@itwin/core-geometry 5.4.0-dev.6 → 5.5.0-dev.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +38 -1
- package/lib/cjs/bspline/SurfaceLocationDetail.d.ts +1 -1
- package/lib/cjs/bspline/SurfaceLocationDetail.js +1 -1
- package/lib/cjs/bspline/SurfaceLocationDetail.js.map +1 -1
- package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
- package/lib/cjs/curve/CurveChainWithDistanceIndex.js.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts +13 -0
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js +78 -3
- package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +1 -1
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js +1 -1
- package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/ClothoidSeries.d.ts +3 -3
- package/lib/cjs/curve/spiral/ClothoidSeries.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/ClothoidSeries.js +15 -11
- package/lib/cjs/curve/spiral/ClothoidSeries.js.map +1 -1
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts +2 -5
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js +4 -12
- package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
- package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts +7 -6
- package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/DirectSpiral3d.js +8 -6
- package/lib/cjs/curve/spiral/DirectSpiral3d.js.map +1 -1
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts +2 -2
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.js +9 -5
- package/lib/cjs/curve/spiral/IntegratedSpiral3d.js.map +1 -1
- package/lib/cjs/curve/spiral/NormalizedTransition.d.ts +8 -7
- package/lib/cjs/curve/spiral/NormalizedTransition.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/NormalizedTransition.js +32 -16
- package/lib/cjs/curve/spiral/NormalizedTransition.js.map +1 -1
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.js +1 -0
- package/lib/cjs/curve/spiral/TransitionConditionalProperties.js.map +1 -1
- package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts +1 -1
- package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
- package/lib/cjs/curve/spiral/TransitionSpiral3d.js +1 -0
- package/lib/cjs/curve/spiral/TransitionSpiral3d.js.map +1 -1
- package/lib/cjs/geometry3d/Ray3d.d.ts +1 -2
- package/lib/cjs/geometry3d/Ray3d.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Ray3d.js +1 -2
- package/lib/cjs/geometry3d/Ray3d.js.map +1 -1
- package/lib/cjs/numerics/Newton.d.ts +1 -1
- package/lib/cjs/numerics/Newton.js +1 -1
- package/lib/cjs/numerics/Newton.js.map +1 -1
- package/lib/esm/bspline/SurfaceLocationDetail.d.ts +1 -1
- package/lib/esm/bspline/SurfaceLocationDetail.js +1 -1
- package/lib/esm/bspline/SurfaceLocationDetail.js.map +1 -1
- package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
- package/lib/esm/curve/CurveChainWithDistanceIndex.js.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts +13 -0
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js +78 -3
- package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +1 -1
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js +1 -1
- package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/ClothoidSeries.d.ts +3 -3
- package/lib/esm/curve/spiral/ClothoidSeries.d.ts.map +1 -1
- package/lib/esm/curve/spiral/ClothoidSeries.js +15 -11
- package/lib/esm/curve/spiral/ClothoidSeries.js.map +1 -1
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts +2 -5
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.js +4 -12
- package/lib/esm/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
- package/lib/esm/curve/spiral/DirectSpiral3d.d.ts +7 -6
- package/lib/esm/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/DirectSpiral3d.js +8 -6
- package/lib/esm/curve/spiral/DirectSpiral3d.js.map +1 -1
- package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts +2 -2
- package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/IntegratedSpiral3d.js +9 -5
- package/lib/esm/curve/spiral/IntegratedSpiral3d.js.map +1 -1
- package/lib/esm/curve/spiral/NormalizedTransition.d.ts +8 -7
- package/lib/esm/curve/spiral/NormalizedTransition.d.ts.map +1 -1
- package/lib/esm/curve/spiral/NormalizedTransition.js +32 -16
- package/lib/esm/curve/spiral/NormalizedTransition.js.map +1 -1
- package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
- package/lib/esm/curve/spiral/TransitionConditionalProperties.js +1 -0
- package/lib/esm/curve/spiral/TransitionConditionalProperties.js.map +1 -1
- package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts +1 -1
- package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
- package/lib/esm/curve/spiral/TransitionSpiral3d.js +1 -0
- package/lib/esm/curve/spiral/TransitionSpiral3d.js.map +1 -1
- package/lib/esm/geometry3d/Ray3d.d.ts +1 -2
- package/lib/esm/geometry3d/Ray3d.d.ts.map +1 -1
- package/lib/esm/geometry3d/Ray3d.js +1 -2
- package/lib/esm/geometry3d/Ray3d.js.map +1 -1
- package/lib/esm/numerics/Newton.d.ts +1 -1
- package/lib/esm/numerics/Newton.js +1 -1
- package/lib/esm/numerics/Newton.js.map +1 -1
- package/package.json +3 -3
|
@@ -3,8 +3,8 @@ import { XYCurveEvaluator } from "./XYCurveEvaluator";
|
|
|
3
3
|
* Methods to evaluate caller-specified number of terms of the x and y Taylor series for a clothoid.
|
|
4
4
|
* Each instance has:
|
|
5
5
|
* * number of x and y terms to use.
|
|
6
|
-
* * constant for theta =
|
|
7
|
-
* * This value is c = 1/
|
|
6
|
+
* * constant for theta = cxx.
|
|
7
|
+
* * This value is c = 1/2RL for curve length L measured from inflection to point with radius R.
|
|
8
8
|
* @internal
|
|
9
9
|
*/
|
|
10
10
|
export declare class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
@@ -12,7 +12,7 @@ export declare class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
|
12
12
|
numXTerms: number;
|
|
13
13
|
/** Number of terms to use in y Taylor series. */
|
|
14
14
|
numYTerms: number;
|
|
15
|
-
/** Constant c = 1/
|
|
15
|
+
/** Constant c = 1/2RL in theta = cxx. */
|
|
16
16
|
constantDiv2LR: number;
|
|
17
17
|
/** The nominal curve length. */
|
|
18
18
|
nominalLength1: number;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"ClothoidSeries.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/ClothoidSeries.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AAGtD;;;;;;;GAOG;AACH,qBAAa,yBAA0B,SAAQ,gBAAgB;IAC7D,iDAAiD;IAC1C,SAAS,EAAE,MAAM,CAAC;IACzB,iDAAiD;IAC1C,SAAS,EAAE,MAAM,CAAC;IACzB
|
|
1
|
+
{"version":3,"file":"ClothoidSeries.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/ClothoidSeries.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AAGtD;;;;;;;GAOG;AACH,qBAAa,yBAA0B,SAAQ,gBAAgB;IAC7D,iDAAiD;IAC1C,SAAS,EAAE,MAAM,CAAC;IACzB,iDAAiD;IAC1C,SAAS,EAAE,MAAM,CAAC;IACzB,yCAAyC;IAClC,cAAc,EAAE,MAAM,CAAC;IAC9B,gCAAgC;IACzB,cAAc,EAAE,MAAM,CAAC;gBACX,cAAc,EAAE,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,SAAS,GAAE,MAAU,EAAE,SAAS,GAAE,MAAU;IAO/G,2BAA2B;IACpB,KAAK,IAAI,yBAAyB;IAGlC,YAAY,CAAC,WAAW,EAAE,MAAM,GAAG,IAAI;IAI9C,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IASzC;;;OAGG;IACI,WAAW,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG5C;;;OAGG;IACI,WAAW,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG5C;;;OAGG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG7C;;;OAGG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG7C;;;OAGG;IACI,aAAa,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG9C;;;OAGG;IACI,aAAa,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAG9C;;;;OAIG;IACI,aAAa,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAyBzD,aAAa,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAyBzD,cAAc,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAsB1D,cAAc,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAsB1D,eAAe,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAS3D,eAAe,CAAC,QAAQ,EAAE,MAAM,EAAE,QAAQ,EAAE,MAAM,GAAG,MAAM;IAS3D,aAAa,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAYvC,aAAa,CAAC,QAAQ,EAAE,MAAM,GAAG,MAAM;IAavC,WAAW,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CASlD"}
|
|
@@ -12,8 +12,8 @@ import { SimpleNewton } from "../../numerics/Newton";
|
|
|
12
12
|
* Methods to evaluate caller-specified number of terms of the x and y Taylor series for a clothoid.
|
|
13
13
|
* Each instance has:
|
|
14
14
|
* * number of x and y terms to use.
|
|
15
|
-
* * constant for theta =
|
|
16
|
-
* * This value is c = 1/
|
|
15
|
+
* * constant for theta = cxx.
|
|
16
|
+
* * This value is c = 1/2RL for curve length L measured from inflection to point with radius R.
|
|
17
17
|
* @internal
|
|
18
18
|
*/
|
|
19
19
|
export class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
@@ -21,7 +21,7 @@ export class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
|
21
21
|
numXTerms;
|
|
22
22
|
/** Number of terms to use in y Taylor series. */
|
|
23
23
|
numYTerms;
|
|
24
|
-
/** Constant c = 1/
|
|
24
|
+
/** Constant c = 1/2RL in theta = cxx. */
|
|
25
25
|
constantDiv2LR;
|
|
26
26
|
/** The nominal curve length. */
|
|
27
27
|
nominalLength1;
|
|
@@ -98,10 +98,12 @@ export class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
|
98
98
|
* @param numTerms number of terms to use.
|
|
99
99
|
*/
|
|
100
100
|
fractionToXGo(fraction, numTerms) {
|
|
101
|
-
// write the Taylor series for cos(theta)
|
|
102
|
-
//
|
|
103
|
-
//
|
|
104
|
-
//
|
|
101
|
+
// write the Taylor series for cos(theta):
|
|
102
|
+
// 1 - theta^2 / 2! + theta^4 / 4! - theta^6 / 6! + ...
|
|
103
|
+
// replace theta by s*s*c:
|
|
104
|
+
// 1 - s^4c^2 / 2! + s^8c^4 / 4! - s^12c^6 / 6! + ...
|
|
105
|
+
// integrate wrt s:
|
|
106
|
+
// x = s - s^5 c^2 / 5*2! + s^9 c^4 / 9*4! - s^13 c^6 / 13*6! + ...
|
|
105
107
|
// x = s(1 - (s^4 c^2/2) ( 1/5 - (s^4 c^2 / 3*4) (1/9 - ...) ) )
|
|
106
108
|
const s = fraction * this.nominalLength1;
|
|
107
109
|
let result = s;
|
|
@@ -121,9 +123,11 @@ export class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
|
121
123
|
return result;
|
|
122
124
|
}
|
|
123
125
|
fractionToYGo(fraction, numTerms) {
|
|
124
|
-
// write the Taylor series for sin(theta)
|
|
125
|
-
//
|
|
126
|
-
//
|
|
126
|
+
// write the Taylor series for sin(theta):
|
|
127
|
+
// theta - theta^3 / 3! + theta^5 / 5! - theta^7 / 7! + ...
