@itwin/core-geometry 5.4.0-dev.6 → 5.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (94) hide show
  1. package/CHANGELOG.md +43 -1
  2. package/lib/cjs/bspline/SurfaceLocationDetail.d.ts +1 -1
  3. package/lib/cjs/bspline/SurfaceLocationDetail.js +1 -1
  4. package/lib/cjs/bspline/SurfaceLocationDetail.js.map +1 -1
  5. package/lib/cjs/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
  6. package/lib/cjs/curve/CurveChainWithDistanceIndex.js.map +1 -1
  7. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts +13 -0
  8. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
  9. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js +78 -3
  10. package/lib/cjs/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
  11. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +1 -1
  12. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js +1 -1
  13. package/lib/cjs/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
  14. package/lib/cjs/curve/spiral/ClothoidSeries.d.ts +3 -3
  15. package/lib/cjs/curve/spiral/ClothoidSeries.d.ts.map +1 -1
  16. package/lib/cjs/curve/spiral/ClothoidSeries.js +15 -11
  17. package/lib/cjs/curve/spiral/ClothoidSeries.js.map +1 -1
  18. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts +2 -5
  19. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
  20. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js +4 -12
  21. package/lib/cjs/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
  22. package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts +7 -6
  23. package/lib/cjs/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
  24. package/lib/cjs/curve/spiral/DirectSpiral3d.js +8 -6
  25. package/lib/cjs/curve/spiral/DirectSpiral3d.js.map +1 -1
  26. package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts +2 -2
  27. package/lib/cjs/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
  28. package/lib/cjs/curve/spiral/IntegratedSpiral3d.js +9 -5
  29. package/lib/cjs/curve/spiral/IntegratedSpiral3d.js.map +1 -1
  30. package/lib/cjs/curve/spiral/NormalizedTransition.d.ts +8 -7
  31. package/lib/cjs/curve/spiral/NormalizedTransition.d.ts.map +1 -1
  32. package/lib/cjs/curve/spiral/NormalizedTransition.js +32 -16
  33. package/lib/cjs/curve/spiral/NormalizedTransition.js.map +1 -1
  34. package/lib/cjs/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
  35. package/lib/cjs/curve/spiral/TransitionConditionalProperties.js +1 -0
  36. package/lib/cjs/curve/spiral/TransitionConditionalProperties.js.map +1 -1
  37. package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts +1 -1
  38. package/lib/cjs/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
  39. package/lib/cjs/curve/spiral/TransitionSpiral3d.js +1 -0
  40. package/lib/cjs/curve/spiral/TransitionSpiral3d.js.map +1 -1
  41. package/lib/cjs/geometry3d/Ray3d.d.ts +1 -2
  42. package/lib/cjs/geometry3d/Ray3d.d.ts.map +1 -1
  43. package/lib/cjs/geometry3d/Ray3d.js +1 -2
  44. package/lib/cjs/geometry3d/Ray3d.js.map +1 -1
  45. package/lib/cjs/numerics/Newton.d.ts +1 -1
  46. package/lib/cjs/numerics/Newton.js +1 -1
  47. package/lib/cjs/numerics/Newton.js.map +1 -1
  48. package/lib/esm/bspline/SurfaceLocationDetail.d.ts +1 -1
  49. package/lib/esm/bspline/SurfaceLocationDetail.js +1 -1
  50. package/lib/esm/bspline/SurfaceLocationDetail.js.map +1 -1
  51. package/lib/esm/curve/CurveChainWithDistanceIndex.d.ts.map +1 -1
  52. package/lib/esm/curve/CurveChainWithDistanceIndex.js.map +1 -1
  53. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts +13 -0
  54. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.d.ts.map +1 -1
  55. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js +78 -3
  56. package/lib/esm/curve/internalContexts/CurveCurveIntersectXY.js.map +1 -1
  57. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.d.ts +1 -1
  58. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js +1 -1
  59. package/lib/esm/curve/spiral/AustralianRailCorpXYEvaluator.js.map +1 -1
  60. package/lib/esm/curve/spiral/ClothoidSeries.d.ts +3 -3
  61. package/lib/esm/curve/spiral/ClothoidSeries.d.ts.map +1 -1
  62. package/lib/esm/curve/spiral/ClothoidSeries.js +15 -11
  63. package/lib/esm/curve/spiral/ClothoidSeries.js.map +1 -1
  64. package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts +2 -5
  65. package/lib/esm/curve/spiral/CzechSpiralEvaluator.d.ts.map +1 -1
  66. package/lib/esm/curve/spiral/CzechSpiralEvaluator.js +4 -12
  67. package/lib/esm/curve/spiral/CzechSpiralEvaluator.js.map +1 -1
  68. package/lib/esm/curve/spiral/DirectSpiral3d.d.ts +7 -6
  69. package/lib/esm/curve/spiral/DirectSpiral3d.d.ts.map +1 -1
  70. package/lib/esm/curve/spiral/DirectSpiral3d.js +8 -6
  71. package/lib/esm/curve/spiral/DirectSpiral3d.js.map +1 -1
  72. package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts +2 -2
  73. package/lib/esm/curve/spiral/IntegratedSpiral3d.d.ts.map +1 -1
  74. package/lib/esm/curve/spiral/IntegratedSpiral3d.js +9 -5
  75. package/lib/esm/curve/spiral/IntegratedSpiral3d.js.map +1 -1
  76. package/lib/esm/curve/spiral/NormalizedTransition.d.ts +8 -7
  77. package/lib/esm/curve/spiral/NormalizedTransition.d.ts.map +1 -1
  78. package/lib/esm/curve/spiral/NormalizedTransition.js +32 -16
  79. package/lib/esm/curve/spiral/NormalizedTransition.js.map +1 -1
  80. package/lib/esm/curve/spiral/TransitionConditionalProperties.d.ts.map +1 -1
  81. package/lib/esm/curve/spiral/TransitionConditionalProperties.js +1 -0
  82. package/lib/esm/curve/spiral/TransitionConditionalProperties.js.map +1 -1
  83. package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts +1 -1
  84. package/lib/esm/curve/spiral/TransitionSpiral3d.d.ts.map +1 -1
  85. package/lib/esm/curve/spiral/TransitionSpiral3d.js +1 -0
  86. package/lib/esm/curve/spiral/TransitionSpiral3d.js.map +1 -1
  87. package/lib/esm/geometry3d/Ray3d.d.ts +1 -2
  88. package/lib/esm/geometry3d/Ray3d.d.ts.map +1 -1
  89. package/lib/esm/geometry3d/Ray3d.js +1 -2
  90. package/lib/esm/geometry3d/Ray3d.js.map +1 -1
  91. package/lib/esm/numerics/Newton.d.ts +1 -1
  92. package/lib/esm/numerics/Newton.js +1 -1
  93. package/lib/esm/numerics/Newton.js.map +1 -1
  94. package/package.json +3 -3
@@ -1 +1 @@
1
- {"version":3,"file":"CurveCurveIntersectXY.js","sourceRoot":"","sources":["../../../../src/curve/internalContexts/CurveCurveIntersectXY.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,MAAM,EAAE,MAAM,qBAAqB,CAAC;AAG7C,OAAO,EAAE,cAAc,EAAE,kBAAkB,EAAE,MAAM,4BAA4B,CAAC;AAEhF,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,uBAAuB,EAAE,MAAM,wCAAwC,CAAC;AACjF,OAAO,EAAE,8BAA8B,EAAE,MAAM,kCAAkC,CAAC;AAClF,OAAO,EAAE,oBAAoB,EAAE,MAAM,uCAAuC,CAAC;AAC7E,OAAO,EAAE,QAAQ,EAAE,MAAM,2BAA2B,CAAC;AACrD,OAAO,EAAE,OAAO,EAAE,MAAM,kCAAkC,CAAC;AAK3D,OAAO,EAAE,OAAO,EAAE,MAAM,0BAA0B,CAAC;AACnD,OAAO,EAAE,gBAAgB,EAAE,MAAM,kCAAkC,CAAC;AACpE,OAAO,EAAE,+BAA+B,EAAE,+BAA+B,EAAE,MAAM,uBAAuB,CAAC;AACzG,OAAO,EAAE,aAAa,EAAE,cAAc,EAAE,MAAM,4BAA4B,CAAC;AAC3E,OAAO,EAAE,WAAW,EAAE,MAAM,4BAA4B,CAAC;AACzD,OAAO,EAAE,KAAK,EAAE,MAAM,UAAU,CAAC;AACjC,OAAO,EAAE,2BAA2B,EAAE,MAAM,gCAAgC,CAAC;AAC7E,OAAO,EAAE,eAAe,EAAE,MAAM,oBAAoB,CAAC;AACrD,OAAO,EAAE,iBAAiB,EAAE,mBAAmB,EAAE,uBAAuB,EAAE,MAAM,wBAAwB,CAAC;AAIzG,OAAO,EAAE,aAAa,EAAE,MAAM,kBAAkB,CAAC;AACjD,OAAO,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAC/C,OAAO,EAAE,IAAI,EAAE,MAAM,SAAS,CAAC;AAC/B,OAAO,EAAE,IAAI,EAAE,MAAM,SAAS,CAAC;AAC/B,OAAO,EAAE,UAAU,EAAE,MAAM,eAAe,CAAC;AAE3C,mBAAmB;AACnB;;;;;GAKG;AACH,MAAM,OAAO,qBAAsB,SAAQ,8BAA8B;IAC/D,SAAS,CAAU;IACnB,SAAS,CAAU;IACnB,UAAU,CAAuB;IACjC,SAAS,CAAU;IACnB,SAAS,CAAU;IACnB,QAAQ,CAA4B;IACpC,wBAAwB,CAAuB;IAC/C,mBAAmB,CAAwB;IAC3C,0BAA0B,CAA0B;IACpD,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,OAAO,CAAW;IAClB,OAAO,CAAW;IAClB,UAAU,CAAW;IACrB,MAAM,CAAW;IACzB;;;;;;;OAOG;IACH,YACE,YAAkC,EAClC,OAAgB,EAChB,SAA+B,EAC/B,OAAgB,EAChB,YAAoB,QAAQ,CAAC,mBAAmB;QAEhD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,UAAU,GAAG,SAAS,YAAY,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC;QACrF,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,wBAAwB,GAAG,SAAS,CAAC;QAC1C,IAAI,CAAC,mBAAmB,GAAG,SAAS,CAAC;QACrC,IAAI,YAAY,KAAK,SAAS,IAAI,CAAC,YAAY,CAAC,UAAU,EAAE,EAAE,CAAC;YAC7D,IAAI,CAAC,mBAAmB,GAAG,YAAY,CAAC,WAAW,CAAC;YACpD,IAAI,CAAC,IAAI,CAAC,mBAAmB;gBAC3B,IAAI,CAAC,wBAAwB,GAAG,YAAY,CAAC,KAAK,EAAE,CAAC;QACzD,CAAC;QACD,IAAI,CAAC,0BAA0B,GAAG,uBAAuB,CAAC,MAAM,CAAC,SAAS,CAAC,CAAC;QAC5E,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAC;IACrB,CAAC;IACD,wGAAwG;IACjG,aAAa,CAAC,SAAmB;QACtC,IAAI,CAAC,UAAU,GAAG,SAAS,CAAC;IAC9B,CAAC;IACD,iFAAiF;IACzE,cAAc,CAAC,OAAgB,EAAE,QAAgB,EAAE,OAAgB,EAAE,cAAsB,OAAO;QACxG,mHAAmH;QACnH,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,WAAW;YACrC,OAAO,KAAK,CAAC;QACf,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,GAAG,GAAG,WAAW;YAC1C,OAAO,KAAK,CAAC;QACf,OAAO,IAAI,CAAC;IACd,CAAC;IACD,yFAAyF;IACjF,oBAAoB,CAC1B,OAAgB,EAChB,QAAgB,EAChB,OAAgB,EAChB,MAAe,EACf,MAAe,EACf,YAAoB,QAAQ,CAAC,mBAAmB;QAEhD,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,EAAE,CAAC;YAC7B,OAAO,QAAQ,CAAC,mBAAmB,CAAC,QAAQ,GAAG,MAAM,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,CAAC,CAAC;QACvF,CAAC;aAAM,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,GAAG;YACnC,OAAO,QAAQ,CAAC,mBAAmB,CAAC,CAAC,QAAQ,GAAG,GAAG,CAAC,GAAG,MAAM,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,CAAC,CAAC;QAC/F,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;OAGG;IACI,iBAAiB,CAAC,eAAwB,KAAK;QACpD,MAAM,MAAM,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC7B,IAAI,YAAY;YACd,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAC;QACrB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;OAYG;IACK,6BAA6B,CACnC,cAAsB,EACtB,GAAmB,EACnB,UAAkB,EAClB,UAAkB,EAClB,cAAsB,EACtB,GAAmB,EACnB,UAAkB,EAClB,UAAkB,EAClB,QAAiB,EACjB,eAAqD;QAErD,IAAI,eAAe,EAAE,eAAe,CAAC;QACrC,IAAI,gBAAgB,EAAE,gBAAgB,CAAC;QACvC,MAAM,UAAU,GAAG,eAAe,KAAK,SAAS;YAC9C,eAAe,CAAC,OAAO,CAAC,YAAY;YACpC,eAAe,CAAC,OAAO,CAAC,YAAY,CAAC;QACvC,IAAI,UAAU,EAAE,CAAC;YACf,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;YACjG,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;YACjG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,SAAU,EAAE,UAAU,CAAC,CAAC;YACpG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,SAAU,EAAE,UAAU,CAAC,CAAC;QACtG,CAAC;aAAM,CAAC;YACN,eAAe,GAAG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,cAAc,EAAE,UAAU,CAAC,CAAC;YAClG,eAAe,GAAG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,cAAc,EAAE,UAAU,CAAC,CAAC;QACpG,CAAC;QACD,uCAAuC;QACvC,MAAM,WAAW,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;QACzC,IAAI,WAAW,GAAG,CAAC,IAAI,CAAC,UAAU,EAAE,CAAC;YACnC,MAAM,UAAU,GAAG,IAAI,CAAC,QAAQ,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC;YAC1D,MAAM,UAAU,GAAG,IAAI,CAAC,QAAQ,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC;YAC1D,IAAI,QAAQ,EAAE,CAAC;gBACb,IAAI,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC9E,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC5E,OAAO;YACX,CAAC;iBAAM,CAAC;gBACN,IAAI,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC9E,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC5E,OAAO;YACX,CAAC;QACH,CAAC;QACD,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAC1D,GAAG,EAAE,eAAe,EAAE,GAAG,CAAC,eAAe,CAAC,eAAe,CAAC,CAC3D,CAAC;QACF,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAC1D,GAAG,EAAE,eAAe,EAAE,GAAG,CAAC,eAAe,CAAC,eAAe,CAAC,CAC3D,CAAC;QACF,IAAI,UAAU,EAAE,CAAC;YACf,OAAO,CAAC,sBAAsB,CAAC,gBAAgB,EAAE,GAAG,CAAC,eAAe,CAAC,gBAAgB,CAAC,CAAC,CAAC;YACxF,OAAO,CAAC,sBAAsB,CAAC,gBAAgB,EAAE,GAAG,CAAC,eAAe,CAAC,gBAAgB,CAAC,CAAC,CAAC;QAC1F,CAAC;aAAM,CAAC;YACN,OAAO,CAAC,eAAe,CAAC,iBAAiB,CAAC,QAAQ,CAAC,CAAC;YACpD,OAAO,CAAC,eAAe,CAAC,iBAAiB,CAAC,QAAQ,CAAC,CAAC;QACtD,CAAC;QACD,IAAI,QAAQ,EAAE,CAAC;YACb,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,IAAI,uBAAuB,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QACpE,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,IAAI,uBAAuB,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QACpE,CAAC;IACH,CAAC;IACD;;;;;;OAMG;IACI,WAAW,CAChB,GAAmB,EAAE,GAAmB,EAAE,KAA4C,EAAE,QAAiB;QAEzG,IAAI,KAAK,KAAK,SAAS,EAAE,CAAC;YACxB,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;gBACtB,IAAI,CAAC,6BAA6B,CAChC,CAAC,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,CAAC,CAC1E,CAAC;YACJ,CAAC;QACH,CAAC;IACH,CAAC;IACD,0GAA0G;IAClG,uBAAuB,CAC7B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,IAAI,GAAG,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC;QACpE,MAAM,IAAI,GAAG,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC;QACpE,MAAM,GAAG,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;QACtD,MAAM,SAAS,GAAG,WAAW,CAAC,oCAAoC,CAAC,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,GAAG,CAAC,CAAC;QACtG,IAAI,CAAC,SAAS;YACZ,OAAO;QACT,IAAI,SAAS,CAAC,EAAE,EAAE,CAAC,CAAC,2BAA2B;YAC7C,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAAC,SAAS,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YACtI,OAAO,CAAC,sBAAsB,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YAC7F,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAAC,SAAS,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YACtI,OAAO,CAAC,sBAAsB,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YAC7F,MAAM,OAAO,GAAG,uBAAuB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;YACxE,IAAI,IAAI,CAAC,0BAA0B,CAAC,qCAAqC,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC;gBAC5J,IAAI,CAAC,6BAA6B,CAAC,OAAO,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,OAAO,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,EAAE,OAAO,CAAC,CAAC;QACxK,CAAC;aAAM,CAAC,CAAC,2CAA2C;YAClD,IAAI,IAAI,CAAC,oBAAoB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,CAAC,EAAE,CAAC;gBACzF,IAAI,IAAI,CAAC,oBAAoB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,CAAC;oBACtF,IAAI,CAAC,6BAA6B,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,CAAC,CAAC;YAC3I,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;OAGG;IACK,wBAAwB,CAC9B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,MAAM,UAAU,GAAG,WAAW,CAAC,+CAA+C,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;QACnG,IAAI,UAAU,KAAK,SAAS,EAAE,CAAC;YAC7B,MAAM,SAAS,GAAG,UAAU,CAAC,CAAC,CAAC;YAC/B,MAAM,SAAS,GAAG,UAAU,CAAC,CAAC,CAAC;YAC/B,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;gBAC7G,yFAAyF;gBACzF,IAAI,CAAC,6BAA6B,CAChC,SAAS,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,CACzF,CAAC;YACJ,CAAC;QACH,CAAC;IACH,CAAC;IACD,+DAA+D;IAC/D,uGAAuG;IACvG,6EAA6E;IAC7E,iCAAiC;IACzB,sBAAsB,CAC5B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,6BAA6B;YAC7B,qBAAqB,CAAC,wBAAwB,CAAC,IAAI,CAAC,mBAAmB,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;YAC7G,IAAI,CAAC,uBAAuB,CAC1B,GAAG,EAAE,QAAQ,EAAE,qBAAqB,CAAC,YAAY,EACjD,UAAU,EAAE,qBAAqB,CAAC,YAAY,EAAE,UAAU,EAAE,QAAQ,EACpE,GAAG,EAAE,QAAQ,EAAE,qBAAqB,CAAC,YAAY,EACjD,UAAU,EAAE,qBAAqB,CAAC,YAAY,EAAE,UAAU,EAAE,QAAQ,EACpE,QAAQ,CACT,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,IAAI,CAAC,wBAAwB,CAC3B,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,QAAQ,CACT,CAAC;QACJ,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,uBAAuB,CAC1B,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,QAAQ,CACT,CAAC;QACJ,CAAC;IACH,CAAC;IACD,wEAAwE;IACxE,uGAAuG;IACvG,6EAA6E;IACrE,kBAAkB,CACxB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAU,EACV,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,IAAI,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;QACnG,MAAM,OAAO,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC5C,MAAM,KAAK,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC1C,MAAM,OAAO,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC5C,uBAAuB;QACvB,+BAA+B;QAC/B,sDAAsD;QACtD,2CAA2C;QAC3C,iFAAiF;QACjF,mBAAmB;QACnB,mBAAmB;QACnB,wBAAwB;QACxB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,IAAI,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACrE,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAC9G,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAC9G,MAAM,QAAQ,GAAG,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC3E,MAAM,QAAQ,GAAG,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC3E,MAAM,KAAK,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;YAChF,MAAM,IAAI,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;YAChF,MAAM,KAAK,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAC;YAClF,IAAI,QAAQ,GAAG,aAAa,CAAC,yCAAyC,CAAC,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC;YACpH,MAAM,aAAa,GAAG,CAAC,CAAC,KAAK,QAAQ,CAAC,CAAC;YACvC,IAAI,aAAa;gBACf,QAAQ,GAAG,CAAC,CAAC,CAAC,iHAAiH;YACjI,MAAM,cAAc,GAAG,CAAC,KAAa,EAAE,4BAAqC,KAAK,EAA6C,EAAE;gBAC9H,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,KAAK,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC,CAAC;gBACtI,IAAI,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,uBAAuB,CAAC,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACzF,IAAI,KAAK,GAAG,WAAW,CAAC,qCAAqC,CAAC,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;gBAC5F,IAAI,KAAK,KAAK,SAAS;oBACrB,OAAO,SAAS,CAAC;gBACnB,IAAI,CAAC,yBAAyB,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,EAAE,QAAQ,CAAC;oBAC/H,OAAO,EAAC,KAAK,EAAE,IAAI,EAAC,CAAC;gBACvB,oGAAoG;gBACpG,KAAK,GAAG,KAAK,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5B,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,gCAAgC,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACvE,MAAM,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC;gBAC5C,MAAM,OAAO,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC;gBAC3C,MAAM,KAAK,GAAG,OAAO,CAAC,qBAAqB,CAAC,OAAO,CAAC,CAAC;gBACrD,OAAO,CAAC,KAAK,KAAK,SAAS,IAAI,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAC,KAAK,EAAE,IAAI,EAAC,CAAC,CAAC,CAAC,SAAS,CAAC;YACxG,CAAC,CAAC;YACF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;gBAClC,MAAM,MAAM,GAAG,cAAc,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC;gBAChD,IAAI,MAAM;oBACR,IAAI,CAAC,6BAA6B,CAAC,MAAM,CAAC,KAAK,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,CAAC,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;YACpH,CAAC;QACH,CAAC;aAAM,CAAC;YACN,MAAM,IAAI,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YAChE,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,YAAY,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAClH,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,YAAY,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAClH,IAAI,YAAY,GAAG,OAAO,CAAC;YAC3B,IAAI,YAAY,GAAG,OAAO,CAAC;YAC3B,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;gBAC7B,YAAY,GAAG,IAAI,CAAC,mBAAmB,CAAC,eAAe,CAAC,OAAO,CAAC,CAAC;gBACjE,YAAY,GAAG,IAAI,CAAC,mBAAmB,CAAC,eAAe,CAAC,OAAO,CAAC,CAAC;YACnE,CAAC;YACD,MAAM,KAAK,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;YAC1F,MAAM,IAAI,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC1F,MAAM,KAAK,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,CAAC,CAAC,CAAC;YAC5F,IAAI,QAAQ,GAAG,aAAa,CAAC,yCAAyC,CAAC,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC;YACpH,MAAM,aAAa,GAAG,CAAC,CAAC,KAAK,QAAQ,CAAC,CAAC;YACvC,IAAI,aAAa;gBACf,QAAQ,GAAG,CAAC,CAAC,CAAC,iHAAiH;YACjI,MAAM,cAAc,GAAG,CAAC,KAAa,EAAE,4BAAqC,KAAK,EAA6C,EAAE;gBAC9H,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,KAAK,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC,CAAC;gBACtI,IAAI,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,uBAAuB,CAAC,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACzF,IAAI,KAAK,GAAG,WAAW,CAAC,oCAAoC,CAAC,YAAY,EAAE,YAAY,EAAE,QAAQ,CAAC,CAAC;gBACnG,IAAI,KAAK,KAAK,SAAS;oBACrB,OAAO,SAAS,CAAC;gBACnB,IAAI,CAAC,yBAAyB,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,EAAE,QAAQ,CAAC;oBAC/H,OAAO,EAAC,KAAK,EAAE,IAAI,EAAC,CAAC;gBACvB,oGAAoG;gBACpG,KAAK,GAAG,KAAK,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5B,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,gCAAgC,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACvE,MAAM,WAAW,GAAG,KAAK,CAAC,CAAC,CAAC,YAAY,CAAC,CAAC,CAAC,YAAY,CAAC;gBACxD,MAAM,WAAW,GAAG,IAAI,CAAC,CAAC,CAAC,YAAY,CAAC,CAAC,CAAC,YAAY,CAAC;gBACvD,MAAM,KAAK,GAAG,WAAW,CAAC,iBAAiB,CAAC,WAAW,CAAC,CAAC;gBACzD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,EAAC,KAAK,EAAE,IAAI,EAAC,CAAC,CAAC,CAAC,SAAS,CAAC;YAC/E,CAAC,CAAC;YACF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;gBAClC,MAAM,MAAM,GAAG,cAAc,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC;gBAChD,IAAI,MAAM;oBACR,IAAI,CAAC,6BAA6B,CAAC,MAAM,CAAC,KAAK,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,CAAC,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;YACpH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;OAIG;IACK,uBAAuB,CAC7B,GAAU,EAAE,+BAA+B;IAC3C,OAAiB,EACjB,QAAiB,EACjB,QAAiB,EACjB,GAAU,EACV,OAAiB,EACjB,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,oFAAoF;QACpF,MAAM,QAAQ,GAAG,OAAO,CAAC,OAAO,EAAE,CAAC;QACnC,IAAI,QAAQ,EAAE,CAAC;YACb,wFAAwF;YACxF,MAAM,MAAM,GAAG,QAAQ,CAAC,oBAAoB,CAAC,OAAO,CAAC,CAAC;YACtD,MAAM,cAAc,GAAa,EAAE,CAAC;YACpC,MAAM,aAAa,GAAa,EAAE,CAAC;YACnC,gDAAgD;YAChD,cAAc,CAAC,6CAA6C,CAC1D,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,aAAa;YAChE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,cAAc;YACjE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,eAAe;YAClE,cAAc,EAAE,aAAa,CAC9B,CAAC;YACF,MAAM,IAAI,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;YACnG,qGAAqG;YACrG,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,cAAc,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC/C,IAAI,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,aAAa,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC9E,IAAI,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,cAAc,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC/E,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;oBAC7G,IAAI,CAAC,6BAA6B,CAAC,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC3F,CAAC;qBAAM,CAAC,CAAC,sFAAsF;oBAC7F,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,gCAAgC,CAAC,SAAS,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAChF,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,gCAAgC,CAAC,SAAS,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAChF,MAAM,SAAS,GAAG,GAAG,CAAC,eAAe,CAAC,SAAS,EAAE,qBAAqB,CAAC,aAAa,CAAC,CAAC;oBACtF,MAAM,SAAS,GAAG,GAAG,CAAC,eAAe,CAAC,SAAS,EAAE,qBAAqB,CAAC,aAAa,CAAC,CAAC;oBACtF,MAAM,KAAK,GAAG,SAAS,CAAC,iBAAiB,CAAC,SAAS,CAAC,CAAC;oBACrD,IAAI,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC;wBAC3C,IAAI,CAAC,6BAA6B,CAAC,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC7F,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;;;;OAOG;IACK,cAAc,CACpB,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAErH,gDAAgD;QAChD,IAAI,IAAI,CAAC,0BAA0B,IAAI,CAAC,IAAI,CAAC,wBAAwB,IAAI,CAAC,IAAI,CAAC,mBAAmB,EAAE,CAAC;YACnG,MAAM,KAAK,GAAG,IAAI,CAAC,0BAA0B,CAAC,2BAA2B,CAAC,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC,CAAC;YAC1F,IAAI,KAAK,EAAE,CAAC;gBACV,IAAI,CAAC,WAAW,CAAC,GAAG,EAAE,GAAG,EAAE,KAAK,EAAE,QAAQ,CAAC,CAAC;gBAC5C,OAAO;YACT,CAAC;QACH,CAAC;QACD,kCAAkC;QAClC,IAAI,OAAiB,CAAC;QACtB,IAAI,OAAiB,CAAC;QACtB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YACpI,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACtI,CAAC;aAAM,CAAC;YACN,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;YAC1F,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;QAC5F,CAAC;QACD,MAAM,UAAU,GAAG,OAAO,CAAC,eAAe,EAAE,CAAC;QAC7C,MAAM,UAAU,GAAG,OAAO,CAAC,eAAe,EAAE,CAAC;QAC7C,wEAAwE;QACxE,IAAI,UAAU,GAAG,UAAU;YACzB,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;;YAE3G,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,CAAC,QAAQ,CAAC,CAAC;IAChH,CAAC;IAED,+DAA+D;IACvD,yBAAyB,CAC/B,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,GAAmB,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAE9H,uBAAuB;QACvB,kFAAkF;QAClF,IAAI,OAAiB,CAAC;QACtB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CACjC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAC/F,CAAC;QACJ,CAAC;aAAM,CAAC;YACN,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;QAC5F,CAAC;QACD,+DAA+D;QAC/D,8CAA8C;QAC9C,MAAM,cAAc,GAAG,OAAO,CAAC,OAAO,EAAE,CAAC;QACzC,IAAI,cAAc,EAAE,CAAC;YACnB,MAAM,MAAM,GAAG,GAAG,CAAC,KAAK,CAAC,CAAC,8CAA8C;YACxE,MAAM,MAAM,GAAG,CAAC,GAAG,MAAM,GAAG,CAAC,CAAC,CAAC,wDAAwD;YACvF,MAAM,KAAK,GAAG,IAAI,YAAY,CAAC,MAAM,CAAC,CAAC;YACvC,MAAM,iBAAiB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;YACvD,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YAEpC,IAAI,MAAkC,CAAC;YACvC,KAAK,IAAI,SAAS,GAAG,CAAC,GAAI,SAAS,EAAE,EAAE,CAAC;gBACtC,MAAM,GAAG,GAAG,CAAC,yBAAyB,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;gBAC1D,IAAI,CAAC,MAAM;oBACP,MAAM;gBACV,IAAI,IAAI,CAAC,wBAAwB;oBAC/B,MAAM,CAAC,0BAA0B,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;qBAC9D,IAAI,IAAI,CAAC,mBAAmB;oBAC/B,MAAM,CAAC,mBAAmB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;gBACvD,iBAAiB,CAAC,IAAI,EAAE,CAAC;gBACzB,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC;gBACtD,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC;gBACtD,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC;gBACvD,MAAM,KAAK,GAAG,iBAAiB,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;gBACjD,IAAI,KAAK,EAAE,CAAC;oBACV,KAAK,MAAM,IAAI,IAAI,KAAK,EAAE,CAAC;wBACzB,MAAM,SAAS,GAAG,MAAM,CAAC,wBAAwB,CAAC,IAAI,CAAC,CAAC;wBACxD,oGAAoG;wBACpG,MAAM,aAAa,GAAG,MAAM,CAAC,iBAAiB,CAAC,IAAI,CAAC,CAAC;wBACrD,MAAM,CAAC,GAAG,aAAa,CAAC,cAAc,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;wBAC3D,MAAM,CAAC,GAAG,aAAa,CAAC,cAAc,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;wBAC3D,MAAM,WAAW,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;wBAClF,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,WAAW,EAAE,QAAQ,CAAC;4BACtD,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;4BACrD,IAAI,CAAC,6BAA6B,CAAC,WAAW,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;wBAC7F,CAAC;oBACH,CAAC;gBACH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD,8EAA8E;IACtE,gBAAgB,CAAC,OAAyB;QAChD,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,KAAK,MAAM,MAAM,IAAI,OAAO;gBAAE,MAAM,CAAC,mBAAmB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;QACrF,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,KAAK,MAAM,MAAM,IAAI,OAAO;gBAAE,MAAM,CAAC,0BAA0B,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;QACjG,CAAC;IACH,CAAC;IACO,SAAS,CAAC,OAA0B;QAC1C,MAAM,MAAM,GAAc,EAAE,CAAC;QAC7B,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC;QAClB,KAAK,MAAM,CAAC,IAAI,OAAO,EAAE,CAAC;YACxB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;QACzB,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACO,+BAA+B,CACrC,OAAuB,EACvB,OAA2B,EAC3B,YAAoB,EACpB,OAAuB,EACvB,OAA2B,EAC3B,aAAqB,EACrB,iBAAmC,EAAE,+CAA+C;IACpF,QAAiB;QAEjB,IAAI,CAAC,IAAI,CAAC,OAAO;YACf,IAAI,CAAC,OAAO,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,CAAC,IAAI,CAAC,OAAO;YACf,IAAI,CAAC,OAAO,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,CAAC,IAAI,CAAC,UAAU;YAClB,IAAI,CAAC,UAAU,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QACrC,IAAI,CAAC,IAAI,CAAC,MAAM;YACd,IAAI,CAAC,MAAM,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QACjC;;;;;;;;;;;;;;;;UAgBE;QACF,OAAO,CAAC,iBAAiB,CAAC,GAAG,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QAC7C,IAAI,EAAE,GAAG,GAAG,CAAC;QACb,IAAI,EAAE,CAAC;QACP,MAAM,iBAAiB,GAAG,MAAM,CAAC;QACjC,MAAM,EAAE,GAAG,GAAG,GAAG,YAAY,CAAC;QAC9B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,YAAY,EAAE,CAAC,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,EAAE,CAAC;YACpF,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC;YACZ,OAAO,CAAC,iBAAiB,CAAC,EAAE,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;YAC5C,OAAO,CAAC,sBAAsB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC;YAC5E,OAAO,CAAC,gBAAgB,CACtB,iBAAiB,CAAC,KAAK,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CACpG,CAAC;YACF,IAAI,MAAM,GAAG,CAAC,CAAC;YACf,MAAM,KAAK,GAAG,iBAAiB,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;YACjD,IAAI,KAAK,EAAE,CAAC;gBACV,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;oBACtB,IAAI,eAAe,GAAG,CAAC,CAAC;oBACxB,OAAO,CAAC,iBAAiB,CAAC,eAAe,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;oBACxD,MAAM,gBAAgB,GAAG,WAAW,CAAC,qCAAqC,CACxE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,MAAM,CACxC,CAAC;oBACF,IAAI,gBAAgB,KAAK,SAAS,IAAI,QAAQ,CAAC,mBAAmB,CAAC,gBAAgB,EAAE,iBAAiB,CAAC,EAAE,CAAC;wBACxG,IAAI,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,EAAE,EAAE,gBAAgB,EAAE,EAAE,CAAC,CAAC;wBACrE,8DAA8D;wBAC9D,gDAAgD;wBAChD,MAAM,kBAAkB,GAAG,IAAI,+BAA+B,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;wBACjF,MAAM,cAAc,GAAG,IAAI,+BAA+B,CAAC,kBAAkB,CAAC,CAAC;wBAC/E,cAAc,CAAC,KAAK,CAAC,eAAe,EAAE,eAAe,CAAC,CAAC;wBACvD,IAAI,cAAc,CAAC,aAAa,EAAE,EAAE,CAAC;4BACnC,eAAe,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;4BACxC,eAAe,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;wBAC1C,CAAC;wBACD,MAAM,eAAe,GAAG,OAAO,CAAC,wBAAwB,CAAC,eAAe,CAAC,CAAC;wBAC1E,MAAM,eAAe,GAAG,OAAO,CAAC,wBAAwB,CAAC,eAAe,CAAC,CAAC;wBAC1E,IAAI,KAAK,EAAE,CAAC,CAAC,iBAAiB;4BAC5B,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,IAAI,CAAC,KAAK,CAAC,eAAe,CAAC,KAAK,CAAC;gCAC/B,MAAM,EAAE,CAAC;4BACX,IAAI,CAAC,KAAK,CAAC,eAAe,CAAC,KAAK,CAAC;gCAC/B,MAAM,EAAE,CAAC;4BACX,IAAI,MAAM,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,aAAa,CAAC,KAAK,CAAC;gCAC3C,MAAM,EAAE,CAAC;4BACX,IAAI,MAAM,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,aAAa,CAAC,KAAK,CAAC;gCAC3C,MAAM,EAAE,CAAC;wBACb,CAAC;wBACD,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,eAAe,EAAE,KAAK,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,eAAe,EAAE,KAAK,CAAC,EAAE,CAAC;4BAC7G,IAAI,CAAC,6BAA6B,CAChC,eAAe,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,eAAe,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CACzE,CAAC;wBACJ,CAAC;oBACH,CAAC;gBACH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACO,oCAAoC,CAC1C,OAA2B,EAAE,OAA2B,EAAE,QAAiB;QAE3E,MAAM,WAAW,GAAG,OAAO,CAAC,kBAAkB,CAAC,IAAI,CAAqB,CAAC;QACzE,MAAM,WAAW,GAAG,OAAO,CAAC,kBAAkB,CAAC,IAAI,CAAqB,CAAC;QACzE,MAAM,IAAI,GAAG,WAAW,CAAC,MAAM,CAAC;QAChC,MAAM,IAAI,GAAG,WAAW,CAAC,MAAM,CAAC;QAChC,IAAI,CAAC,gBAAgB,CAAC,WAAW,CAAC,CAAC;QACnC,IAAI,CAAC,gBAAgB,CAAC,WAAW,CAAC,CAAC;QACnC,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,CAAC,WAAW,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,CAAC,WAAW,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,OAAO,CAAC,KAAK,CAAC;QAC7B,MAAM,MAAM,GAAG,OAAO,CAAC,KAAK,CAAC;QAC7B,MAAM,gBAAgB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;QACtD,MAAM,gBAAgB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;QACtD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC;YAC9B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC9B,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;oBAC3C,MAAM,YAAY,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC,4BAA4B,EAAE,CAAC;oBACnE,MAAM,YAAY,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC,4BAA4B,EAAE,CAAC;oBACnE,IAAI,YAAY,GAAG,YAAY;wBAC7B,IAAI,CAAC,+BAA+B,CAClC,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,gBAAgB,EAAE,QAAQ,CACzG,CAAC;;wBAEF,IAAI,CAAC,+BAA+B,CAClC,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,gBAAgB,EAAE,CAAC,QAAQ,CAC1G,CAAC;gBACN,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;OAIG;IACK,YAAY,CAAC,GAAW,EAAE,IAAY,GAAG;QAC/C,IAAI,IAAI,CAAC,wBAAwB;YAC/B,OAAO,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;QAC/D,IAAI,IAAI,CAAC,mBAAmB;YAC1B,OAAO,IAAI,CAAC,mBAAmB,CAAC,YAAY,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACvE,OAAO,OAAO,CAAC,wBAAwB,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;IAClD,CAAC;IACO,kBAAkB,CAAC,QAAiB,EAAE,UAAmB;QAC/D,kEAAkE;QAClE,oDAAoD;QACpD,uBAAuB;QACvB,wBAAwB;QACxB,mBAAmB;QACnB,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,IAAI,CAAC,mBAAmB,CAAC,qBAAqB,CAAC,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,UAAU,CAAC,CAAC;QAC7G,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,IAAI,CAAC,wBAAwB,CAAC,wBAAwB,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;QAC/E,CAAC;aAAM,CAAC;YACN,QAAQ,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAC7B,CAAC;IACH,CAAC;IACD,sDAAsD;IACtD,8EAA8E;IAC9E,gCAAgC;IACxB,2BAA2B,CACjC,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,MAAsB,EACtB,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,QAAQ,GAAG,IAAI,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC;QAC5C,MAAM,QAAQ,GAAG,IAAI,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC;QAC5C,MAAM,UAAU,GAAG,OAAO,CAAC,sBAAsB,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACtE,IAAI,CAAC,kBAAkB,CAAC,UAAU,EAAE,UAAU,CAAC,CAAC;QAChD,yEAAyE;QACzE,MAAM,aAAa,GAA0B,EAAE,CAAC;QAChD,MAAM,CAAC,6BAA6B,CAAC,UAAU,EAAE,aAAa,CAAC,CAAC;QAChE,yDAAyD;QACzD,yEAAyE;QACzE,kDAAkD;QAClD,KAAK,MAAM,MAAM,IAAI,aAAa,EAAE,CAAC;YACnC,MAAM,SAAS,GAAG,MAAM,CAAC,QAAQ,CAAC;YAClC,MAAM,UAAU,GAAG,MAAM,CAAC,KAAK,CAAC;YAChC,MAAM,WAAW,GAAG,IAAI,CAAC,YAAY,CAAC,UAAU,CAAC,CAAC;YAClD,MAAM,YAAY,GAAG,WAAW,CAAC,qCAAqC,CAAC,QAAQ,EAAE,QAAQ,EAAE,WAAW,CAAC,CAAC;YACxG,IAAI,YAAY,KAAK,SAAS,EAAE,CAAC;gBAC/B,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,YAAY,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;oBAChH,IAAI,CAAC,6BAA6B,CAAC,YAAY,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACnH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD,0EAA0E;IACnE,8BAA8B,CACnC,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,MAAsB,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAE/E,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,MAAM,OAAO,GAAG,qBAAqB,CAAC,YAAY,CAAC;YACnD,MAAM,OAAO,GAAG,qBAAqB,CAAC,YAAY,CAAC;YACnD,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,2BAA2B,CAC9B,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,MAAM,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;YAC1C,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,8DAA8D;IACvD,wBAAwB,CAC7B,GAAkB,EAAE,QAAiB,EAAE,QAAiB,EACxD,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,QAAiB;QAEjB,MAAM,OAAO,GAAG,GAAG,CAAC,SAAS,CAAC;QAC9B,MAAM,OAAO,GAAG,GAAG,CAAC,SAAS,CAAC;QAC9B,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,sBAAsB,CACzB,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,QAAQ,EACnD,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,QAAQ,CACT,CAAC;YACJ,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,0DAA0D;IACnD,oBAAoB,CACzB,IAAW,EAAE,QAAiB,EAAE,QAAiB,EACjD,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,QAAiB;QAEjB,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,kBAAkB,CACrB,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EACrD,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EAAE,IAAI,EAAE,QAAQ,EAAE,QAAQ,EAAE,CAAC,QAAQ,CACnE,CAAC;YACJ,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,iEAAiE;IACzD,2BAA2B,CAAC,GAAiB,EAAE,GAAiB,EAAE,QAAiB;QACzF,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACzB,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,GAAG,GAAG,CAAC;YACd,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,GAAG,GAAG,GAAG,CAAC;gBACV,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;gBACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;oBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;oBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;oBACf,IAAI,CAAC,sBAAsB,CACzB,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,IAAI,CAAC,SAAS,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,IAAI,CAAC,SAAS,EAChG,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,IAAI,CAAC,SAAS,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,IAAI,CAAC,SAAS,EAChG,QAAQ,CACT,CAAC;gBACJ,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACO,MAAM,CAAC,wBAAwB,CACrC,SAAoB,EAAE,OAAgB,EAAE,OAAgB,EAAE,OAAgB,EAAE,OAAgB;QAE5F,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;IACxD,CAAC;IACD;;;OAGG;IACK,uBAAuB,CAAC,KAAe,EAAE,YAAiC;QAChF,MAAM,KAAK,GAAG,IAAI,CAAC,UAAU,CAAC,CAAE,OAAO;QACvC,IAAI,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,QAAQ,IAAI,CAAC,CAAC,KAAK,YAAY,eAAe,CAAC;YAClE,OAAO;QACT,MAAM,QAAQ,GAAG,KAAK,CAAC,QAAQ,CAAC;QAChC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;YACzC,IAAI,CAAC,aAAa,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;YAChC,IAAI,KAAK,YAAY,IAAI,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;gBACjD,IAAI,CAAC,KAAK,CAAC;oBACT,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,yCAAyC;qBAC9D,IAAI,CAAC,KAAK,QAAQ,CAAC,MAAM,GAAG,CAAC;oBAChC,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sCAAsC;;oBAE9D,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,gCAAgC;YAC7E,CAAC;iBAAM,IAAI,KAAK,YAAY,IAAI,EAAE,CAAC;gBACjC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sBAAsB;YACjE,CAAC;YACD,YAAY,CAAC,KAAK,CAAC,CAAC;YACpB,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;YACrC,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;QACvC,CAAC;QACD,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,CAAC,CAAC,UAAU;IACvC,CAAC;IACD;;;OAGG;IACK,mCAAmC,CAAC,KAAe,EAAE,YAAiC;QAC5F,IAAI,CAAC,IAAI,CAAC,UAAU,IAAI,CAAC,CAAC,IAAI,CAAC,UAAU,YAAY,2BAA2B,CAAC;YAC/E,OAAO;QACT,IAAI,KAAK,YAAY,2BAA2B,EAAE,CAAC;YACjD,MAAM,CAAC,KAAK,EAAE,uDAAuD,CAAC,CAAC;QACzE,CAAC;QACD,MAAM,MAAM,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;QACpC,MAAM,KAAK,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC,OAAO;QACtC,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC;QAC/B,IAAI,CAAC,uBAAuB,CAAC,KAAK,EAAE,YAAY,CAAC,CAAC;QAClD,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,CAAC,CAAC,UAAU;QACrC,IAAI,CAAC,QAAQ,GAAG,2BAA2B,CAAC,+BAA+B,CACzE,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,SAAS,EAAE,KAAK,EAAE,IAAI,CAC9C,CAAC;IACJ,CAAC;IACD;;;OAGG;IACa,cAAc,CAAC,CAAgB;QAC7C,MAAM,QAAQ,GAAG,CAAC,CAAC,QAAQ,CAAC;QAC5B,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,IAAI,QAAQ;YACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,YAAY,IAAI,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;oBAC7C,IAAI,CAAC,KAAK,CAAC;wBACT,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,yCAAyC;yBAC9D,IAAI,CAAC,KAAK,QAAQ,CAAC,MAAM,GAAG,CAAC;wBAChC,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sCAAsC;;wBAE9D,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,gCAAgC;gBAC7E,CAAC;qBAAM,IAAI,CAAC,YAAY,IAAI,EAAE,CAAC;oBAC7B,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sBAAsB;gBACjE,CAAC;gBACD,QAAQ,CAAC,CAAC,CAAC,CAAC,yBAAyB,CAAC,IAAI,CAAC,CAAC;gBAC5C,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;gBACrC,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;YACvC,CAAC;IACL,CAAC;IACD,0DAA0D;IAC1C,mBAAmB,CAAC,QAAuB;QACzD,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,MAAM,QAAQ,GAAG,IAAI,CAAC,UAAU,CAAC;YACjC,IAAI,CAAC,sBAAsB,CACzB,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,KAAK,CACN,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,wBAAwB,CAC3B,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACjG,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,kBAAkB,CACrB,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACvD,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,2BAA2B,CAC9B,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACvD,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,QAAQ,EAAE,IAAI,CAAC,mBAAmB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC9E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,QAAQ,EAAE,IAAI,CAAC,mBAAmB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC1F,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,6DAA6D;IAC7C,kBAAkB,CAAC,GAAiB;QAClD,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YAC5C,MAAM,GAAG,GAAG,IAAI,CAAC,UAAU,CAAC;YAC5B,IAAI,CAAC,2BAA2B,CAAC,GAAG,EAAE,GAAG,EAAE,KAAK,CAAC,CAAC;QACpD,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YACpD,IAAI,CAAC,wBAAwB,CAC3B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,oBAAoB,CACvB,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,8BAA8B,CACjC,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC5F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,IAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACxE,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,GAAG,EAAE,IAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACpF,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,sDAAsD;IACtC,WAAW,CAAC,IAAW;QACrC,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,IAAI,CAAC,kBAAkB,CACrB,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC/G,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3C,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,oBAAoB,CACvB,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,cAAc,CAAC,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAAC,CAAC;QACpH,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,yBAAyB,CAC5B,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,IAAI,EAAE,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAClE,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,IAAI,EAAE,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC9E,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,gEAAgE;IAChD,oBAAoB,CAAC,KAAqB;QACxD,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,IAAI,CAAC,2BAA2B,CAC9B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC/G,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC5C,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,8BAA8B,CACjC,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,CAAC;QAClG,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,yBAAyB,CAC5B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,IAAI,CAAC,oCAAoC,CAAC,KAAK,EAAE,IAAI,CAAC,UAAU,EAAE,KAAK,CAAC,CAAC;QAC3E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,KAAK,EAAE,IAAI,CAAC,oBAAoB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC5E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,KAAK,EAAE,IAAI,CAAC,oBAAoB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACxF,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,8EAA8E;IAC9D,iCAAiC,CAAC,KAAkC;QAClF,KAAK,CAAC,iCAAiC,CAAC,KAAK,CAAC,CAAC;QAC/C,kIAAkI;QAClI,IAAI,CAAC,QAAQ,GAAG,2BAA2B,CAAC,+BAA+B,CAAC,IAAI,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,EAAE,SAAS,EAAE,IAAI,CAAC,CAAC;IACxH,CAAC;IACD,4EAA4E;IAC5D,qBAAqB,CAAC,MAAuB;QAC3D;;;;;;;;;;;;UAYE;QACF,OAAO,SAAS,CAAC;IACnB,CAAC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\n\r\nimport { assert } from \"@itwin/core-bentley\";\r\nimport { BezierCurve3dH } from \"../../bspline/BezierCurve3dH\";\r\nimport { BezierCurveBase } from \"../../bspline/BezierCurveBase\";\r\nimport { BSplineCurve3d, BSplineCurve3dBase } from \"../../bspline/BSplineCurve\";\r\nimport { BSplineCurve3dH } from \"../../bspline/BSplineCurve3dH\";\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { CoincidentGeometryQuery } from \"../../geometry3d/CoincidentGeometryOps\";\r\nimport { RecurseToCurvesGeometryHandler } from \"../../geometry3d/GeometryHandler\";\r\nimport { GrowableFloat64Array } from \"../../geometry3d/GrowableFloat64Array\";\r\nimport { Matrix3d } from \"../../geometry3d/Matrix3d\";\r\nimport { Point3d } from \"../../geometry3d/Point3dVector3d\";\r\nimport { Range3d } from \"../../geometry3d/Range\";\r\nimport { Transform } from \"../../geometry3d/Transform\";\r\nimport { XYAndZ } from \"../../geometry3d/XYZProps\";\r\nimport { Matrix4d } from \"../../geometry4d/Matrix4d\";\r\nimport { Point4d } from \"../../geometry4d/Point4d\";\r\nimport { UnivariateBezier } from \"../../numerics/BezierPolynomials\";\r\nimport { CurveCurveIntersectionXYRRToRRD, Newton2dUnboundedWithDerivative } from \"../../numerics/Newton\";\r\nimport { AnalyticRoots, TrigPolynomial } from \"../../numerics/Polynomials\";\r\nimport { SmallSystem } from \"../../numerics/SmallSystem\";\r\nimport { Arc3d } from \"../Arc3d\";\r\nimport { CurveChainWithDistanceIndex } from \"../CurveChainWithDistanceIndex\";\r\nimport { CurveCollection } from \"../CurveCollection\";\r\nimport { CurveIntervalRole, CurveLocationDetail, CurveLocationDetailPair } from \"../CurveLocationDetail\";\r\nimport { CurvePrimitive } from \"../CurvePrimitive\";\r\nimport { AnyCurve } from \"../CurveTypes\";\r\nimport { GeometryQuery } from \"../GeometryQuery\";\r\nimport { LineSegment3d } from \"../LineSegment3d\";\r\nimport { LineString3d } from \"../LineString3d\";\r\nimport { Loop } from \"../Loop\";\r\nimport { Path } from \"../Path\";\r\nimport { ProxyCurve } from \"../ProxyCurve\";\r\n\r\n// cspell:word XYRR\r\n/**\r\n * Handler class for XY intersections between _geometryB and another geometry.\r\n * * Instances are initialized and called from CurveCurve.\r\n * * geometryB is saved for later reference.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectXY extends RecurseToCurvesGeometryHandler {\r\n private _extendA0: boolean;\r\n private _extendA1: boolean;\r\n private _geometryB: AnyCurve | undefined;\r\n private _extendB0: boolean;\r\n private _extendB1: boolean;\r\n private _results: CurveLocationDetailPair[];\r\n private _worldToLocalPerspective: Matrix4d | undefined;\r\n private _worldToLocalAffine: Transform | undefined;\r\n private _coincidentGeometryContext: CoincidentGeometryQuery;\r\n private static _workPointA0H = Point4d.create();\r\n private static _workPointA1H = Point4d.create();\r\n private static _workPointB0H = Point4d.create();\r\n private static _workPointB1H = Point4d.create();\r\n private static _workPointAA0 = Point3d.create();\r\n private static _workPointAA1 = Point3d.create();\r\n private static _workPointBB0 = Point3d.create();\r\n private static _workPointBB1 = Point3d.create();\r\n private static _workPointA0 = Point3d.create();\r\n private static _workPointA1 = Point3d.create();\r\n private static _workPointB0 = Point3d.create();\r\n private static _workPointB1 = Point3d.create();\r\n private _xyzwA0?: Point4d;\r\n private _xyzwA1?: Point4d;\r\n private _xyzwPlane?: Point4d;\r\n private _xyzwB?: Point4d;\r\n /**\r\n * The constructor.\r\n * @param worldToLocal optional transform (possibly perspective) to project to xy plane for intersection.\r\n * @param extendA flag for extension of the other geometry.\r\n * @param geometryB second curve for intersection. Saved for reference by specific handler methods.\r\n * @param extendB flag for extension of geometryB.\r\n * @param tolerance optional distance tolerance for coincidence.\r\n */\r\n public constructor(\r\n worldToLocal: Matrix4d | undefined,\r\n extendA: boolean,\r\n geometryB: AnyCurve | undefined,\r\n extendB: boolean,\r\n tolerance: number = Geometry.smallMetricDistance,\r\n ) {\r\n super();\r\n this._extendA0 = extendA;\r\n this._extendA1 = extendA;\r\n this._geometryB = geometryB instanceof ProxyCurve ? geometryB.proxyCurve : geometryB;\r\n this._extendB0 = extendB;\r\n this._extendB1 = extendB;\r\n this._worldToLocalPerspective = undefined;\r\n this._worldToLocalAffine = undefined;\r\n if (worldToLocal !== undefined && !worldToLocal.isIdentity()) {\r\n this._worldToLocalAffine = worldToLocal.asTransform;\r\n if (!this._worldToLocalAffine)\r\n this._worldToLocalPerspective = worldToLocal.clone();\r\n }\r\n this._coincidentGeometryContext = CoincidentGeometryQuery.create(tolerance);\r\n this._results = [];\r\n }\r\n /** Reset the geometry, leaving all other parts unchanged (and preserving accumulated intersections). */\r\n public resetGeometry(geometryB: AnyCurve): void {\r\n this._geometryB = geometryB;\r\n }\r\n /** Accept the fraction if it falls inside (possibly extended) fraction range. */\r\n private acceptFraction(extend0: boolean, fraction: number, extend1: boolean, fractionTol: number = 1.0e-12): boolean {\r\n // Note that default tol is tighter than Geometry.smallFraction. We aggressively toss intersections past endpoints.\r\n if (!extend0 && fraction < -fractionTol)\r\n return false;\r\n if (!extend1 && fraction > 1.0 + fractionTol)\r\n return false;\r\n return true;\r\n }\r\n /** Test the fraction by strict parameter, but allow toleranced distance test at ends. */\r\n private acceptFractionOnLine(\r\n extend0: boolean,\r\n fraction: number,\r\n extend1: boolean,\r\n pointA: Point3d,\r\n pointB: Point3d,\r\n tolerance: number = Geometry.smallMetricDistance,\r\n ): boolean {\r\n if (!extend0 && fraction < 0) {\r\n return Geometry.isDistanceWithinTol(fraction * pointA.distanceXY(pointB), tolerance);\r\n } else if (!extend1 && fraction > 1.0)\r\n return Geometry.isDistanceWithinTol((fraction - 1.0) * pointA.distanceXY(pointB), tolerance);\r\n return true;\r\n }\r\n /**\r\n * Return the results structure for the intersection calculation, structured as an array of CurveLocationDetailPair\r\n * @param reinitialize if true, a new results structure is created for use by later calls.\r\n */\r\n public grabPairedResults(reinitialize: boolean = false): CurveLocationDetailPair[] {\r\n const result = this._results;\r\n if (reinitialize)\r\n this._results = [];\r\n return result;\r\n }\r\n /**\r\n * Record the pre-computed intersection between two curves. Filter by extension rules. Record with fraction mapping.\r\n * @param localFractionA intersection fraction local to the subcurve of cpA between fractionA0 and fractionA1\r\n * @param cpA the first curve\r\n * @param fractionA0 start of the subcurve of cpA\r\n * @param fractionA1 end of the subcurve of cpA\r\n * @param localFractionB intersection fraction local to the subcurve of cpB between fractionB0 and fractionB1\r\n * @param cpB the second curve\r\n * @param fractionB0 start of the subcurve of cpB\r\n * @param fractionB1 end of the subcurve of cpB\r\n * @param reversed whether to reverse the details in the recorded intersection pair\r\n * @param intervalDetails optional data for a coincident segment intersection\r\n */\r\n private recordPointWithLocalFractions(\r\n localFractionA: number,\r\n cpA: CurvePrimitive,\r\n fractionA0: number,\r\n fractionA1: number,\r\n localFractionB: number,\r\n cpB: CurvePrimitive,\r\n fractionB0: number,\r\n fractionB1: number,\r\n reversed: boolean,\r\n intervalDetails?: undefined | CurveLocationDetailPair,\r\n ): void {\r\n let globalFractionA, globalFractionB;\r\n let globalFractionA1, globalFractionB1;\r\n const isInterval = intervalDetails !== undefined &&\r\n intervalDetails.detailA.hasFraction1 &&\r\n intervalDetails.detailB.hasFraction1;\r\n if (isInterval) {\r\n globalFractionA = Geometry.interpolate(fractionA0, intervalDetails.detailA.fraction, fractionA1);\r\n globalFractionB = Geometry.interpolate(fractionB0, intervalDetails.detailB.fraction, fractionB1);\r\n globalFractionA1 = Geometry.interpolate(fractionA0, intervalDetails.detailA.fraction1!, fractionA1);\r\n globalFractionB1 = Geometry.interpolate(fractionB0, intervalDetails.detailB.fraction1!, fractionB1);\r\n } else {\r\n globalFractionA = globalFractionA1 = Geometry.interpolate(fractionA0, localFractionA, fractionA1);\r\n globalFractionB = globalFractionB1 = Geometry.interpolate(fractionB0, localFractionB, fractionB1);\r\n }\r\n // ignore duplicate of most recent pair\r\n const numPrevious = this._results.length;\r\n if (numPrevious > 0 && !isInterval) {\r\n const oldDetailA = this._results[numPrevious - 1].detailA;\r\n const oldDetailB = this._results[numPrevious - 1].detailB;\r\n if (reversed) {\r\n if (oldDetailB.isSameCurveAndFraction({ curve: cpA, fraction: globalFractionA }) &&\r\n oldDetailA.isSameCurveAndFraction({ curve: cpB, fraction: globalFractionB }))\r\n return;\r\n } else {\r\n if (oldDetailA.isSameCurveAndFraction({ curve: cpA, fraction: globalFractionA }) &&\r\n oldDetailB.isSameCurveAndFraction({ curve: cpB, fraction: globalFractionB }))\r\n return;\r\n }\r\n }\r\n const detailA = CurveLocationDetail.createCurveFractionPoint(\r\n cpA, globalFractionA, cpA.fractionToPoint(globalFractionA),\r\n );\r\n const detailB = CurveLocationDetail.createCurveFractionPoint(\r\n cpB, globalFractionB, cpB.fractionToPoint(globalFractionB),\r\n );\r\n if (isInterval) {\r\n detailA.captureFraction1Point1(globalFractionA1, cpA.fractionToPoint(globalFractionA1));\r\n detailB.captureFraction1Point1(globalFractionB1, cpB.fractionToPoint(globalFractionB1));\r\n } else {\r\n detailA.setIntervalRole(CurveIntervalRole.isolated);\r\n detailB.setIntervalRole(CurveIntervalRole.isolated);\r\n }\r\n if (reversed) {\r\n this._results.push(new CurveLocationDetailPair(detailB, detailA));\r\n } else {\r\n this._results.push(new CurveLocationDetailPair(detailA, detailB));\r\n }\r\n }\r\n /**\r\n * Emit recordPoint for multiple pairs (on full curve).\r\n * @param cpA first curve primitive (possibly different from curve in detailA, but fraction compatible).\r\n * @param cpB second curve primitive (possibly different from curve in detailA, but fraction compatible).\r\n * @param pairs array of pairs.\r\n * @param reversed true to have order reversed in final structures.\r\n */\r\n public recordPairs(\r\n cpA: CurvePrimitive, cpB: CurvePrimitive, pairs: CurveLocationDetailPair[] | undefined, reversed: boolean,\r\n ): void {\r\n if (pairs !== undefined) {\r\n for (const p of pairs) {\r\n this.recordPointWithLocalFractions(\r\n p.detailA.fraction, cpA, 0, 1, p.detailB.fraction, cpB, 0, 1, reversed, p,\r\n );\r\n }\r\n }\r\n }\r\n /** Compute intersection of two line segments. Filter by extension rules. Record with fraction mapping. */\r\n private computeSegmentSegment3D(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const aDir = { x: pointA1.x - pointA0.x, y: pointA1.y - pointA0.y };\r\n const bDir = { x: pointB1.x - pointB0.x, y: pointB1.y - pointB0.y };\r\n const tol = this._coincidentGeometryContext.tolerance;\r\n const fractions = SmallSystem.lineSegmentXYUVIntersectionUnbounded(pointA0, aDir, pointB0, bDir, tol);\r\n if (!fractions)\r\n return;\r\n if (fractions.f1) { // the lines are coincident\r\n const detailA = CurveLocationDetail.createCurveFractionPoint(undefined, fractions.f0.x, pointA0.interpolate(fractions.f0.x, pointA1));\r\n detailA.captureFraction1Point1(fractions.f1.x, pointA0.interpolate(fractions.f1.x, pointA1));\r\n const detailB = CurveLocationDetail.createCurveFractionPoint(undefined, fractions.f0.y, pointB0.interpolate(fractions.f0.y, pointB1));\r\n detailB.captureFraction1Point1(fractions.f1.y, pointB0.interpolate(fractions.f1.y, pointB1));\r\n const overlap = CurveLocationDetailPair.createCapture(detailA, detailB);\r\n if (this._coincidentGeometryContext.clampCoincidentOverlapToSegmentBounds(overlap, pointA0, pointA1, pointB0, pointB1, extendA0, extendA1, extendB0, extendB1))\r\n this.recordPointWithLocalFractions(overlap.detailA.fraction, cpA, fractionA0, fractionA1, overlap.detailB.fraction, cpB, fractionB0, fractionB1, reversed, overlap);\r\n } else { // the lines have a transverse intersection\r\n if (this.acceptFractionOnLine(extendA0, fractions.f0.x, extendA1, pointA0, pointA1, tol)) {\r\n if (this.acceptFractionOnLine(extendB0, fractions.f0.y, extendB1, pointB0, pointB1, tol))\r\n this.recordPointWithLocalFractions(fractions.f0.x, cpA, fractionA0, fractionA1, fractions.f0.y, cpB, fractionB0, fractionB1, reversed);\r\n }\r\n }\r\n }\r\n /**\r\n * Compute intersection of projected homogeneous line segments. Filter by extension rules. Record with\r\n * fraction mapping. Assumes caller knows the _worldToLocal is present.