@itwin/core-geometry 5.1.0-dev.3 → 5.1.0-dev.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/lib/cjs/curve/RegionMomentsXY.d.ts +14 -21
- package/lib/cjs/curve/RegionMomentsXY.d.ts.map +1 -1
- package/lib/cjs/curve/RegionMomentsXY.js +23 -25
- package/lib/cjs/curve/RegionMomentsXY.js.map +1 -1
- package/lib/cjs/curve/RegionOps.d.ts +27 -10
- package/lib/cjs/curve/RegionOps.d.ts.map +1 -1
- package/lib/cjs/curve/RegionOps.js +58 -13
- package/lib/cjs/curve/RegionOps.js.map +1 -1
- package/lib/cjs/geometry3d/Point3dVector3d.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Point3dVector3d.js +3 -3
- package/lib/cjs/geometry3d/Point3dVector3d.js.map +1 -1
- package/lib/cjs/geometry3d/PolygonOps.d.ts +8 -7
- package/lib/cjs/geometry3d/PolygonOps.d.ts.map +1 -1
- package/lib/cjs/geometry3d/PolygonOps.js +19 -15
- package/lib/cjs/geometry3d/PolygonOps.js.map +1 -1
- package/lib/cjs/geometry4d/Matrix4d.d.ts +7 -7
- package/lib/cjs/geometry4d/Matrix4d.d.ts.map +1 -1
- package/lib/cjs/geometry4d/Matrix4d.js +9 -9
- package/lib/cjs/geometry4d/Matrix4d.js.map +1 -1
- package/lib/cjs/geometry4d/MomentData.d.ts +32 -34
- package/lib/cjs/geometry4d/MomentData.d.ts.map +1 -1
- package/lib/cjs/geometry4d/MomentData.js +56 -57
- package/lib/cjs/geometry4d/MomentData.js.map +1 -1
- package/lib/esm/curve/RegionMomentsXY.d.ts +14 -21
- package/lib/esm/curve/RegionMomentsXY.d.ts.map +1 -1
- package/lib/esm/curve/RegionMomentsXY.js +23 -25
- package/lib/esm/curve/RegionMomentsXY.js.map +1 -1
- package/lib/esm/curve/RegionOps.d.ts +27 -10
- package/lib/esm/curve/RegionOps.d.ts.map +1 -1
- package/lib/esm/curve/RegionOps.js +59 -14
- package/lib/esm/curve/RegionOps.js.map +1 -1
- package/lib/esm/geometry3d/Point3dVector3d.d.ts.map +1 -1
- package/lib/esm/geometry3d/Point3dVector3d.js +3 -3
- package/lib/esm/geometry3d/Point3dVector3d.js.map +1 -1
- package/lib/esm/geometry3d/PolygonOps.d.ts +8 -7
- package/lib/esm/geometry3d/PolygonOps.d.ts.map +1 -1
- package/lib/esm/geometry3d/PolygonOps.js +19 -15
- package/lib/esm/geometry3d/PolygonOps.js.map +1 -1
- package/lib/esm/geometry4d/Matrix4d.d.ts +7 -7
- package/lib/esm/geometry4d/Matrix4d.d.ts.map +1 -1
- package/lib/esm/geometry4d/Matrix4d.js +9 -9
- package/lib/esm/geometry4d/Matrix4d.js.map +1 -1
- package/lib/esm/geometry4d/MomentData.d.ts +32 -34
- package/lib/esm/geometry4d/MomentData.d.ts.map +1 -1
- package/lib/esm/geometry4d/MomentData.js +56 -57
- package/lib/esm/geometry4d/MomentData.js.map +1 -1
- package/package.json +3 -3
|
@@ -268,13 +268,13 @@ export declare class Matrix4d implements BeJSONFunctions {
|
|
|
268
268
|
*/
|
|
269
269
|
addTranslationSandwichInPlace(matrixB: Matrix4d, ax: number, ay: number, az: number, scale: number): void;
|
|
270
270
|
/**
|
|
271
|
-
* Multiply and replace contents of this matrix by A*this*AT where
|
|
272
|
-
* * A is a pure translation with final column [x,y,z,1]
|
|
273
|
-
* * this is this matrix.
|
|
274
|
-
* * AT is the transpose of A.
|
|
275
|
-
* @param ax x part of translation
|
|
276
|
-
* @param ay y part of translation
|
|
277
|
-
* @param az z part of translation
|
|
271
|
+
* Multiply and replace contents of ` this` matrix by `A*this*AT` where
|
|
272
|
+
* * `A` is a pure translation with final column [x,y,z,1].
|
|
273
|
+
* * `this` is this matrix.
|
|
274
|
+
* * `AT` is the transpose of A.
|
|
275
|
+
* @param ax x part of translation.
|
|
276
|
+
* @param ay y part of translation.
|
|
277
|
+
* @param az z part of translation.