|
|
128
|
+
// replace theta by s*s*c:
|
|
129
|
+
// s^2 c - s^6 c^3 / 3! + s^10 c^5 / 5! - s^14 c^7 / 7! + ...
|
|
130
|
+
// integrate wrt s:
|
|
127
131
|
// y = s^3 c / 3 - s^7 c^3 / 7*3! + s^11 c^5 / 11*5! - s^15 c^7 / 15*7! + ...
|
|
128
132
|
// y = s^3 c ( 1/3 - s^4 c^2/ 3! ( (1/7) - (s^4 c^2 / 4*5) (1/11 - ...) ) )
|
|
129
133
|
const s = fraction * this.nominalLength1;
|
|
@@ -171,7 +175,7 @@ export class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {
|
|
|
171
175
|
// dY = q - q^3/3!
|
|
172
176
|
// q = s^2 c
|
|
173
177
|
// dY = s^2 c - s^6 c^3/3! + s^10 c^5/ 5!
|
|
174
|
-
// recurrence
|
|
178
|
+
// recurrence advancing m by 2 alpha *= -(s^4 c^2) / (m(m+1))
|
|
175
179
|
const s = fraction * this.nominalLength1;
|
|
176
180
|
const q1 = s * s * this.constantDiv2LR;
|
|
177
181
|
let result = q1;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"ClothoidSeries.js","sourceRoot":"","sources":["../../../../src/curve/spiral/ClothoidSeries.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AACtD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AAErD;;;;;;;GAOG;AACH,MAAM,OAAO,yBAA0B,SAAQ,gBAAgB;IAC7D,iDAAiD;IAC1C,SAAS,CAAS;IACzB,iDAAiD;IAC1C,SAAS,CAAS;IACzB,+CAA+C;IACxC,cAAc,CAAS;IAC9B,gCAAgC;IACzB,cAAc,CAAS;IAC9B,YAAmB,cAAsB,EAAE,cAAsB,EAAE,YAAoB,CAAC,EAAE,YAAoB,CAAC;QAC7G,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,cAAc,GAAG,cAAc,CAAC;QACrC,IAAI,CAAC,cAAc,GAAG,cAAc,CAAC;QACrC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC;QAC3B,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC;IAC7B,CAAC;IACD,2BAA2B;IACpB,KAAK;QACV,OAAO,IAAI,yBAAyB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACjH,CAAC;IACM,YAAY,CAAC,WAAmB;QACrC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,CAAC,WAAW,GAAG,WAAW,CAAC,CAAC;IACrD,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,yBAAyB,EAAE,CAAC;YAC/C,OAAO,IAAI,CAAC,SAAS,KAAK,KAAK,CAAC,SAAS;mBACpC,IAAI,CAAC,SAAS,KAAK,KAAK,CAAC,SAAS;mBAClC,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACvE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,QAAgB;QACjC,OAAO,IAAI,CAAC,aAAa,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,QAAgB;QACjC,OAAO,IAAI,CAAC,aAAa,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;OAGG;IACI,YAAY,CAAC,QAAgB;QAClC,OAAO,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACvD,CAAC;IACD;;;OAGG;IACI,YAAY,CAAC,QAAgB;QAClC,OAAO,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACvD,CAAC;IACD;;;OAGG;IACI,aAAa,CAAC,QAAgB;QACnC,OAAO,IAAI,CAAC,eAAe,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACxD,CAAC;IACD;;;OAGG;IACI,aAAa,CAAC,QAAgB;QACnC,OAAO,IAAI,CAAC,eAAe,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACxD,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,QAAgB,EAAE,QAAgB;QACrD,yCAAyC;QACzC,yBAAyB;QACzB,kBAAkB;QAClB,mEAAmE;QACnE,iEAAiE;QACjE,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,IAAI,MAAM,GAAG,CAAC,CAAC;QACf,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,CAAC;QAChB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,CAAC,CAAC;QACd,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,GAAG,CAAC,CAAC;YACpB,CAAC,IAAI,CAAC,CAAC;YACP,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACM,aAAa,CAAC,QAAgB,EAAE,QAAgB;QACrD,yCAAyC;QACzC,yBAAyB;QACzB,kBAAkB;QAClB,6EAA6E;QAC7E,2EAA2E;QAC3E,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,IAAI,MAAM,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,CAAC;QAChB,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,EAAE,GAAG,CAAC,CAAC;QACnB,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,GAAG,CAAC,CAAC;YACpB,CAAC,IAAI,CAAC,CAAC;YACP,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACM,cAAc,CAAC,QAAgB,EAAE,QAAgB;QACtD,+EAA+E;QAC/E,IAAI,QAAQ,IAAI,CAAC;YACf,OAAO,CAAC,CAAC;QACX,qCAAqC;QACrC,wCAAwC;QACxC,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,IAAI,MAAM,GAAG,CAAC,CAAC;QACf,IAAI,QAAQ,GAAG,CAAC,EAAE,CAAC;YACjB,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;QACtC,CAAC;QACD,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,GAAG,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,CAAC;YAChB,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IACtC,CAAC;IACM,cAAc,CAAC,QAAgB,EAAE,QAAgB;QACtD,IAAI,QAAQ,IAAI,CAAC;YACf,OAAO,CAAC,CAAC;QACX,kBAAkB;QAClB,YAAY;QACZ,yCAAyC;QACzC,+DAA+D;QAC/D,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,IAAI,MAAM,GAAG,EAAE,CAAC;QAChB,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;QACtC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,EAAE,CAAC;QACf,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,CAAC;YAChB,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IACtC,CAAC;IACM,eAAe,CAAC,QAAgB,EAAE,QAAgB;QACvD,iBAAiB;QACjB,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC3C,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,QAAQ,GAAG,CAAC,CAAC,CAAC;QACzD,MAAM,OAAO,GAAG,CAAC,CAAE,MAAM,GAAG,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,CAAC;QACxD,OAAO,OAAO,CAAC;IACjB,CAAC;IACM,eAAe,CAAC,QAAgB,EAAE,QAAgB;QACvD,eAAe;QACf,iFAAiF;QACjF,uFAAuF;QACvF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACvD,OAAO,MAAM,GAAG,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IAC/C,CAAC;IACM,aAAa,CAAC,QAAgB;QACnC,IAAI,IAAI,CAAC,SAAS,IAAI,CAAC;YACrB,OAAO,GAAG,CAAC;QACb,iBAAiB;QACjB,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC7C,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QAC/D,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QACjE,OAAO,CAAC,CAAE,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,IAAI,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;IACnG,CAAC;IACM,aAAa,CAAC,QAAgB;QACnC,eAAe;QACf,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC7C,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,oCAAoC;QACpC,6FAA6F;QAC7F,wEAAwE;QACxE,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;QAC7D,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QAC/D,OAAO,CAAC,CAAC,IAAI,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;IAClG,CAAC;IACM,WAAW,CAAC,CAAS;QAC1B,MAAM,SAAS,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,MAAM,SAAS,GAAG,YAAY,CAAC,WAAW,CAAC,SAAS,EAClD,CAAC,CAAS,EAAE,EAAE,CAAC,CAAC,IAAI,CAAC,WAAW,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,EACxC,CAAC,CAAS,EAAE,EAAE,CAAC,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,CAAC;QACvC,IAAI,SAAS,KAAK,SAAS;YACzB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC;IACnB,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\n\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { XYCurveEvaluator } from \"./XYCurveEvaluator\";\r\nimport { SimpleNewton } from \"../../numerics/Newton\";\r\n\r\n/**\r\n * Methods to evaluate caller-specified number of terms of the x and y Taylor series for a clothoid.\r\n * Each instance has:\r\n * * number of x and y terms to use.\r\n * * constant for theta = c*x*x.\r\n * * This value is c = 1/(2*R*L) for curve length L measured from inflection to point with radius R.\r\n * @internal\r\n */\r\nexport class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {\r\n /** Number of terms to use in x Taylor series. */\r\n public numXTerms: number;\r\n /** Number of terms to use in y Taylor series. */\r\n public numYTerms: number;\r\n /** Constant c = 1/(2*R*L) in theta = c*s*s. */\r\n public constantDiv2LR: number;\r\n /** The nominal curve length. */\r\n public nominalLength1: number;\r\n public constructor(nominalLength1: number, constantDiv2LR: number, numXTerms: number = 4, numYTerms: number = 4) {\r\n super();\r\n this.nominalLength1 = nominalLength1;\r\n this.constantDiv2LR = constantDiv2LR;\r\n this.numXTerms = numXTerms;\r\n this.numYTerms = numYTerms;\r\n }\r\n /** Return a deep clone. */\r\n public clone(): ClothoidSeriesRLEvaluator {\r\n return new ClothoidSeriesRLEvaluator(this.nominalLength1, this.constantDiv2LR, this.numXTerms, this.numYTerms);\r\n }\r\n public scaleInPlace(scaleFactor: number): void {\r\n this.nominalLength1 *= scaleFactor;\r\n this.constantDiv2LR /= (scaleFactor * scaleFactor);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof ClothoidSeriesRLEvaluator) {\r\n return this.numXTerms === other.numXTerms\r\n && this.numYTerms === other.numYTerms\r\n && Geometry.isAlmostEqualNumber(this.constantDiv2LR, other.constantDiv2LR)\r\n && Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Evaluate the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToX(fraction: number): number {\r\n return this.fractionToXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToY(fraction: number): number {\r\n return this.fractionToYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDX(fraction: number): number {\r\n return this.fractionToDXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDY(fraction: number): number {\r\n return this.fractionToDYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDDX(fraction: number): number {\r\n return this.fractionToDDXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDDY(fraction: number): number {\r\n return this.fractionToDDYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n * @param numTerms number of terms to use.\r\n */\r\n public fractionToXGo(fraction: number, numTerms: number): number {\r\n // write the Taylor series for cos(theta)\r\n // replace theta by s*s*c\r\n // integrate wrt s\r\n // x = s - s^5 c^2/ 5*2! + s^9 c^4 / 9*4! - s^13 c^6 / 13*6! + ...\r\n // x = s(1 - (s^4 c^2/2) ( 1/5 - (s^4 c^2 / 3*4) (1/9 - ...) ) )\r\n const s = fraction * this.nominalLength1;\r\n let result = s;\r\n if (numTerms < 2)\r\n return result;\r\n const q1 = s * s * this.constantDiv2LR;\r\n const beta = - q1 * q1;\r\n let alpha = s;\r\n let m = 1;\r\n let n = 5;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha / n;\r\n m += 2;\r\n n += 4;\r\n }\r\n return result;\r\n }\r\n public fractionToYGo(fraction: number, numTerms: number): number {\r\n // write the Taylor series for sin(theta)\r\n // replace theta by s*s*c\r\n // integrate wrt s\r\n // y = s^3 c / 3 - s^7 c^3 / 7*3! + s^11 c^5 / 11*5! - s^15 c^7 / 15*7! + ...