\r\n */\r\n private computeSegmentSegment3DH(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const hA0 = CurveCurveIntersectXY._workPointA0H;\r\n const hA1 = CurveCurveIntersectXY._workPointA1H;\r\n const hB0 = CurveCurveIntersectXY._workPointB0H;\r\n const hB1 = CurveCurveIntersectXY._workPointB1H;\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointA0, 1, hA0);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointA1, 1, hA1);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointB0, 1, hB0);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointB1, 1, hB1);\r\n const fractionAB = SmallSystem.lineSegment3dHXYTransverseIntersectionUnbounded(hA0, hA1, hB0, hB1);\r\n if (fractionAB !== undefined) {\r\n const fractionA = fractionAB.x;\r\n const fractionB = fractionAB.y;\r\n if (this.acceptFraction(extendA0, fractionA, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n // final fraction acceptance uses original world points, with perspective-aware fractions\r\n this.recordPointWithLocalFractions(\r\n fractionA, cpA, fractionA0, fractionA1, fractionB, cpB, fractionB0, fractionB1, reversed,\r\n );\r\n }\r\n }\r\n }\r\n // Caller accesses data from a line segment and passes to here.\r\n // The line segment in question might be (a) a full line segment or (b) a fragment within a linestring.\r\n // The fraction and extend parameters allow all combinations to be passed in.\r\n // This method applies transform.\r\n private dispatchSegmentSegment(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n if (this._worldToLocalAffine) {\r\n // non-perspective projection\r\n CurveCurveIntersectXY.setTransformedWorkPoints(this._worldToLocalAffine, pointA0, pointA1, pointB0, pointB1);\r\n this.computeSegmentSegment3D(\r\n cpA, extendA0, CurveCurveIntersectXY._workPointA0,\r\n fractionA0, CurveCurveIntersectXY._workPointA1, fractionA1, extendA1,\r\n cpB, extendB0, CurveCurveIntersectXY._workPointB0,\r\n fractionB0, CurveCurveIntersectXY._workPointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n } else if (this._worldToLocalPerspective) {\r\n this.computeSegmentSegment3DH(\r\n cpA, extendA0, pointA0, fractionA0, pointA1, fractionA1, extendA1,\r\n cpB, extendB0, pointB0, fractionB0, pointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n } else {\r\n this.computeSegmentSegment3D(\r\n cpA, extendA0, pointA0, fractionA0, pointA1, fractionA1, extendA1,\r\n cpB, extendB0, pointB0, fractionB0, pointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n // Caller accesses data from a linestring or segment and passes it here.\r\n // The line segment in question might be (a) a full line segment or (b) a fragment within a linestring.\r\n // The fraction and extend parameters allow all combinations to be passed in.\r\n private dispatchSegmentArc(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n arc: Arc3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const tol2 = this._coincidentGeometryContext.tolerance * this._coincidentGeometryContext.tolerance;\r\n const cosines = new GrowableFloat64Array(2);\r\n const sines = new GrowableFloat64Array(2);\r\n const radians = new GrowableFloat64Array(2);\r\n // Arc: X = C + cU + sV\r\n // Line: contains points A0,A1\r\n // Arc point colinear with line if det (A0, A1, X) = 0\r\n // with homogeneous xyw points and vectors.\r\n // With equational X: det (A0, A1, C) + c det (A0, A1,U) + s det (A0, A1, V) = 0.\r\n // solve for theta.\r\n // evaluate points.\r\n // project back to line.\r\n if (this._worldToLocalPerspective) {\r\n const data = arc.toTransformedPoint4d(this._worldToLocalPerspective);\r\n const radians0 = data.sweep.fractionToRadians(0);\r\n const pointB0H = data.center.plus2Scaled(data.vector0, Math.cos(radians0), data.vector90, Math.sin(radians0));\r\n const radians1 = data.sweep.fractionToRadians(1);\r\n const pointB1H = data.center.plus2Scaled(data.vector0, Math.cos(radians1), data.vector90, Math.sin(radians1));\r\n const pointA0H = this._worldToLocalPerspective.multiplyPoint3d(pointA0, 1);\r\n const pointA1H = this._worldToLocalPerspective.multiplyPoint3d(pointA1, 1);\r\n const alpha = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.center);\r\n const beta = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.vector0);\r\n const gamma = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.vector90);\r\n let numRoots = AnalyticRoots.appendImplicitLineUnitCircleIntersections(alpha, beta, gamma, cosines, sines, radians);\r\n const closeApproach = (0 === numRoots);\r\n if (closeApproach)\r\n numRoots = 1; // we returned the arc's closest approach as the first \"root\"; if within tolerance and at endpoints, we record it\r\n const acceptSolution = (iRoot: number, checkOnlyEndPointDistance: boolean = false): {fLine: number, fArc: number} | undefined => {\r\n const arcPoint = data.center.plus2Scaled(data.vector0, cosines.atUncheckedIndex(iRoot), data.vector90, sines.atUncheckedIndex(iRoot));\r\n let fArc = data.sweep.radiansToSignedFraction(radians.atUncheckedIndex(iRoot), extendB0);\r\n let fLine = SmallSystem.lineSegment3dHXYClosestPointUnbounded(pointA0H, pointA1H, arcPoint);\r\n if (fLine === undefined)\r\n return undefined;\r\n if (!checkOnlyEndPointDistance && this.acceptFraction(extendA0, fLine, extendA1) && this.acceptFraction(extendB0, fArc, extendB1))\r\n return {fLine, fArc};\r\n // check for an endpoint intersection that is beyond parametric tolerance but within point tolerance\r\n fLine = fLine < 0.5 ? 0 : 1;\r\n fArc = data.sweep.fractionToSignedPeriodicFraction(fArc) < 0.5 ? 0 : 1;\r\n const pointAH = fLine ? pointA1H : pointA0H;\r\n const pointBH = fArc ? pointB1H : pointB0H;\r\n const dist2 = pointAH.realDistanceSquaredXY(pointBH);\r\n return (dist2 !== undefined && Geometry.isDistanceWithinTol(dist2, tol2)) ? {fLine, fArc} : undefined;\r\n };\r\n for (let i = 0; i < numRoots; i++) {\r\n const result = acceptSolution(i, closeApproach);\r\n if (result)\r\n this.recordPointWithLocalFractions(result.fLine, cpA, fractionA0, fractionA1, result.fArc, arc, 0, 1, reversed);\r\n }\r\n } else {\r\n const data = arc.toTransformedVectors(this._worldToLocalAffine);\r\n const radians0 = data.sweep.fractionToRadians(0);\r\n const pointB0Local = data.center.plus2Scaled(data.vector0, Math.cos(radians0), data.vector90, Math.sin(radians0));\r\n const radians1 = data.sweep.fractionToRadians(1);\r\n const pointB1Local = data.center.plus2Scaled(data.vector0, Math.cos(radians1), data.vector90, Math.sin(radians1));\r\n let pointA0Local = pointA0;\r\n let pointA1Local = pointA1;\r\n if (this._worldToLocalAffine) {\r\n pointA0Local = this._worldToLocalAffine.multiplyPoint3d(pointA0);\r\n pointA1Local = this._worldToLocalAffine.multiplyPoint3d(pointA1);\r\n }\r\n const alpha = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.center, 1);\r\n const beta = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.vector0, 0);\r\n const gamma = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.vector90, 0);\r\n let numRoots = AnalyticRoots.appendImplicitLineUnitCircleIntersections(alpha, beta, gamma, cosines, sines, radians);\r\n const closeApproach = (0 === numRoots);\r\n if (closeApproach)\r\n numRoots = 1; // we returned the arc's closest approach as the first \"root\"; if within tolerance and at endpoints, we record it\r\n const acceptSolution = (iRoot: number, checkOnlyEndPointDistance: boolean = false): {fLine: number, fArc: number} | undefined => {\r\n const arcPoint = data.center.plus2Scaled(data.vector0, cosines.atUncheckedIndex(iRoot), data.vector90, sines.atUncheckedIndex(iRoot));\r\n let fArc = data.sweep.radiansToSignedFraction(radians.atUncheckedIndex(iRoot), extendB0);\r\n let fLine = SmallSystem.lineSegment3dXYClosestPointUnbounded(pointA0Local, pointA1Local, arcPoint);\r\n if (fLine === undefined)\r\n return undefined;\r\n if (!checkOnlyEndPointDistance && this.acceptFraction(extendA0, fLine, extendA1) && this.acceptFraction(extendB0, fArc, extendB1))\r\n return {fLine, fArc};\r\n // check for an endpoint intersection that is beyond parametric tolerance but within point tolerance\r\n fLine = fLine < 0.5 ? 0 : 1;\r\n fArc = data.sweep.fractionToSignedPeriodicFraction(fArc) < 0.5 ? 0 : 1;\r\n const pointALocal = fLine ? pointA1Local : pointA0Local;\r\n const pointBLocal = fArc ? pointB1Local : pointB0Local;\r\n const dist2 = pointALocal.distanceSquaredXY(pointBLocal);\r\n return Geometry.isDistanceWithinTol(dist2, tol2) ? {fLine, fArc} : undefined;\r\n };\r\n for (let i = 0; i < numRoots; i++) {\r\n const result = acceptSolution(i, closeApproach);\r\n if (result)\r\n this.recordPointWithLocalFractions(result.fLine, cpA, fractionA0, fractionA1, result.fArc, arc, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n /**\r\n * Compute the intersection of two xy-arcs.\r\n * * Each matrix has [U V C] in (x,y,w) form from homogeneous projection (local to world).\r\n * * Arcs are ordered so that matrixA is better conditioned.\r\n */\r\n private dispatchArcArcThisOrder(\r\n cpA: Arc3d, // arc closer to being circular\r\n matrixA: Matrix3d,\r\n extendA0: boolean,\r\n extendA1: boolean,\r\n cpB: Arc3d,\r\n matrixB: Matrix3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n // inverseA transforms arcA to its local coordinates, where it is the unit xy-circle\r\n const inverseA = matrixA.inverse();\r\n if (inverseA) {\r\n // localB defines the arc formed by transforming arcB into the local coordinates of arcA\r\n const localB = inverseA.multiplyMatrixMatrix(matrixB);\r\n const ellipseRadians: number[] = [];\r\n const circleRadians: number[] = [];\r\n // find the intersection of the transformed arcs\r\n TrigPolynomial.solveUnitCircleHomogeneousEllipseIntersection(\r\n localB.coffs[2], localB.coffs[5], localB.coffs[8], // center xyw\r\n localB.coffs[0], localB.coffs[3], localB.coffs[6], // vector0 xyw\r\n localB.coffs[1], localB.coffs[4], localB.coffs[7], // vector90 xyw\r\n ellipseRadians, circleRadians,\r\n );\r\n const tol2 = this._coincidentGeometryContext.tolerance * this._coincidentGeometryContext.tolerance;\r\n // the intersections are transform-invariant, so the solution angles apply directly to the input arcs\r\n for (let i = 0; i < ellipseRadians.length; i++) {\r\n let fractionA = cpA.sweep.radiansToSignedFraction(circleRadians[i], extendA0);\r\n let fractionB = cpB.sweep.radiansToSignedFraction(ellipseRadians[i], extendB0);\r\n if (this.acceptFraction(extendA0, fractionA, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(fractionA, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n } else { // check for endpoint intersection beyond angular tolerance but within point tolerance\r\n fractionA = cpA.sweep.fractionToSignedPeriodicFraction(fractionA) < 0.5 ? 0 : 1;\r\n fractionB = cpB.sweep.fractionToSignedPeriodicFraction(fractionB) < 0.5 ? 0 : 1;\r\n const endPointA = cpA.fractionToPoint(fractionA, CurveCurveIntersectXY._workPointAA0);\r\n const endPointB = cpB.fractionToPoint(fractionB, CurveCurveIntersectXY._workPointBB0);\r\n const dist2 = endPointA.distanceSquaredXY(endPointB);\r\n if (Geometry.isDistanceWithinTol(dist2, tol2))\r\n this.recordPointWithLocalFractions(fractionA, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n /**\r\n * We have 2 xy-arcs.\r\n * 1- We pick the arc that is closest to circular (larger condition number is closer to circular).\r\n * 2- Transform it to local coords, where it becomes the unit xy-circle.\r\n * 3- Use the same map to transform the other arc.\r\n * 4- Find the intersection of arc and unit circle.\r\n * 5- Convert intersection angles to fractions and record intersections.\r\n */\r\n private dispatchArcArc(\r\n cpA: Arc3d, extendA0: boolean, extendA1: boolean, cpB: Arc3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): void {\r\n // overlap handling. perspective is not handled.\r\n if (this._coincidentGeometryContext && !this._worldToLocalPerspective && !this._worldToLocalAffine) {\r\n const pairs = this._coincidentGeometryContext.coincidentArcIntersectionXY(cpA, cpB, true);\r\n if (pairs) {\r\n this.recordPairs(cpA, cpB, pairs, reversed);\r\n return;\r\n }\r\n }\r\n // look for isolated intersections\r\n let matrixA: Matrix3d;\r\n let matrixB: Matrix3d;\r\n if (this._worldToLocalPerspective) {\r\n const dataA = cpA.toTransformedPoint4d(this._worldToLocalPerspective);\r\n const dataB = cpB.toTransformedPoint4d(this._worldToLocalPerspective);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, dataA.vector0.w, dataA.vector90, dataA.vector90.w, dataA.center, dataA.center.w);\r\n matrixB = Matrix3d.createColumnsXYW(dataB.vector0, dataB.vector0.w, dataB.vector90, dataA.vector90.w, dataB.center, dataB.center.w);\r\n } else {\r\n const dataA = cpA.toTransformedVectors(this._worldToLocalAffine);\r\n const dataB = cpB.toTransformedVectors(this._worldToLocalAffine);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, 0, dataA.vector90, 0, dataA.center, 1);\r\n matrixB = Matrix3d.createColumnsXYW(dataB.vector0, 0, dataB.vector90, 0, dataB.center, 1);\r\n }\r\n const conditionA = matrixA.conditionNumber();\r\n const conditionB = matrixB.conditionNumber();\r\n // order the arcs so that the first one we pass in is closer to circular\r\n if (conditionA > conditionB)\r\n this.dispatchArcArcThisOrder(cpA, matrixA, extendA0, extendA1, cpB, matrixB, extendB0, extendB1, reversed);\r\n else\r\n this.dispatchArcArcThisOrder(cpB, matrixB, extendB0, extendB1, cpA, matrixA, extendA0, extendA1, !reversed);\r\n }\r\n\r\n /** Compute the intersection of an arc and a B-spline curve. */\r\n private dispatchArcBsplineCurve3d(\r\n cpA: Arc3d, extendA0: boolean, extendA1: boolean, cpB: BSplineCurve3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): void {\r\n // Arc: X = C + cU + sV\r\n // implicitize the arc as viewed. This \"3d\" matrix is homogeneous \"XYW\" not \"xyz\"\r\n let matrixA: Matrix3d;\r\n if (this._worldToLocalPerspective) {\r\n const dataA = cpA.toTransformedPoint4d(this._worldToLocalPerspective);\r\n matrixA = Matrix3d.createColumnsXYW(\r\n dataA.vector0, dataA.vector0.w, dataA.vector90, dataA.vector90.w, dataA.center, dataA.center.w,\r\n );\r\n } else {\r\n const dataA = cpA.toTransformedVectors(this._worldToLocalAffine);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, 0, dataA.vector90, 0, dataA.center, 1);\r\n }\r\n // The worldToLocal has moved the arc vectors into local space.\r\n // matrixA captures the xyw parts (ignoring z)\r\n const matrixAInverse = matrixA.inverse();\r\n if (matrixAInverse) {\r\n const orderF = cpB.order; // order of the beziers for simple coordinates\r\n const orderG = 2 * orderF - 1; // order of the (single) bezier for squared coordinates.\r\n const coffF = new Float64Array(orderF);\r\n const univariateBezierG = new UnivariateBezier(orderG);\r\n const axx = matrixAInverse.at(0, 0);\r\n const axy = matrixAInverse.at(0, 1);\r\n const axz = 0.0;\r\n const axw = matrixAInverse.at(0, 2);\r\n const ayx = matrixAInverse.at(1, 0);\r\n const ayy = matrixAInverse.at(1, 1);\r\n const ayz = 0.0;\r\n const ayw = matrixAInverse.at(1, 2);\r\n const awx = matrixAInverse.at(2, 0);\r\n const awy = matrixAInverse.at(2, 1);\r\n const awz = 0.0;\r\n const aww = matrixAInverse.at(2, 2);\r\n\r\n let bezier: BezierCurve3dH | undefined;\r\n for (let spanIndex = 0; ; spanIndex++) {\r\n bezier = cpB.getSaturatedBezierSpan3dH(spanIndex, bezier);\r\n if (!bezier)\r\n break;\r\n if (this._worldToLocalPerspective)\r\n bezier.tryMultiplyMatrix4dInPlace(this._worldToLocalPerspective);\r\n else if (this._worldToLocalAffine)\r\n bezier.tryTransformInPlace(this._worldToLocalAffine);\r\n univariateBezierG.zero();\r\n bezier.poleProductsXYZW(coffF, axx, axy, axz, axw);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, 1.0);\r\n bezier.poleProductsXYZW(coffF, ayx, ayy, ayz, ayw);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, 1.0);\r\n bezier.poleProductsXYZW(coffF, awx, awy, awz, aww);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, -1.0);\r\n const roots = univariateBezierG.roots(0.0, true);\r\n if (roots) {\r\n for (const root of roots) {\r\n const fractionB = bezier.fractionToParentFraction(root);\r\n // The univariate bezier (which has been transformed by the view transform) evaluates into xyw space\r\n const bcurvePoint4d = bezier.fractionToPoint4d(root);\r\n const c = bcurvePoint4d.dotProductXYZW(axx, axy, axz, axw);\r\n const s = bcurvePoint4d.dotProductXYZW(ayx, ayy, ayz, ayw);\r\n const arcFraction = cpA.sweep.radiansToSignedFraction(Math.atan2(s, c), extendA0);\r\n if (this.acceptFraction(extendA0, arcFraction, extendA1) &&\r\n this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(arcFraction, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n }\r\n }\r\n /** Apply the transformation to bezier curves. Optionally construct ranges. */\r\n private transformBeziers(beziers: BezierCurve3dH[]): void {\r\n if (this._worldToLocalAffine) {\r\n for (const bezier of beziers) bezier.tryTransformInPlace(this._worldToLocalAffine);\r\n } else if (this._worldToLocalPerspective) {\r\n for (const bezier of beziers) bezier.tryMultiplyMatrix4dInPlace(this._worldToLocalPerspective);\r\n }\r\n }\r\n private getRanges(beziers: BezierCurveBase[]): Range3d[] {\r\n const ranges: Range3d[] = [];\r\n ranges.length = 0;\r\n for (const b of beziers) {\r\n ranges.push(b.range());\r\n }\r\n return ranges;\r\n }\r\n private dispatchBezierBezierStrokeFirst(\r\n bezierA: BezierCurve3dH,\r\n bcurveA: BSplineCurve3dBase,\r\n strokeCountA: number,\r\n bezierB: BezierCurve3dH,\r\n bcurveB: BSplineCurve3dBase,\r\n _strokeCountB: number,\r\n univariateBezierB: UnivariateBezier, // caller-allocated for univariate coefficients\r\n reversed: boolean,\r\n ): void {\r\n if (!this._xyzwA0)\r\n this._xyzwA0 = Point4d.create();\r\n if (!this._xyzwA1)\r\n this._xyzwA1 = Point4d.create();\r\n if (!this._xyzwPlane)\r\n this._xyzwPlane = Point4d.create();\r\n if (!this._xyzwB)\r\n this._xyzwB = Point4d.create();\r\n /*\r\n const roots = univariateBezierG.roots(0.0, true);\r\n if (roots) {\r\n for (const root of roots) {\r\n const fractionB = bezier.fractionToParentFraction(root);\r\n // The univariate bezier (which has been transformed by the view transform) evaluates into xyw space\r\n const bcurvePoint4d = bezier.fractionToPoint4d(root);\r\n const c = bcurvePoint4d.dotProductXYZW(axx, axy, axz, axw);\r\n const s = bcurvePoint4d.dotProductXYZW(ayx, ayy, ayz, ayw);\r\n const arcFraction = cpA.sweep.radiansToSignedPeriodicFraction(Math.atan2(s, c));\r\n if (this.acceptFraction(extendA, arcFraction, extendA) && this.acceptFraction(extendB, fractionB, extendB)) {\r\n this.recordPointWithLocalFractions(\r\n arcFraction, cpA, 0, 1, fractionB, cpB, 0, 1, reversed,\r\n );\r\n }\r\n }\r\n */\r\n bezierA.fractionToPoint4d(0.0, this._xyzwA0);\r\n let f0 = 0.0;\r\n let f1;\r\n const intervalTolerance = 1.0e-5;\r\n const df = 1.0 / strokeCountA;\r\n for (let i = 1; i <= strokeCountA; i++, f0 = f1, this._xyzwA0.setFrom(this._xyzwA1)) {\r\n f1 = i * df;\r\n bezierA.fractionToPoint4d(f1, this._xyzwA1);\r\n Point4d.createPlanePointPointZ(this._xyzwA0, this._xyzwA1, this._xyzwPlane);\r\n bezierB.poleProductsXYZW(\r\n univariateBezierB.coffs, this._xyzwPlane.x, this._xyzwPlane.y, this._xyzwPlane.z, this._xyzwPlane.w,\r\n );\r\n let errors = 0;\r\n const roots = univariateBezierB.roots(0.0, true);\r\n if (roots) {\r\n for (const r of roots) {\r\n let bezierBFraction = r;\r\n bezierB.fractionToPoint4d(bezierBFraction, this._xyzwB);\r\n const segmentAFraction = SmallSystem.lineSegment3dHXYClosestPointUnbounded(\r\n this._xyzwA0, this._xyzwA1, this._xyzwB,\r\n );\r\n if (segmentAFraction !== undefined && Geometry.isIn01WithTolerance(segmentAFraction, intervalTolerance)) {\r\n let bezierAFraction = Geometry.interpolate(f0, segmentAFraction, f1);\r\n // We have a near intersection at fractions on the two beziers\r\n // Iterate on the curves for a true intersection\r\n const xyMatchingFunction = new CurveCurveIntersectionXYRRToRRD(bezierA, bezierB);\r\n const newtonSearcher = new Newton2dUnboundedWithDerivative(xyMatchingFunction);\r\n newtonSearcher.setUV(bezierAFraction, bezierBFraction);\r\n if (newtonSearcher.runIterations()) {\r\n bezierAFraction = newtonSearcher.getU();\r\n bezierBFraction = newtonSearcher.getV();\r\n }\r\n const bcurveAFraction = bezierA.fractionToParentFraction(bezierAFraction);\r\n const bcurveBFraction = bezierB.fractionToParentFraction(bezierBFraction);\r\n if (false) { // verify results\r\n const xyzA0 = bezierA.fractionToPoint(bezierAFraction);\r\n const xyzA1 = bcurveA.fractionToPoint(bcurveAFraction);\r\n const xyzB0 = bezierB.fractionToPoint(bezierBFraction);\r\n const xyzB1 = bcurveB.fractionToPoint(bcurveBFraction);\r\n if (!xyzA0.isAlmostEqualXY(xyzA1))\r\n errors++;\r\n if (!xyzB0.isAlmostEqualXY(xyzB1))\r\n errors++;\r\n if (errors > 0 && !xyzA0.isAlmostEqual(xyzB0))\r\n errors++;\r\n if (errors > 0 && !xyzA1.isAlmostEqual(xyzB1))\r\n errors++;\r\n }\r\n if (this.acceptFraction(false, bcurveAFraction, false) && this.acceptFraction(false, bcurveBFraction, false)) {\r\n this.recordPointWithLocalFractions(\r\n bcurveAFraction, bcurveA, 0, 1, bcurveBFraction, bcurveB, 0, 1, reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n }\r\n }\r\n private dispatchBSplineCurve3dBSplineCurve3d(\r\n bcurveA: BSplineCurve3dBase, bcurveB: BSplineCurve3dBase, reversed: boolean,\r\n ): void {\r\n const bezierSpanA = bcurveA.collectBezierSpans(true) as BezierCurve3dH[];\r\n const bezierSpanB = bcurveB.collectBezierSpans(true) as BezierCurve3dH[];\r\n const numA = bezierSpanA.length;\r\n const numB = bezierSpanB.length;\r\n this.transformBeziers(bezierSpanA);\r\n this.transformBeziers(bezierSpanB);\r\n const rangeA = this.getRanges(bezierSpanA);\r\n const rangeB = this.getRanges(bezierSpanB);\r\n const orderA = bcurveA.order;\r\n const orderB = bcurveB.order;\r\n const univariateCoffsA = new UnivariateBezier(orderA);\r\n const univariateCoffsB = new UnivariateBezier(orderB);\r\n for (let a = 0; a < numA; a++) {\r\n for (let b = 0; b < numB; b++) {\r\n if (rangeA[a].intersectsRangeXY(rangeB[b])) {\r\n const strokeCountA = bezierSpanA[a].computeStrokeCountForOptions();\r\n const strokeCountB = bezierSpanB[b].computeStrokeCountForOptions();\r\n if (strokeCountA < strokeCountB)\r\n this.dispatchBezierBezierStrokeFirst(\r\n bezierSpanA[a], bcurveA, strokeCountA, bezierSpanB[b], bcurveB, strokeCountB, univariateCoffsB, reversed,\r\n );\r\n else\r\n this.dispatchBezierBezierStrokeFirst(\r\n bezierSpanB[b], bcurveB, strokeCountB, bezierSpanA[a], bcurveA, strokeCountA, univariateCoffsA, !reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n /**\r\n * Apply the projection transform (if any) to (xyz, w).\r\n * @param xyz xyz parts of input point.\r\n * @param w weight to use for homogeneous effects.\r\n */\r\n private projectPoint(xyz: XYAndZ, w: number = 1.0): Point4d {\r\n if (this._worldToLocalPerspective)\r\n return this._worldToLocalPerspective.multiplyPoint3d(xyz, w);\r\n if (this._worldToLocalAffine)\r\n return this._worldToLocalAffine.multiplyXYZW(xyz.x, xyz.y, xyz.z, w);\r\n return Point4d.createFromPointAndWeight(xyz, w);\r\n }\r\n private mapNPCPlaneToWorld(npcPlane: Point4d, worldPlane: Point4d) {\r\n // for NPC pointY, Y^ * H = 0 is \"on\" plane H. (Hat is transpose)\r\n // NPC Y is A*X for our transform A and worldPointX.\r\n // hence (A X)^ * H = 0\r\n // hence X^ * A^ * H = 0\r\n // hence K = A^ * H\r\n if (this._worldToLocalAffine) {\r\n this._worldToLocalAffine.multiplyTransposeXYZW(npcPlane.x, npcPlane.y, npcPlane.z, npcPlane.w, worldPlane);\r\n } else if (this._worldToLocalPerspective) {\r\n this._worldToLocalPerspective.multiplyTransposePoint4d(npcPlane, worldPlane);\r\n } else {\r\n npcPlane.clone(worldPlane);\r\n }\r\n }\r\n // Caller accesses data from segment and bsplineCurve.\r\n // Selects the best conditioned arc (in xy parts) as \"circle after inversion\".\r\n // Solves the arc-arc equations.\r\n private dispatchSegmentBsplineCurve(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n bcurve: BSplineCurve3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const pointA0H = this.projectPoint(pointA0);\r\n const pointA1H = this.projectPoint(pointA1);\r\n const planeCoffs = Point4d.createPlanePointPointZ(pointA0H, pointA1H);\r\n this.mapNPCPlaneToWorld(planeCoffs, planeCoffs);\r\n // NOW .. we have a plane in world space. Intersect it with the bspline:\r\n const intersections: CurveLocationDetail[] = [];\r\n bcurve.appendPlaneIntersectionPoints(planeCoffs, intersections);\r\n // intersections has WORLD points with bspline fractions.\r\n // (the bspline fractions are all good 0..1 fractions within the spline).\r\n // accept those that are within the segment range.\r\n for (const detail of intersections) {\r\n const fractionB = detail.fraction;\r\n const curvePoint = detail.point;\r\n const curvePointH = this.projectPoint(curvePoint);\r\n const lineFraction = SmallSystem.lineSegment3dHXYClosestPointUnbounded(pointA0H, pointA1H, curvePointH);\r\n if (lineFraction !