coordinate.
|
519
|
+
*
|
520
|
+
* @example
|
521
|
+
* ```ts,runnable,console
|
522
|
+
* import { Vec2 } from '@js-draw/math';
|
523
|
+
* const v = Vec2.of(3, 4); // x=3, y=4.
|
524
|
+
* ```
|
525
|
+
*/
|
526
|
+
export const of = (x: number, y: number) => {
|
527
|
+
return new Vec2Impl(x, y);
|
528
|
+
};
|
529
|
+
|
530
|
+
/**
|
531
|
+
* Creates a `Vec2` from an object containing `x` and `y` coordinates.
|
532
|
+
*
|
533
|
+
* @example
|
534
|
+
* ```ts,runnable,console
|
535
|
+
* import { Vec2 } from '@js-draw/math';
|
536
|
+
* const v1 = Vec2.ofXY({ x: 3, y: 4.5 });
|
537
|
+
* const v2 = Vec2.ofXY({ x: -123.4, y: 1 });
|
538
|
+
* ```
|
539
|
+
*/
|
540
|
+
export const ofXY = ({x, y}: {x: number, y: number}) => {
|
541
|
+
return Vec2.of(x, y);
|
542
|
+
};
|
543
|
+
|
544
|
+
/** A vector of length 1 in the X direction (→). */
|
545
|
+
export const unitX = Vec2.of(1, 0);
|
546
|
+
|
547
|
+
/** A vector of length 1 in the Y direction (↑). */
|
548
|
+
export const unitY = Vec2.of(0, 1);
|
549
|
+
|
550
|
+
/** The zero vector: A vector with x=0, y=0. */
|
551
|
+
export const zero = Vec2.of(0, 0);
|
292
552
|
}
|
553
|
+
|
554
|
+
export namespace Vec3 {
|
555
|
+
/**
|
556
|
+
* Construct a vector from three components.
|
557
|
+
*
|
558
|
+
* @example
|
559
|
+
* ```ts,runnable,console
|
560
|
+
* import { Vec3 } from '@js-draw/math';
|
561
|
+
* const v1 = Vec3.of(1, 2, 3);
|
562
|
+
* ```
|
563
|
+
*/
|
564
|
+
export const of = (x: number, y: number, z: number): Vec3 => {
|
565
|
+
if (z === 0) {
|
566
|
+
return Vec2.of(x, y);
|
567
|
+
} else {
|
568
|
+
return new Vec3Impl(x, y, z);
|
569
|
+
}
|
570
|
+
};
|
571
|
+
|
572
|
+
export const unitX = Vec2.unitX;
|
573
|
+
export const unitY = Vec2.unitY;
|
574
|
+
export const zero = Vec2.zero;
|
575
|
+
|
576
|
+
/** A vector of length 1 in the z direction. */
|
577
|
+
export const unitZ = Vec3.of(0, 0, 1);
|
578
|
+
}
|
579
|
+
|
293
580
|
export default Vec3;
|
package/src/shapes/Rect2.ts
CHANGED
@@ -298,9 +298,9 @@ export class Rect2 extends Abstract2DShape {
|
|
298
298
|
return Rect2.bboxOf(this.corners.map(corner => affineTransform.transformVec2(corner)));
|
299
299
|
}
|
300
300
|
|
301
|
-
/** @return true iff this is equal to
|
302
|
-
public eq(other: Rect2,
|
303
|
-
return this.topLeft.eq(other.topLeft,
|
301
|
+
/** @return true iff this is equal to `other ± tolerance` */
|
302
|
+
public eq(other: Rect2, tolerance: number = 0): boolean {
|
303
|
+
return this.topLeft.eq(other.topLeft, tolerance) && this.size.eq(other.size, tolerance);
|
304
304
|
}
|
305
305
|
|
306
306
|
public override toString(): string {
|