\r\n // y = s^3 c ( 1/3 - s^4 c^2/ 3! ( (1/7) - (s^4 c^2 / 4*5) (1/11 - ...) ) )\r\n const s = fraction * this.nominalLength1;\r\n const q1 = s * s * this.constantDiv2LR;\r\n let result = q1 * s / 3;\r\n if (numTerms < 2)\r\n return result;\r\n const beta = - q1 * q1;\r\n let alpha = q1 * s;\r\n let m = 2;\r\n let n = 7;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha / n;\r\n m += 2;\r\n n += 4;\r\n }\r\n return result;\r\n }\r\n public fractionToDXGo(fraction: number, numTerms: number): number {\r\n // yes -- this does happen during derivatives of cosines with more than 0 terms\r\n if (numTerms <= 0)\r\n return 0;\r\n // dX = 1 - s^4c^2/2 + s^8 c^4 / 4! -\r\n // new Term = old Term * beta / (m(m+1))\r\n const s = fraction * this.nominalLength1;\r\n let result = 1;\r\n if (numTerms < 2) {\r\n return result * this.nominalLength1;\r\n }\r\n const q1 = s * s * this.constantDiv2LR;\r\n const beta = - q1 * q1;\r\n let alpha = 1.0;\r\n let m = 1;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha;\r\n m += 2;\r\n }\r\n return result * this.nominalLength1;\r\n }\r\n public fractionToDYGo(fraction: number, numTerms: number): number {\r\n if (numTerms <= 0)\r\n return 0;\r\n // dY = q - q^3/3!\r\n // q = s^2 c\r\n // dY = s^2 c - s^6 c^3/3! + s^10 c^5/ 5!\r\n // recurrence advancing m by 2 alpha *= -(s^4 c^2) / (m(m+1))\r\n const s = fraction * this.nominalLength1;\r\n const q1 = s * s * this.constantDiv2LR;\r\n let result = q1;\r\n if (numTerms < 2)\r\n return result * this.nominalLength1;\r\n const beta = - q1 * q1;\r\n let alpha = q1;\r\n let m = 2;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha;\r\n m += 2;\r\n }\r\n return result * this.nominalLength1;\r\n }\r\n public fractionToDDXGo(fraction: number, numTerms: number): number {\r\n // DX is \"cosine\"\r\n // DDX is \"- sine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2 * this.constantDiv2LR * s;\r\n const sine = this.fractionToDYGo(fraction, numTerms - 1);\r\n const resultA = (- dTheta * sine * this.nominalLength1);\r\n return resultA;\r\n }\r\n public fractionToDDYGo(fraction: number, numTerms: number): number {\r\n // DY is \"sine\"\r\n // DDY is \"cosine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n // BUT .... derivative of the cosine series leading term is zero ... use one less term\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2 * this.constantDiv2LR * s;\r\n const cosine = this.fractionToDXGo(fraction, numTerms);\r\n return cosine * dTheta * this.nominalLength1;\r\n }\r\n public fractionToD3X(fraction: number): number {\r\n if (this.numXTerms <= 1)\r\n return 0.0;\r\n // DX is \"cosine\"\r\n // DDX is \"- sine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2.0 * this.constantDiv2LR * s;\r\n const d2Theta = 2.0 * this.constantDiv2LR;\r\n const sine = this.fractionToDYGo(fraction, this.numXTerms - 1);\r\n const cosine = this.fractionToDXGo(fraction, this.numXTerms - 1);\r\n return (- cosine * dTheta * dTheta - sine * d2Theta) * this.nominalLength1 * this.nominalLength1;\r\n }\r\n public fractionToD3Y(fraction: number): number {\r\n // DY is \"sine\"\r\n // DDY is \"cosine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2.0 * this.constantDiv2LR * s;\r\n const d2Theta = 2.0 * this.constantDiv2LR;\r\n // dY is sine series with numYTerms.\r\n // ddY is cosine series. Leading term of sine series is non-constant, so numYTerms here also\r\n // d3Y is sine series. Derivative of preceding cosine killed first term.\r\n const cosine = this.fractionToDXGo(fraction, this.numYTerms);\r\n const sine = this.fractionToDYGo(fraction, this.numYTerms - 1);\r\n return (-sine * dTheta * dTheta + cosine * d2Theta) * this.nominalLength1 * this.nominalLength1;\r\n }\r\n public xToFraction(x: number): number | undefined {\r\n const fraction0 = x / this.nominalLength1;\r\n const fraction1 = SimpleNewton.runNewton1D(fraction0,\r\n (f: number) => (this.fractionToX(f) - x),\r\n (f: number) => this.fractionToDX(f));\r\n if (fraction1 === undefined)\r\n return undefined;\r\n return fraction1;\r\n }\r\n}\r\n"]}
|
|
1
|
+
{"version":3,"file":"ClothoidSeries.js","sourceRoot":"","sources":["../../../../src/curve/spiral/ClothoidSeries.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AACtD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AAErD;;;;;;;GAOG;AACH,MAAM,OAAO,yBAA0B,SAAQ,gBAAgB;IAC7D,iDAAiD;IAC1C,SAAS,CAAS;IACzB,iDAAiD;IAC1C,SAAS,CAAS;IACzB,yCAAyC;IAClC,cAAc,CAAS;IAC9B,gCAAgC;IACzB,cAAc,CAAS;IAC9B,YAAmB,cAAsB,EAAE,cAAsB,EAAE,YAAoB,CAAC,EAAE,YAAoB,CAAC;QAC7G,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,cAAc,GAAG,cAAc,CAAC;QACrC,IAAI,CAAC,cAAc,GAAG,cAAc,CAAC;QACrC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC;QAC3B,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC;IAC7B,CAAC;IACD,2BAA2B;IACpB,KAAK;QACV,OAAO,IAAI,yBAAyB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACjH,CAAC;IACM,YAAY,CAAC,WAAmB;QACrC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,CAAC,WAAW,GAAG,WAAW,CAAC,CAAC;IACrD,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,yBAAyB,EAAE,CAAC;YAC/C,OAAO,IAAI,CAAC,SAAS,KAAK,KAAK,CAAC,SAAS;mBACpC,IAAI,CAAC,SAAS,KAAK,KAAK,CAAC,SAAS;mBAClC,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACvE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,QAAgB;QACjC,OAAO,IAAI,CAAC,aAAa,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,QAAgB;QACjC,OAAO,IAAI,CAAC,aAAa,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;OAGG;IACI,YAAY,CAAC,QAAgB;QAClC,OAAO,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACvD,CAAC;IACD;;;OAGG;IACI,YAAY,CAAC,QAAgB;QAClC,OAAO,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACvD,CAAC;IACD;;;OAGG;IACI,aAAa,CAAC,QAAgB;QACnC,OAAO,IAAI,CAAC,eAAe,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACxD,CAAC;IACD;;;OAGG;IACI,aAAa,CAAC,QAAgB;QACnC,OAAO,IAAI,CAAC,eAAe,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACxD,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,QAAgB,EAAE,QAAgB;QACrD,0CAA0C;QAC1C,uDAAuD;QACvD,0BAA0B;QAC1B,qDAAqD;QACrD,mBAAmB;QACnB,oEAAoE;QACpE,iEAAiE;QACjE,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,IAAI,MAAM,GAAG,CAAC,CAAC;QACf,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,CAAC;QAChB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,CAAC,CAAC;QACd,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,GAAG,CAAC,CAAC;YACpB,CAAC,IAAI,CAAC,CAAC;YACP,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACM,aAAa,CAAC,QAAgB,EAAE,QAAgB;QACrD,0CAA0C;QAC1C,2DAA2D;QAC3D,0BAA0B;QAC1B,6DAA6D;QAC7D,mBAAmB;QACnB,6EAA6E;QAC7E,2EAA2E;QAC3E,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,IAAI,MAAM,GAAG,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,CAAC;QAChB,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,EAAE,GAAG,CAAC,CAAC;QACnB,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,GAAG,CAAC,CAAC;YACpB,CAAC,IAAI,CAAC,CAAC;YACP,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACM,cAAc,CAAC,QAAgB,EAAE,QAAgB;QACtD,+EAA+E;QAC/E,IAAI,QAAQ,IAAI,CAAC;YACf,OAAO,CAAC,CAAC;QACX,qCAAqC;QACrC,wCAAwC;QACxC,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,IAAI,MAAM,GAAG,CAAC,CAAC;QACf,IAAI,QAAQ,GAAG,CAAC,EAAE,CAAC;YACjB,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;QACtC,CAAC;QACD,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,GAAG,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,CAAC;YAChB,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IACtC,CAAC;IACM,cAAc,CAAC,QAAgB,EAAE,QAAgB;QACtD,IAAI,QAAQ,IAAI,CAAC;YACf,OAAO,CAAC,CAAC;QACX,kBAAkB;QAClB,YAAY;QACZ,yCAAyC;QACzC,8DAA8D;QAC9D,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QACvC,IAAI,MAAM,GAAG,EAAE,CAAC;QAChB,IAAI,QAAQ,GAAG,CAAC;YACd,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;QACtC,MAAM,IAAI,GAAG,CAAE,EAAE,GAAG,EAAE,CAAC;QACvB,IAAI,KAAK,GAAG,EAAE,CAAC;QACf,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;YAClC,KAAK,IAAI,IAAI,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;YAC9B,MAAM,IAAI,KAAK,CAAC;YAChB,CAAC,IAAI,CAAC,CAAC;QACT,CAAC;QACD,OAAO,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IACtC,CAAC;IACM,eAAe,CAAC,QAAgB,EAAE,QAAgB;QACvD,iBAAiB;QACjB,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC3C,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,QAAQ,GAAG,CAAC,CAAC,CAAC;QACzD,MAAM,OAAO,GAAG,CAAC,CAAE,MAAM,GAAG,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,CAAC;QACxD,OAAO,OAAO,CAAC;IACjB,CAAC;IACM,eAAe,CAAC,QAAgB,EAAE,QAAgB;QACvD,eAAe;QACf,iFAAiF;QACjF,uFAAuF;QACvF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACvD,OAAO,MAAM,GAAG,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC;IAC/C,CAAC;IACM,aAAa,CAAC,QAAgB;QACnC,IAAI,IAAI,CAAC,SAAS,IAAI,CAAC;YACrB,OAAO,GAAG,CAAC;QACb,iBAAiB;QACjB,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC7C,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QAC/D,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QACjE,OAAO,CAAC,CAAE,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,IAAI,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;IACnG,CAAC;IACM,aAAa,CAAC,QAAgB;QACnC,eAAe;QACf,iFAAiF;QACjF,MAAM,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC,cAAc,CAAC;QACzC,MAAM,MAAM,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC;QAC7C,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,oCAAoC;QACpC,6FAA6F;QAC7F,wEAAwE;QACxE,MAAM,MAAM,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;QAC7D,MAAM,IAAI,GAAG,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC,CAAC;QAC/D,OAAO,CAAC,CAAC,IAAI,GAAG,MAAM,GAAG,MAAM,GAAG,MAAM,GAAG,OAAO,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;IAClG,CAAC;IACM,WAAW,CAAC,CAAS;QAC1B,MAAM,SAAS,GAAG,CAAC,GAAG,IAAI,CAAC,cAAc,CAAC;QAC1C,MAAM,SAAS,GAAG,YAAY,CAAC,WAAW,CAAC,SAAS,EAClD,CAAC,CAAS,EAAE,EAAE,CAAC,CAAC,IAAI,CAAC,WAAW,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,EACxC,CAAC,CAAS,EAAE,EAAE,CAAC,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,CAAC;QACvC,IAAI,SAAS,KAAK,SAAS;YACzB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC;IACnB,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\n\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { XYCurveEvaluator } from \"./XYCurveEvaluator\";\r\nimport { SimpleNewton } from \"../../numerics/Newton\";\r\n\r\n/**\r\n * Methods to evaluate caller-specified number of terms of the x and y Taylor series for a clothoid.