== undefined) {\r\n if (this.acceptFraction(extendA0, lineFraction, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(lineFraction, cpA, fractionA0, fractionA1, fractionB, bcurve, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n /** Low level dispatch of linestring with (beziers of) a bspline curve. */\r\n public dispatchLineStringBSplineCurve(\r\n lsA: LineString3d, extendA0: boolean, extendA1: boolean,\r\n curveB: BSplineCurve3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): any {\r\n const numA = lsA.numPoints();\r\n if (numA > 1) {\r\n const dfA = 1.0 / (numA - 1);\r\n let fA0;\r\n let fA1;\r\n fA0 = 0.0;\r\n const pointA0 = CurveCurveIntersectXY._workPointA0;\r\n const pointA1 = CurveCurveIntersectXY._workPointA1;\r\n lsA.pointAt(0, pointA0);\r\n for (let iA = 1; iA < numA; iA++, pointA0.setFrom(pointA1), fA0 = fA1) {\r\n lsA.pointAt(iA, pointA1);\r\n fA1 = iA * dfA;\r\n this.dispatchSegmentBsplineCurve(\r\n lsA, iA === 1 && extendA0, pointA0, fA0, pointA1, fA1, (iA + 1) === numA && extendA1,\r\n curveB, extendB0, extendB1, reversed);\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for segment intersecting linestring. */\r\n public computeSegmentLineString(\r\n lsA: LineSegment3d, extendA0: boolean, extendA1: boolean,\r\n lsB: LineString3d, extendB0: boolean, extendB1: boolean,\r\n reversed: boolean,\r\n ): any {\r\n const pointA0 = lsA.point0Ref;\r\n const pointA1 = lsA.point1Ref;\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numB = lsB.numPoints();\r\n if (numB > 1) {\r\n const dfB = 1.0 / (numB - 1);\r\n let fB0;\r\n let fB1;\r\n fB0 = 0.0;\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentSegment(\r\n lsA, extendA0, pointA0, 0.0, pointA1, 1.0, extendA1,\r\n lsB, ib === 1 && extendB0, pointB0, fB0, pointB1, fB1, (ib + 1) === numB && extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for arc intersecting linestring. */\r\n public computeArcLineString(\r\n arcA: Arc3d, extendA0: boolean, extendA1: boolean,\r\n lsB: LineString3d, extendB0: boolean, extendB1: boolean,\r\n reversed: boolean,\r\n ): any {\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numB = lsB.numPoints();\r\n if (numB > 1) {\r\n const dfB = 1.0 / (numB - 1);\r\n let fB0;\r\n let fB1;\r\n fB0 = 0.0;\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentArc(\r\n lsB, ib === 1 && extendB0, pointB0, fB0, pointB1, fB1,\r\n (ib + 1) === numB && extendB1, arcA, extendA0, extendA1, !reversed,\r\n );\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for linestring intersecting linestring. */\r\n private computeLineStringLineString(lsA: LineString3d, lsB: LineString3d, reversed: boolean): void {\r\n const pointA0 = CurveCurveIntersectXY._workPointAA0;\r\n const pointA1 = CurveCurveIntersectXY._workPointAA1;\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numA = lsA.numPoints();\r\n const numB = lsB.numPoints();\r\n if (numA > 1 && numB > 1) {\r\n lsA.pointAt(0, pointA0);\r\n const dfA = 1.0 / (numA - 1);\r\n const dfB = 1.0 / (numB - 1);\r\n let fA0 = 0.0;\r\n let fB0;\r\n let fA1;\r\n let fB1;\r\n lsA.pointAt(0, pointA0);\r\n for (let ia = 1; ia < numA; ia++, pointA0.setFrom(pointA1), fA0 = fA1) {\r\n fA1 = ia * dfA;\r\n fB0 = 0.0;\r\n lsA.pointAt(ia, pointA1);\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentSegment(\r\n lsA, ia === 1 && this._extendA0, pointA0, fA0, pointA1, fA1, (ia + 1) === numA && this._extendA1,\r\n lsB, ib === 1 && this._extendB0, pointB0, fB0, pointB1, fB1, (ib + 1) === numB && this._extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n private static setTransformedWorkPoints(\r\n transform: Transform, pointA0: Point3d, pointA1: Point3d, pointB0: Point3d, pointB1: Point3d,\r\n ): void {\r\n transform.multiplyPoint3d(pointA0, this._workPointA0);\r\n transform.multiplyPoint3d(pointA1, this._workPointA1);\r\n transform.multiplyPoint3d(pointB0, this._workPointB0);\r\n transform.multiplyPoint3d(pointB1, this._workPointB1);\r\n }\r\n /**\r\n * Low level dispatch of curve collection.\r\n * We take care of extend variables of geometry's children here if geometry is Path or Loop.\r\n */\r\n private dispatchCurveCollection(geomA: AnyCurve, geomAHandler: (geomA: any) => any): void {\r\n const geomB = this._geometryB; // save\r\n if (!geomB || !geomB.children || !(geomB instanceof CurveCollection))\r\n return;\r\n const children = geomB.children;\r\n const extendB0 = this._extendB0; // save\r\n const extendB1 = this._extendB1; // save\r\n for (let i = 0; i < children.length; i++) {\r\n this.resetGeometry(children[i]);\r\n if (geomB instanceof Path && children.length > 1) {\r\n if (i === 0)\r\n this._extendB1 = false; // first child can only extend from start\r\n else if (i === children.length - 1)\r\n this._extendB0 = false; // last child can only extend from end\r\n else\r\n this._extendB0 = this._extendB1 = false; // middle children cannot extend\r\n } else if (geomB instanceof Loop) {\r\n this._extendB0 = this._extendB1 = false; // Loops cannot extend\r\n }\r\n geomAHandler(geomA);\r\n this._extendB0 = extendB0; // restore\r\n this._extendB1 = extendB1; // restore\r\n }\r\n this.resetGeometry(geomB); // restore\r\n }\r\n /**\r\n * Low level dispatch of CurveChainWithDistanceIndex.\r\n * We take care of extend variables of geometry's children here if geometry.path is Path or Loop.\r\n */\r\n private dispatchCurveChainWithDistanceIndex(geomA: AnyCurve, geomAHandler: (geomA: any) => any): void {\r\n if (!this._geometryB || !(this._geometryB instanceof CurveChainWithDistanceIndex))\r\n return;\r\n if (geomA instanceof CurveChainWithDistanceIndex) {\r\n assert(false, \"call handleCurveChainWithDistanceIndex(geomA) instead\");\r\n }\r\n const index0 = this._results.length;\r\n const geomB = this._geometryB; // save\r\n this.resetGeometry(geomB.path);\r\n this.dispatchCurveCollection(geomA, geomAHandler);\r\n this.resetGeometry(geomB); // restore\r\n this._results = CurveChainWithDistanceIndex.convertChildDetailToChainDetail(\r\n this._results, index0, undefined, geomB, true,\r\n );\r\n }\r\n /**\r\n * Invoke `child.dispatchToGeometryHandler(this)` for each child in the array returned by the query `g.children`.\r\n * We take care of extend variables of geometry's children here if geometry is Path or Loop.\r\n */\r\n public override handleChildren(g: GeometryQuery): any {\r\n const children = g.children;\r\n const extendA0 = this._extendA0; // save\r\n const extendA1 = this._extendA1; // save\r\n if (children)\r\n for (let i = 0; i < children.length; i++) {\r\n if (g instanceof Path && children.length > 1) {\r\n if (i === 0)\r\n this._extendA1 = false; // first child can only extend from start\r\n else if (i === children.length - 1)\r\n this._extendA0 = false; // last child can only extend from end\r\n else\r\n this._extendA0 = this._extendA1 = false; // middle children cannot extend\r\n } else if (g instanceof Loop) {\r\n this._extendA0 = this._extendA1 = false; // Loops cannot extend\r\n }\r\n children[i].dispatchToGeometryHandler(this);\r\n this._extendA0 = extendA0; // restore\r\n this._extendA1 = extendA1; // restore\r\n }\r\n }\r\n /** Double dispatch handler for strongly typed segment. */\r\n public override handleLineSegment3d(segmentA: LineSegment3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n const segmentB = this._geometryB;\r\n this.dispatchSegmentSegment(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n segmentB, this._extendB0, segmentB.point0Ref, 0.0, segmentB.point1Ref, 1.0, this._extendB1,\r\n false,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.computeSegmentLineString(\r\n segmentA, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchSegmentArc(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(segmentA, this.handleLineSegment3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(segmentA, this.handleLineSegment3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed linestring. */\r\n public override handleLineString3d(lsA: LineString3d): any {\r\n if (this._geometryB instanceof LineString3d) {\r\n const lsB = this._geometryB;\r\n this.computeLineStringLineString(lsA, lsB, false);\r\n } else if (this._geometryB instanceof LineSegment3d) {\r\n this.computeSegmentLineString(\r\n this._geometryB, this._extendB0, this._extendB1, lsA, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.computeArcLineString(\r\n this._geometryB, this._extendB0, this._extendB1, lsA, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchLineStringBSplineCurve(\r\n lsA, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(lsA, this.handleLineString3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(lsA, this.handleLineString3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed arc. */\r\n public override handleArc3d(arc0: Arc3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentArc(\r\n this._geometryB, this._extendB0, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB1,\r\n arc0, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.computeArcLineString(\r\n arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcArc(arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false);\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchArcBsplineCurve3d(\r\n arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(arc0, this.handleArc3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(arc0, this.handleArc3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed bspline curve. */\r\n public override handleBSplineCurve3d(curve: BSplineCurve3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n this._geometryB, this._extendB0, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB1,\r\n curve, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.dispatchLineStringBSplineCurve(\r\n this._geometryB, this._extendB0, this._extendB1, curve, this._extendA0, this._extendA1, true);\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcBsplineCurve3d(\r\n this._geometryB, this._extendB0, this._extendB1, curve, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3dBase) {\r\n this.dispatchBSplineCurve3dBSplineCurve3d(curve, this._geometryB, false);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(curve, this.handleBSplineCurve3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(curve, this.handleBSplineCurve3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed CurveChainWithDistanceIndex. */\r\n public override handleCurveChainWithDistanceIndex(chain: CurveChainWithDistanceIndex): any {\r\n super.handleCurveChainWithDistanceIndex(chain);\r\n // if _geometryB is also a CurveChainWithDistanceIndex, it will already have been converted by dispatchCurveChainWithDistanceIndex\r\n this._results = CurveChainWithDistanceIndex.convertChildDetailToChainDetail(this._results, 0, chain, undefined, true);\r\n }\r\n /** Double dispatch handler for strongly typed homogeneous bspline curve. */\r\n public override handleBSplineCurve3dH(_curve: BSplineCurve3dH): any {\r\n /*\r\n // NEEDS WORK -- make \"dispatch\" methods tolerant of both 3d and 3dH .\r\n // \"easy\" if both present BezierCurve3dH span loaders\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n this._geometryB, this._extendB, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB,\r\n curve, this._extendA, true);\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.dispatchLineStringBSplineCurve(this._geometryB, this._extendB, curve, this._extendA, true);\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcBsplineCurve3d(this._geometryB, this._extendB, curve, this._extendA, true);\r\n }\r\n */\r\n return undefined;\r\n }\r\n}\r\n"]}
1
+ {"version":3,"file":"CurveCurveIntersectXY.js","sourceRoot":"","sources":["../../../../src/curve/internalContexts/CurveCurveIntersectXY.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AAEH,OAAO,EAAE,MAAM,EAAE,MAAM,qBAAqB,CAAC;AAG7C,OAAO,EAAE,cAAc,EAAE,kBAAkB,EAAE,MAAM,4BAA4B,CAAC;AAEhF,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,uBAAuB,EAAE,MAAM,wCAAwC,CAAC;AACjF,OAAO,EAAE,8BAA8B,EAAE,MAAM,kCAAkC,CAAC;AAClF,OAAO,EAAE,oBAAoB,EAAE,MAAM,uCAAuC,CAAC;AAC7E,OAAO,EAAE,QAAQ,EAAE,MAAM,2BAA2B,CAAC;AACrD,OAAO,EAAE,OAAO,EAAE,MAAM,kCAAkC,CAAC;AAK3D,OAAO,EAAE,OAAO,EAAE,MAAM,0BAA0B,CAAC;AACnD,OAAO,EAAE,gBAAgB,EAAE,MAAM,kCAAkC,CAAC;AACpE,OAAO,EAAE,+BAA+B,EAAE,+BAA+B,EAAE,MAAM,uBAAuB,CAAC;AACzG,OAAO,EAAE,aAAa,EAAE,cAAc,EAAE,MAAM,4BAA4B,CAAC;AAC3E,OAAO,EAAE,WAAW,EAAE,MAAM,4BAA4B,CAAC;AACzD,OAAO,EAAE,KAAK,EAAE,MAAM,UAAU,CAAC;AACjC,OAAO,EAAE,2BAA2B,EAAE,MAAM,gCAAgC,CAAC;AAC7E,OAAO,EAAE,eAAe,EAAE,MAAM,oBAAoB,CAAC;AACrD,OAAO,EAAE,iBAAiB,EAAE,mBAAmB,EAAE,uBAAuB,EAAE,MAAM,wBAAwB,CAAC;AACzG,OAAO,EAAE,cAAc,EAAE,MAAM,mBAAmB,CAAC;AAGnD,OAAO,EAAE,aAAa,EAAE,MAAM,kBAAkB,CAAC;AACjD,OAAO,EAAE,YAAY,EAAE,MAAM,iBAAiB,CAAC;AAC/C,OAAO,EAAE,IAAI,EAAE,MAAM,SAAS,CAAC;AAC/B,OAAO,EAAE,IAAI,EAAE,MAAM,SAAS,CAAC;AAC/B,OAAO,EAAE,UAAU,EAAE,MAAM,eAAe,CAAC;AAC3C,OAAO,EAAE,kBAAkB,EAAE,MAAM,8BAA8B,CAAC;AAElE,mBAAmB;AACnB;;;;;GAKG;AACH,MAAM,OAAO,qBAAsB,SAAQ,8BAA8B;IAC/D,SAAS,CAAU;IACnB,SAAS,CAAU;IACnB,UAAU,CAAuB;IACjC,SAAS,CAAU;IACnB,SAAS,CAAU;IACnB,QAAQ,CAA4B;IACpC,wBAAwB,CAAuB;IAC/C,mBAAmB,CAAwB;IAC3C,0BAA0B,CAA0B;IACpD,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,aAAa,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACxC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,MAAM,CAAC,YAAY,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;IACvC,OAAO,CAAW;IAClB,OAAO,CAAW;IAClB,UAAU,CAAW;IACrB,MAAM,CAAW;IACzB;;;;;;;OAOG;IACH,YACE,YAAkC,EAClC,OAAgB,EAChB,SAA+B,EAC/B,OAAgB,EAChB,YAAoB,QAAQ,CAAC,mBAAmB;QAEhD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,UAAU,GAAG,SAAS,YAAY,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC,UAAU,CAAC,CAAC,CAAC,SAAS,CAAC;QACrF,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,SAAS,GAAG,OAAO,CAAC;QACzB,IAAI,CAAC,wBAAwB,GAAG,SAAS,CAAC;QAC1C,IAAI,CAAC,mBAAmB,GAAG,SAAS,CAAC;QACrC,IAAI,YAAY,KAAK,SAAS,IAAI,CAAC,YAAY,CAAC,UAAU,EAAE,EAAE,CAAC;YAC7D,IAAI,CAAC,mBAAmB,GAAG,YAAY,CAAC,WAAW,CAAC;YACpD,IAAI,CAAC,IAAI,CAAC,mBAAmB;gBAC3B,IAAI,CAAC,wBAAwB,GAAG,YAAY,CAAC,KAAK,EAAE,CAAC;QACzD,CAAC;QACD,IAAI,CAAC,0BAA0B,GAAG,uBAAuB,CAAC,MAAM,CAAC,SAAS,CAAC,CAAC;QAC5E,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAC;IACrB,CAAC;IACD,wGAAwG;IACjG,aAAa,CAAC,SAAmB;QACtC,IAAI,CAAC,UAAU,GAAG,SAAS,CAAC;IAC9B,CAAC;IACD,iFAAiF;IACzE,cAAc,CAAC,OAAgB,EAAE,QAAgB,EAAE,OAAgB,EAAE,cAAsB,OAAO;QACxG,mHAAmH;QACnH,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,WAAW;YACrC,OAAO,KAAK,CAAC;QACf,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,GAAG,GAAG,WAAW;YAC1C,OAAO,KAAK,CAAC;QACf,OAAO,IAAI,CAAC;IACd,CAAC;IACD,yFAAyF;IACjF,oBAAoB,CAC1B,OAAgB,EAChB,QAAgB,EAChB,OAAgB,EAChB,MAAe,EACf,MAAe,EACf,YAAoB,QAAQ,CAAC,mBAAmB;QAEhD,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,CAAC,EAAE,CAAC;YAC7B,OAAO,QAAQ,CAAC,mBAAmB,CAAC,QAAQ,GAAG,MAAM,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,CAAC,CAAC;QACvF,CAAC;aAAM,IAAI,CAAC,OAAO,IAAI,QAAQ,GAAG,GAAG;YACnC,OAAO,QAAQ,CAAC,mBAAmB,CAAC,CAAC,QAAQ,GAAG,GAAG,CAAC,GAAG,MAAM,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,SAAS,CAAC,CAAC;QAC/F,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;OAGG;IACI,iBAAiB,CAAC,eAAwB,KAAK;QACpD,MAAM,MAAM,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC7B,IAAI,YAAY;YACd,IAAI,CAAC,QAAQ,GAAG,EAAE,CAAC;QACrB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;OAYG;IACK,6BAA6B,CACnC,cAAsB,EACtB,GAAmB,EACnB,UAAkB,EAClB,UAAkB,EAClB,cAAsB,EACtB,GAAmB,EACnB,UAAkB,EAClB,UAAkB,EAClB,QAAiB,EACjB,eAAqD;QAErD,IAAI,eAAe,EAAE,eAAe,CAAC;QACrC,IAAI,gBAAgB,EAAE,gBAAgB,CAAC;QACvC,MAAM,UAAU,GAAG,eAAe,KAAK,SAAS;YAC9C,eAAe,CAAC,OAAO,CAAC,YAAY;YACpC,eAAe,CAAC,OAAO,CAAC,YAAY,CAAC;QACvC,IAAI,UAAU,EAAE,CAAC;YACf,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;YACjG,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;YACjG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,SAAU,EAAE,UAAU,CAAC,CAAC;YACpG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,eAAe,CAAC,OAAO,CAAC,SAAU,EAAE,UAAU,CAAC,CAAC;QACtG,CAAC;aAAM,CAAC;YACN,eAAe,GAAG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,cAAc,EAAE,UAAU,CAAC,CAAC;YAClG,eAAe,GAAG,gBAAgB,GAAG,QAAQ,CAAC,WAAW,CAAC,UAAU,EAAE,cAAc,EAAE,UAAU,CAAC,CAAC;QACpG,CAAC;QACD,uCAAuC;QACvC,MAAM,WAAW,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;QACzC,IAAI,WAAW,GAAG,CAAC,IAAI,CAAC,UAAU,EAAE,CAAC;YACnC,MAAM,UAAU,GAAG,IAAI,CAAC,QAAQ,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC;YAC1D,MAAM,UAAU,GAAG,IAAI,CAAC,QAAQ,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC,OAAO,CAAC;YAC1D,IAAI,QAAQ,EAAE,CAAC;gBACb,IAAI,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC9E,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC5E,OAAO;YACX,CAAC;iBAAM,CAAC;gBACN,IAAI,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC9E,UAAU,CAAC,sBAAsB,CAAC,EAAE,KAAK,EAAE,GAAG,EAAE,QAAQ,EAAE,eAAe,EAAE,CAAC;oBAC5E,OAAO;YACX,CAAC;QACH,CAAC;QACD,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAC1D,GAAG,EAAE,eAAe,EAAE,GAAG,CAAC,eAAe,CAAC,eAAe,CAAC,CAC3D,CAAC;QACF,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAC1D,GAAG,EAAE,eAAe,EAAE,GAAG,CAAC,eAAe,CAAC,eAAe,CAAC,CAC3D,CAAC;QACF,IAAI,UAAU,EAAE,CAAC;YACf,OAAO,CAAC,sBAAsB,CAAC,gBAAgB,EAAE,GAAG,CAAC,eAAe,CAAC,gBAAgB,CAAC,CAAC,CAAC;YACxF,OAAO,CAAC,sBAAsB,CAAC,gBAAgB,EAAE,GAAG,CAAC,eAAe,CAAC,gBAAgB,CAAC,CAAC,CAAC;QAC1F,CAAC;aAAM,CAAC;YACN,OAAO,CAAC,eAAe,CAAC,iBAAiB,CAAC,QAAQ,CAAC,CAAC;YACpD,OAAO,CAAC,eAAe,CAAC,iBAAiB,CAAC,QAAQ,CAAC,CAAC;QACtD,CAAC;QACD,IAAI,QAAQ,EAAE,CAAC;YACb,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,IAAI,uBAAuB,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QACpE,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,IAAI,uBAAuB,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QACpE,CAAC;IACH,CAAC;IACD;;;;;;OAMG;IACI,WAAW,CAChB,GAAmB,EAAE,GAAmB,EAAE,KAA4C,EAAE,QAAiB;QAEzG,IAAI,KAAK,KAAK,SAAS,EAAE,CAAC;YACxB,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;gBACtB,IAAI,CAAC,6BAA6B,CAChC,CAAC,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,CAAC,CAC1E,CAAC;YACJ,CAAC;QACH,CAAC;IACH,CAAC;IACD,0GAA0G;IAClG,uBAAuB,CAC7B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,IAAI,GAAG,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC;QACpE,MAAM,IAAI,GAAG,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC;QACpE,MAAM,GAAG,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;QACtD,MAAM,SAAS,GAAG,WAAW,CAAC,oCAAoC,CAAC,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,GAAG,CAAC,CAAC;QACtG,IAAI,CAAC,SAAS;YACZ,OAAO;QACT,IAAI,SAAS,CAAC,EAAE,EAAE,CAAC,CAAC,2BAA2B;YAC7C,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAAC,SAAS,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YACtI,OAAO,CAAC,sBAAsB,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YAC7F,MAAM,OAAO,GAAG,mBAAmB,CAAC,wBAAwB,CAAC,SAAS,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YACtI,OAAO,CAAC,sBAAsB,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,WAAW,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC;YAC7F,MAAM,OAAO,GAAG,uBAAuB,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;YACxE,IAAI,IAAI,CAAC,0BAA0B,CAAC,qCAAqC,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC;gBAC5J,IAAI,CAAC,6BAA6B,CAAC,OAAO,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,OAAO,CAAC,OAAO,CAAC,QAAQ,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,EAAE,OAAO,CAAC,CAAC;QACxK,CAAC;aAAM,CAAC,CAAC,2CAA2C;YAClD,IAAI,IAAI,CAAC,oBAAoB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,CAAC,EAAE,CAAC;gBACzF,IAAI,IAAI,CAAC,oBAAoB,CAAC,QAAQ,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,CAAC;oBACtF,IAAI,CAAC,6BAA6B,CAAC,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,CAAC,EAAE,CAAC,CAAC,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,CAAC,CAAC;YAC3I,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;OAGG;IACK,wBAAwB,CAC9B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,MAAM,GAAG,GAAG,qBAAqB,CAAC,aAAa,CAAC;QAChD,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,IAAI,CAAC,wBAAyB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;QAChE,MAAM,UAAU,GAAG,WAAW,CAAC,+CAA+C,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;QACnG,IAAI,UAAU,KAAK,SAAS,EAAE,CAAC;YAC7B,MAAM,SAAS,GAAG,UAAU,CAAC,CAAC,CAAC;YAC/B,MAAM,SAAS,GAAG,UAAU,CAAC,CAAC,CAAC;YAC/B,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;gBAC7G,yFAAyF;gBACzF,IAAI,CAAC,6BAA6B,CAChC,SAAS,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,QAAQ,CACzF,CAAC;YACJ,CAAC;QACH,CAAC;IACH,CAAC;IACD,+DAA+D;IAC/D,uGAAuG;IACvG,6EAA6E;IAC7E,iCAAiC;IACzB,sBAAsB,CAC5B,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,QAAiB;QAEjB,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,6BAA6B;YAC7B,qBAAqB,CAAC,wBAAwB,CAAC,IAAI,CAAC,mBAAmB,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;YAC7G,IAAI,CAAC,uBAAuB,CAC1B,GAAG,EAAE,QAAQ,EAAE,qBAAqB,CAAC,YAAY,EACjD,UAAU,EAAE,qBAAqB,CAAC,YAAY,EAAE,UAAU,EAAE,QAAQ,EACpE,GAAG,EAAE,QAAQ,EAAE,qBAAqB,CAAC,YAAY,EACjD,UAAU,EAAE,qBAAqB,CAAC,YAAY,EAAE,UAAU,EAAE,QAAQ,EACpE,QAAQ,CACT,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,IAAI,CAAC,wBAAwB,CAC3B,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,QAAQ,CACT,CAAC;QACJ,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,uBAAuB,CAC1B,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,UAAU,EAAE,OAAO,EAAE,UAAU,EAAE,QAAQ,EACjE,QAAQ,CACT,CAAC;QACJ,CAAC;IACH,CAAC;IACD,wEAAwE;IACxE,uGAAuG;IACvG,6EAA6E;IACrE,kBAAkB,CACxB,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,GAAU,EACV,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,IAAI,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;QACnG,MAAM,OAAO,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC5C,MAAM,KAAK,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC1C,MAAM,OAAO,GAAG,IAAI,oBAAoB,CAAC,CAAC,CAAC,CAAC;QAC5C,uBAAuB;QACvB,+BAA+B;QAC/B,sDAAsD;QACtD,2CAA2C;QAC3C,iFAAiF;QACjF,mBAAmB;QACnB,mBAAmB;QACnB,wBAAwB;QACxB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,IAAI,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACrE,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAC9G,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAC9G,MAAM,QAAQ,GAAG,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC3E,MAAM,QAAQ,GAAG,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC3E,MAAM,KAAK,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;YAChF,MAAM,IAAI,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;YAChF,MAAM,KAAK,GAAG,QAAQ,CAAC,uBAAuB,CAAC,QAAQ,EAAE,QAAQ,EAAE,IAAI,CAAC,QAAQ,CAAC,CAAC;YAClF,IAAI,QAAQ,GAAG,aAAa,CAAC,yCAAyC,CAAC,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC;YACpH,MAAM,aAAa,GAAG,CAAC,CAAC,KAAK,QAAQ,CAAC,CAAC;YACvC,IAAI,aAAa;gBACf,QAAQ,GAAG,CAAC,CAAC,CAAC,iHAAiH;YACjI,MAAM,cAAc,GAAG,CAAC,KAAa,EAAE,4BAAqC,KAAK,EAA+C,EAAE;gBAChI,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,KAAK,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC,CAAC;gBACtI,IAAI,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,uBAAuB,CAAC,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACzF,IAAI,KAAK,GAAG,WAAW,CAAC,qCAAqC,CAAC,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;gBAC5F,IAAI,KAAK,KAAK,SAAS;oBACrB,OAAO,SAAS,CAAC;gBACnB,IAAI,CAAC,yBAAyB,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,EAAE,QAAQ,CAAC;oBAC/H,OAAO,EAAE,KAAK,EAAE,IAAI,EAAE,CAAC;gBACzB,oGAAoG;gBACpG,KAAK,GAAG,KAAK,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5B,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,gCAAgC,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACvE,MAAM,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC;gBAC5C,MAAM,OAAO,GAAG,IAAI,CAAC,CAAC,CAAC,QAAQ,CAAC,CAAC,CAAC,QAAQ,CAAC;gBAC3C,MAAM,KAAK,GAAG,OAAO,CAAC,qBAAqB,CAAC,OAAO,CAAC,CAAC;gBACrD,OAAO,CAAC,KAAK,KAAK,SAAS,IAAI,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC;YAC1G,CAAC,CAAC;YACF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;gBAClC,MAAM,MAAM,GAAG,cAAc,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC;gBAChD,IAAI,MAAM;oBACR,IAAI,CAAC,6BAA6B,CAAC,MAAM,CAAC,KAAK,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,CAAC,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;YACpH,CAAC;QACH,CAAC;aAAM,CAAC;YACN,MAAM,IAAI,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YAChE,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,YAAY,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAClH,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,iBAAiB,CAAC,CAAC,CAAC,CAAC;YACjD,MAAM,YAAY,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,IAAI,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAC;YAClH,IAAI,YAAY,GAAG,OAAO,CAAC;YAC3B,IAAI,YAAY,GAAG,OAAO,CAAC;YAC3B,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;gBAC7B,YAAY,GAAG,IAAI,CAAC,mBAAmB,CAAC,eAAe,CAAC,OAAO,CAAC,CAAC;gBACjE,YAAY,GAAG,IAAI,CAAC,mBAAmB,CAAC,eAAe,CAAC,OAAO,CAAC,CAAC;YACnE,CAAC;YACD,MAAM,KAAK,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;YAC1F,MAAM,IAAI,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC;YAC1F,MAAM,KAAK,GAAG,QAAQ,CAAC,gBAAgB,CAAC,YAAY,EAAE,CAAC,EAAE,YAAY,EAAE,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,CAAC,CAAC,CAAC;YAC5F,IAAI,QAAQ,GAAG,aAAa,CAAC,yCAAyC,CAAC,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,CAAC,CAAC;YACpH,MAAM,aAAa,GAAG,CAAC,CAAC,KAAK,QAAQ,CAAC,CAAC;YACvC,IAAI,aAAa;gBACf,QAAQ,GAAG,CAAC,CAAC,CAAC,iHAAiH;YACjI,MAAM,cAAc,GAAG,CAAC,KAAa,EAAE,4BAAqC,KAAK,EAA+C,EAAE;gBAChI,MAAM,QAAQ,GAAG,IAAI,CAAC,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,OAAO,EAAE,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,IAAI,CAAC,QAAQ,EAAE,KAAK,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC,CAAC;gBACtI,IAAI,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,uBAAuB,CAAC,OAAO,CAAC,gBAAgB,CAAC,KAAK,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACzF,IAAI,KAAK,GAAG,WAAW,CAAC,oCAAoC,CAAC,YAAY,EAAE,YAAY,EAAE,QAAQ,CAAC,CAAC;gBACnG,IAAI,KAAK,KAAK,SAAS;oBACrB,OAAO,SAAS,CAAC;gBACnB,IAAI,CAAC,yBAAyB,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,IAAI,EAAE,QAAQ,CAAC;oBAC/H,OAAO,EAAE,KAAK,EAAE,IAAI,EAAE,CAAC;gBACzB,oGAAoG;gBACpG,KAAK,GAAG,KAAK,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5B,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,gCAAgC,CAAC,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACvE,MAAM,WAAW,GAAG,KAAK,CAAC,CAAC,CAAC,YAAY,CAAC,CAAC,CAAC,YAAY,CAAC;gBACxD,MAAM,WAAW,GAAG,IAAI,CAAC,CAAC,CAAC,YAAY,CAAC,CAAC,CAAC,YAAY,CAAC;gBACvD,MAAM,KAAK,GAAG,WAAW,CAAC,iBAAiB,CAAC,WAAW,CAAC,CAAC;gBACzD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,EAAE,KAAK,EAAE,IAAI,EAAE,CAAC,CAAC,CAAC,SAAS,CAAC;YACjF,CAAC,CAAC;YACF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE,EAAE,CAAC;gBAClC,MAAM,MAAM,GAAG,cAAc,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC;gBAChD,IAAI,MAAM;oBACR,IAAI,CAAC,6BAA6B,CAAC,MAAM,CAAC,KAAK,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,CAAC,IAAI,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;YACpH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;OAIG;IACK,uBAAuB,CAC7B,GAAU,EAAE,+BAA+B;IAC3C,OAAiB,EACjB,QAAiB,EACjB,QAAiB,EACjB,GAAU,EACV,OAAiB,EACjB,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,oFAAoF;QACpF,MAAM,QAAQ,GAAG,OAAO,CAAC,OAAO,EAAE,CAAC;QACnC,IAAI,QAAQ,EAAE,CAAC;YACb,wFAAwF;YACxF,MAAM,MAAM,GAAG,QAAQ,CAAC,oBAAoB,CAAC,OAAO,CAAC,CAAC;YACtD,MAAM,cAAc,GAAa,EAAE,CAAC;YACpC,MAAM,aAAa,GAAa,EAAE,CAAC;YACnC,gDAAgD;YAChD,cAAc,CAAC,6CAA6C,CAC1D,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,aAAa;YAChE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,cAAc;YACjE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,eAAe;YAClE,cAAc,EAAE,aAAa,CAC9B,CAAC;YACF,MAAM,IAAI,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,GAAG,IAAI,CAAC,0BAA0B,CAAC,SAAS,CAAC;YACnG,qGAAqG;YACrG,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,cAAc,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC/C,IAAI,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,aAAa,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC9E,IAAI,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,cAAc,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC/E,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;oBAC7G,IAAI,CAAC,6BAA6B,CAAC,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC3F,CAAC;qBAAM,CAAC,CAAC,sFAAsF;oBAC7F,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,gCAAgC,CAAC,SAAS,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAChF,SAAS,GAAG,GAAG,CAAC,KAAK,CAAC,gCAAgC,CAAC,SAAS,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;oBAChF,MAAM,SAAS,GAAG,GAAG,CAAC,eAAe,CAAC,SAAS,EAAE,qBAAqB,CAAC,aAAa,CAAC,CAAC;oBACtF,MAAM,SAAS,GAAG,GAAG,CAAC,eAAe,CAAC,SAAS,EAAE,qBAAqB,CAAC,aAAa,CAAC,CAAC;oBACtF,MAAM,KAAK,GAAG,SAAS,CAAC,iBAAiB,CAAC,SAAS,CAAC,CAAC;oBACrD,IAAI,QAAQ,CAAC,mBAAmB,CAAC,KAAK,EAAE,IAAI,CAAC;wBAC3C,IAAI,CAAC,6BAA6B,CAAC,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBAC7F,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;;;;OAOG;IACK,cAAc,CACpB,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAErH,gDAAgD;QAChD,IAAI,IAAI,CAAC,0BAA0B,IAAI,CAAC,IAAI,CAAC,wBAAwB,IAAI,CAAC,IAAI,CAAC,mBAAmB,EAAE,CAAC;YACnG,MAAM,KAAK,GAAG,IAAI,CAAC,0BAA0B,CAAC,2BAA2B,CAAC,GAAG,EAAE,GAAG,EAAE,IAAI,CAAC,CAAC;YAC1F,IAAI,KAAK,EAAE,CAAC;gBACV,IAAI,CAAC,WAAW,CAAC,GAAG,EAAE,GAAG,EAAE,KAAK,EAAE,QAAQ,CAAC,CAAC;gBAC5C,OAAO;YACT,CAAC;QACH,CAAC;QACD,kCAAkC;QAClC,IAAI,OAAiB,CAAC;QACtB,IAAI,OAAiB,CAAC;QACtB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;YACpI,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACtI,CAAC;aAAM,CAAC;YACN,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;YAC1F,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;QAC5F,CAAC;QACD,MAAM,UAAU,GAAG,OAAO,CAAC,eAAe,EAAE,CAAC;QAC7C,MAAM,UAAU,GAAG,OAAO,CAAC,eAAe,EAAE,CAAC;QAC7C,wEAAwE;QACxE,IAAI,UAAU,GAAG,UAAU;YACzB,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;;YAE3G,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,CAAC,QAAQ,CAAC,CAAC;IAChH,CAAC;IAED,+DAA+D;IACvD,yBAAyB,CAC/B,GAAU,EAAE,QAAiB,EAAE,QAAiB,EAAE,GAAmB,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAE9H,uBAAuB;QACvB,kFAAkF;QAClF,IAAI,OAAiB,CAAC;QACtB,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YAClC,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;YACtE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CACjC,KAAK,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,KAAK,CAAC,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,KAAK,CAAC,MAAM,CAAC,CAAC,CAC/F,CAAC;QACJ,CAAC;aAAM,CAAC;YACN,MAAM,KAAK,GAAG,GAAG,CAAC,oBAAoB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;YACjE,OAAO,GAAG,QAAQ,CAAC,gBAAgB,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC,EAAE,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC,CAAC;QAC5F,CAAC;QACD,+DAA+D;QAC/D,8CAA8C;QAC9C,MAAM,cAAc,GAAG,OAAO,CAAC,OAAO,EAAE,CAAC;QACzC,IAAI,cAAc,EAAE,CAAC;YACnB,MAAM,MAAM,GAAG,GAAG,CAAC,KAAK,CAAC,CAAC,8CAA8C;YACxE,MAAM,MAAM,GAAG,CAAC,GAAG,MAAM,GAAG,CAAC,CAAC,CAAC,wDAAwD;YACvF,MAAM,KAAK,GAAG,IAAI,YAAY,CAAC,MAAM,CAAC,CAAC;YACvC,MAAM,iBAAiB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;YACvD,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YACpC,MAAM,GAAG,GAAG,GAAG,CAAC;YAChB,MAAM,GAAG,GAAG,cAAc,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;YAEpC,IAAI,MAAkC,CAAC;YACvC,KAAK,IAAI,SAAS,GAAG,CAAC,GAAI,SAAS,EAAE,EAAE,CAAC;gBACtC,MAAM,GAAG,GAAG,CAAC,yBAAyB,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;gBAC1D,IAAI,CAAC,MAAM;oBACT,MAAM;gBACR,IAAI,IAAI,CAAC,wBAAwB;oBAC/B,MAAM,CAAC,0BAA0B,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;qBAC9D,IAAI,IAAI,CAAC,mBAAmB;oBAC/B,MAAM,CAAC,mBAAmB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;gBACvD,iBAAiB,CAAC,IAAI,EAAE,CAAC;gBACzB,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC;gBACtD,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC;gBACtD,MAAM,CAAC,gBAAgB,CAAC,KAAK,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;gBACnD,iBAAiB,CAAC,uBAAuB,CAAC,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC;gBACvD,MAAM,KAAK,GAAG,iBAAiB,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;gBACjD,IAAI,KAAK,EAAE,CAAC;oBACV,KAAK,MAAM,IAAI,IAAI,KAAK,EAAE,CAAC;wBACzB,MAAM,SAAS,GAAG,MAAM,CAAC,wBAAwB,CAAC,IAAI,CAAC,CAAC;wBACxD,oGAAoG;wBACpG,MAAM,aAAa,GAAG,MAAM,CAAC,iBAAiB,CAAC,IAAI,CAAC,CAAC;wBACrD,MAAM,CAAC,GAAG,aAAa,CAAC,cAAc,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;wBAC3D,MAAM,CAAC,GAAG,aAAa,CAAC,cAAc,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;wBAC3D,MAAM,WAAW,GAAG,GAAG,CAAC,KAAK,CAAC,uBAAuB,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;wBAClF,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,WAAW,EAAE,QAAQ,CAAC;4BACtD,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;4BACrD,IAAI,CAAC,6BAA6B,CAAC,WAAW,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;wBAC7F,CAAC;oBACH,CAAC;gBACH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD,8EAA8E;IACtE,gBAAgB,CAAC,OAAyB;QAChD,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,KAAK,MAAM,MAAM,IAAI,OAAO;gBAAE,MAAM,CAAC,mBAAmB,CAAC,IAAI,CAAC,mBAAmB,CAAC,CAAC;QACrF,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,KAAK,MAAM,MAAM,IAAI,OAAO;gBAAE,MAAM,CAAC,0BAA0B,CAAC,IAAI,CAAC,wBAAwB,CAAC,CAAC;QACjG,CAAC;IACH,CAAC;IACO,SAAS,CAAC,OAA0B;QAC1C,MAAM,MAAM,GAAc,EAAE,CAAC;QAC7B,MAAM,CAAC,MAAM,GAAG,CAAC,CAAC;QAClB,KAAK,MAAM,CAAC,IAAI,OAAO,EAAE,CAAC;YACxB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE,CAAC,CAAC;QACzB,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACO,+BAA+B,CACrC,OAAuB,EACvB,OAA2B,EAC3B,YAAoB,EACpB,OAAuB,EACvB,OAA2B,EAC3B,aAAqB,EACrB,iBAAmC,EAAE,+CAA+C;IACpF,QAAiB;QAEjB,IAAI,CAAC,IAAI,CAAC,OAAO;YACf,IAAI,CAAC,OAAO,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,CAAC,IAAI,CAAC,OAAO;YACf,IAAI,CAAC,OAAO,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,CAAC,IAAI,CAAC,UAAU;YAClB,IAAI,CAAC,UAAU,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QACrC,IAAI,CAAC,IAAI,CAAC,MAAM;YACd,IAAI,CAAC,MAAM,GAAG,OAAO,CAAC,MAAM,EAAE,CAAC;QACjC;;;;;;;;;;;;;;;;UAgBE;QACF,OAAO,CAAC,iBAAiB,CAAC,GAAG,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QAC7C,IAAI,EAAE,GAAG,GAAG,CAAC;QACb,IAAI,EAAE,CAAC;QACP,MAAM,iBAAiB,GAAG,MAAM,CAAC;QACjC,MAAM,EAAE,GAAG,GAAG,GAAG,YAAY,CAAC;QAC9B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,YAAY,EAAE,CAAC,EAAE,EAAE,EAAE,GAAG,EAAE,EAAE,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,EAAE,CAAC;YACpF,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC;YACZ,OAAO,CAAC,iBAAiB,CAAC,EAAE,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;YAC5C,OAAO,CAAC,sBAAsB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC;YAC5E,OAAO,CAAC,gBAAgB,CACtB,iBAAiB,CAAC,KAAK,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CACpG,CAAC;YACF,IAAI,MAAM,GAAG,CAAC,CAAC;YACf,MAAM,KAAK,GAAG,iBAAiB,CAAC,KAAK,CAAC,GAAG,EAAE,IAAI,CAAC,CAAC;YACjD,IAAI,KAAK,EAAE,CAAC;gBACV,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;oBACtB,IAAI,eAAe,GAAG,CAAC,CAAC;oBACxB,OAAO,CAAC,iBAAiB,CAAC,eAAe,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC;oBACxD,MAAM,gBAAgB,GAAG,WAAW,CAAC,qCAAqC,CACxE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,MAAM,CACxC,CAAC;oBACF,IAAI,gBAAgB,KAAK,SAAS,IAAI,QAAQ,CAAC,mBAAmB,CAAC,gBAAgB,EAAE,iBAAiB,CAAC,EAAE,CAAC;wBACxG,IAAI,eAAe,GAAG,QAAQ,CAAC,WAAW,CAAC,EAAE,EAAE,gBAAgB,EAAE,EAAE,CAAC,CAAC;wBACrE,8DAA8D;wBAC9D,gDAAgD;wBAChD,MAAM,kBAAkB,GAAG,IAAI,+BAA+B,CAAC,OAAO,EAAE,OAAO,CAAC,CAAC;wBACjF,MAAM,cAAc,GAAG,IAAI,+BAA+B,CAAC,kBAAkB,CAAC,CAAC;wBAC/E,cAAc,CAAC,KAAK,CAAC,eAAe,EAAE,eAAe,CAAC,CAAC;wBACvD,IAAI,cAAc,CAAC,aAAa,EAAE,EAAE,CAAC;4BACnC,eAAe,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;4BACxC,eAAe,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;wBAC1C,CAAC;wBACD,MAAM,eAAe,GAAG,OAAO,CAAC,wBAAwB,CAAC,eAAe,CAAC,CAAC;wBAC1E,MAAM,eAAe,GAAG,OAAO,CAAC,wBAAwB,CAAC,eAAe,CAAC,CAAC;wBAC1E,IAAI,KAAK,EAAE,CAAC,CAAC,iBAAiB;4BAC5B,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,MAAM,KAAK,GAAG,OAAO,CAAC,eAAe,CAAC,eAAe,CAAC,CAAC;4BACvD,IAAI,CAAC,KAAK,CAAC,eAAe,CAAC,KAAK,CAAC;gCAC/B,MAAM,EAAE,CAAC;4BACX,IAAI,CAAC,KAAK,CAAC,eAAe,CAAC,KAAK,CAAC;gCAC/B,MAAM,EAAE,CAAC;4BACX,IAAI,MAAM,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,aAAa,CAAC,KAAK,CAAC;gCAC3C,MAAM,EAAE,CAAC;4BACX,IAAI,MAAM,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,aAAa,CAAC,KAAK,CAAC;gCAC3C,MAAM,EAAE,CAAC;wBACb,CAAC;wBACD,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,eAAe,EAAE,KAAK,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,eAAe,EAAE,KAAK,CAAC,EAAE,CAAC;4BAC7G,IAAI,CAAC,6BAA6B,CAChC,eAAe,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,eAAe,EAAE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CACzE,CAAC;wBACJ,CAAC;oBACH,CAAC;gBACH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACO,oCAAoC,CAC1C,OAA2B,EAAE,OAA2B,EAAE,QAAiB;QAE3E,MAAM,WAAW,GAAG,OAAO,CAAC,kBAAkB,CAAC,IAAI,CAAqB,CAAC;QACzE,MAAM,WAAW,GAAG,OAAO,CAAC,kBAAkB,CAAC,IAAI,CAAqB,CAAC;QACzE,MAAM,IAAI,GAAG,WAAW,CAAC,MAAM,CAAC;QAChC,MAAM,IAAI,GAAG,WAAW,CAAC,MAAM,CAAC;QAChC,IAAI,CAAC,gBAAgB,CAAC,WAAW,CAAC,CAAC;QACnC,IAAI,CAAC,gBAAgB,CAAC,WAAW,CAAC,CAAC;QACnC,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,CAAC,WAAW,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,CAAC,WAAW,CAAC,CAAC;QAC3C,MAAM,MAAM,GAAG,OAAO,CAAC,KAAK,CAAC;QAC7B,MAAM,MAAM,GAAG,OAAO,CAAC,KAAK,CAAC;QAC7B,MAAM,gBAAgB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;QACtD,MAAM,gBAAgB,GAAG,IAAI,gBAAgB,CAAC,MAAM,CAAC,CAAC;QACtD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC;YAC9B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC;gBAC9B,IAAI,MAAM,CAAC,CAAC,CAAC,CAAC,iBAAiB,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;oBAC3C,MAAM,YAAY,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC,4BAA4B,EAAE,CAAC;oBACnE,MAAM,YAAY,GAAG,WAAW,CAAC,CAAC,CAAC,CAAC,4BAA4B,EAAE,CAAC;oBACnE,IAAI,YAAY,GAAG,YAAY;wBAC7B,IAAI,CAAC,+BAA+B,CAClC,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,gBAAgB,EAAE,QAAQ,CACzG,CAAC;;wBAEF,IAAI,CAAC,+BAA+B,CAClC,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,WAAW,CAAC,CAAC,CAAC,EAAE,OAAO,EAAE,YAAY,EAAE,gBAAgB,EAAE,CAAC,QAAQ,CAC1G,CAAC;gBACN,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD;;;;OAIG;IACK,YAAY,CAAC,GAAW,EAAE,IAAY,GAAG;QAC/C,IAAI,IAAI,CAAC,wBAAwB;YAC/B,OAAO,IAAI,CAAC,wBAAwB,CAAC,eAAe,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;QAC/D,IAAI,IAAI,CAAC,mBAAmB;YAC1B,OAAO,IAAI,CAAC,mBAAmB,CAAC,YAAY,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QACvE,OAAO,OAAO,CAAC,wBAAwB,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC;IAClD,CAAC;IACO,kBAAkB,CAAC,QAAiB,EAAE,UAAmB;QAC/D,kEAAkE;QAClE,oDAAoD;QACpD,uBAAuB;QACvB,wBAAwB;QACxB,mBAAmB;QACnB,IAAI,IAAI,CAAC,mBAAmB,EAAE,CAAC;YAC7B,IAAI,CAAC,mBAAmB,CAAC,qBAAqB,CAAC,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,EAAE,UAAU,CAAC,CAAC;QAC7G,CAAC;aAAM,IAAI,IAAI,CAAC,wBAAwB,EAAE,CAAC;YACzC,IAAI,CAAC,wBAAwB,CAAC,wBAAwB,CAAC,QAAQ,EAAE,UAAU,CAAC,CAAC;QAC/E,CAAC;aAAM,CAAC;YACN,QAAQ,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAC7B,CAAC;IACH,CAAC;IACD,sDAAsD;IACtD,8EAA8E;IAC9E,gCAAgC;IACxB,2BAA2B,CACjC,GAAmB,EACnB,QAAiB,EACjB,OAAgB,EAChB,UAAkB,EAClB,OAAgB,EAChB,UAAkB,EAClB,QAAiB,EACjB,MAAsB,EACtB,QAAiB,EACjB,QAAiB,EACjB,QAAiB;QAEjB,MAAM,QAAQ,GAAG,IAAI,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC;QAC5C,MAAM,QAAQ,GAAG,IAAI,CAAC,YAAY,CAAC,OAAO,CAAC,CAAC;QAC5C,MAAM,UAAU,GAAG,OAAO,CAAC,sBAAsB,CAAC,QAAQ,EAAE,QAAQ,CAAC,CAAC;QACtE,IAAI,CAAC,kBAAkB,CAAC,UAAU,EAAE,UAAU,CAAC,CAAC;QAChD,yEAAyE;QACzE,MAAM,aAAa,GAA0B,EAAE,CAAC;QAChD,MAAM,CAAC,6BAA6B,CAAC,UAAU,EAAE,aAAa,CAAC,CAAC;QAChE,yDAAyD;QACzD,yEAAyE;QACzE,kDAAkD;QAClD,KAAK,MAAM,MAAM,IAAI,aAAa,EAAE,CAAC;YACnC,MAAM,SAAS,GAAG,MAAM,CAAC,QAAQ,CAAC;YAClC,MAAM,UAAU,GAAG,MAAM,CAAC,KAAK,CAAC;YAChC,MAAM,WAAW,GAAG,IAAI,CAAC,YAAY,CAAC,UAAU,CAAC,CAAC;YAClD,MAAM,YAAY,GAAG,WAAW,CAAC,qCAAqC,CAAC,QAAQ,EAAE,QAAQ,EAAE,WAAW,CAAC,CAAC;YACxG,IAAI,YAAY,KAAK,SAAS,EAAE,CAAC;gBAC/B,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,YAAY,EAAE,QAAQ,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,QAAQ,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,CAAC;oBAChH,IAAI,CAAC,6BAA6B,CAAC,YAAY,EAAE,GAAG,EAAE,UAAU,EAAE,UAAU,EAAE,SAAS,EAAE,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;gBACnH,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACD,0EAA0E;IACnE,8BAA8B,CACnC,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,MAAsB,EAAE,QAAiB,EAAE,QAAiB,EAAE,QAAiB;QAE/E,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,MAAM,OAAO,GAAG,qBAAqB,CAAC,YAAY,CAAC;YACnD,MAAM,OAAO,GAAG,qBAAqB,CAAC,YAAY,CAAC;YACnD,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,2BAA2B,CAC9B,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,MAAM,EAAE,QAAQ,EAAE,QAAQ,EAAE,QAAQ,CAAC,CAAC;YAC1C,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,8DAA8D;IACvD,wBAAwB,CAC7B,GAAkB,EAAE,QAAiB,EAAE,QAAiB,EACxD,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,QAAiB;QAEjB,MAAM,OAAO,GAAG,GAAG,CAAC,SAAS,CAAC;QAC9B,MAAM,OAAO,GAAG,GAAG,CAAC,SAAS,CAAC;QAC9B,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,sBAAsB,CACzB,GAAG,EAAE,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,QAAQ,EACnD,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,QAAQ,CACT,CAAC;YACJ,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,0DAA0D;IACnD,oBAAoB,CACzB,IAAW,EAAE,QAAiB,EAAE,QAAiB,EACjD,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,QAAiB;QAEjB,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACb,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,GAAG,GAAG,CAAC;YACV,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,IAAI,CAAC,kBAAkB,CACrB,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EACrD,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EAAE,IAAI,EAAE,QAAQ,EAAE,QAAQ,EAAE,CAAC,QAAQ,CACnE,CAAC;YACJ,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,iEAAiE;IACzD,2BAA2B,CACjC,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,GAAiB,EAAE,QAAiB,EAAE,QAAiB,EACvD,QAAiB;QAEjB,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,OAAO,GAAG,qBAAqB,CAAC,aAAa,CAAC;QACpD,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,MAAM,IAAI,GAAG,GAAG,CAAC,SAAS,EAAE,CAAC;QAC7B,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,GAAG,CAAC,EAAE,CAAC;YACzB,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,MAAM,GAAG,GAAG,GAAG,GAAG,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC;YAC7B,IAAI,GAAG,GAAG,GAAG,CAAC;YACd,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,IAAI,GAAG,CAAC;YACR,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;gBACtE,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;gBACf,GAAG,GAAG,GAAG,CAAC;gBACV,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;gBACzB,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;gBACxB,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,IAAI,EAAE,EAAE,EAAE,EAAE,OAAO,CAAC,OAAO,CAAC,OAAO,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,CAAC;oBACtE,GAAG,CAAC,OAAO,CAAC,EAAE,EAAE,OAAO,CAAC,CAAC;oBACzB,GAAG,GAAG,EAAE,GAAG,GAAG,CAAC;oBACf,IAAI,CAAC,sBAAsB,CACzB,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,GAAG,EAAE,EAAE,KAAK,CAAC,IAAI,QAAQ,EAAE,OAAO,EAAE,GAAG,EAAE,OAAO,EAAE,GAAG,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC,KAAK,IAAI,IAAI,QAAQ,EACpF,QAAQ,CACT,CAAC;gBACJ,CAAC;YACH,CAAC;QACH,CAAC;IACH,CAAC;IACO,MAAM,CAAC,wBAAwB,CACrC,SAAoB,EAAE,OAAgB,EAAE,OAAgB,EAAE,OAAgB,EAAE,OAAgB;QAE5F,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;QACtD,SAAS,CAAC,eAAe,CAAC,OAAO,EAAE,IAAI,CAAC,YAAY,CAAC,CAAC;IACxD,CAAC;IACD;;;OAGG;IACK,uBAAuB,CAAC,KAAe,EAAE,YAAiC;QAChF,MAAM,KAAK,GAAG,IAAI,CAAC,UAAU,CAAC,CAAE,OAAO;QACvC,IAAI,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,QAAQ,IAAI,CAAC,CAAC,KAAK,YAAY,eAAe,CAAC;YAClE,OAAO;QACT,MAAM,QAAQ,GAAG,KAAK,CAAC,QAAQ,CAAC;QAChC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;YACzC,IAAI,CAAC,aAAa,CAAC,QAAQ,CAAC,CAAC,CAAC,CAAC,CAAC;YAChC,IAAI,KAAK,YAAY,IAAI,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;gBACjD,IAAI,CAAC,KAAK,CAAC;oBACT,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,yCAAyC;qBAC9D,IAAI,CAAC,KAAK,QAAQ,CAAC,MAAM,GAAG,CAAC;oBAChC,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sCAAsC;;oBAE9D,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,gCAAgC;YAC7E,CAAC;iBAAM,IAAI,KAAK,YAAY,IAAI,EAAE,CAAC;gBACjC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sBAAsB;YACjE,CAAC;YACD,YAAY,CAAC,KAAK,CAAC,CAAC;YACpB,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;YACrC,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;QACvC,CAAC;QACD,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,CAAC,CAAC,UAAU;IACvC,CAAC;IACD;;;OAGG;IACK,mCAAmC,CAAC,KAAe,EAAE,YAAiC;QAC5F,IAAI,CAAC,IAAI,CAAC,UAAU,IAAI,CAAC,CAAC,IAAI,CAAC,UAAU,YAAY,2BAA2B,CAAC;YAC/E,OAAO;QACT,IAAI,KAAK,YAAY,2BAA2B,EAAE,CAAC;YACjD,MAAM,CAAC,KAAK,EAAE,uDAAuD,CAAC,CAAC;QACzE,CAAC;QACD,MAAM,MAAM,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;QACpC,MAAM,KAAK,GAAG,IAAI,CAAC,UAAU,CAAC,CAAC,OAAO;QACtC,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC;QAC/B,IAAI,CAAC,uBAAuB,CAAC,KAAK,EAAE,YAAY,CAAC,CAAC;QAClD,IAAI,CAAC,aAAa,CAAC,KAAK,CAAC,CAAC,CAAC,UAAU;QACrC,IAAI,CAAC,QAAQ,GAAG,2BAA2B,CAAC,+BAA+B,CACzE,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,SAAS,EAAE,KAAK,EAAE,IAAI,CAC9C,CAAC;IACJ,CAAC;IACD;;;OAGG;IACa,cAAc,CAAC,CAAgB;QAC7C,MAAM,QAAQ,GAAG,CAAC,CAAC,QAAQ,CAAC;QAC5B,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,SAAS,CAAC,CAAC,OAAO;QACxC,IAAI,QAAQ;YACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,YAAY,IAAI,IAAI,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC;oBAC7C,IAAI,CAAC,KAAK,CAAC;wBACT,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,yCAAyC;yBAC9D,IAAI,CAAC,KAAK,QAAQ,CAAC,MAAM,GAAG,CAAC;wBAChC,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sCAAsC;;wBAE9D,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,gCAAgC;gBAC7E,CAAC;qBAAM,IAAI,CAAC,YAAY,IAAI,EAAE,CAAC;oBAC7B,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,sBAAsB;gBACjE,CAAC;gBACD,QAAQ,CAAC,CAAC,CAAC,CAAC,yBAAyB,CAAC,IAAI,CAAC,CAAC;gBAC5C,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;gBACrC,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC,CAAC,UAAU;YACvC,CAAC;IACL,CAAC;IACD,0DAA0D;IAC1C,mBAAmB,CAAC,QAAuB;QACzD,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,MAAM,QAAQ,GAAG,IAAI,CAAC,UAAU,CAAC;YACjC,IAAI,CAAC,sBAAsB,CACzB,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,KAAK,CACN,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,wBAAwB,CAC3B,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACjG,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,kBAAkB,CACrB,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACvD,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,2BAA2B,CAC9B,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,QAAQ,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC1F,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CACvD,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,MAAM,mBAAmB,GAAG,YAAY,CAAC,MAAM,EAAE,CAAC;YAClD,IAAI,CAAC,UAAU,CAAC,WAAW,CAAC,mBAAmB,CAAC,CAAC;YACjD,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;YAChD,IAAI,CAAC,wBAAwB,CAAC,QAAQ,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,mBAAmB,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;YAClH,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC;YACrE,IAAI,CAAC,2BAA2B,CAAC,QAAQ,EAAE,IAAI,CAAC,UAAU,EAAE,kBAAkB,CAAC,CAAC;QAClF,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,QAAQ,EAAE,IAAI,CAAC,mBAAmB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC9E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,QAAQ,EAAE,IAAI,CAAC,mBAAmB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC1F,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,6DAA6D;IAC7C,kBAAkB,CAAC,GAAiB;QAClD,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YAC5C,MAAM,GAAG,GAAG,IAAI,CAAC,UAAU,CAAC;YAC5B,IAAI,CAAC,2BAA2B,CAAC,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAAC,CAAC;QACpH,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YACpD,IAAI,CAAC,wBAAwB,CAC3B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,oBAAoB,CACvB,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,8BAA8B,CACjC,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC5F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,MAAM,mBAAmB,GAAG,YAAY,CAAC,MAAM,EAAE,CAAC;YAClD,IAAI,CAAC,UAAU,CAAC,WAAW,CAAC,mBAAmB,CAAC,CAAC;YACjD,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;YAChD,IAAI,CAAC,2BAA2B,CAAC,GAAG,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,mBAAmB,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;YAChH,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC;YACrE,IAAI,CAAC,2BAA2B,CAAC,GAAG,EAAE,IAAI,CAAC,UAAU,EAAE,kBAAkB,CAAC,CAAC;QAC7E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,GAAG,EAAE,IAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACxE,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,GAAG,EAAE,IAAI,CAAC,kBAAkB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACpF,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,sDAAsD;IACtC,WAAW,CAAC,IAAW;QACrC,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,IAAI,CAAC,kBAAkB,CACrB,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC/G,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC3C,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,oBAAoB,CACvB,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,cAAc,CAAC,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAAC,CAAC;QACpH,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC;YACrD,IAAI,CAAC,yBAAyB,CAC5B,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,MAAM,mBAAmB,GAAG,YAAY,CAAC,MAAM,EAAE,CAAC;YAClD,IAAI,CAAC,UAAU,CAAC,WAAW,CAAC,mBAAmB,CAAC,CAAC;YACjD,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;YAChD,IAAI,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,mBAAmB,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;YAC1G,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC;YACrE,IAAI,CAAC,2BAA2B,CAAC,IAAI,EAAE,IAAI,CAAC,UAAU,EAAE,kBAAkB,CAAC,CAAC;QAC9E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,IAAI,EAAE,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAClE,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,IAAI,EAAE,IAAI,CAAC,WAAW,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC9E,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,gEAAgE;IAChD,oBAAoB,CAAC,KAAqB;QACxD,IAAI,IAAI,CAAC,UAAU,YAAY,aAAa,EAAE,CAAC;YAC7C,IAAI,CAAC,2BAA2B,CAC9B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,UAAU,CAAC,SAAS,EAAE,GAAG,EAAE,IAAI,CAAC,SAAS,EAC/G,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC5C,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,YAAY,EAAE,CAAC;YACnD,IAAI,CAAC,8BAA8B,CACjC,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,KAAK,EAAE,CAAC;YAC5C,IAAI,CAAC,yBAAyB,CAC5B,IAAI,CAAC,UAAU,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAC7F,CAAC;QACJ,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,IAAI,CAAC,oCAAoC,CAAC,KAAK,EAAE,IAAI,CAAC,UAAU,EAAE,KAAK,CAAC,CAAC;QAC3E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,kBAAkB,EAAE,CAAC;YACzD,MAAM,mBAAmB,GAAG,YAAY,CAAC,MAAM,EAAE,CAAC;YAClD,IAAI,CAAC,UAAU,CAAC,WAAW,CAAC,mBAAmB,CAAC,CAAC;YACjD,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;YAChD,IAAI,CAAC,8BAA8B,CAAC,mBAAmB,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,SAAS,EAAE,IAAI,CAAC,CAAC;YACpH,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC;YACrE,IAAI,CAAC,2BAA2B,CAAC,KAAK,EAAE,IAAI,CAAC,UAAU,EAAE,kBAAkB,CAAC,CAAC;QAC/E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,KAAK,EAAE,IAAI,CAAC,oBAAoB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC5E,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,2BAA2B,EAAE,CAAC;YAClE,IAAI,CAAC,mCAAmC,CAAC,KAAK,EAAE,IAAI,CAAC,oBAAoB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QACxF,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;;OAQG;IACK,2BAA2B,CACjC,UAA0B,EAAE,MAA0B,EAAE,kBAA0B,EAAE,QAAQ,GAAG,KAAK;QAEpG,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,CAAC,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC,CAAC;QAC1F,IAAI,CAAC,QAAQ,CAAC,MAAM,IAAI,kBAAkB,CAAC,CAAC,+BAA+B;QAC3E,KAAK,MAAM,MAAM,IAAI,kBAAkB,EAAE,CAAC;YACxC,IAAI,cAAc,GAAG,QAAQ,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,QAAQ,CAAC;YAClF,IAAI,aAAa,GAAG,QAAQ,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,QAAQ,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,QAAQ,CAAC;YACjF,MAAM,kBAAkB,GAAG,IAAI,+BAA+B,CAAC,MAAM,EAAE,UAAU,CAAC,CAAC;YACnF,MAAM,cAAc,GAAG,IAAI,+BAA+B,CAAC,kBAAkB,CAAC,CAAC;YAC/E,cAAc,CAAC,KAAK,CAAC,cAAc,EAAE,aAAa,CAAC,CAAC;YACpD,IAAI,cAAc,CAAC,aAAa,EAAE,EAAE,CAAC;gBACnC,cAAc,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;gBACvC,aAAa,GAAG,cAAc,CAAC,IAAI,EAAE,CAAC;gBACtC,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,cAAc,EAAE,KAAK,CAAC,IAAI,IAAI,CAAC,cAAc,CAAC,KAAK,EAAE,aAAa,EAAE,KAAK,CAAC;oBACvG,IAAI,CAAC,6BAA6B,CAAC,aAAa,EAAE,UAAU,EAAE,CAAC,EAAE,CAAC,EAAE,cAAc,EAAE,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,CAAC,CAAC;YAChH,CAAC;QACH,CAAC;IACH,CAAC;IACD,+DAA+D;IAC/C,sBAAsB,CAAC,MAA0B;QAC/D,IAAI,IAAI,CAAC,UAAU,YAAY,cAAc,EAAE,CAAC,CAAC,gDAAgD;YAC/F,MAAM,mBAAmB,GAAG,YAAY,CAAC,MAAM,EAAE,CAAC;YAClD,MAAM,CAAC,WAAW,CAAC,mBAAmB,CAAC,CAAC;YACxC,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,CAAC;YAChD,IAAI,CAAC,kBAAkB,CAAC,mBAAmB,CAAC,CAAC;YAC7C,MAAM,kBAAkB,GAAG,IAAI,CAAC,QAAQ,CAAC,MAAM,GAAG,kBAAkB,CAAC;YACrE,IAAI,CAAC,2BAA2B,CAAC,IAAI,CAAC,UAAU,EAAE,MAAM,EAAE,kBAAkB,EAAE,IAAI,CAAC,CAAC;QACtF,CAAC;aAAM,IAAI,IAAI,CAAC,UAAU,YAAY,eAAe,EAAE,CAAC;YACtD,IAAI,CAAC,uBAAuB,CAAC,MAAM,EAAE,IAAI,CAAC,sBAAsB,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC;QAC/E,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,8EAA8E;IAC9D,iCAAiC,CAAC,KAAkC;QAClF,KAAK,CAAC,iCAAiC,CAAC,KAAK,CAAC,CAAC;QAC/C,kIAAkI;QAClI,IAAI,CAAC,QAAQ,GAAG,2BAA2B,CAAC,+BAA+B,CAAC,IAAI,CAAC,QAAQ,EAAE,CAAC,EAAE,KAAK,EAAE,SAAS,EAAE,IAAI,CAAC,CAAC;IACxH,CAAC;IACD,4EAA4E;IAC5D,qBAAqB,CAAC,MAAuB;QAC3D;;;;;;;;;;;;UAYE;QACF,OAAO,SAAS,CAAC;IACnB,CAAC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\n\r\nimport { assert } from \"@itwin/core-bentley\";\r\nimport { BezierCurve3dH } from \"../../bspline/BezierCurve3dH\";\r\nimport { BezierCurveBase } from \"../../bspline/BezierCurveBase\";\r\nimport { BSplineCurve3d, BSplineCurve3dBase } from \"../../bspline/BSplineCurve\";\r\nimport { BSplineCurve3dH } from \"../../bspline/BSplineCurve3dH\";\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { CoincidentGeometryQuery } from \"../../geometry3d/CoincidentGeometryOps\";\r\nimport { RecurseToCurvesGeometryHandler } from \"../../geometry3d/GeometryHandler\";\r\nimport { GrowableFloat64Array } from \"../../geometry3d/GrowableFloat64Array\";\r\nimport { Matrix3d } from \"../../geometry3d/Matrix3d\";\r\nimport { Point3d } from \"../../geometry3d/Point3dVector3d\";\r\nimport { Range3d } from \"../../geometry3d/Range\";\r\nimport { Transform } from \"../../geometry3d/Transform\";\r\nimport { XYAndZ } from \"../../geometry3d/XYZProps\";\r\nimport { Matrix4d } from \"../../geometry4d/Matrix4d\";\r\nimport { Point4d } from \"../../geometry4d/Point4d\";\r\nimport { UnivariateBezier } from \"../../numerics/BezierPolynomials\";\r\nimport { CurveCurveIntersectionXYRRToRRD, Newton2dUnboundedWithDerivative } from \"../../numerics/Newton\";\r\nimport { AnalyticRoots, TrigPolynomial } from \"../../numerics/Polynomials\";\r\nimport { SmallSystem } from \"../../numerics/SmallSystem\";\r\nimport { Arc3d } from \"../Arc3d\";\r\nimport { CurveChainWithDistanceIndex } from \"../CurveChainWithDistanceIndex\";\r\nimport { CurveCollection } from \"../CurveCollection\";\r\nimport { CurveIntervalRole, CurveLocationDetail, CurveLocationDetailPair } from \"../CurveLocationDetail\";\r\nimport { CurvePrimitive } from \"../CurvePrimitive\";\r\nimport { AnyCurve } from \"../CurveTypes\";\r\nimport { GeometryQuery } from \"../GeometryQuery\";\r\nimport { LineSegment3d } from \"../LineSegment3d\";\r\nimport { LineString3d } from \"../LineString3d\";\r\nimport { Loop } from \"../Loop\";\r\nimport { Path } from \"../Path\";\r\nimport { ProxyCurve } from \"../ProxyCurve\";\r\nimport { TransitionSpiral3d } from \"../spiral/TransitionSpiral3d\";\r\n\r\n// cspell:word XYRR\r\n/**\r\n * Handler class for XY intersections between _geometryB and another geometry.