|
|
278
278
|
*/
|
|
279
279
|
multiplyTranslationSandwichInPlace(ax: number, ay: number, az: number): void;
|
|
280
280
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Matrix4d.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":"AAIA;;GAEG;AAEH,OAAO,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACxD,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChD,OAAO,EAAE,OAAO,EAAE,YAAY,EAAE,MAAM,WAAW,CAAC;AAElD;;;GAGG;AACH,MAAM,MAAM,aAAa,GAAG,YAAY,EAAE,CAAC;AAE3C;;;;;;;;;;;;;;GAcG;AACH,qBAAa,QAAS,YAAW,eAAe;IAC9C,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO;IACP,uCAAuC;IAChC,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,IAAI;IAIrC,2BAA2B;IACpB,KAAK,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IASzC,mCAAmC;IAC5B,OAAO,IAAI,IAAI;IAItB,uBAAuB;IAChB,WAAW,IAAI,IAAI;IAK1B,OAAO,CAAC,MAAM,CAAC,MAAM;IAMrB,uBAAuB;IAChB,UAAU,CAAC,GAAG,GAAE,MAAgB,GAAG,OAAO;IAMjD,2CAA2C;WAC7B,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOrD,+DAA+D;WACjD,eAAe,CAAC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAoB1Q,8EAA8E;WAChE,UAAU,CAAC,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOjH;;;;OAIG;IACI,mBAAmB,CAAC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ;IAkB/F,oEAAoE;WACtD,eAAe,CAAC,MAAM,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAK7E,iCAAiC;WACnB,cAAc,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAQzD,kFAAkF;WACpE,oBAAoB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYhG,mDAAmD;IAC5C,UAAU,CAAC,OAAO,EAAE,QAAQ,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAWhF;;;;;;;;;OASG;WACW,4BAA4B,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAG3J;;;;;;OAMG;WACW,cAAc,CAAC,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAenI,kFAAkF;IAC3E,WAAW,CAAC,IAAI,CAAC,EAAE,aAAa;IAUvC;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM;IAMvC;;OAEG;IACI,MAAM,IAAI,MAAM;IAMvB,0CAA0C;IACnC,aAAa,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAG9C,oDAAoD;IAC7C,YAAY,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAC7C;;OAEG;IACI,MAAM,IAAI,aAAa;IAQ9B,qFAAqF;WACvE,QAAQ,CAAC,IAAI,CAAC,EAAE,aAAa;IAK3C;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG3E,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB;;OAEG;IACH,IAAW,cAAc,IAAI,OAAO,CAKnC;IACD;;OAEG;IACI,QAAQ,IAAI,OAAO;IAC1B,iDAAiD;IAC1C,MAAM,IAAI,MAAM;IACvB,wDAAwD;IACjD,UAAU,IAAI,QAAQ;IAG7B;;;OAGG;IACH,IAAW,WAAW,IAAI,SAAS,GAAG,SAAS,CAI9C;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYzE,wCAAwC;IACjC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,yCAAyC;IAClC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,kCAAkC;IAC3B,eAAe,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGnD,8HAA8H;IACvH,YAAY,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAI1F;;OAEG;IACI,kCAAkC,CAAC,IAAI,EAAE,YAAY;IAc5D,wHAAwH;IACjH,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGxE,wIAAwI;IACjI,oBAAoB,CAAC,GAAG,EAAE,MAAM,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,CAAC,GAAE,MAAY,GAAG,IAAI;IAGrF,uHAAuH;IAChH,qBAAqB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAInG;OACG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAQnF;OACG;IACI,UAAU,CAAC,QAAQ,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM;IAQvF;OACG;IACI,SAAS,CAAC,YAAY,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQtF;OACG;IACI,eAAe,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,gBAAgB,EAAE,MAAM,GAAG,MAAM;IAQlG;OACG;IACI,YAAY,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQ5F;OACG;IACI,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAI1D;OACG;IACI,OAAO,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAGnE;;OAEG;IACI,4BAA4B,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAc1G,uGAAuG;IAChG,oCAAoC,CAAC,GAAG,EAAE,OAAO,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,IAAI;IAGrF,sEAAsE;IAC/D,eAAe,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGjE,sEAAsE;IAC/D,wBAAwB,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG1E;;;OAGG;IACI,6BAA6B,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG9E;;;OAGG;IACI,kCAAkC,CAAC,MAAM,EAAE,OAAO,EAAE;IAG3D;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAkBnE,oDAAoD;IAC7C,gBAAgB,CAAC,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAE,MAAY;IAI5D;;;;;;OAMG;IACI,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,gBAAgB,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAQjG,4CAA4C;IACrC,WAAW,IAAI,MAAM;IAQ5B;;;;;OAKG;IACI,aAAa,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAqD7D;;OAEG;IACI,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,KAAK,EAAE,MAAM,KAAK,GAAG,GAAG,GAAG;IAcjD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAUtE;;;;;OAKG;IACI,4BAA4B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM;IAyBrF;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAiCzG;;;;;;;;OAQG;IACI,kCAAkC,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;