\r\n * Each instance has:\r\n * * number of x and y terms to use.\r\n * * constant for theta = cxx.\r\n * * This value is c = 1/2RL for curve length L measured from inflection to point with radius R.\r\n * @internal\r\n */\r\nexport class ClothoidSeriesRLEvaluator extends XYCurveEvaluator {\r\n /** Number of terms to use in x Taylor series. */\r\n public numXTerms: number;\r\n /** Number of terms to use in y Taylor series. */\r\n public numYTerms: number;\r\n /** Constant c = 1/2RL in theta = cxx. */\r\n public constantDiv2LR: number;\r\n /** The nominal curve length. */\r\n public nominalLength1: number;\r\n public constructor(nominalLength1: number, constantDiv2LR: number, numXTerms: number = 4, numYTerms: number = 4) {\r\n super();\r\n this.nominalLength1 = nominalLength1;\r\n this.constantDiv2LR = constantDiv2LR;\r\n this.numXTerms = numXTerms;\r\n this.numYTerms = numYTerms;\r\n }\r\n /** Return a deep clone. */\r\n public clone(): ClothoidSeriesRLEvaluator {\r\n return new ClothoidSeriesRLEvaluator(this.nominalLength1, this.constantDiv2LR, this.numXTerms, this.numYTerms);\r\n }\r\n public scaleInPlace(scaleFactor: number): void {\r\n this.nominalLength1 *= scaleFactor;\r\n this.constantDiv2LR /= (scaleFactor * scaleFactor);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof ClothoidSeriesRLEvaluator) {\r\n return this.numXTerms === other.numXTerms\r\n && this.numYTerms === other.numYTerms\r\n && Geometry.isAlmostEqualNumber(this.constantDiv2LR, other.constantDiv2LR)\r\n && Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Evaluate the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToX(fraction: number): number {\r\n return this.fractionToXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToY(fraction: number): number {\r\n return this.fractionToYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDX(fraction: number): number {\r\n return this.fractionToDXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDY(fraction: number): number {\r\n return this.fractionToDYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDDX(fraction: number): number {\r\n return this.fractionToDDXGo(fraction, this.numXTerms);\r\n }\r\n /**\r\n * Evaluate the derivative of the Y series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n */\r\n public fractionToDDY(fraction: number): number {\r\n return this.fractionToDDYGo(fraction, this.numYTerms);\r\n }\r\n /**\r\n * Evaluate the X series at a nominal distance along the curve.\r\n * @param fraction fractional position along the curve.\r\n * @param numTerms number of terms to use.\r\n */\r\n public fractionToXGo(fraction: number, numTerms: number): number {\r\n // write the Taylor series for cos(theta):\r\n // 1 - theta^2 / 2! + theta^4 / 4! - theta^6 / 6! + ...\r\n // replace theta by s*s*c:\r\n // 1 - s^4c^2 / 2! + s^8c^4 / 4! - s^12c^6 / 6! + ...\r\n // integrate wrt s:\r\n // x = s - s^5 c^2 / 5*2! + s^9 c^4 / 9*4! - s^13 c^6 / 13*6! + ...\r\n // x = s(1 - (s^4 c^2/2) ( 1/5 - (s^4 c^2 / 3*4) (1/9 - ...) ) )\r\n const s = fraction * this.nominalLength1;\r\n let result = s;\r\n if (numTerms < 2)\r\n return result;\r\n const q1 = s * s * this.constantDiv2LR;\r\n const beta = - q1 * q1;\r\n let alpha = s;\r\n let m = 1;\r\n let n = 5;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha / n;\r\n m += 2;\r\n n += 4;\r\n }\r\n return result;\r\n }\r\n public fractionToYGo(fraction: number, numTerms: number): number {\r\n // write the Taylor series for sin(theta):\r\n // theta - theta^3 / 3! + theta^5 / 5! - theta^7 / 7! + ...\r\n // replace theta by s*s*c:\r\n // s^2 c - s^6 c^3 / 3! + s^10 c^5 / 5! - s^14 c^7 / 7! + ...\r\n // integrate wrt s:\r\n // y = s^3 c / 3 - s^7 c^3 / 7*3! + s^11 c^5 / 11*5! - s^15 c^7 / 15*7! + ...\r\n // y = s^3 c ( 1/3 - s^4 c^2/ 3! ( (1/7) - (s^4 c^2 / 4*5) (1/11 - ...) ) )\r\n const s = fraction * this.nominalLength1;\r\n const q1 = s * s * this.constantDiv2LR;\r\n let result = q1 * s / 3;\r\n if (numTerms < 2)\r\n return result;\r\n const beta = - q1 * q1;\r\n let alpha = q1 * s;\r\n let m = 2;\r\n let n = 7;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha / n;\r\n m += 2;\r\n n += 4;\r\n }\r\n return result;\r\n }\r\n public fractionToDXGo(fraction: number, numTerms: number): number {\r\n // yes -- this does happen during derivatives of cosines with more than 0 terms\r\n if (numTerms <= 0)\r\n return 0;\r\n // dX = 1 - s^4c^2/2 + s^8 c^4 / 4! -\r\n // new Term = old Term * beta / (m(m+1))\r\n const s = fraction * this.nominalLength1;\r\n let result = 1;\r\n if (numTerms < 2) {\r\n return result * this.nominalLength1;\r\n }\r\n const q1 = s * s * this.constantDiv2LR;\r\n const beta = - q1 * q1;\r\n let alpha = 1.0;\r\n let m = 1;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha;\r\n m += 2;\r\n }\r\n return result * this.nominalLength1;\r\n }\r\n public fractionToDYGo(fraction: number, numTerms: number): number {\r\n if (numTerms <= 0)\r\n return 0;\r\n // dY = q - q^3/3!\r\n // q = s^2 c\r\n // dY = s^2 c - s^6 c^3/3! + s^10 c^5/ 5!\r\n // recurrence advancing m by 2 alpha *= -(s^4 c^2) / (m(m+1))\r\n const s = fraction * this.nominalLength1;\r\n const q1 = s * s * this.constantDiv2LR;\r\n let result = q1;\r\n if (numTerms < 2)\r\n return result * this.nominalLength1;\r\n const beta = - q1 * q1;\r\n let alpha = q1;\r\n let m = 2;\r\n for (let i = 1; i < numTerms; i++) {\r\n alpha *= beta / (m * (m + 1));\r\n result += alpha;\r\n m += 2;\r\n }\r\n return result * this.nominalLength1;\r\n }\r\n public fractionToDDXGo(fraction: number, numTerms: number): number {\r\n // DX is \"cosine\"\r\n // DDX is \"- sine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2 * this.constantDiv2LR * s;\r\n const sine = this.fractionToDYGo(fraction, numTerms - 1);\r\n const resultA = (- dTheta * sine * this.nominalLength1);\r\n return resultA;\r\n }\r\n public fractionToDDYGo(fraction: number, numTerms: number): number {\r\n // DY is \"sine\"\r\n // DDY is \"cosine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n // BUT .... derivative of the cosine series leading term is zero ... use one less term\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2 * this.constantDiv2LR * s;\r\n const cosine = this.fractionToDXGo(fraction, numTerms);\r\n return cosine * dTheta * this.nominalLength1;\r\n }\r\n public fractionToD3X(fraction: number): number {\r\n if (this.numXTerms <= 1)\r\n return 0.0;\r\n // DX is \"cosine\"\r\n // DDX is \"- sine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2.0 * this.constantDiv2LR * s;\r\n const d2Theta = 2.0 * this.constantDiv2LR;\r\n const sine = this.fractionToDYGo(fraction, this.numXTerms - 1);\r\n const cosine = this.fractionToDXGo(fraction, this.numXTerms - 1);\r\n return (- cosine * dTheta * dTheta - sine * d2Theta) * this.nominalLength1 * this.nominalLength1;\r\n }\r\n public fractionToD3Y(fraction: number): number {\r\n // DY is \"sine\"\r\n // DDY is \"cosine\" series times chain rule dTheta/ds = 2 * s * this.constantDivLR\r\n const s = fraction * this.nominalLength1;\r\n const dTheta = 2.0 * this.constantDiv2LR * s;\r\n const d2Theta = 2.0 * this.constantDiv2LR;\r\n // dY is sine series with numYTerms.\r\n // ddY is cosine series. Leading term of sine series is non-constant, so numYTerms here also\r\n // d3Y is sine series. Derivative of preceding cosine killed first term.\r\n const cosine = this.fractionToDXGo(fraction, this.numYTerms);\r\n const sine = this.fractionToDYGo(fraction, this.numYTerms - 1);\r\n return (-sine * dTheta * dTheta + cosine * d2Theta) * this.nominalLength1 * this.nominalLength1;\r\n }\r\n public xToFraction(x: number): number | undefined {\r\n const fraction0 = x / this.nominalLength1;\r\n const fraction1 = SimpleNewton.runNewton1D(fraction0,\r\n (f: number) => (this.fractionToX(f) - x),\r\n (f: number) => this.fractionToDX(f));\r\n if (fraction1 === undefined)\r\n return undefined;\r\n return fraction1;\r\n }\r\n}\r\n"]}
|
|
@@ -20,7 +20,7 @@ export declare class CzechSpiralEvaluator extends CubicEvaluator {
|
|
|
20
20
|
* (0.25==>0.99215), (0.15==>0.997184), (0.10==>0.998749), (0.05==>999687)
|
|
21
21
|
*/
|
|
22
22
|
static gammaConstant(length1: number, radius1: number): number | undefined;
|
|
23
|
-
/** Compute the
|
|
23
|
+
/** Compute the Czech cubic constant. */
|
|
24
24
|
static computeCubicM(length1: number, radius1: number): number | undefined;
|
|
25
25
|
static create(length1: number, radius1: number): CzechSpiralEvaluator | undefined;
|
|
26
26
|
scaleInPlace(scaleFactor: number): void;
|
|
@@ -67,10 +67,7 @@ export declare class CzechSpiralEvaluator extends CubicEvaluator {
|
|
|
67
67
|
export declare class ItalianSpiralEvaluator extends CubicEvaluator {
|
|
68
68
|
nominalLength1: number;
|
|
69
69
|
nominalRadius1: number;
|
|
70
|
-
/**
|
|
71
|
-
* Compute the czech cubic constant.