\r\n * * Instances are initialized and called from CurveCurve.\r\n * * geometryB is saved for later reference.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectXY extends RecurseToCurvesGeometryHandler {\r\n private _extendA0: boolean;\r\n private _extendA1: boolean;\r\n private _geometryB: AnyCurve | undefined;\r\n private _extendB0: boolean;\r\n private _extendB1: boolean;\r\n private _results: CurveLocationDetailPair[];\r\n private _worldToLocalPerspective: Matrix4d | undefined;\r\n private _worldToLocalAffine: Transform | undefined;\r\n private _coincidentGeometryContext: CoincidentGeometryQuery;\r\n private static _workPointA0H = Point4d.create();\r\n private static _workPointA1H = Point4d.create();\r\n private static _workPointB0H = Point4d.create();\r\n private static _workPointB1H = Point4d.create();\r\n private static _workPointAA0 = Point3d.create();\r\n private static _workPointAA1 = Point3d.create();\r\n private static _workPointBB0 = Point3d.create();\r\n private static _workPointBB1 = Point3d.create();\r\n private static _workPointA0 = Point3d.create();\r\n private static _workPointA1 = Point3d.create();\r\n private static _workPointB0 = Point3d.create();\r\n private static _workPointB1 = Point3d.create();\r\n private _xyzwA0?: Point4d;\r\n private _xyzwA1?: Point4d;\r\n private _xyzwPlane?: Point4d;\r\n private _xyzwB?: Point4d;\r\n /**\r\n * The constructor.\r\n * @param worldToLocal optional transform (possibly perspective) to project to xy plane for intersection.\r\n * @param extendA flag for extension of the other geometry.\r\n * @param geometryB second curve for intersection. Saved for reference by specific handler methods.\r\n * @param extendB flag for extension of geometryB.\r\n * @param tolerance optional distance tolerance for coincidence.\r\n */\r\n public constructor(\r\n worldToLocal: Matrix4d | undefined,\r\n extendA: boolean,\r\n geometryB: AnyCurve | undefined,\r\n extendB: boolean,\r\n tolerance: number = Geometry.smallMetricDistance,\r\n ) {\r\n super();\r\n this._extendA0 = extendA;\r\n this._extendA1 = extendA;\r\n this._geometryB = geometryB instanceof ProxyCurve ? geometryB.proxyCurve : geometryB;\r\n this._extendB0 = extendB;\r\n this._extendB1 = extendB;\r\n this._worldToLocalPerspective = undefined;\r\n this._worldToLocalAffine = undefined;\r\n if (worldToLocal !== undefined && !worldToLocal.isIdentity()) {\r\n this._worldToLocalAffine = worldToLocal.asTransform;\r\n if (!this._worldToLocalAffine)\r\n this._worldToLocalPerspective = worldToLocal.clone();\r\n }\r\n this._coincidentGeometryContext = CoincidentGeometryQuery.create(tolerance);\r\n this._results = [];\r\n }\r\n /** Reset the geometry, leaving all other parts unchanged (and preserving accumulated intersections). */\r\n public resetGeometry(geometryB: AnyCurve): void {\r\n this._geometryB = geometryB;\r\n }\r\n /** Accept the fraction if it falls inside (possibly extended) fraction range. */\r\n private acceptFraction(extend0: boolean, fraction: number, extend1: boolean, fractionTol: number = 1.0e-12): boolean {\r\n // Note that default tol is tighter than Geometry.smallFraction. We aggressively toss intersections past endpoints.\r\n if (!extend0 && fraction < -fractionTol)\r\n return false;\r\n if (!extend1 && fraction > 1.0 + fractionTol)\r\n return false;\r\n return true;\r\n }\r\n /** Test the fraction by strict parameter, but allow toleranced distance test at ends. */\r\n private acceptFractionOnLine(\r\n extend0: boolean,\r\n fraction: number,\r\n extend1: boolean,\r\n pointA: Point3d,\r\n pointB: Point3d,\r\n tolerance: number = Geometry.smallMetricDistance,\r\n ): boolean {\r\n if (!extend0 && fraction < 0) {\r\n return Geometry.isDistanceWithinTol(fraction * pointA.distanceXY(pointB), tolerance);\r\n } else if (!extend1 && fraction > 1.0)\r\n return Geometry.isDistanceWithinTol((fraction - 1.0) * pointA.distanceXY(pointB), tolerance);\r\n return true;\r\n }\r\n /**\r\n * Return the results structure for the intersection calculation, structured as an array of CurveLocationDetailPair\r\n * @param reinitialize if true, a new results structure is created for use by later calls.\r\n */\r\n public grabPairedResults(reinitialize: boolean = false): CurveLocationDetailPair[] {\r\n const result = this._results;\r\n if (reinitialize)\r\n this._results = [];\r\n return result;\r\n }\r\n /**\r\n * Record the pre-computed intersection between two curves. Filter by extension rules. Record with fraction mapping.\r\n * @param localFractionA intersection fraction local to the subcurve of cpA between fractionA0 and fractionA1\r\n * @param cpA the first curve\r\n * @param fractionA0 start of the subcurve of cpA\r\n * @param fractionA1 end of the subcurve of cpA\r\n * @param localFractionB intersection fraction local to the subcurve of cpB between fractionB0 and fractionB1\r\n * @param cpB the second curve\r\n * @param fractionB0 start of the subcurve of cpB\r\n * @param fractionB1 end of the subcurve of cpB\r\n * @param reversed whether to reverse the details in the recorded intersection pair\r\n * @param intervalDetails optional data for a coincident segment intersection\r\n */\r\n private recordPointWithLocalFractions(\r\n localFractionA: number,\r\n cpA: CurvePrimitive,\r\n fractionA0: number,\r\n fractionA1: number,\r\n localFractionB: number,\r\n cpB: CurvePrimitive,\r\n fractionB0: number,\r\n fractionB1: number,\r\n reversed: boolean,\r\n intervalDetails?: undefined | CurveLocationDetailPair,\r\n ): void {\r\n let globalFractionA, globalFractionB;\r\n let globalFractionA1, globalFractionB1;\r\n const isInterval = intervalDetails !== undefined &&\r\n intervalDetails.detailA.hasFraction1 &&\r\n intervalDetails.detailB.hasFraction1;\r\n if (isInterval) {\r\n globalFractionA = Geometry.interpolate(fractionA0, intervalDetails.detailA.fraction, fractionA1);\r\n globalFractionB = Geometry.interpolate(fractionB0, intervalDetails.detailB.fraction, fractionB1);\r\n globalFractionA1 = Geometry.interpolate(fractionA0, intervalDetails.detailA.fraction1!, fractionA1);\r\n globalFractionB1 = Geometry.interpolate(fractionB0, intervalDetails.detailB.fraction1!, fractionB1);\r\n } else {\r\n globalFractionA = globalFractionA1 = Geometry.interpolate(fractionA0, localFractionA, fractionA1);\r\n globalFractionB = globalFractionB1 = Geometry.interpolate(fractionB0, localFractionB, fractionB1);\r\n }\r\n // ignore duplicate of most recent pair\r\n const numPrevious = this._results.length;\r\n if (numPrevious > 0 && !isInterval) {\r\n const oldDetailA = this._results[numPrevious - 1].detailA;\r\n const oldDetailB = this._results[numPrevious - 1].detailB;\r\n if (reversed) {\r\n if (oldDetailB.isSameCurveAndFraction({ curve: cpA, fraction: globalFractionA }) &&\r\n oldDetailA.isSameCurveAndFraction({ curve: cpB, fraction: globalFractionB }))\r\n return;\r\n } else {\r\n if (oldDetailA.isSameCurveAndFraction({ curve: cpA, fraction: globalFractionA }) &&\r\n oldDetailB.isSameCurveAndFraction({ curve: cpB, fraction: globalFractionB }))\r\n return;\r\n }\r\n }\r\n const detailA = CurveLocationDetail.createCurveFractionPoint(\r\n cpA, globalFractionA, cpA.fractionToPoint(globalFractionA),\r\n );\r\n const detailB = CurveLocationDetail.createCurveFractionPoint(\r\n cpB, globalFractionB, cpB.fractionToPoint(globalFractionB),\r\n );\r\n if (isInterval) {\r\n detailA.captureFraction1Point1(globalFractionA1, cpA.fractionToPoint(globalFractionA1));\r\n detailB.captureFraction1Point1(globalFractionB1, cpB.fractionToPoint(globalFractionB1));\r\n } else {\r\n detailA.setIntervalRole(CurveIntervalRole.isolated);\r\n detailB.setIntervalRole(CurveIntervalRole.isolated);\r\n }\r\n if (reversed) {\r\n this._results.push(new CurveLocationDetailPair(detailB, detailA));\r\n } else {\r\n this._results.push(new CurveLocationDetailPair(detailA, detailB));\r\n }\r\n }\r\n /**\r\n * Emit recordPoint for multiple pairs (on full curve).\r\n * @param cpA first curve primitive (possibly different from curve in detailA, but fraction compatible).\r\n * @param cpB second curve primitive (possibly different from curve in detailA, but fraction compatible).\r\n * @param pairs array of pairs.\r\n * @param reversed true to have order reversed in final structures.\r\n */\r\n public recordPairs(\r\n cpA: CurvePrimitive, cpB: CurvePrimitive, pairs: CurveLocationDetailPair[] | undefined, reversed: boolean,\r\n ): void {\r\n if (pairs !== undefined) {\r\n for (const p of pairs) {\r\n this.recordPointWithLocalFractions(\r\n p.detailA.fraction, cpA, 0, 1, p.detailB.fraction, cpB, 0, 1, reversed, p,\r\n );\r\n }\r\n }\r\n }\r\n /** Compute intersection of two line segments. Filter by extension rules. Record with fraction mapping. */\r\n private computeSegmentSegment3D(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const aDir = { x: pointA1.x - pointA0.x, y: pointA1.y - pointA0.y };\r\n const bDir = { x: pointB1.x - pointB0.x, y: pointB1.y - pointB0.y };\r\n const tol = this._coincidentGeometryContext.tolerance;\r\n const fractions = SmallSystem.lineSegmentXYUVIntersectionUnbounded(pointA0, aDir, pointB0, bDir, tol);\r\n if (!fractions)\r\n return;\r\n if (fractions.f1) { // the lines are coincident\r\n const detailA = CurveLocationDetail.createCurveFractionPoint(undefined, fractions.f0.x, pointA0.interpolate(fractions.f0.x, pointA1));\r\n detailA.captureFraction1Point1(fractions.f1.x, pointA0.interpolate(fractions.f1.x, pointA1));\r\n const detailB = CurveLocationDetail.createCurveFractionPoint(undefined, fractions.f0.y, pointB0.interpolate(fractions.f0.y, pointB1));\r\n detailB.captureFraction1Point1(fractions.f1.y, pointB0.interpolate(fractions.f1.y, pointB1));\r\n const overlap = CurveLocationDetailPair.createCapture(detailA, detailB);\r\n if (this._coincidentGeometryContext.clampCoincidentOverlapToSegmentBounds(overlap, pointA0, pointA1, pointB0, pointB1, extendA0, extendA1, extendB0, extendB1))\r\n this.recordPointWithLocalFractions(overlap.detailA.fraction, cpA, fractionA0, fractionA1, overlap.detailB.fraction, cpB, fractionB0, fractionB1, reversed, overlap);\r\n } else { // the lines have a transverse intersection\r\n if (this.acceptFractionOnLine(extendA0, fractions.f0.x, extendA1, pointA0, pointA1, tol)) {\r\n if (this.acceptFractionOnLine(extendB0, fractions.f0.y, extendB1, pointB0, pointB1, tol))\r\n this.recordPointWithLocalFractions(fractions.f0.x, cpA, fractionA0, fractionA1, fractions.f0.y, cpB, fractionB0, fractionB1, reversed);\r\n }\r\n }\r\n }\r\n /**\r\n * Compute intersection of projected homogeneous line segments. Filter by extension rules. Record with\r\n * fraction mapping. Assumes caller knows the _worldToLocal is present.\r\n */\r\n private computeSegmentSegment3DH(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const hA0 = CurveCurveIntersectXY._workPointA0H;\r\n const hA1 = CurveCurveIntersectXY._workPointA1H;\r\n const hB0 = CurveCurveIntersectXY._workPointB0H;\r\n const hB1 = CurveCurveIntersectXY._workPointB1H;\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointA0, 1, hA0);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointA1, 1, hA1);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointB0, 1, hB0);\r\n this._worldToLocalPerspective!.multiplyPoint3d(pointB1, 1, hB1);\r\n const fractionAB = SmallSystem.lineSegment3dHXYTransverseIntersectionUnbounded(hA0, hA1, hB0, hB1);\r\n if (fractionAB !== undefined) {\r\n const fractionA = fractionAB.x;\r\n const fractionB = fractionAB.y;\r\n if (this.acceptFraction(extendA0, fractionA, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n // final fraction acceptance uses original world points, with perspective-aware fractions\r\n this.recordPointWithLocalFractions(\r\n fractionA, cpA, fractionA0, fractionA1, fractionB, cpB, fractionB0, fractionB1, reversed,\r\n );\r\n }\r\n }\r\n }\r\n // Caller accesses data from a line segment and passes to here.\r\n // The line segment in question might be (a) a full line segment or (b) a fragment within a linestring.\r\n // The fraction and extend parameters allow all combinations to be passed in.\r\n // This method applies transform.\r\n private dispatchSegmentSegment(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n cpB: CurvePrimitive,\r\n extendB0: boolean,\r\n pointB0: Point3d,\r\n fractionB0: number,\r\n pointB1: Point3d,\r\n fractionB1: number,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n if (this._worldToLocalAffine) {\r\n // non-perspective projection\r\n CurveCurveIntersectXY.setTransformedWorkPoints(this._worldToLocalAffine, pointA0, pointA1, pointB0, pointB1);\r\n this.computeSegmentSegment3D(\r\n cpA, extendA0, CurveCurveIntersectXY._workPointA0,\r\n fractionA0, CurveCurveIntersectXY._workPointA1, fractionA1, extendA1,\r\n cpB, extendB0, CurveCurveIntersectXY._workPointB0,\r\n fractionB0, CurveCurveIntersectXY._workPointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n } else if (this._worldToLocalPerspective) {\r\n this.computeSegmentSegment3DH(\r\n cpA, extendA0, pointA0, fractionA0, pointA1, fractionA1, extendA1,\r\n cpB, extendB0, pointB0, fractionB0, pointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n } else {\r\n this.computeSegmentSegment3D(\r\n cpA, extendA0, pointA0, fractionA0, pointA1, fractionA1, extendA1,\r\n cpB, extendB0, pointB0, fractionB0, pointB1, fractionB1, extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n // Caller accesses data from a linestring or segment and passes it here.\r\n // The line segment in question might be (a) a full line segment or (b) a fragment within a linestring.\r\n // The fraction and extend parameters allow all combinations to be passed in.\r\n private dispatchSegmentArc(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n arc: Arc3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const tol2 = this._coincidentGeometryContext.tolerance * this._coincidentGeometryContext.tolerance;\r\n const cosines = new GrowableFloat64Array(2);\r\n const sines = new GrowableFloat64Array(2);\r\n const radians = new GrowableFloat64Array(2);\r\n // Arc: X = C + cU + sV\r\n // Line: contains points A0,A1\r\n // Arc point colinear with line if det (A0, A1, X) = 0\r\n // with homogeneous xyw points and vectors.\r\n // With equational X: det (A0, A1, C) + c det (A0, A1,U) + s det (A0, A1, V) = 0.\r\n // solve for theta.\r\n // evaluate points.\r\n // project back to line.\r\n if (this._worldToLocalPerspective) {\r\n const data = arc.toTransformedPoint4d(this._worldToLocalPerspective);\r\n const radians0 = data.sweep.fractionToRadians(0);\r\n const pointB0H = data.center.plus2Scaled(data.vector0, Math.cos(radians0), data.vector90, Math.sin(radians0));\r\n const radians1 = data.sweep.fractionToRadians(1);\r\n const pointB1H = data.center.plus2Scaled(data.vector0, Math.cos(radians1), data.vector90, Math.sin(radians1));\r\n const pointA0H = this._worldToLocalPerspective.multiplyPoint3d(pointA0, 1);\r\n const pointA1H = this._worldToLocalPerspective.multiplyPoint3d(pointA1, 1);\r\n const alpha = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.center);\r\n const beta = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.vector0);\r\n const gamma = Geometry.tripleProductPoint4dXYW(pointA0H, pointA1H, data.vector90);\r\n let numRoots = AnalyticRoots.appendImplicitLineUnitCircleIntersections(alpha, beta, gamma, cosines, sines, radians);\r\n const closeApproach = (0 === numRoots);\r\n if (closeApproach)\r\n numRoots = 1; // we returned the arc's closest approach as the first \"root\"; if within tolerance and at endpoints, we record it\r\n const acceptSolution = (iRoot: number, checkOnlyEndPointDistance: boolean = false): { fLine: number, fArc: number } | undefined => {\r\n const arcPoint = data.center.plus2Scaled(data.vector0, cosines.atUncheckedIndex(iRoot), data.vector90, sines.atUncheckedIndex(iRoot));\r\n let fArc = data.sweep.radiansToSignedFraction(radians.atUncheckedIndex(iRoot), extendB0);\r\n let fLine = SmallSystem.lineSegment3dHXYClosestPointUnbounded(pointA0H, pointA1H, arcPoint);\r\n if (fLine === undefined)\r\n return undefined;\r\n if (!checkOnlyEndPointDistance && this.acceptFraction(extendA0, fLine, extendA1) && this.acceptFraction(extendB0, fArc, extendB1))\r\n return { fLine, fArc };\r\n // check for an endpoint intersection that is beyond parametric tolerance but within point tolerance\r\n fLine = fLine < 0.5 ? 0 : 1;\r\n fArc = data.sweep.fractionToSignedPeriodicFraction(fArc) < 0.5 ? 0 : 1;\r\n const pointAH = fLine ? pointA1H : pointA0H;\r\n const pointBH = fArc ? pointB1H : pointB0H;\r\n const dist2 = pointAH.realDistanceSquaredXY(pointBH);\r\n return (dist2 !== undefined && Geometry.isDistanceWithinTol(dist2, tol2)) ? { fLine, fArc } : undefined;\r\n };\r\n for (let i = 0; i < numRoots; i++) {\r\n const result = acceptSolution(i, closeApproach);\r\n if (result)\r\n this.recordPointWithLocalFractions(result.fLine, cpA, fractionA0, fractionA1, result.fArc, arc, 0, 1, reversed);\r\n }\r\n } else {\r\n const data = arc.toTransformedVectors(this._worldToLocalAffine);\r\n const radians0 = data.sweep.fractionToRadians(0);\r\n const pointB0Local = data.center.plus2Scaled(data.vector0, Math.cos(radians0), data.vector90, Math.sin(radians0));\r\n const radians1 = data.sweep.fractionToRadians(1);\r\n const pointB1Local = data.center.plus2Scaled(data.vector0, Math.cos(radians1), data.vector90, Math.sin(radians1));\r\n let pointA0Local = pointA0;\r\n let pointA1Local = pointA1;\r\n if (this._worldToLocalAffine) {\r\n pointA0Local = this._worldToLocalAffine.multiplyPoint3d(pointA0);\r\n pointA1Local = this._worldToLocalAffine.multiplyPoint3d(pointA1);\r\n }\r\n const alpha = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.center, 1);\r\n const beta = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.vector0, 0);\r\n const gamma = Geometry.tripleProductXYW(pointA0Local, 1, pointA1Local, 1, data.vector90, 0);\r\n let numRoots = AnalyticRoots.appendImplicitLineUnitCircleIntersections(alpha, beta, gamma, cosines, sines, radians);\r\n const closeApproach = (0 === numRoots);\r\n if (closeApproach)\r\n numRoots = 1; // we returned the arc's closest approach as the first \"root\"; if within tolerance and at endpoints, we record it\r\n const acceptSolution = (iRoot: number, checkOnlyEndPointDistance: boolean = false): { fLine: number, fArc: number } | undefined => {\r\n const arcPoint = data.center.plus2Scaled(data.vector0, cosines.atUncheckedIndex(iRoot), data.vector90, sines.atUncheckedIndex(iRoot));\r\n let fArc = data.sweep.radiansToSignedFraction(radians.atUncheckedIndex(iRoot), extendB0);\r\n let fLine = SmallSystem.lineSegment3dXYClosestPointUnbounded(pointA0Local, pointA1Local, arcPoint);\r\n if (fLine === undefined)\r\n return undefined;\r\n if (!checkOnlyEndPointDistance && this.acceptFraction(extendA0, fLine, extendA1) && this.acceptFraction(extendB0, fArc, extendB1))\r\n return { fLine, fArc };\r\n // check for an endpoint intersection that is beyond parametric tolerance but within point tolerance\r\n fLine = fLine < 0.5 ? 0 : 1;\r\n fArc = data.sweep.fractionToSignedPeriodicFraction(fArc) < 0.5 ? 0 : 1;\r\n const pointALocal = fLine ? pointA1Local : pointA0Local;\r\n const pointBLocal = fArc ? pointB1Local : pointB0Local;\r\n const dist2 = pointALocal.distanceSquaredXY(pointBLocal);\r\n return Geometry.isDistanceWithinTol(dist2, tol2) ? { fLine, fArc } : undefined;\r\n };\r\n for (let i = 0; i < numRoots; i++) {\r\n const result = acceptSolution(i, closeApproach);\r\n if (result)\r\n this.recordPointWithLocalFractions(result.fLine, cpA, fractionA0, fractionA1, result.fArc, arc, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n /**\r\n * Compute the intersection of two xy-arcs.\r\n * * Each matrix has [U V C] in (x,y,w) form from homogeneous projection (local to world).\r\n * * Arcs are ordered so that matrixA is better conditioned.\r\n */\r\n private dispatchArcArcThisOrder(\r\n cpA: Arc3d, // arc closer to being circular\r\n matrixA: Matrix3d,\r\n extendA0: boolean,\r\n extendA1: boolean,\r\n cpB: Arc3d,\r\n matrixB: Matrix3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n // inverseA transforms arcA to its local coordinates, where it is the unit xy-circle\r\n const inverseA = matrixA.inverse();\r\n if (inverseA) {\r\n // localB defines the arc formed by transforming arcB into the local coordinates of arcA\r\n const localB = inverseA.multiplyMatrixMatrix(matrixB);\r\n const ellipseRadians: number[] = [];\r\n const circleRadians: number[] = [];\r\n // find the intersection of the transformed arcs\r\n TrigPolynomial.solveUnitCircleHomogeneousEllipseIntersection(\r\n localB.coffs[2], localB.coffs[5], localB.coffs[8], // center xyw\r\n localB.coffs[0], localB.coffs[3], localB.coffs[6], // vector0 xyw\r\n localB.coffs[1], localB.coffs[4], localB.coffs[7], // vector90 xyw\r\n ellipseRadians, circleRadians,\r\n );\r\n const tol2 = this._coincidentGeometryContext.tolerance * this._coincidentGeometryContext.tolerance;\r\n // the intersections are transform-invariant, so the solution angles apply directly to the input arcs\r\n for (let i = 0; i < ellipseRadians.length; i++) {\r\n let fractionA = cpA.sweep.radiansToSignedFraction(circleRadians[i], extendA0);\r\n let fractionB = cpB.sweep.radiansToSignedFraction(ellipseRadians[i], extendB0);\r\n if (this.acceptFraction(extendA0, fractionA, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(fractionA, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n } else { // check for endpoint intersection beyond angular tolerance but within point tolerance\r\n fractionA = cpA.sweep.fractionToSignedPeriodicFraction(fractionA) < 0.5 ? 0 : 1;\r\n fractionB = cpB.sweep.fractionToSignedPeriodicFraction(fractionB) < 0.5 ? 0 : 1;\r\n const endPointA = cpA.fractionToPoint(fractionA, CurveCurveIntersectXY._workPointAA0);\r\n const endPointB = cpB.fractionToPoint(fractionB, CurveCurveIntersectXY._workPointBB0);\r\n const dist2 = endPointA.distanceSquaredXY(endPointB);\r\n if (Geometry.isDistanceWithinTol(dist2, tol2))\r\n this.recordPointWithLocalFractions(fractionA, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n /**\r\n * We have 2 xy-arcs.\r\n * 1- We pick the arc that is closest to circular (larger condition number is closer to circular).\r\n * 2- Transform it to local coords, where it becomes the unit xy-circle.\r\n * 3- Use the same map to transform the other arc.\r\n * 4- Find the intersection of arc and unit circle.\r\n * 5- Convert intersection angles to fractions and record intersections.\r\n */\r\n private dispatchArcArc(\r\n cpA: Arc3d, extendA0: boolean, extendA1: boolean, cpB: Arc3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): void {\r\n // overlap handling. perspective is not handled.\r\n if (this._coincidentGeometryContext && !this._worldToLocalPerspective && !this._worldToLocalAffine) {\r\n const pairs = this._coincidentGeometryContext.coincidentArcIntersectionXY(cpA, cpB, true);\r\n if (pairs) {\r\n this.recordPairs(cpA, cpB, pairs, reversed);\r\n return;\r\n }\r\n }\r\n // look for isolated intersections\r\n let matrixA: Matrix3d;\r\n let matrixB: Matrix3d;\r\n if (this._worldToLocalPerspective) {\r\n const dataA = cpA.toTransformedPoint4d(this._worldToLocalPerspective);\r\n const dataB = cpB.toTransformedPoint4d(this._worldToLocalPerspective);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, dataA.vector0.w, dataA.vector90, dataA.vector90.w, dataA.center, dataA.center.w);\r\n matrixB = Matrix3d.createColumnsXYW(dataB.vector0, dataB.vector0.w, dataB.vector90, dataA.vector90.w, dataB.center, dataB.center.w);\r\n } else {\r\n const dataA = cpA.toTransformedVectors(this._worldToLocalAffine);\r\n const dataB = cpB.toTransformedVectors(this._worldToLocalAffine);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, 0, dataA.vector90, 0, dataA.center, 1);\r\n matrixB = Matrix3d.createColumnsXYW(dataB.vector0, 0, dataB.vector90, 0, dataB.center, 1);\r\n }\r\n const conditionA = matrixA.conditionNumber();\r\n const conditionB = matrixB.conditionNumber();\r\n // order the arcs so that the first one we pass in is closer to circular\r\n if (conditionA > conditionB)\r\n this.dispatchArcArcThisOrder(cpA, matrixA, extendA0, extendA1, cpB, matrixB, extendB0, extendB1, reversed);\r\n else\r\n this.dispatchArcArcThisOrder(cpB, matrixB, extendB0, extendB1, cpA, matrixA, extendA0, extendA1, !reversed);\r\n }\r\n\r\n /** Compute the intersection of an arc and a B-spline curve. */\r\n private dispatchArcBsplineCurve3d(\r\n cpA: Arc3d, extendA0: boolean, extendA1: boolean, cpB: BSplineCurve3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): void {\r\n // Arc: X = C + cU + sV\r\n // implicitize the arc as viewed. This \"3d\" matrix is homogeneous \"XYW\" not \"xyz\"\r\n let matrixA: Matrix3d;\r\n if (this._worldToLocalPerspective) {\r\n const dataA = cpA.toTransformedPoint4d(this._worldToLocalPerspective);\r\n matrixA = Matrix3d.createColumnsXYW(\r\n dataA.vector0, dataA.vector0.w, dataA.vector90, dataA.vector90.w, dataA.center, dataA.center.w,\r\n );\r\n } else {\r\n const dataA = cpA.toTransformedVectors(this._worldToLocalAffine);\r\n matrixA = Matrix3d.createColumnsXYW(dataA.vector0, 0, dataA.vector90, 0, dataA.center, 1);\r\n }\r\n // The worldToLocal has moved the arc vectors into local space.\r\n // matrixA captures the xyw parts (ignoring z)\r\n const matrixAInverse = matrixA.inverse();\r\n if (matrixAInverse) {\r\n const orderF = cpB.order; // order of the beziers for simple coordinates\r\n const orderG = 2 * orderF - 1; // order of the (single) bezier for squared coordinates.\r\n const coffF = new Float64Array(orderF);\r\n const univariateBezierG = new UnivariateBezier(orderG);\r\n const axx = matrixAInverse.at(0, 0);\r\n const axy = matrixAInverse.at(0, 1);\r\n const axz = 0.0;\r\n const axw = matrixAInverse.at(0, 2);\r\n const ayx = matrixAInverse.at(1, 0);\r\n const ayy = matrixAInverse.at(1, 1);\r\n const ayz = 0.0;\r\n const ayw = matrixAInverse.at(1, 2);\r\n const awx = matrixAInverse.at(2, 0);\r\n const awy = matrixAInverse.at(2, 1);\r\n const awz = 0.0;\r\n const aww = matrixAInverse.at(2, 2);\r\n\r\n let bezier: BezierCurve3dH | undefined;\r\n for (let spanIndex = 0; ; spanIndex++) {\r\n bezier = cpB.getSaturatedBezierSpan3dH(spanIndex, bezier);\r\n if (!bezier)\r\n break;\r\n if (this._worldToLocalPerspective)\r\n bezier.tryMultiplyMatrix4dInPlace(this._worldToLocalPerspective);\r\n else if (this._worldToLocalAffine)\r\n bezier.tryTransformInPlace(this._worldToLocalAffine);\r\n univariateBezierG.zero();\r\n bezier.poleProductsXYZW(coffF, axx, axy, axz, axw);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, 1.0);\r\n bezier.poleProductsXYZW(coffF, ayx, ayy, ayz, ayw);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, 1.0);\r\n bezier.poleProductsXYZW(coffF, awx, awy, awz, aww);\r\n univariateBezierG.addSquaredSquaredBezier(coffF, -1.0);\r\n const roots = univariateBezierG.roots(0.0, true);\r\n if (roots) {\r\n for (const root of roots) {\r\n const fractionB = bezier.fractionToParentFraction(root);\r\n // The univariate bezier (which has been transformed by the view transform) evaluates into xyw space\r\n const bcurvePoint4d = bezier.fractionToPoint4d(root);\r\n const c = bcurvePoint4d.dotProductXYZW(axx, axy, axz, axw);\r\n const s = bcurvePoint4d.dotProductXYZW(ayx, ayy, ayz, ayw);\r\n const arcFraction = cpA.sweep.radiansToSignedFraction(Math.atan2(s, c), extendA0);\r\n if (this.acceptFraction(extendA0, arcFraction, extendA1) &&\r\n this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(arcFraction, cpA, 0, 1, fractionB, cpB, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n }\r\n }\r\n /** Apply the transformation to bezier curves. Optionally construct ranges. */\r\n private transformBeziers(beziers: BezierCurve3dH[]): void {\r\n if (this._worldToLocalAffine) {\r\n for (const bezier of beziers) bezier.tryTransformInPlace(this._worldToLocalAffine);\r\n } else if (this._worldToLocalPerspective) {\r\n for (const bezier of beziers) bezier.tryMultiplyMatrix4dInPlace(this._worldToLocalPerspective);\r\n }\r\n }\r\n private getRanges(beziers: BezierCurveBase[]): Range3d[] {\r\n const ranges: Range3d[] = [];\r\n ranges.length = 0;\r\n for (const b of beziers) {\r\n ranges.push(b.range());\r\n }\r\n return ranges;\r\n }\r\n private dispatchBezierBezierStrokeFirst(\r\n bezierA: BezierCurve3dH,\r\n bcurveA: BSplineCurve3dBase,\r\n strokeCountA: number,\r\n bezierB: BezierCurve3dH,\r\n bcurveB: BSplineCurve3dBase,\r\n _strokeCountB: number,\r\n univariateBezierB: UnivariateBezier, // caller-allocated for univariate coefficients\r\n reversed: boolean,\r\n ): void {\r\n if (!this._xyzwA0)\r\n this._xyzwA0 = Point4d.create();\r\n if (!this._xyzwA1)\r\n this._xyzwA1 = Point4d.create();\r\n if (!this._xyzwPlane)\r\n this._xyzwPlane = Point4d.create();\r\n if (!this._xyzwB)\r\n this._xyzwB = Point4d.create();\r\n /*\r\n const roots = univariateBezierG.roots(0.0, true);\r\n if (roots) {\r\n for (const root of roots) {\r\n const fractionB = bezier.fractionToParentFraction(root);\r\n // The univariate bezier (which has been transformed by the view transform) evaluates into xyw space\r\n const bcurvePoint4d = bezier.fractionToPoint4d(root);\r\n const c = bcurvePoint4d.dotProductXYZW(axx, axy, axz, axw);\r\n const s = bcurvePoint4d.dotProductXYZW(ayx, ayy, ayz, ayw);\r\n const arcFraction = cpA.sweep.radiansToSignedPeriodicFraction(Math.atan2(s, c));\r\n if (this.acceptFraction(extendA, arcFraction, extendA) && this.acceptFraction(extendB, fractionB, extendB)) {\r\n this.recordPointWithLocalFractions(\r\n arcFraction, cpA, 0, 1, fractionB, cpB, 0, 1, reversed,\r\n );\r\n }\r\n }\r\n */\r\n bezierA.fractionToPoint4d(0.0, this._xyzwA0);\r\n let f0 = 0.0;\r\n let f1;\r\n const intervalTolerance = 1.0e-5;\r\n const df = 1.0 / strokeCountA;\r\n for (let i = 1; i <= strokeCountA; i++, f0 = f1, this._xyzwA0.setFrom(this._xyzwA1)) {\r\n f1 = i * df;\r\n bezierA.fractionToPoint4d(f1, this._xyzwA1);\r\n Point4d.createPlanePointPointZ(this._xyzwA0, this._xyzwA1, this._xyzwPlane);\r\n bezierB.poleProductsXYZW(\r\n univariateBezierB.coffs, this._xyzwPlane.x, this._xyzwPlane.y, this._xyzwPlane.z, this._xyzwPlane.w,\r\n );\r\n let errors = 0;\r\n const roots = univariateBezierB.roots(0.0, true);\r\n if (roots) {\r\n for (const r of roots) {\r\n let bezierBFraction = r;\r\n bezierB.fractionToPoint4d(bezierBFraction, this._xyzwB);\r\n const segmentAFraction = SmallSystem.lineSegment3dHXYClosestPointUnbounded(\r\n this._xyzwA0, this._xyzwA1, this._xyzwB,\r\n );\r\n if (segmentAFraction !== undefined && Geometry.isIn01WithTolerance(segmentAFraction, intervalTolerance)) {\r\n let bezierAFraction = Geometry.interpolate(f0, segmentAFraction, f1);\r\n // We have a near intersection at fractions on the two beziers\r\n // Iterate on the curves for a true intersection\r\n const xyMatchingFunction = new CurveCurveIntersectionXYRRToRRD(bezierA, bezierB);\r\n const newtonSearcher = new Newton2dUnboundedWithDerivative(xyMatchingFunction);\r\n newtonSearcher.setUV(bezierAFraction, bezierBFraction);\r\n if (newtonSearcher.runIterations()) {\r\n bezierAFraction = newtonSearcher.getU();\r\n bezierBFraction = newtonSearcher.getV();\r\n }\r\n const bcurveAFraction = bezierA.fractionToParentFraction(bezierAFraction);\r\n const bcurveBFraction = bezierB.fractionToParentFraction(bezierBFraction);\r\n if (false) { // verify results\r\n const xyzA0 = bezierA.fractionToPoint(bezierAFraction);\r\n const xyzA1 = bcurveA.fractionToPoint(bcurveAFraction);\r\n const xyzB0 = bezierB.fractionToPoint(bezierBFraction);\r\n const xyzB1 = bcurveB.fractionToPoint(bcurveBFraction);\r\n if (!xyzA0.isAlmostEqualXY(xyzA1))\r\n errors++;\r\n if (!xyzB0.isAlmostEqualXY(xyzB1))\r\n errors++;\r\n if (errors > 0 && !xyzA0.isAlmostEqual(xyzB0))\r\n errors++;\r\n if (errors > 0 && !xyzA1.isAlmostEqual(xyzB1))\r\n errors++;\r\n }\r\n if (this.acceptFraction(false, bcurveAFraction, false) && this.acceptFraction(false, bcurveBFraction, false)) {\r\n this.recordPointWithLocalFractions(\r\n bcurveAFraction, bcurveA, 0, 1, bcurveBFraction, bcurveB, 0, 1, reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n }\r\n }\r\n private dispatchBSplineCurve3dBSplineCurve3d(\r\n bcurveA: BSplineCurve3dBase, bcurveB: BSplineCurve3dBase, reversed: boolean,\r\n ): void {\r\n const bezierSpanA = bcurveA.collectBezierSpans(true) as BezierCurve3dH[];\r\n const bezierSpanB = bcurveB.collectBezierSpans(true) as BezierCurve3dH[];\r\n const numA = bezierSpanA.length;\r\n const numB = bezierSpanB.length;\r\n this.transformBeziers(bezierSpanA);\r\n this.transformBeziers(bezierSpanB);\r\n const rangeA = this.getRanges(bezierSpanA);\r\n const rangeB = this.getRanges(bezierSpanB);\r\n const orderA = bcurveA.order;\r\n const orderB = bcurveB.order;\r\n const univariateCoffsA = new UnivariateBezier(orderA);\r\n const univariateCoffsB = new UnivariateBezier(orderB);\r\n for (let a = 0; a < numA; a++) {\r\n for (let b = 0; b < numB; b++) {\r\n if (rangeA[a].intersectsRangeXY(rangeB[b])) {\r\n const strokeCountA = bezierSpanA[a].computeStrokeCountForOptions();\r\n const strokeCountB = bezierSpanB[b].computeStrokeCountForOptions();\r\n if (strokeCountA < strokeCountB)\r\n this.dispatchBezierBezierStrokeFirst(\r\n bezierSpanA[a], bcurveA, strokeCountA, bezierSpanB[b], bcurveB, strokeCountB, univariateCoffsB, reversed,\r\n );\r\n else\r\n this.dispatchBezierBezierStrokeFirst(\r\n bezierSpanB[b], bcurveB, strokeCountB, bezierSpanA[a], bcurveA, strokeCountA, univariateCoffsA, !reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n /**\r\n * Apply the projection transform (if any) to (xyz, w).\r\n * @param xyz xyz parts of input point.\r\n * @param w weight to use for homogeneous effects.\r\n */\r\n private projectPoint(xyz: XYAndZ, w: number = 1.0): Point4d {\r\n if (this._worldToLocalPerspective)\r\n return this._worldToLocalPerspective.multiplyPoint3d(xyz, w);\r\n if (this._worldToLocalAffine)\r\n return this._worldToLocalAffine.multiplyXYZW(xyz.x, xyz.y, xyz.z, w);\r\n return Point4d.createFromPointAndWeight(xyz, w);\r\n }\r\n private mapNPCPlaneToWorld(npcPlane: Point4d, worldPlane: Point4d) {\r\n // for NPC pointY, Y^ * H = 0 is \"on\" plane H. (Hat is transpose)\r\n // NPC Y is A*X for our transform A and worldPointX.\r\n // hence (A X)^ * H = 0\r\n // hence X^ * A^ * H = 0\r\n // hence K = A^ * H\r\n if (this._worldToLocalAffine) {\r\n this._worldToLocalAffine.multiplyTransposeXYZW(npcPlane.x, npcPlane.y, npcPlane.z, npcPlane.w, worldPlane);\r\n } else if (this._worldToLocalPerspective) {\r\n this._worldToLocalPerspective.multiplyTransposePoint4d(npcPlane, worldPlane);\r\n } else {\r\n npcPlane.clone(worldPlane);\r\n }\r\n }\r\n // Caller accesses data from segment and bsplineCurve.\r\n // Selects the best conditioned arc (in xy parts) as \"circle after inversion\".\r\n // Solves the arc-arc equations.\r\n private dispatchSegmentBsplineCurve(\r\n cpA: CurvePrimitive,\r\n extendA0: boolean,\r\n pointA0: Point3d,\r\n fractionA0: number,\r\n pointA1: Point3d,\r\n fractionA1: number,\r\n extendA1: boolean,\r\n bcurve: BSplineCurve3d,\r\n extendB0: boolean,\r\n extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const pointA0H = this.projectPoint(pointA0);\r\n const pointA1H = this.projectPoint(pointA1);\r\n const planeCoffs = Point4d.createPlanePointPointZ(pointA0H, pointA1H);\r\n this.mapNPCPlaneToWorld(planeCoffs, planeCoffs);\r\n // NOW .. we have a plane in world space. Intersect it with the bspline:\r\n const intersections: CurveLocationDetail[] = [];\r\n bcurve.appendPlaneIntersectionPoints(planeCoffs, intersections);\r\n // intersections has WORLD points with bspline fractions.\r\n // (the bspline fractions are all good 0..1 fractions within the spline).\r\n // accept those that are within the segment range.\r\n for (const detail of intersections) {\r\n const fractionB = detail.fraction;\r\n const curvePoint = detail.point;\r\n const curvePointH = this.projectPoint(curvePoint);\r\n const lineFraction = SmallSystem.lineSegment3dHXYClosestPointUnbounded(pointA0H, pointA1H, curvePointH);\r\n if (lineFraction !== undefined) {\r\n if (this.acceptFraction(extendA0, lineFraction, extendA1) && this.acceptFraction(extendB0, fractionB, extendB1)) {\r\n this.recordPointWithLocalFractions(lineFraction, cpA, fractionA0, fractionA1, fractionB, bcurve, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n }\r\n /** Low level dispatch of linestring with (beziers of) a bspline curve. */\r\n public dispatchLineStringBSplineCurve(\r\n lsA: LineString3d, extendA0: boolean, extendA1: boolean,\r\n curveB: BSplineCurve3d, extendB0: boolean, extendB1: boolean, reversed: boolean,\r\n ): any {\r\n const numA = lsA.numPoints();\r\n if (numA > 1) {\r\n const dfA = 1.0 / (numA - 1);\r\n let fA0;\r\n let fA1;\r\n fA0 = 0.0;\r\n const pointA0 = CurveCurveIntersectXY._workPointA0;\r\n const pointA1 = CurveCurveIntersectXY._workPointA1;\r\n lsA.pointAt(0, pointA0);\r\n for (let iA = 1; iA < numA; iA++, pointA0.setFrom(pointA1), fA0 = fA1) {\r\n lsA.pointAt(iA, pointA1);\r\n fA1 = iA * dfA;\r\n this.dispatchSegmentBsplineCurve(\r\n lsA, iA === 1 && extendA0, pointA0, fA0, pointA1, fA1, (iA + 1) === numA && extendA1,\r\n curveB, extendB0, extendB1, reversed);\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for segment intersecting linestring. */\r\n public computeSegmentLineString(\r\n lsA: LineSegment3d, extendA0: boolean, extendA1: boolean,\r\n lsB: LineString3d, extendB0: boolean, extendB1: boolean,\r\n reversed: boolean,\r\n ): any {\r\n const pointA0 = lsA.point0Ref;\r\n const pointA1 = lsA.point1Ref;\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numB = lsB.numPoints();\r\n if (numB > 1) {\r\n const dfB = 1.0 / (numB - 1);\r\n let fB0;\r\n let fB1;\r\n fB0 = 0.0;\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentSegment(\r\n lsA, extendA0, pointA0, 0.0, pointA1, 1.0, extendA1,\r\n lsB, ib === 1 && extendB0, pointB0, fB0, pointB1, fB1, (ib + 1) === numB && extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for arc intersecting linestring. */\r\n public computeArcLineString(\r\n arcA: Arc3d, extendA0: boolean, extendA1: boolean,\r\n lsB: LineString3d, extendB0: boolean, extendB1: boolean,\r\n reversed: boolean,\r\n ): any {\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numB = lsB.numPoints();\r\n if (numB > 1) {\r\n const dfB = 1.0 / (numB - 1);\r\n let fB0;\r\n let fB1;\r\n fB0 = 0.0;\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentArc(\r\n lsB, ib === 1 && extendB0, pointB0, fB0, pointB1, fB1,\r\n (ib + 1) === numB && extendB1, arcA, extendA0, extendA1, !reversed,\r\n );\r\n }\r\n }\r\n return undefined;\r\n }\r\n /** Detail computation for linestring intersecting linestring. */\r\n private computeLineStringLineString(\r\n lsA: LineString3d, extendA0: boolean, extendA1: boolean,\r\n lsB: LineString3d, extendB0: boolean, extendB1: boolean,\r\n reversed: boolean,\r\n ): void {\r\n const pointA0 = CurveCurveIntersectXY._workPointAA0;\r\n const pointA1 = CurveCurveIntersectXY._workPointAA1;\r\n const pointB0 = CurveCurveIntersectXY._workPointBB0;\r\n const pointB1 = CurveCurveIntersectXY._workPointBB1;\r\n const numA = lsA.numPoints();\r\n const numB = lsB.numPoints();\r\n if (numA > 1 && numB > 1) {\r\n lsA.pointAt(0, pointA0);\r\n const dfA = 1.0 / (numA - 1);\r\n const dfB = 1.0 / (numB - 1);\r\n let fA0 = 0.0;\r\n let fB0;\r\n let fA1;\r\n let fB1;\r\n lsA.pointAt(0, pointA0);\r\n for (let ia = 1; ia < numA; ia++, pointA0.setFrom(pointA1), fA0 = fA1) {\r\n fA1 = ia * dfA;\r\n fB0 = 0.0;\r\n lsA.pointAt(ia, pointA1);\r\n lsB.pointAt(0, pointB0);\r\n for (let ib = 1; ib < numB; ib++, pointB0.setFrom(pointB1), fB0 = fB1) {\r\n lsB.pointAt(ib, pointB1);\r\n fB1 = ib * dfB;\r\n this.dispatchSegmentSegment(\r\n lsA, ia === 1 && extendA0, pointA0, fA0, pointA1, fA1, (ia + 1) === numA && extendA1,\r\n lsB, ib === 1 && extendB0, pointB0, fB0, pointB1, fB1, (ib + 1) === numB && extendB1,\r\n reversed,\r\n );\r\n }\r\n }\r\n }\r\n }\r\n private static setTransformedWorkPoints(\r\n transform: Transform, pointA0: Point3d, pointA1: Point3d, pointB0: Point3d, pointB1: Point3d,\r\n ): void {\r\n transform.multiplyPoint3d(pointA0, this._workPointA0);\r\n transform.multiplyPoint3d(pointA1, this._workPointA1);\r\n transform.multiplyPoint3d(pointB0, this._workPointB0);\r\n transform.multiplyPoint3d(pointB1, this._workPointB1);\r\n }\r\n /**\r\n * Low level dispatch of curve collection.\r\n * We take care of extend variables of geometry's children here if geometry is Path or Loop.\r\n */\r\n private dispatchCurveCollection(geomA: AnyCurve, geomAHandler: (geomA: any) => any): void {\r\n const geomB = this._geometryB; // save\r\n if (!geomB || !geomB.children || !(geomB instanceof CurveCollection))\r\n return;\r\n const children = geomB.children;\r\n const extendB0 = this._extendB0; // save\r\n const extendB1 = this._extendB1; // save\r\n for (let i = 0; i < children.length; i++) {\r\n this.resetGeometry(children[i]);\r\n if (geomB instanceof Path && children.length > 1) {\r\n if (i === 0)\r\n this._extendB1 = false; // first child can only extend from start\r\n else if (i === children.length - 1)\r\n this._extendB0 = false; // last child can only extend from end\r\n else\r\n this._extendB0 = this._extendB1 = false; // middle children cannot extend\r\n } else if (geomB instanceof Loop) {\r\n this._extendB0 = this._extendB1 = false; // Loops cannot extend\r\n }\r\n geomAHandler(geomA);\r\n this._extendB0 = extendB0; // restore\r\n this._extendB1 = extendB1; // restore\r\n }\r\n this.resetGeometry(geomB); // restore\r\n }\r\n /**\r\n * Low level dispatch of CurveChainWithDistanceIndex.\r\n * We take care of extend variables of geometry's children here if geometry.path is Path or Loop.\r\n */\r\n private dispatchCurveChainWithDistanceIndex(geomA: AnyCurve, geomAHandler: (geomA: any) => any): void {\r\n if (!this._geometryB || !(this._geometryB instanceof CurveChainWithDistanceIndex))\r\n return;\r\n if (geomA instanceof CurveChainWithDistanceIndex) {\r\n assert(false, \"call handleCurveChainWithDistanceIndex(geomA) instead\");\r\n }\r\n const index0 = this._results.length;\r\n const geomB = this._geometryB; // save\r\n this.resetGeometry(geomB.path);\r\n this.dispatchCurveCollection(geomA, geomAHandler);\r\n this.resetGeometry(geomB); // restore\r\n this._results = CurveChainWithDistanceIndex.convertChildDetailToChainDetail(\r\n this._results, index0, undefined, geomB, true,\r\n );\r\n }\r\n /**\r\n * Invoke `child.dispatchToGeometryHandler(this)` for each child in the array returned by the query `g.children`.\r\n * We take care of extend variables of geometry's children here if geometry is Path or Loop.\r\n */\r\n public override handleChildren(g: GeometryQuery): any {\r\n const children = g.children;\r\n const extendA0 = this._extendA0; // save\r\n const extendA1 = this._extendA1; // save\r\n if (children)\r\n for (let i = 0; i < children.length; i++) {\r\n if (g instanceof Path && children.length > 1) {\r\n if (i === 0)\r\n this._extendA1 = false; // first child can only extend from start\r\n else if (i === children.length - 1)\r\n this._extendA0 = false; // last child can only extend from end\r\n else\r\n this._extendA0 = this._extendA1 = false; // middle children cannot extend\r\n } else if (g instanceof Loop) {\r\n this._extendA0 = this._extendA1 = false; // Loops cannot extend\r\n }\r\n children[i].dispatchToGeometryHandler(this);\r\n this._extendA0 = extendA0; // restore\r\n this._extendA1 = extendA1; // restore\r\n }\r\n }\r\n /** Double dispatch handler for strongly typed segment. */\r\n public override handleLineSegment3d(segmentA: LineSegment3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n const segmentB = this._geometryB;\r\n this.dispatchSegmentSegment(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n segmentB, this._extendB0, segmentB.point0Ref, 0.0, segmentB.point1Ref, 1.0, this._extendB1,\r\n false,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.computeSegmentLineString(\r\n segmentA, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchSegmentArc(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n segmentA, this._extendA0, segmentA.point0Ref, 0.0, segmentA.point1Ref, 1.0, this._extendA1,\r\n this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof TransitionSpiral3d) {\r\n const spiralApproximation = LineString3d.create();\r\n this._geometryB.emitStrokes(spiralApproximation);\r\n const numPreviousResults = this._results.length;\r\n this.computeSegmentLineString(segmentA, this._extendA0, this._extendA1, spiralApproximation, false, false, false);\r\n const numberOfNewResults = this._results.length - numPreviousResults;\r\n this.refineSpiralResultsByNewton(segmentA, this._geometryB, numberOfNewResults);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(segmentA, this.handleLineSegment3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(segmentA, this.handleLineSegment3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed linestring. */\r\n public override handleLineString3d(lsA: LineString3d): any {\r\n if (this._geometryB instanceof LineString3d) {\r\n const lsB = this._geometryB;\r\n this.computeLineStringLineString(lsA, this._extendA0, this._extendA1, lsB, this._extendB0, this._extendB1, false);\r\n } else if (this._geometryB instanceof LineSegment3d) {\r\n this.computeSegmentLineString(\r\n this._geometryB, this._extendB0, this._extendB1, lsA, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.computeArcLineString(\r\n this._geometryB, this._extendB0, this._extendB1, lsA, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchLineStringBSplineCurve(\r\n lsA, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof TransitionSpiral3d) {\r\n const spiralApproximation = LineString3d.create();\r\n this._geometryB.emitStrokes(spiralApproximation);\r\n const numPreviousResults = this._results.length;\r\n this.computeLineStringLineString(lsA, this._extendA0, this._extendA1, spiralApproximation, false, false, false);\r\n const numberOfNewResults = this._results.length - numPreviousResults;\r\n this.refineSpiralResultsByNewton(lsA, this._geometryB, numberOfNewResults);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(lsA, this.handleLineString3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(lsA, this.handleLineString3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed arc. */\r\n public override handleArc3d(arc0: Arc3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentArc(\r\n this._geometryB, this._extendB0, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB1,\r\n arc0, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.computeArcLineString(\r\n arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcArc(arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false);\r\n } else if (this._geometryB instanceof BSplineCurve3d) {\r\n this.dispatchArcBsplineCurve3d(\r\n arc0, this._extendA0, this._extendA1, this._geometryB, this._extendB0, this._extendB1, false,\r\n );\r\n } else if (this._geometryB instanceof TransitionSpiral3d) {\r\n const spiralApproximation = LineString3d.create();\r\n this._geometryB.emitStrokes(spiralApproximation);\r\n const numPreviousResults = this._results.length;\r\n this.computeArcLineString(arc0, this._extendA0, this._extendA1, spiralApproximation, false, false, false);\r\n const numberOfNewResults = this._results.length - numPreviousResults;\r\n this.refineSpiralResultsByNewton(arc0, this._geometryB, numberOfNewResults);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(arc0, this.handleArc3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(arc0, this.handleArc3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed bspline curve. */\r\n public override handleBSplineCurve3d(curve: BSplineCurve3d): any {\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n this._geometryB, this._extendB0, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB1,\r\n curve, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.dispatchLineStringBSplineCurve(\r\n this._geometryB, this._extendB0, this._extendB1, curve, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcBsplineCurve3d(\r\n this._geometryB, this._extendB0, this._extendB1, curve, this._extendA0, this._extendA1, true,\r\n );\r\n } else if (this._geometryB instanceof BSplineCurve3dBase) {\r\n this.dispatchBSplineCurve3dBSplineCurve3d(curve, this._geometryB, false);\r\n } else if (this._geometryB instanceof TransitionSpiral3d) {\r\n const spiralApproximation = LineString3d.create();\r\n this._geometryB.emitStrokes(spiralApproximation);\r\n const numPreviousResults = this._results.length;\r\n this.dispatchLineStringBSplineCurve(spiralApproximation, false, false, curve, this._extendA0, this._extendA1, true);\r\n const numberOfNewResults = this._results.length - numPreviousResults;\r\n this.refineSpiralResultsByNewton(curve, this._geometryB, numberOfNewResults);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(curve, this.handleBSplineCurve3d.bind(this));\r\n } else if (this._geometryB instanceof CurveChainWithDistanceIndex) {\r\n this.dispatchCurveChainWithDistanceIndex(curve, this.handleBSplineCurve3d.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /**\r\n * Assuming the tail of `this._results` holds the given number of approximate solutions to the curve-spiral\r\n * xy-intersection problem, replace each with its Newton refinement, unless it doesn't converge, in which case\r\n * it is removed.\r\n * @param spiral The transition spiral.\r\n * @param otherCurve The other curve primitive.\r\n * @param numberOfNewResults The number of results in the tail of `this._results` to be refined.\r\n * @param reversed Whether the spiral is geometryA (true) or geometryB (false).\r\n */\r\n private refineSpiralResultsByNewton(\r\n otherCurve: CurvePrimitive, spiral: TransitionSpiral3d, numberOfNewResults: number, reversed = false,\r\n ): void {\r\n const resultsToBeRefined = this._results.slice(this._results.length - numberOfNewResults);\r\n this._results.length -= numberOfNewResults; // keep already refined results\r\n for (const detail of resultsToBeRefined) {\r\n let spiralFraction = reversed ? detail.detailA.fraction : detail.detailB.fraction;\r\n let otherFraction = reversed ? detail.detailB.fraction : detail.detailA.fraction;\r\n const xyMatchingFunction = new CurveCurveIntersectionXYRRToRRD(spiral, otherCurve);\r\n const newtonSearcher = new Newton2dUnboundedWithDerivative(xyMatchingFunction);\r\n newtonSearcher.setUV(spiralFraction, otherFraction);\r\n if (newtonSearcher.runIterations()) {\r\n spiralFraction = newtonSearcher.getU();\r\n otherFraction = newtonSearcher.getV();\r\n if (this.acceptFraction(false, spiralFraction, false) && this.acceptFraction(false, otherFraction, false))\r\n this.recordPointWithLocalFractions(otherFraction, otherCurve, 0, 1, spiralFraction, spiral, 0, 1, reversed);\r\n }\r\n }\r\n }\r\n /** Double dispatch handler for strongly typed spiral curve. */\r\n public override handleTransitionSpiral(spiral: TransitionSpiral3d): any {\r\n if (this._geometryB instanceof CurvePrimitive) { // this also handles CurveChainWithDistanceIndex\r\n const spiralApproximation = LineString3d.create();\r\n spiral.emitStrokes(spiralApproximation);\r\n const numPreviousResults = this._results.length;\r\n this.handleLineString3d(spiralApproximation);\r\n const numberOfNewResults = this._results.length - numPreviousResults;\r\n this.refineSpiralResultsByNewton(this._geometryB, spiral, numberOfNewResults, true);\r\n } else if (this._geometryB instanceof CurveCollection) {\r\n this.dispatchCurveCollection(spiral, this.handleTransitionSpiral.bind(this));\r\n }\r\n return undefined;\r\n }\r\n /** Double dispatch handler for strongly typed CurveChainWithDistanceIndex. */\r\n public override handleCurveChainWithDistanceIndex(chain: CurveChainWithDistanceIndex): any {\r\n super.handleCurveChainWithDistanceIndex(chain);\r\n // if _geometryB is also a CurveChainWithDistanceIndex, it will already have been converted by dispatchCurveChainWithDistanceIndex\r\n this._results = CurveChainWithDistanceIndex.convertChildDetailToChainDetail(this._results, 0, chain, undefined, true);\r\n }\r\n /** Double dispatch handler for strongly typed homogeneous bspline curve. */\r\n public override handleBSplineCurve3dH(_curve: BSplineCurve3dH): any {\r\n /*\r\n // NEEDS WORK -- make \"dispatch\" methods tolerant of both 3d and 3dH .\r\n // \"easy\" if both present BezierCurve3dH span loaders\r\n if (this._geometryB instanceof LineSegment3d) {\r\n this.dispatchSegmentBsplineCurve(\r\n this._geometryB, this._extendB, this._geometryB.point0Ref, 0.0, this._geometryB.point1Ref, 1.0, this._extendB,\r\n curve, this._extendA, true);\r\n } else if (this._geometryB instanceof LineString3d) {\r\n this.dispatchLineStringBSplineCurve(this._geometryB, this._extendB, curve, this._extendA, true);\r\n } else if (this._geometryB instanceof Arc3d) {\r\n this.dispatchArcBsplineCurve3d(this._geometryB, this._extendB, curve, this._extendA, true);\r\n }\r\n */\r\n return undefined;\r\n }\r\n}\r\n"]}
@@ -25,7 +25,7 @@ export declare class AustralianRailCorpXYEvaluator extends CubicEvaluator {
25
25
  * * The AustralianRailSpiral has a supporting power series to approximately map distance along the spiral to
26
26
  * an x coordinate.