|
|
72
|
-
* * Funky mixture of lengths.
|
|
73
|
-
*/
|
|
70
|
+
/** Compute the Italian cubic constant. */
|
|
74
71
|
private static computeCubicM;
|
|
75
72
|
/** Constructor is private. Caller responsible for cubicM validity. */
|
|
76
73
|
private constructor();
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"CzechSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/CzechSpiralEvaluator.ts"],"names":[],"mappings":"AASA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAGlD;;;;;;;;;GASG;AACH,qBAAa,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAC9B,sEAAsE;IACtE,OAAO;IAKP;;;;OAIG;WACW,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;IAGjF,wCAAwC;WAC1B,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;WAQnE,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;IAMxE,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,2CAA2C;IACpC,KAAK,IAAI,oBAAoB;IAGpC,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAOzC;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD;;;;OAIG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;IAGjE;;;OAGG;WACW,cAAc,CAAC,CAAC,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM;IAO7F;;;;OAIG;WACW,cAAc,CAAC,CAAC,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAiB1G;AAED;;;;;;;;;GASG;AACH,qBAAa,sBAAuB,SAAQ,cAAc;IACjD,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;
|
|
1
|
+
{"version":3,"file":"CzechSpiralEvaluator.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/CzechSpiralEvaluator.ts"],"names":[],"mappings":"AASA,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAGlD;;;;;;;;;GASG;AACH,qBAAa,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAC9B,sEAAsE;IACtE,OAAO;IAKP;;;;OAIG;WACW,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;IAGjF,wCAAwC;WAC1B,aAAa,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;WAQnE,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,oBAAoB,GAAG,SAAS;IAMxE,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,2CAA2C;IACpC,KAAK,IAAI,oBAAoB;IAGpC,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAOzC;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGrD;;;;OAIG;IACI,2BAA2B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;IAGjE;;;OAGG;WACW,cAAc,CAAC,CAAC,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM;IAO7F;;;;OAIG;WACW,cAAc,CAAC,CAAC,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAiB1G;AAED;;;;;;;;;GASG;AACH,qBAAa,sBAAuB,SAAQ,cAAc;IACjD,cAAc,EAAE,MAAM,CAAC;IACvB,cAAc,EAAE,MAAM,CAAC;IAC9B,0CAA0C;IAC1C,OAAO,CAAC,MAAM,CAAC,aAAa;IAG5B,sEAAsE;IACtE,OAAO;WAKO,MAAM,CAAC,OAAO,EAAE,MAAM,EAAE,OAAO,EAAE,MAAM,GAAG,sBAAsB,GAAG,SAAS;IAW1E,YAAY,CAAC,WAAW,EAAE,MAAM;IAKhD,2CAA2C;IACpC,KAAK,IAAI,sBAAsB;IAGtC,gCAAgC;IACzB,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAOzC;;;;;;OAMG;IACI,6BAA6B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM;IAGvD;;;;OAIG;IACI,6BAA6B,CAAC,CAAC,EAAE,MAAM,GAAG,MAAM,GAAG,SAAS;CAGpE"}
|
|
@@ -35,7 +35,7 @@ export class CzechSpiralEvaluator extends CubicEvaluator {
|
|
|
35
35
|
static gammaConstant(length1, radius1) {
|
|
36
36
|
return 2.0 * radius1 / Math.sqrt(4.0 * radius1 * radius1 - length1 * length1);
|
|
37
37
|
}
|
|
38
|
-
/** Compute the
|
|
38
|
+
/** Compute the Czech cubic constant. */
|
|
39
39
|
static computeCubicM(length1, radius1) {
|
|
40
40
|
const gamma = CzechSpiralEvaluator.gammaConstant(length1, radius1);
|
|
41
41
|
// in the private update method, the LR values should have been vetted
|
|
@@ -128,17 +128,9 @@ export class CzechSpiralEvaluator extends CubicEvaluator {
|
|
|
128
128
|
export class ItalianSpiralEvaluator extends CubicEvaluator {
|
|
129
129
|
nominalLength1;
|
|
130
130
|
nominalRadius1;
|
|
131
|
-
/**
|
|
132
|
-
* Compute the czech cubic constant.
|
|
133
|
-
* * Funky mixture of lengths.
|
|
134
|
-
*/
|
|
131
|
+
/** Compute the Italian cubic constant. */
|
|
135
132
|
static computeCubicM(lengthXByForward, radius1) {
|
|
136
|
-
|
|
137
|
-
// in the private update method, the LR values should have been vetted
|
|
138
|
-
if (gamma === undefined)
|
|
139
|
-
return undefined;
|
|
140
|
-
// if radius is negative, it shows up in gamma; but the a signed denominator undoes it so take abs of denominator
|
|
141
|
-
return gamma / Math.abs((6.0 * radius1 * lengthXByForward));
|
|
133
|
+
return CzechSpiralEvaluator.computeCubicM(lengthXByForward, radius1);
|
|
142
134
|
}
|
|
143
135
|
/** Constructor is private. Caller responsible for cubicM validity. */
|
|
144
136
|
constructor(length1, radius1, lengthX, cubicM) {
|
|
@@ -147,7 +139,7 @@ export class ItalianSpiralEvaluator extends CubicEvaluator {
|
|
|
147
139
|
this.nominalRadius1 = radius1;
|
|
148
140
|
}
|
|
149
141
|
static create(length1, radius1) {
|
|
150
|
-
// this seems goofy
|
|
142
|
+
// this seems goofy; lengthX from forward, then invert for another but that's what the native code does too
|
|
151
143
|
const lengthX = CzechSpiralEvaluator.forwardL2R2Map(length1, -1.0, length1, radius1);
|
|
152
144
|
const lengthX1 = CzechSpiralEvaluator.inverseL2R2Map(length1, 1.0, lengthX, radius1);
|
|
153
145
|
if (lengthX1 === undefined)
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"CzechSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/CzechSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAClD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AAErD;;;;;;;;;GASG;AACH,MAAM,OAAO,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,CAAS;IACvB,cAAc,CAAS;IAC9B,sEAAsE;IACtE,YAAoB,OAAe,EAAE,OAAe,EAAE,MAAc;QAClE,KAAK,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,OAAO,GAAG,GAAG,OAAO,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC;IAChF,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,MAAM,KAAK,GAAG,oBAAoB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QACnE,sEAAsE;QACtE,IAAI,KAAK,KAAK,SAAS;YACrB,OAAO,SAAS,CAAC;QACnB,iHAAiH;QACjH,OAAO,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC,CAAC;IACrD,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,MAAM,CAAC,GAAG,IAAI,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC/C,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,oBAAoB,CAAC,OAAO,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC;IACvD,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,oBAAoB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IACzF,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,oBAAoB,EAAE,CAAC;YAC1C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAC/F,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAC/F,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,cAAc,CAAC,CAAS,EAAE,IAAY,EAAE,MAAc,EAAE,MAAc;QAClF,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,CAAC,GAAG,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;QACxB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,OAAO,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;IACtD,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,cAAc,CAAC,CAAS,EAAE,IAAY,EAAE,MAAc,EAAE,MAAc;QAClF,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,CAAC,GAAG,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;QACxB,MAAM,CAAC,GAAG,IAAI,GAAG,CAAC,IAAI,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC;QACjC,OAAO,YAAY,CAAC,WAAW,CAC7B,CAAC,EACD,CAAC,CAAS,EAAE,EAAE;YACZ,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;YACjB,OAAO,CAAC,GAAG,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACrC,CAAC,EACD,CAAC,CAAS,EAAE,EAAE;YACZ,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;YACjB,OAAO,GAAG,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;QAC/B,CAAC,CACF,CAAC;IACJ,CAAC;CACF;AAED;;;;;;;;;GASG;AACH,MAAM,OAAO,sBAAuB,SAAQ,cAAc;IACjD,cAAc,CAAS;IACvB,cAAc,CAAS;IAE9B;;;OAGG;IACK,MAAM,CAAC,aAAa,CAAC,gBAAwB,EAAE,OAAe;QACpE,MAAM,KAAK,GAAG,oBAAoB,CAAC,aAAa,CAAC,gBAAgB,EAAE,OAAO,CAAC,CAAC;QAC5E,sEAAsE;QACtE,IAAI,KAAK,KAAK,SAAS;YACrB,OAAO,SAAS,CAAC;QACnB,iHAAiH;QACjH,OAAO,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,OAAO,GAAG,gBAAgB,CAAC,CAAC,CAAC;IAC9D,CAAC;IACD,sEAAsE;IACtE,YAAoB,OAAe,EAAE,OAAe,EAAE,OAAe,EAAE,MAAc;QACnF,KAAK,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,4GAA4G;QAC5G,MAAM,OAAO,GAAG,oBAAoB,CAAC,cAAc,CAAC,OAAO,EAAE,CAAC,GAAG,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACrF,MAAM,QAAQ,GAAG,oBAAoB,CAAC,cAAc,CAAC,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACrF,IAAI,QAAQ,KAAK,SAAS;YACxB,OAAO,SAAS,CAAC;QACnB,MAAM,CAAC,GAAG,sBAAsB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QACjE,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC;IACnE,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,sBAAsB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,UAAU,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IAC7G,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,sBAAsB,EAAE,CAAC;YAC5C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,6BAA6B,CAAC,CAAS;QAC5C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAChG,CAAC;IACD;;;;OAIG;IACI,6BAA6B,CAAC,CAAS;QAC5C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAChG,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { CubicEvaluator } from \"./CubicEvaluator\";\r\nimport { SimpleNewton } from \"../../numerics/Newton\";\r\n\r\n/**\r\n * Czech cubic.\r\n * This is y = m*x^3 with\r\n * * x any point on the x axis.\r\n * * `fraction` along the spiral goes to `x = fraction * L`.\r\n * * m is gamma/(6RL).\r\n * * 1/(6RL) is the leading term of the sine series.\r\n * * `gamma = 2R/sqrt(4RR-LL)` pushes y down a little bit to simulate the lost series terms.\r\n * @internal\r\n */\r\nexport class CzechSpiralEvaluator extends CubicEvaluator {\r\n public nominalLength1: number;\r\n public nominalRadius1: number;\r\n /** Constructor is private. Caller responsible for cubicM validity. */\r\n private constructor(length1: number, radius1: number, cubicM: number) {\r\n super(length1, cubicM);\r\n this.nominalLength1 = length1;\r\n this.nominalRadius1 = radius1;\r\n }\r\n /**\r\n * Return the scale factor between simple x^3 / (6RL) cubic and the czech correction.\r\n * * For typical case with l1/R1 smallish, this is just less than 1.0:\r\n * (0.25==>0.99215), (0.15==>0.997184), (0.10==>0.998749), (0.05==>999687)\r\n */\r\n public static gammaConstant(length1: number, radius1: number): number | undefined {\r\n return 2.0 * radius1 / Math.sqrt(4.0 * radius1 * radius1 - length1 * length1);\r\n }\r\n /** Compute the czech cubic constant. */\r\n public static computeCubicM(length1: number, radius1: number): number | undefined {\r\n const gamma = CzechSpiralEvaluator.gammaConstant(length1, radius1);\r\n // in the private update method, the LR values should have been vetted\r\n if (gamma === undefined)\r\n return undefined;\r\n // if radius is negative, it shows up in gamma; but the a signed denominator undoes it so take abs of denominator\r\n return gamma / Math.abs((6.0 * radius1 * length1));\r\n }\r\n public static create(length1: number, radius1: number): CzechSpiralEvaluator | undefined {\r\n const m = this.computeCubicM(length1, radius1);\r\n if (m === undefined)\r\n return undefined;\r\n return new CzechSpiralEvaluator(length1, radius1, m);\r\n }\r\n public override scaleInPlace(scaleFactor: number) {\r\n this.nominalLength1 *= scaleFactor;\r\n this.nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Return a deep copy of the evaluator. */\r\n public clone(): CzechSpiralEvaluator {\r\n return new CzechSpiralEvaluator(this.nominalLength1, this.nominalRadius1, this.cubicM);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof CzechSpiralEvaluator) {\r\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\r\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (fast but mediocre) approximation of spiral length as a function of x axis position.\r\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate\r\n * CurvePrimitive measurements.\r\n * @param x distance along the x axis.\r\n */\r\n public xToCzechApproximateDistance(x: number): number {\r\n return CzechSpiralEvaluator.forwardL2R2Map(x, 1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public czechApproximateDistanceToX(d: number): number | undefined {\r\n return CzechSpiralEvaluator.inverseL2R2Map(d, 1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Evaluate a series expansion that is used with varying signs (plus or minus 1) in czech and italian spirals.\r\n * @param x distance along the x axis.\r\n */\r\n public static forwardL2R2Map(x: number, sign: number, length: number, radius: number): number {\r\n const l2 = length * length;\r\n const r2 = radius * radius;\r\n const Q = 4.0 * r2 - l2;\r\n const xx = x * x;\r\n return x * (1.0 + sign * xx * xx / (10.0 * Q * l2));\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public static inverseL2R2Map(d: number, sign: number, length: number, radius: number): number | undefined {\r\n const l2 = length * length;\r\n const r2 = radius * radius;\r\n const Q = 4.0 * r2 - l2;\r\n const a = sign / (10.0 * Q * l2);\r\n return SimpleNewton.runNewton1D(\r\n d,\r\n (x: number) => {\r\n const xx = x * x;\r\n return x * (1.0 + xx * xx * a) - d;\r\n },\r\n (x: number) => {\r\n const xx = x * x;\r\n return 1.0 + 5 * xx * xx * a;\r\n },\r\n );\r\n }\r\n}\r\n\r\n/**\r\n * Italian cubic.\r\n * This is y = m*x^3 with\r\n * * x any point on the x axis.\r\n * * `fraction` along the spiral goes to `x = fraction * L`.\r\n * * m is gamma/(6RL).\r\n * * 1/(6RL) is the leading term of the sine series.\r\n * * `gamma = 2R/sqrt(4RR-LL)` pushes y down a little bit to simulate the lost series terms.\r\n * @internal\r\n */\r\nexport class ItalianSpiralEvaluator extends CubicEvaluator {\r\n public nominalLength1: number;\r\n public nominalRadius1: number;\r\n\r\n /**\r\n * Compute the czech cubic constant.\r\n * * Funky mixture of lengths.\r\n */\r\n private static computeCubicM(lengthXByForward: number, radius1: number): number | undefined {\r\n const gamma = CzechSpiralEvaluator.gammaConstant(lengthXByForward, radius1);\r\n // in the private update method, the LR values should have been vetted\r\n if (gamma === undefined)\r\n return undefined;\r\n // if radius is negative, it shows up in gamma; but the a signed denominator undoes it so take abs of denominator\r\n return gamma / Math.abs((6.0 * radius1 * lengthXByForward));\r\n }\r\n /** Constructor is private. Caller responsible for cubicM validity. */\r\n private constructor(length1: number, radius1: number, lengthX: number, cubicM: number) {\r\n super(lengthX, cubicM);\r\n this.nominalLength1 = length1;\r\n this.nominalRadius1 = radius1;\r\n }\r\n public static create(length1: number, radius1: number): ItalianSpiralEvaluator | undefined {\r\n // this seems goofy.; lengthX from forward, then invert for another but that's what the native code does too\r\n const lengthX = CzechSpiralEvaluator.forwardL2R2Map(length1, -1.0, length1, radius1);\r\n const lengthX1 = CzechSpiralEvaluator.inverseL2R2Map(length1, 1.0, lengthX, radius1);\r\n if (lengthX1 === undefined)\r\n return undefined;\r\n const m = ItalianSpiralEvaluator.computeCubicM(lengthX, radius1);\r\n if (m === undefined)\r\n return undefined;\r\n return new ItalianSpiralEvaluator(length1, radius1, lengthX1, m);\r\n }\r\n public override scaleInPlace(scaleFactor: number) {\r\n this.nominalLength1 *= scaleFactor;\r\n this.nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Return a deep copy of the evaluator. */\r\n public clone(): ItalianSpiralEvaluator {\r\n return new ItalianSpiralEvaluator(this.nominalLength1, this.nominalRadius1, super.axisLength, this.cubicM);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof ItalianSpiralEvaluator) {\r\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\r\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (fast but mediocre) approximation of spiral length as a function of x axis position.\r\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate\r\n * CurvePrimitive measurements.\r\n * @param x distance along the x axis.\r\n */\r\n public distanceToItalianApproximateX(x: number): number {\r\n return CzechSpiralEvaluator.forwardL2R2Map(x, -1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public xToItalianApproximateDistance(d: number): number | undefined {\r\n return CzechSpiralEvaluator.inverseL2R2Map(d, -1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n}\r\n"]}
|
|
1
|
+
{"version":3,"file":"CzechSpiralEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/CzechSpiralEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAClD,OAAO,EAAE,YAAY,EAAE,MAAM,uBAAuB,CAAC;AAErD;;;;;;;;;GASG;AACH,MAAM,OAAO,oBAAqB,SAAQ,cAAc;IAC/C,cAAc,CAAS;IACvB,cAAc,CAAS;IAC9B,sEAAsE;IACtE,YAAoB,OAAe,EAAE,OAAe,EAAE,MAAc;QAClE,KAAK,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,OAAO,GAAG,GAAG,OAAO,GAAG,IAAI,CAAC,IAAI,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC;IAChF,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,aAAa,CAAC,OAAe,EAAE,OAAe;QAC1D,MAAM,KAAK,GAAG,oBAAoB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QACnE,sEAAsE;QACtE,IAAI,KAAK,KAAK,SAAS;YACrB,OAAO,SAAS,CAAC;QACnB,iHAAiH;QACjH,OAAO,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,OAAO,GAAG,OAAO,CAAC,CAAC,CAAC;IACrD,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,MAAM,CAAC,GAAG,IAAI,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QAC/C,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,oBAAoB,CAAC,OAAO,EAAE,OAAO,EAAE,CAAC,CAAC,CAAC;IACvD,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,oBAAoB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IACzF,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,oBAAoB,EAAE,CAAC;YAC1C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAC/F,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,CAAS;QAC1C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAC/F,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,cAAc,CAAC,CAAS,EAAE,IAAY,EAAE,MAAc,EAAE,MAAc;QAClF,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,CAAC,GAAG,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;QACxB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,OAAO,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,IAAI,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;IACtD,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,cAAc,CAAC,CAAS,EAAE,IAAY,EAAE,MAAc,EAAE,MAAc;QAClF,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,EAAE,GAAG,MAAM,GAAG,MAAM,CAAC;QAC3B,MAAM,CAAC,GAAG,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;QACxB,MAAM,CAAC,GAAG,IAAI,GAAG,CAAC,IAAI,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC;QACjC,OAAO,YAAY,CAAC,WAAW,CAC7B,CAAC,EACD,CAAC,CAAS,EAAE,EAAE;YACZ,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;YACjB,OAAO,CAAC,GAAG,CAAC,GAAG,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACrC,CAAC,EACD,CAAC,CAAS,EAAE,EAAE;YACZ,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;YACjB,OAAO,GAAG,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;QAC/B,CAAC,CACF,CAAC;IACJ,CAAC;CACF;AAED;;;;;;;;;GASG;AACH,MAAM,OAAO,sBAAuB,SAAQ,cAAc;IACjD,cAAc,CAAS;IACvB,cAAc,CAAS;IAC9B,0CAA0C;IAClC,MAAM,CAAC,aAAa,CAAC,gBAAwB,EAAE,OAAe;QACpE,OAAO,oBAAoB,CAAC,aAAa,CAAC,gBAAgB,EAAE,OAAO,CAAC,CAAC;IACvE,CAAC;IACD,sEAAsE;IACtE,YAAoB,OAAe,EAAE,OAAe,EAAE,OAAe,EAAE,MAAc;QACnF,KAAK,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC;QACvB,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;QAC9B,IAAI,CAAC,cAAc,GAAG,OAAO,CAAC;IAChC,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,OAAe,EAAE,OAAe;QACnD,2GAA2G;QAC3G,MAAM,OAAO,GAAG,oBAAoB,CAAC,cAAc,CAAC,OAAO,EAAE,CAAC,GAAG,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACrF,MAAM,QAAQ,GAAG,oBAAoB,CAAC,cAAc,CAAC,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QACrF,IAAI,QAAQ,KAAK,SAAS;YACxB,OAAO,SAAS,CAAC;QACnB,MAAM,CAAC,GAAG,sBAAsB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;QACjE,IAAI,CAAC,KAAK,SAAS;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,CAAC,CAAC,CAAC;IACnE,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,IAAI,CAAC,cAAc,IAAI,WAAW,CAAC;QACnC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,2CAA2C;IACpC,KAAK;QACV,OAAO,IAAI,sBAAsB,CAAC,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,UAAU,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;IAC7G,CAAC;IACD,gCAAgC;IACzB,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,sBAAsB,EAAE,CAAC;YAC5C,OAAO,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC;mBACtE,QAAQ,CAAC,gBAAgB,CAAC,IAAI,CAAC,cAAc,EAAE,KAAK,CAAC,cAAc,CAAC,CAAC;QAC5E,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,6BAA6B,CAAC,CAAS;QAC5C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAChG,CAAC;IACD;;;;OAIG;IACI,6BAA6B,CAAC,CAAS;QAC5C,OAAO,oBAAoB,CAAC,cAAc,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,IAAI,CAAC,cAAc,EAAE,IAAI,CAAC,cAAc,CAAC,CAAC;IAChG,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { CubicEvaluator } from \"./CubicEvaluator\";\r\nimport { SimpleNewton } from \"../../numerics/Newton\";\r\n\r\n/**\r\n * Czech cubic.