27
27
  * * The `xToFraction(x)` method quickly (with a single divide) converts this x to fraction used for
28
- * this.fractionToX (fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.
28
+ * this.fractionToX(fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.
29
29
  * * The x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.
30
30
  * * It is supported here for users interested in replicating the AustralianRail distance mapping rather than the
31
31
  * more accurate CurvePrimitive measurements.
@@ -105,7 +105,7 @@ export class AustralianRailCorpXYEvaluator extends CubicEvaluator {
105
105
  * * The AustralianRailSpiral has a supporting power series to approximately map distance along the spiral to
106
106
  * an x coordinate.
107
107
  * * The `xToFraction(x)` method quickly (with a single divide) converts this x to fraction used for
108
- * this.fractionToX (fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.
108
+ * this.fractionToX(fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.
109
109
  * * The x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.
110
110
  * * It is supported here for users interested in replicating the AustralianRail distance mapping rather than the
111
111
  * more accurate CurvePrimitive measurements.
@@ -1 +1 @@
1
- {"version":3,"file":"AustralianRailCorpXYEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/AustralianRailCorpXYEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;GAMG;AACH,MAAM,OAAO,6BAA8B,SAAQ,cAAc;IACvD,eAAe,CAAS;IACxB,eAAe,CAAS;IAChC,YAAoB,cAAsB,EAAE,cAAsB,EAAE,UAAkB,EAAE,MAAc;QACpG,KAAK,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;QAC1B,IAAI,CAAC,eAAe,GAAG,cAAc,CAAC;QACtC,IAAI,CAAC,eAAe,GAAG,cAAc,CAAC;IACxC,CAAC;IACD,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,eAAe,CAAC;IAC9B,CAAC;IACD,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,eAAe,CAAC;IAC9B,CAAC;IACM,KAAK;QACV,OAAO,IAAI,6BAA6B,CAAC,IAAI,CAAC,eAAe,EAAE,IAAI,CAAC,eAAe,EAAE,IAAI,CAAC,WAAW,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IACvH,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,cAAsB,EAAE,cAAsB;QACjE,MAAM,UAAU,GAAG,6BAA6B,CAAC,kCAAkC,CAAC,cAAc,EAAE,cAAc,CAAC,CAAC;QACpH,MAAM,GAAG,GAAG,IAAI,CAAC,wBAAwB,CAAC,cAAc,EAAE,UAAU,CAAC,CAAC;QACtE,MAAM,GAAG,GAAG,UAAU,GAAG,UAAU,CAAC;QACpC,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;QAC3C,OAAO,IAAI,6BAA6B,CAAC,cAAc,EAAE,cAAc,EAAE,UAAU,EAAE,MAAM,CAAC,CAAC;IAC/F,CAAC;IACD,sGAAsG;IAC/F,MAAM,CAAC,wBAAwB,CAAC,cAAsB,EAAE,UAAkB;QAC/E,MAAM,EAAE,GAAG,UAAU,CAAC;QACtB,MAAM,KAAK,GAAG,CAAC,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;QACnC,IAAI,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,cAAc,CAAC,CAAC;QAC/D,IAAI,KAAK,GAAG,CAAC,GAAG;YACd,KAAK,GAAG,CAAC,GAAG,CAAC;QACf,IAAI,KAAK,GAAG,GAAG;YACb,KAAK,GAAG,GAAG,CAAC;QACd,MAAM,KAAK,GAAG,KAAK,CAAC,gBAAgB,CAAC,GAAG,CAAC,CAAC;QAC1C,OAAO,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,GAAG,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;IACpE,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,uEAAuE;QACvE,IAAI,CAAC,eAAe,IAAI,WAAW,CAAC;QACpC,IAAI,CAAC,eAAe,IAAI,WAAW,CAAC;QACpC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,qFAAqF;IAC9E,MAAM,CAAC,kCAAkC,CAC9C,cAAsB,EAAE,cAAsB,EAAE,YAAoB,MAAM,EAAE,2BAAmC,CAAC;QAEhH,MAAM,CAAC,GAAG,cAAc,CAAC;QACzB,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC;QAChB,IAAI,EAAE,GAAG,EAAE,GAAG,cAAc,CAAC;QAC7B,IAAI,gBAAgB,GAAG,CAAC,CAAC;QACzB,iCAAiC;QACjC,mBAAmB;QACnB,wCAAwC;QACxC,uHAAuH;QACvH,8GAA8G;QAC9G,sGAAsG;QACtG,qDAAqD;QACrD,gEAAgE;QAChE,KAAK,GAAG,GAAG,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,EAAE,GAAG,EAAE,CAAC;YAC/B,GAAG,GAAG,IAAI,CAAC,wBAAwB,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;YAC3C,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;YACd,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;YAChC,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;YAC/B,MAAM,UAAU,GAAG,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;YACtH,MAAM,eAAe,GAAG,EAAE,GAAG,UAAU,CAAC;YACxC,EAAE,GAAG,CAAC,cAAc,GAAG,eAAe,CAAC,GAAG,EAAE,CAAC;YAC7C,IAAI,IAAI,CAAC,GAAG,CAAC,cAAc,GAAG,eAAe,CAAC,GAAG,SAAS,EAAE,CAAC;gBAC3D,gBAAgB,EAAE,CAAC;gBACnB,IAAI,gBAAgB,IAAI,wBAAwB;oBAC9C,MAAM;YACV,CAAC;iBAAM,CAAC;gBACN,gBAAgB,GAAG,CAAC,CAAC;YACvB,CAAC;QACH,CAAC;QACD,OAAO,EAAE,CAAC;IACZ,CAAC;IACM,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,6BAA6B,EAAE,CAAC;YACnD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC;mBAC3D,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,WAAW,EAAE,KAAK,CAAC,WAAW,CAAC;mBACjE,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,eAAe,EAAE,KAAK,CAAC,eAAe,CAAC;mBACzE,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,eAAe,EAAE,KAAK,CAAC,eAAe,CAAC,CAAC;QACjF,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;;;;;;;OAYG;IACI,2CAA2C,CAAC,CAAS;QAC1D,MAAM,EAAE,GAAG,MAAM,CAAC;QAClB,MAAM,EAAE,GAAG,MAAM,CAAC;QAClB,MAAM,EAAE,GAAG,OAAO,CAAC;QACnB,MAAM,EAAE,GAAG,QAAQ,CAAC;QACpB,MAAM,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC;QACvB,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QACnC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1E,OAAO,CAAC,CAAC;IACX,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { Angle } from \"../../geometry3d/Angle\";\r\nimport { CubicEvaluator } from \"./CubicEvaluator\";\r\n\r\n/**\r\n * AustralianRailCorp spiral (also known as New South Wales spiral)\r\n * * The ultimate curve is a cubic `y = m * x^3`.\r\n * * `m` is a constant throughout the curve.\r\n * * Computation of m from the R and L is an complicated sequence, but is only done at construction time.\r\n * @internal\r\n */\r\nexport class AustralianRailCorpXYEvaluator extends CubicEvaluator {\r\n private _nominalLength1: number;\r\n private _nominalRadius1: number;\r\n private constructor(nominalLength1: number, nominalRadius1: number, axisLength: number, cubicM: number) {\r\n super(axisLength, cubicM);\r\n this._nominalLength1 = nominalLength1;\r\n this._nominalRadius1 = nominalRadius1;\r\n }\r\n public get nominalLength1() {\r\n return this._nominalLength1;\r\n }\r\n public get nominalRadius1() {\r\n return this._nominalRadius1;\r\n }\r\n public clone(): AustralianRailCorpXYEvaluator {\r\n return new AustralianRailCorpXYEvaluator(this._nominalLength1, this._nominalRadius1, this._axisLength, this._cubicM);\r\n }\r\n public static create(nominalLength1: number, nominalRadius1: number): AustralianRailCorpXYEvaluator | undefined {\r\n const axisLength = AustralianRailCorpXYEvaluator.radiusAndNominalLengthToAxisLength(nominalRadius1, nominalLength1);\r\n const phi = this.radiusAndAxisLengthToPhi(nominalRadius1, axisLength);\r\n const xc2 = axisLength * axisLength;\r\n const cubicM = Math.tan(phi) / (3.0 * xc2);\r\n return new AustralianRailCorpXYEvaluator(nominalLength1, nominalRadius1, axisLength, cubicM);\r\n }\r\n /** Compute the phi constant for AustralianRail spiral with given end radius and length along axis. */\r\n public static radiusAndAxisLengthToPhi(nominalRadius1: number, axisLength: number): number {\r\n const xc = axisLength;\r\n const expr1 = (2. / Math.sqrt(3.));\r\n let expr2 = (-(3. / 4.) * Math.sqrt(3.) * xc / nominalRadius1);\r\n if (expr2 < -1.0)\r\n expr2 = -1.0;\r\n if (expr2 > 1.0)\r\n expr2 = 1.0;\r\n const expr3 = Angle.degreesToRadians(240);\r\n return Math.asin(expr1 * Math.cos(Math.acos(expr2) / 3. + expr3));\r\n }\r\n public override scaleInPlace(scaleFactor: number): void {\r\n // apply the scale factor to all contents; all distances scale directly\r\n this._nominalLength1 *= scaleFactor;\r\n this._nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Compute length along axis for AustralianRail spiral nominal radius and length. */\r\n public static radiusAndNominalLengthToAxisLength(\r\n nominalRadius1: number, nominalLength1: number, tolerance: number = 1.0e-5, requiredConvergenceCount: number = 2,\r\n ): number {\r\n const R = nominalRadius1;\r\n let idx = 0;\r\n let m, phi, xc2;\r\n let xc = .7 * nominalLength1;\r\n let convergenceCount = 0;\r\n // remark: This converges quickly\r\n // for L=100, R=400\r\n // ** full precision at 7th iteration.\r\n // ** classic tolerance 1.0e-5 (7 digits from L) with requiredConvergenceCount = 1 gives 11 digits after 3 iterations\r\n // ** each iteration adds about 2 digits. This is quite good for a successive replacement without derivative\r\n // ** Unanswerable question: If this is only done once and reused over all evaluations, do you want:\r\n // * run the 7 iterations to get full precision\r\n // * stop with the classic tolerance to get compatibility?\r\n for (idx = 0; idx < 100; ++idx) {\r\n phi = this.radiusAndAxisLengthToPhi(R, xc);\r\n xc2 = xc * xc;\r\n m = Math.tan(phi) / (3.0 * xc2);\r\n const m2x4 = m * m * xc2 * xc2;\r\n const correction = xc * m2x4 * ((9. / 10) + m2x4 * (-(9. / 8.) + m2x4 * (+(729. / 208.) + m2x4 * -(32805. / 2176.))));\r\n const correctedLength = xc + correction;\r\n xc = (nominalLength1 / correctedLength) * xc;\r\n if (Math.abs(nominalLength1 - correctedLength) < tolerance) {\r\n convergenceCount++;\r\n if (convergenceCount >= requiredConvergenceCount)\r\n break;\r\n } else {\r\n convergenceCount = 0;\r\n }\r\n }\r\n return xc;\r\n }\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof AustralianRailCorpXYEvaluator) {\r\n return Geometry.isAlmostEqualNumber(this._cubicM, other._cubicM)\r\n && Geometry.isAlmostEqualNumber(this._axisLength, other._axisLength)\r\n && Geometry.isAlmostEqualNumber(this._nominalLength1, other._nominalLength1)\r\n && Geometry.isAlmostEqualNumber(this._nominalRadius1, other._nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (quite good approximation) of fraction along x axis for given distance along spiral.\r\n * * The AustralianRailSpiral has a supporting power series to approximately map distance along the spiral to\r\n * an x coordinate.\r\n * * The `xToFraction(x)` method quickly (with a single divide) converts this x to fraction used for\r\n * this.fractionToX (fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.\r\n * * The x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the AustralianRail distance mapping rather than the\r\n * more accurate CurvePrimitive measurements.\r\n * * Round tripping distance through (a) distanceAlongSpiralToAustralianApproximateX, (b) xToFraction, and\r\n * (c) curveLengthBetweenFractions has 10 digit accuracy for L/R = 4, 12 digit accuracy for L/R = 10.\r\n * @param s distance along the axis.\r\n */\r\n public distanceAlongSpiralToAustralianApproximateX(s: number): number {\r\n const a1 = 0.9000;\r\n const a2 = 5.1750;\r\n const a3 = 43.1948;\r\n const a4 = 426.0564;\r\n const m = this._cubicM;\r\n const m2s4 = m * m * s * s * s * s;\r\n const x = s * (1.0 - m2s4 * (a1 - m2s4 * (a2 - m2s4 * (a3 - m2s4 * a4))));\r\n return x;\r\n }\r\n}\r\n"]}
1
+ {"version":3,"file":"AustralianRailCorpXYEvaluator.js","sourceRoot":"","sources":["../../../../src/curve/spiral/AustralianRailCorpXYEvaluator.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAE/F;;GAEG;AACH,OAAO,EAAE,QAAQ,EAAE,MAAM,gBAAgB,CAAC;AAC1C,OAAO,EAAE,KAAK,EAAE,MAAM,wBAAwB,CAAC;AAC/C,OAAO,EAAE,cAAc,EAAE,MAAM,kBAAkB,CAAC;AAElD;;;;;;GAMG;AACH,MAAM,OAAO,6BAA8B,SAAQ,cAAc;IACvD,eAAe,CAAS;IACxB,eAAe,CAAS;IAChC,YAAoB,cAAsB,EAAE,cAAsB,EAAE,UAAkB,EAAE,MAAc;QACpG,KAAK,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;QAC1B,IAAI,CAAC,eAAe,GAAG,cAAc,CAAC;QACtC,IAAI,CAAC,eAAe,GAAG,cAAc,CAAC;IACxC,CAAC;IACD,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,eAAe,CAAC;IAC9B,CAAC;IACD,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,eAAe,CAAC;IAC9B,CAAC;IACM,KAAK;QACV,OAAO,IAAI,6BAA6B,CAAC,IAAI,CAAC,eAAe,EAAE,IAAI,CAAC,eAAe,EAAE,IAAI,CAAC,WAAW,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IACvH,CAAC;IACM,MAAM,CAAC,MAAM,CAAC,cAAsB,EAAE,cAAsB;QACjE,MAAM,UAAU,GAAG,6BAA6B,CAAC,kCAAkC,CAAC,cAAc,EAAE,cAAc,CAAC,CAAC;QACpH,MAAM,GAAG,GAAG,IAAI,CAAC,wBAAwB,CAAC,cAAc,EAAE,UAAU,CAAC,CAAC;QACtE,MAAM,GAAG,GAAG,UAAU,GAAG,UAAU,CAAC;QACpC,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;QAC3C,OAAO,IAAI,6BAA6B,CAAC,cAAc,EAAE,cAAc,EAAE,UAAU,EAAE,MAAM,CAAC,CAAC;IAC/F,CAAC;IACD,sGAAsG;IAC/F,MAAM,CAAC,wBAAwB,CAAC,cAAsB,EAAE,UAAkB;QAC/E,MAAM,EAAE,GAAG,UAAU,CAAC;QACtB,MAAM,KAAK,GAAG,CAAC,EAAE,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;QACnC,IAAI,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,cAAc,CAAC,CAAC;QAC/D,IAAI,KAAK,GAAG,CAAC,GAAG;YACd,KAAK,GAAG,CAAC,GAAG,CAAC;QACf,IAAI,KAAK,GAAG,GAAG;YACb,KAAK,GAAG,GAAG,CAAC;QACd,MAAM,KAAK,GAAG,KAAK,CAAC,gBAAgB,CAAC,GAAG,CAAC,CAAC;QAC1C,OAAO,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,GAAG,EAAE,GAAG,KAAK,CAAC,CAAC,CAAC;IACpE,CAAC;IACe,YAAY,CAAC,WAAmB;QAC9C,uEAAuE;QACvE,IAAI,CAAC,eAAe,IAAI,WAAW,CAAC;QACpC,IAAI,CAAC,eAAe,IAAI,WAAW,CAAC;QACpC,KAAK,CAAC,YAAY,CAAC,WAAW,CAAC,CAAC;IAClC,CAAC;IACD,qFAAqF;IAC9E,MAAM,CAAC,kCAAkC,CAC9C,cAAsB,EAAE,cAAsB,EAAE,YAAoB,MAAM,EAAE,2BAAmC,CAAC;QAEhH,MAAM,CAAC,GAAG,cAAc,CAAC;QACzB,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,CAAC;QAChB,IAAI,EAAE,GAAG,EAAE,GAAG,cAAc,CAAC;QAC7B,IAAI,gBAAgB,GAAG,CAAC,CAAC;QACzB,iCAAiC;QACjC,mBAAmB;QACnB,wCAAwC;QACxC,uHAAuH;QACvH,8GAA8G;QAC9G,sGAAsG;QACtG,qDAAqD;QACrD,gEAAgE;QAChE,KAAK,GAAG,GAAG,CAAC,EAAE,GAAG,GAAG,GAAG,EAAE,EAAE,GAAG,EAAE,CAAC;YAC/B,GAAG,GAAG,IAAI,CAAC,wBAAwB,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;YAC3C,GAAG,GAAG,EAAE,GAAG,EAAE,CAAC;YACd,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC;YAChC,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,GAAG,CAAC;YAC/B,MAAM,UAAU,GAAG,EAAE,GAAG,IAAI,GAAG,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,IAAI,CAAC,GAAG,IAAI,GAAG,CAAC,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;YACtH,MAAM,eAAe,GAAG,EAAE,GAAG,UAAU,CAAC;YACxC,EAAE,GAAG,CAAC,cAAc,GAAG,eAAe,CAAC,GAAG,EAAE,CAAC;YAC7C,IAAI,IAAI,CAAC,GAAG,CAAC,cAAc,GAAG,eAAe,CAAC,GAAG,SAAS,EAAE,CAAC;gBAC3D,gBAAgB,EAAE,CAAC;gBACnB,IAAI,gBAAgB,IAAI,wBAAwB;oBAC9C,MAAM;YACV,CAAC;iBAAM,CAAC;gBACN,gBAAgB,GAAG,CAAC,CAAC;YACvB,CAAC;QACH,CAAC;QACD,OAAO,EAAE,CAAC;IACZ,CAAC;IACM,aAAa,CAAC,KAAU;QAC7B,IAAI,KAAK,YAAY,6BAA6B,EAAE,CAAC;YACnD,OAAO,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC;mBAC3D,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,WAAW,EAAE,KAAK,CAAC,WAAW,CAAC;mBACjE,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,eAAe,EAAE,KAAK,CAAC,eAAe,CAAC;mBACzE,QAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,eAAe,EAAE,KAAK,CAAC,eAAe,CAAC,CAAC;QACjF,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;;;;;;;OAYG;IACI,2CAA2C,CAAC,CAAS;QAC1D,MAAM,EAAE,GAAG,MAAM,CAAC;QAClB,MAAM,EAAE,GAAG,MAAM,CAAC;QAClB,MAAM,EAAE,GAAG,OAAO,CAAC;QACnB,MAAM,EAAE,GAAG,QAAQ,CAAC;QACpB,MAAM,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC;QACvB,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QACnC,MAAM,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1E,OAAO,CAAC,CAAC;IACX,CAAC;CACF","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Curve\r\n */\r\nimport { Geometry } from \"../../Geometry\";\r\nimport { Angle } from \"../../geometry3d/Angle\";\r\nimport { CubicEvaluator } from \"./CubicEvaluator\";\r\n\r\n/**\r\n * AustralianRailCorp spiral (also known as New South Wales spiral)\r\n * * The ultimate curve is a cubic `y = m * x^3`.\r\n * * `m` is a constant throughout the curve.\r\n * * Computation of m from the R and L is an complicated sequence, but is only done at construction time.\r\n * @internal\r\n */\r\nexport class AustralianRailCorpXYEvaluator extends CubicEvaluator {\r\n private _nominalLength1: number;\r\n private _nominalRadius1: number;\r\n private constructor(nominalLength1: number, nominalRadius1: number, axisLength: number, cubicM: number) {\r\n super(axisLength, cubicM);\r\n this._nominalLength1 = nominalLength1;\r\n this._nominalRadius1 = nominalRadius1;\r\n }\r\n public get nominalLength1() {\r\n return this._nominalLength1;\r\n }\r\n public get nominalRadius1() {\r\n return this._nominalRadius1;\r\n }\r\n public clone(): AustralianRailCorpXYEvaluator {\r\n return new AustralianRailCorpXYEvaluator(this._nominalLength1, this._nominalRadius1, this._axisLength, this._cubicM);\r\n }\r\n public static create(nominalLength1: number, nominalRadius1: number): AustralianRailCorpXYEvaluator | undefined {\r\n const axisLength = AustralianRailCorpXYEvaluator.radiusAndNominalLengthToAxisLength(nominalRadius1, nominalLength1);\r\n const phi = this.radiusAndAxisLengthToPhi(nominalRadius1, axisLength);\r\n const xc2 = axisLength * axisLength;\r\n const cubicM = Math.tan(phi) / (3.0 * xc2);\r\n return new AustralianRailCorpXYEvaluator(nominalLength1, nominalRadius1, axisLength, cubicM);\r\n }\r\n /** Compute the phi constant for AustralianRail spiral with given end radius and length along axis. */\r\n public static radiusAndAxisLengthToPhi(nominalRadius1: number, axisLength: number): number {\r\n const xc = axisLength;\r\n const expr1 = (2. / Math.sqrt(3.));\r\n let expr2 = (-(3. / 4.) * Math.sqrt(3.) * xc / nominalRadius1);\r\n if (expr2 < -1.0)\r\n expr2 = -1.0;\r\n if (expr2 > 1.0)\r\n expr2 = 1.0;\r\n const expr3 = Angle.degreesToRadians(240);\r\n return Math.asin(expr1 * Math.cos(Math.acos(expr2) / 3. + expr3));\r\n }\r\n public override scaleInPlace(scaleFactor: number): void {\r\n // apply the scale factor to all contents; all distances scale directly\r\n this._nominalLength1 *= scaleFactor;\r\n this._nominalRadius1 *= scaleFactor;\r\n super.scaleInPlace(scaleFactor);\r\n }\r\n /** Compute length along axis for AustralianRail spiral nominal radius and length. */\r\n public static radiusAndNominalLengthToAxisLength(\r\n nominalRadius1: number, nominalLength1: number, tolerance: number = 1.0e-5, requiredConvergenceCount: number = 2,\r\n ): number {\r\n const R = nominalRadius1;\r\n let idx = 0;\r\n let m, phi, xc2;\r\n let xc = .7 * nominalLength1;\r\n let convergenceCount = 0;\r\n // remark: This converges quickly\r\n // for L=100, R=400\r\n // ** full precision at 7th iteration.\r\n // ** classic tolerance 1.0e-5 (7 digits from L) with requiredConvergenceCount = 1 gives 11 digits after 3 iterations\r\n // ** each iteration adds about 2 digits. This is quite good for a successive replacement without derivative\r\n // ** Unanswerable question: If this is only done once and reused over all evaluations, do you want:\r\n // * run the 7 iterations to get full precision\r\n // * stop with the classic tolerance to get compatibility?\r\n for (idx = 0; idx < 100; ++idx) {\r\n phi = this.radiusAndAxisLengthToPhi(R, xc);\r\n xc2 = xc * xc;\r\n m = Math.tan(phi) / (3.0 * xc2);\r\n const m2x4 = m * m * xc2 * xc2;\r\n const correction = xc * m2x4 * ((9. / 10) + m2x4 * (-(9. / 8.) + m2x4 * (+(729. / 208.) + m2x4 * -(32805. / 2176.))));\r\n const correctedLength = xc + correction;\r\n xc = (nominalLength1 / correctedLength) * xc;\r\n if (Math.abs(nominalLength1 - correctedLength) < tolerance) {\r\n convergenceCount++;\r\n if (convergenceCount >= requiredConvergenceCount)\r\n break;\r\n } else {\r\n convergenceCount = 0;\r\n }\r\n }\r\n return xc;\r\n }\r\n public isAlmostEqual(other: any): boolean {\r\n if (other instanceof AustralianRailCorpXYEvaluator) {\r\n return Geometry.isAlmostEqualNumber(this._cubicM, other._cubicM)\r\n && Geometry.isAlmostEqualNumber(this._axisLength, other._axisLength)\r\n && Geometry.isAlmostEqualNumber(this._nominalLength1, other._nominalLength1)\r\n && Geometry.isAlmostEqualNumber(this._nominalRadius1, other._nominalRadius1);\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return a (quite good approximation) of fraction along x axis for given distance along spiral.\r\n * * The AustralianRailSpiral has a supporting power series to approximately map distance along the spiral to\r\n * an x coordinate.\r\n * * The `xToFraction(x)` method quickly (with a single divide) converts this x to fraction used for\r\n * this.fractionToX(fraction), this.fractionToY(fraction) etc to get coordinates and derivatives.\r\n * * The x-to-distance relation is not as precise as the CurvePrimitive method moveSignedDistanceFromFraction.\r\n * * It is supported here for users interested in replicating the AustralianRail distance mapping rather than the\r\n * more accurate CurvePrimitive measurements.\r\n * * Round tripping distance through (a) distanceAlongSpiralToAustralianApproximateX, (b) xToFraction, and\r\n * (c) curveLengthBetweenFractions has 10 digit accuracy for L/R = 4, 12 digit accuracy for L/R = 10.\r\n * @param s distance along the axis.\r\n */\r\n public distanceAlongSpiralToAustralianApproximateX(s: number): number {\r\n const a1 = 0.9000;\r\n const a2 = 5.1750;\r\n const a3 = 43.1948;\r\n const a4 = 426.0564;\r\n const m = this._cubicM;\r\n const m2s4 = m * m * s * s * s * s;\r\n const x = s * (1.0 - m2s4 * (a1 - m2s4 * (a2 - m2s4 * (a3 - m2s4 * a4))));\r\n return x;\r\n }\r\n}\r\n"]}