\r\n * This is y = m*x^3 with\r\n * * x any point on the x axis.\r\n * * `fraction` along the spiral goes to `x = fraction * L`.\r\n * * m is gamma/(6RL).\r\n * * 1/(6RL) is the leading term of the sine series.\r\n * * `gamma = 2R/sqrt(4RR-LL)` pushes y down a little bit to simulate the lost series terms.\r\n * @internal\r\n */\r\nexport class CzechSpiralEvaluator extends CubicEvaluator {\r\n public nominalLength1: number;\r\n public nominalRadius1: number;\r\n /** Constructor is private. Caller responsible for cubicM validity. */\r\n private constructor(length1: number, radius1: number, cubicM: number) {\r\n super(length1, cubicM);\r\n this.nominalLength1 = length1;\r\n this.nominalRadius1 = radius1;\r\n }\r\n /**\r\n * Return the scale factor between simple x^3 / (6RL) cubic and the czech correction.\r\n * * For typical case with l1/R1 smallish, this is just less than 1.0:\r\n * (0.25==>0.99215), (0.15==>0.997184), (0.10==>0.998749), (0.05==>999687)\r\n */\r\n public static gammaConstant(length1: number, radius1: number): number | undefined {\r\n return 2.0 * radius1 / Math.sqrt(4.0 * radius1 * radius1 - length1 * length1);\r\n }\r\n /** Compute the Czech cubic constant. */\r\n public static computeCubicM(length1: number, radius1: number): number | undefined {\r\n const gamma = CzechSpiralEvaluator.gammaConstant(length1, radius1);\r\n // in the private update method, the LR values should have been vetted\r\n if (gamma === undefined)\r\n return undefined;\r\n // if radius is negative, it shows up in gamma; but the a signed denominator undoes it so take abs of denominator\r\n return gamma / Math.abs((6.0 * radius1 * length1));\r\n }\r\n public static create(length1: number, radius1: number): CzechSpiralEvaluator | undefined {\r\n const m = this.computeCubicM(length1, radius1);\r\n if (m === undefined)\r\n return undefined;\r\n return new CzechSpiralEvaluator(length1, radius1, m);\r\n }\r\n public override scaleInPlace(scaleFactor: number) {\r\n this.nominalLength1 *= scaleFactor;\r\n this.nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Return a deep copy of the evaluator. */\r\n public clone(): CzechSpiralEvaluator {\r\n return new CzechSpiralEvaluator(this.nominalLength1, this.nominalRadius1, this.cubicM);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof CzechSpiralEvaluator) {\r\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\r\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (fast but mediocre) approximation of spiral length as a function of x axis position.\r\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate\r\n * CurvePrimitive measurements.\r\n * @param x distance along the x axis.\r\n */\r\n public xToCzechApproximateDistance(x: number): number {\r\n return CzechSpiralEvaluator.forwardL2R2Map(x, 1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public czechApproximateDistanceToX(d: number): number | undefined {\r\n return CzechSpiralEvaluator.inverseL2R2Map(d, 1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Evaluate a series expansion that is used with varying signs (plus or minus 1) in czech and italian spirals.\r\n * @param x distance along the x axis.\r\n */\r\n public static forwardL2R2Map(x: number, sign: number, length: number, radius: number): number {\r\n const l2 = length * length;\r\n const r2 = radius * radius;\r\n const Q = 4.0 * r2 - l2;\r\n const xx = x * x;\r\n return x * (1.0 + sign * xx * xx / (10.0 * Q * l2));\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public static inverseL2R2Map(d: number, sign: number, length: number, radius: number): number | undefined {\r\n const l2 = length * length;\r\n const r2 = radius * radius;\r\n const Q = 4.0 * r2 - l2;\r\n const a = sign / (10.0 * Q * l2);\r\n return SimpleNewton.runNewton1D(\r\n d,\r\n (x: number) => {\r\n const xx = x * x;\r\n return x * (1.0 + xx * xx * a) - d;\r\n },\r\n (x: number) => {\r\n const xx = x * x;\r\n return 1.0 + 5 * xx * xx * a;\r\n },\r\n );\r\n }\r\n}\r\n\r\n/**\r\n * Italian cubic.\r\n * This is y = m*x^3 with\r\n * * x any point on the x axis.\r\n * * `fraction` along the spiral goes to `x = fraction * L`.\r\n * * m is gamma/(6RL).\r\n * * 1/(6RL) is the leading term of the sine series.\r\n * * `gamma = 2R/sqrt(4RR-LL)` pushes y down a little bit to simulate the lost series terms.\r\n * @internal\r\n */\r\nexport class ItalianSpiralEvaluator extends CubicEvaluator {\r\n public nominalLength1: number;\r\n public nominalRadius1: number;\r\n /** Compute the Italian cubic constant. */\r\n private static computeCubicM(lengthXByForward: number, radius1: number): number | undefined {\r\n return CzechSpiralEvaluator.computeCubicM(lengthXByForward, radius1);\r\n }\r\n /** Constructor is private. Caller responsible for cubicM validity. */\r\n private constructor(length1: number, radius1: number, lengthX: number, cubicM: number) {\r\n super(lengthX, cubicM);\r\n this.nominalLength1 = length1;\r\n this.nominalRadius1 = radius1;\r\n }\r\n public static create(length1: number, radius1: number): ItalianSpiralEvaluator | undefined {\r\n // this seems goofy; lengthX from forward, then invert for another but that's what the native code does too\r\n const lengthX = CzechSpiralEvaluator.forwardL2R2Map(length1, -1.0, length1, radius1);\r\n const lengthX1 = CzechSpiralEvaluator.inverseL2R2Map(length1, 1.0, lengthX, radius1);\r\n if (lengthX1 === undefined)\r\n return undefined;\r\n const m = ItalianSpiralEvaluator.computeCubicM(lengthX, radius1);\r\n if (m === undefined)\r\n return undefined;\r\n return new ItalianSpiralEvaluator(length1, radius1, lengthX1, m);\r\n }\r\n public override scaleInPlace(scaleFactor: number) {\r\n this.nominalLength1 *= scaleFactor;\r\n this.nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Return a deep copy of the evaluator. */\r\n public clone(): ItalianSpiralEvaluator {\r\n return new ItalianSpiralEvaluator(this.nominalLength1, this.nominalRadius1, super.axisLength, this.cubicM);\r\n }\r\n /** Member by member matchup. */\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof ItalianSpiralEvaluator) {\r\n return Geometry.isSameCoordinate(this.nominalLength1, other.nominalLength1)\r\n && Geometry.isSameCoordinate(this.nominalRadius1, other.nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (fast but mediocre) approximation of spiral length as a function of x axis position.\r\n * * This x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the Czech distance mapping rather than the more accurate\r\n * CurvePrimitive measurements.\r\n * @param x distance along the x axis.\r\n */\r\n public distanceToItalianApproximateX(x: number): number {\r\n return CzechSpiralEvaluator.forwardL2R2Map(x, -1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n /**\r\n * Return the inverse of the `forwardL2R2Map` function.\r\n * * The undefined result can only occur for distances outside the usual spirals.\r\n * @param d (approximate) distance along the spiral.\r\n */\r\n public xToItalianApproximateDistance(d: number): number | undefined {\r\n return CzechSpiralEvaluator.inverseL2R2Map(d, -1.0, this.nominalLength1, this.nominalRadius1);\r\n }\r\n}\r\n"]}
|
|
@@ -15,16 +15,17 @@ import { XYCurveEvaluator } from "./XYCurveEvaluator";
|
|
|
15
15
|
* DirectSpiral3d acts like a TransitionSpiral3d for serialization purposes, but implements spiral types that have
|
|
16
16
|
* "direct" xy calculations without the integrations required for IntegratedSpiral3d.
|
|
17
17
|
* * Each DirectSpiral3d carries an XYCurveEvaluator to give it specialized behavior.
|
|
18
|
-
* * Direct spirals
|
|
18
|
+
* * Direct spirals are created with these static methods:
|
|
19
19
|
* * createArema
|
|
20
20
|
* * createJapaneseCubic
|
|
21
|
-
* * createAustralianRail
|
|
22
|
-
* * createDirectHalfCosine
|
|
23
21
|
* * createChineseCubic
|
|
22
|
+
* * createWesternAustralian
|
|
23
|
+
* * createDirectHalfCosine
|
|
24
|
+
* * createAustralianRail
|
|
24
25
|
* * createCzechCubic
|
|
25
26
|
* * createPolishCubic
|
|
27
|
+
* * createMXCubicAlongArc
|
|
26
28
|
* * createItalian
|
|
27
|
-
* * createWesternAustralian
|
|
28
29
|
* @public
|
|
29
30
|
*/
|
|
30
31
|
export declare class DirectSpiral3d extends TransitionSpiral3d {
|
|
@@ -110,11 +111,11 @@ export declare class DirectSpiral3d extends TransitionSpiral3d {
|
|
|
110
111
|
/**
|
|
111
112
|
* Create an MX Cubic whose nominal length is close to along the curve.
|
|
112
113
|
* This is y = m*x^3 with
|
|
113
|
-
* * m is 1/(
|
|
114
|
+
* * m is 1/(6RL).
|
|
114
115
|
* * 1/(6RL) is the leading term of the sine series.
|
|
115
116
|
* * L1 is an along-the-x-axis distance that is slightly LESS THAN the nominal length.
|
|
116
117
|
* * x is axis position that is slightly LESS than nominal distance along.
|
|
117
|
-
* * L1, x use the approximation `x = s * ( 1 - s^4/ (40
|
|
118
|
+
* * L1, x use the approximation `x = s * ( 1 - s^4/ (40 RR LL))
|
|
118
119
|
* @param localToWorld
|
|
119
120
|
* @param nominalL1
|
|
120
121
|
* @param nominalR1
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"DirectSpiral3d.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/DirectSpiral3d.ts"],"names":[],"mappings":"AAQA,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,eAAe,EAAE,cAAc,EAAE,MAAM,kCAAkC,CAAC;AACnF,OAAO,EAAE,4BAA4B,EAAE,MAAM,+CAA+C,CAAC;AAC7F,OAAO,EAAE,yBAAyB,EAAE,MAAM,4CAA4C,CAAC;AACvF,OAAO,EAAE,OAAO,EAAE,MAAM,kCAAkC,CAAC;AAC3D,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,SAAS,EAAE,MAAM,4BAA4B,CAAC;AACvD,OAAO,EAAE,SAAS,EAAE,MAAM,4BAA4B,CAAC;AAEvD,OAAO,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAC/C,OAAO,EAAE,aAAa,EAAE,MAAM,kBAAkB,CAAC;AAOjD,OAAO,EAAE,+BAA+B,EAAE,MAAM,mCAAmC,CAAC;AACpF,OAAO,EAAE,kBAAkB,EAAE,MAAM,sBAAsB,CAAC;AAC1D,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AAEtD
|
|
1
|
+
{"version":3,"file":"DirectSpiral3d.d.ts","sourceRoot":"","sources":["../../../../src/curve/spiral/DirectSpiral3d.ts"],"names":[],"mappings":"AAQA,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,eAAe,EAAE,cAAc,EAAE,MAAM,kCAAkC,CAAC;AACnF,OAAO,EAAE,4BAA4B,EAAE,MAAM,+CAA+C,CAAC;AAC7F,OAAO,EAAE,yBAAyB,EAAE,MAAM,4CAA4C,CAAC;AACvF,OAAO,EAAE,OAAO,EAAE,MAAM,kCAAkC,CAAC;AAC3D,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,SAAS,EAAE,MAAM,4BAA4B,CAAC;AACvD,OAAO,EAAE,SAAS,EAAE,MAAM,4BAA4B,CAAC;AAEvD,OAAO,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAC/C,OAAO,EAAE,aAAa,EAAE,MAAM,kBAAkB,CAAC;AAOjD,OAAO,EAAE,+BAA+B,EAAE,MAAM,mCAAmC,CAAC;AACpF,OAAO,EAAE,kBAAkB,EAAE,MAAM,sBAAsB,CAAC;AAC1D,OAAO,EAAE,gBAAgB,EAAE,MAAM,oBAAoB,CAAC;AAEtD;;;;;;;;;;;;;;;;EAgBE;AAEF,qBAAa,cAAe,SAAQ,kBAAkB;IACpD,yCAAyC;IACzC,SAAgB,kBAAkB,sBAAsB;IACxD,wFAAwF;IACxF,OAAO,CAAC,cAAc,CAAe;IACrC;;;;;OAKG;IACH,OAAO,CAAC,cAAc,CAAC,CAAe;IACtC,yEAAyE;IACzE,IAAW,aAAa,IAAI,YAAY,CAEvC;IACD,OAAO,CAAC,UAAU,CAAS;IAC3B,OAAO,CAAC,UAAU,CAAS;IAC3B,OAAO,CAAC,UAAU,CAAmB;IACrC,qCAAqC;IACrC,IAAW,SAAS,IAAI,MAAM,CAE7B;IACD,+DAA+D;IAC/D,IAAW,SAAS,IAAI,MAAM,CAE7B;IACD,uCAAuC;IACvC,IAAW,iBAAiB,IAAI,MAAM,CAErC;IACD;;;OAGG;IACH,IAAW,SAAS,IAAI,gBAAgB,CAEvC;gBAIC,YAAY,EAAE,SAAS,EACvB,UAAU,EAAE,MAAM,GAAG,SAAS,EAC9B,kBAAkB,EAAE,+BAA+B,GAAG,SAAS,EAC/D,SAAS,EAAE,MAAM,EACjB,SAAS,EAAE,MAAM,EACjB,sBAAsB,EAAE,SAAS,GAAG,SAAS,EAC7C,SAAS,EAAE,gBAAgB;IAW7B;;;;;;;OAOG;IACH,OAAO,CAAC,cAAc;IA6BtB,yBAAyB;IACT,yBAAyB;IAWzC;;;;;;;;;;OAUG;WACW,uBAAuB,CACnC,UAAU,EAAE,MAAM,EAClB,YAAY,EAAE,SAAS,EACvB,QAAQ,EAAE,MAAM,EAChB,QAAQ,EAAE,MAAM,EAChB,kBAAkB,EAAE,+BAA+B,GAAG,SAAS,EAC/D,SAAS,EAAE,MAAM,EACjB,SAAS,EAAE,MAAM,EACjB,cAAc,EAAE,SAAS,GAAG,SAAS,GACpC,cAAc,GAAG,SAAS;IAgB7B;;;;;;;;;;;;OAYG;WACW,gBAAgB,CAC5B,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAc7B;;;;;;;;;;;;OAYG;WACW,aAAa,CACzB,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAc7B;;;;;;;;;;;;OAYG;WACW,qBAAqB,CACjC,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAc7B;;;;;;;;;OASG;WACW,iBAAiB,CAC7B,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAc7B;;;;;;;;;;;;OAYG;WACW,oBAAoB,CAChC,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;WAcf,sBAAsB,CAClC,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAW7B;;;;;;;;;OASG;WACW,WAAW,CACvB,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAG7B;;;;;;;;;OASG;WACW,mBAAmB,CAC/B,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAK7B;;;;;;;;;OASG;WACW,kBAAkB,CAC9B,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAG7B;;;;;;;;OAQG;WACW,uBAAuB,CACnC,YAAY,EAAE,SAAS,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,cAAc,CAAC,EAAE,SAAS,GACxF,cAAc,GAAG,SAAS;IAG7B;;;;;;;;;;;;;;;;;;;OAmBG;WACW,yBAAyB,CACrC,UAAU,EAAE,MAAM,EAClB,OAAO,EAAE,MAAM,GAAG,SAAS,EAC3B,OAAO,EAAE,MAAM,GAAG,SAAS,EAC3B,QAAQ,EAAE,KAAK,GAAG,SAAS,EAC3B,SAAS,EAAE,KAAK,GAAG,SAAS,EAC5B,SAAS,EAAE,MAAM,GAAG,SAAS,EAC7B,cAAc,EAAE,SAAS,GAAG,SAAS,EACrC,YAAY,EAAE,SAAS,GACtB,kBAAkB,GAAG,SAAS;IA+BjC,iCAAiC;IACjB,KAAK,IAAI,cAAc;IAWvC,mEAAmE;IAC5D,mBAAmB,CAAC,UAAU,EAAE,SAAS,GAAG,OAAO;IAU1D,qCAAqC;IACrB,UAAU,CAAC,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGrD,mCAAmC;IACnB,QAAQ,CAAC,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGnD,oFAAoF;IAC7E,SAAS,CAAC,KAAK,EAAE,4BAA4B,GAAG,OAAO;IAK9D;;;OAGG;IACI,WAAW;IAUlB,6DAA6D;IACtD,mBAAmB,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;IAG/C;;;;OAIG;IACI,WAAW,CAAC,IAAI,EAAE,YAAY,EAAE,OAAO,CAAC,EAAE,aAAa,GAAG,IAAI;IAGrE,+CAA+C;IACxC,kBAAkB,CAAC,IAAI,EAAE,cAAc,EAAE,OAAO,CAAC,EAAE,aAAa,GAAG,IAAI;IAmB9E;;;OAGG;IACI,4BAA4B,CAAC,OAAO,CAAC,EAAE,aAAa,GAAG,MAAM;IAcpE;;;OAGG;IACI,cAAc,IAAI,IAAI;IAM7B,qDAAqD;IAC9C,eAAe,CAAC,cAAc,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAMzE,oEAAoE;IAC7D,4BAA4B,CAAC,cAAc,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,KAAK,GAAG,KAAK;IAOlF;;;;;;OAMG;IACI,8BAA8B,CACnC,cAAc,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,yBAAyB,GACzD,yBAAyB,GAAG,SAAS;IASxC,mFAAmF;IAC5E,yBAAyB,CAAC,OAAO,EAAE,eAAe,GAAG,GAAG;IAG/D,6CAA6C;IAC7B,aAAa,CAAC,KAAK,EAAE,GAAG,GAAG,OAAO;CAUnD"}
|
|
@@ -21,18 +21,20 @@ import { TransitionSpiral3d } from "./TransitionSpiral3d";
|
|
|
21
21
|
* DirectSpiral3d acts like a TransitionSpiral3d for serialization purposes, but implements spiral types that have
|
|
22
22
|
* "direct" xy calculations without the integrations required for IntegratedSpiral3d.
|
|
23
23
|
* * Each DirectSpiral3d carries an XYCurveEvaluator to give it specialized behavior.
|
|
24
|
-
* * Direct spirals
|
|
24
|
+
* * Direct spirals are created with these static methods:
|
|
25
25
|
* * createArema
|
|
26
26
|
* * createJapaneseCubic
|
|
27
|
-
* * createAustralianRail
|
|
28
|
-
* * createDirectHalfCosine
|
|
29
27
|
* * createChineseCubic
|
|
28
|
+
* * createWesternAustralian
|
|
29
|
+
* * createDirectHalfCosine
|
|
30
|
+
* * createAustralianRail
|
|
30
31
|
* * createCzechCubic
|
|
31
32
|
* * createPolishCubic
|
|
33
|
+
* * createMXCubicAlongArc
|
|
32
34
|
* * createItalian
|
|
33
|
-
* * createWesternAustralian
|
|
34
35
|
* @public
|
|
35
36
|
*/
|
|
37
|
+
// see internaldocs/Spiral.md for more info
|
|
36
38
|
export class DirectSpiral3d extends TransitionSpiral3d {
|
|
37
39
|
/** String name for schema properties. */
|
|
38
40
|
curvePrimitiveType = "transitionSpiral";
|
|
@@ -188,11 +190,11 @@ export class DirectSpiral3d extends TransitionSpiral3d {
|
|
|
188
190
|
/**
|
|
189
191
|
* Create an MX Cubic whose nominal length is close to along the curve.
|
|
190
192
|
* This is y = m*x^3 with
|
|
191
|
-
* * m is 1/(
|
|
193
|
+
* * m is 1/(6RL).
|
|
192
194
|
* * 1/(6RL) is the leading term of the sine series.
|
|
193
195
|
* * L1 is an along-the-x-axis distance that is slightly LESS THAN the nominal length.
|
|
194
196
|
* * x is axis position that is slightly LESS than nominal distance along.
|
|
195
|
-
* * L1, x use the approximation `x = s * ( 1 - s^4/ (40
|
|
197
|
+
* * L1, x use the approximation `x = s * ( 1 - s^4/ (40 RR LL))
|
|
196
198
|
* @param localToWorld
|
|
197
199
|
* @param nominalL1
|
|
198
200
|
* @param nominalR1
|