|
|
1
|
+
{"version":3,"file":"Matrix4d.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":"AAIA;;GAEG;AAEH,OAAO,EAAE,eAAe,EAAY,MAAM,aAAa,CAAC;AACxD,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChD,OAAO,EAAE,OAAO,EAAE,YAAY,EAAE,MAAM,WAAW,CAAC;AAElD;;;GAGG;AACH,MAAM,MAAM,aAAa,GAAG,YAAY,EAAE,CAAC;AAE3C;;;;;;;;;;;;;;GAcG;AACH,qBAAa,QAAS,YAAW,eAAe;IAC9C,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO;IACP,uCAAuC;IAChC,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,IAAI;IAIrC,2BAA2B;IACpB,KAAK,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IASzC,mCAAmC;IAC5B,OAAO,IAAI,IAAI;IAItB,uBAAuB;IAChB,WAAW,IAAI,IAAI;IAK1B,OAAO,CAAC,MAAM,CAAC,MAAM;IAMrB,uBAAuB;IAChB,UAAU,CAAC,GAAG,GAAE,MAAgB,GAAG,OAAO;IAMjD,2CAA2C;WAC7B,UAAU,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOrD,+DAA+D;WACjD,eAAe,CAAC,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,GAAG,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAoB1Q,8EAA8E;WAChE,UAAU,CAAC,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAOjH;;;;OAIG;IACI,mBAAmB,CAAC,MAAM,EAAE,GAAG,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ;IAkB/F,oEAAoE;WACtD,eAAe,CAAC,MAAM,EAAE,SAAS,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAK7E,iCAAiC;WACnB,cAAc,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAQzD,kFAAkF;WACpE,oBAAoB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYhG,mDAAmD;IAC5C,UAAU,CAAC,OAAO,EAAE,QAAQ,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAWhF;;;;;;;;;OASG;WACW,4BAA4B,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAG3J;;;;;;OAMG;WACW,cAAc,CAAC,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,IAAI,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAenI,kFAAkF;IAC3E,WAAW,CAAC,IAAI,CAAC,EAAE,aAAa;IAUvC;;;OAGG;IACI,OAAO,CAAC,KAAK,EAAE,QAAQ,GAAG,MAAM;IAMvC;;OAEG;IACI,MAAM,IAAI,MAAM;IAMvB,0CAA0C;IACnC,aAAa,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAG9C,oDAAoD;IAC7C,YAAY,CAAC,KAAK,EAAE,QAAQ,GAAG,OAAO;IAC7C;;OAEG;IACI,MAAM,IAAI,aAAa;IAQ9B,qFAAqF;WACvE,QAAQ,CAAC,IAAI,CAAC,EAAE,aAAa;IAK3C;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG3E,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,kCAAkC;IAC3B,OAAO,IAAI,OAAO;IACzB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB,+BAA+B;IACxB,IAAI,IAAI,OAAO;IACtB;;OAEG;IACH,IAAW,cAAc,IAAI,OAAO,CAKnC;IACD;;OAEG;IACI,QAAQ,IAAI,OAAO;IAC1B,iDAAiD;IAC1C,MAAM,IAAI,MAAM;IACvB,wDAAwD;IACjD,UAAU,IAAI,QAAQ;IAG7B;;;OAGG;IACH,IAAW,WAAW,IAAI,SAAS,GAAG,SAAS,CAI9C;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAYzE,wCAAwC;IACjC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,yCAAyC;IAClC,6BAA6B,CAAC,KAAK,EAAE,QAAQ,EAAE,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAalF,kCAAkC;IAC3B,eAAe,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ;IAGnD,8HAA8H;IACvH,YAAY,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAI1F;;OAEG;IACI,kCAAkC,CAAC,IAAI,EAAE,YAAY;IAc5D,wHAAwH;IACjH,eAAe,CAAC,EAAE,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGxE,wIAAwI;IACjI,oBAAoB,CAAC,GAAG,EAAE,MAAM,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,EAAE,CAAC,GAAE,MAAY,GAAG,IAAI;IAGrF,uHAAuH;IAChH,qBAAqB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAInG;OACG;IACI,YAAY,CAAC,QAAQ,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAQnF;OACG;IACI,UAAU,CAAC,QAAQ,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,MAAM;IAQvF;OACG;IACI,SAAS,CAAC,YAAY,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQtF;OACG;IACI,eAAe,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,gBAAgB,EAAE,MAAM,GAAG,MAAM;IAQlG;OACG;IACI,YAAY,CAAC,eAAe,EAAE,MAAM,EAAE,KAAK,EAAE,QAAQ,EAAE,aAAa,EAAE,MAAM,GAAG,MAAM;IAQ5F;OACG;IACI,IAAI,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,GAAG,MAAM;IAI1D;OACG;IACI,OAAO,CAAC,QAAQ,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAGnE;;OAEG;IACI,4BAA4B,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAc1G,uGAAuG;IAChG,oCAAoC,CAAC,GAAG,EAAE,OAAO,EAAE,EAAE,OAAO,EAAE,OAAO,EAAE,GAAG,IAAI;IAGrF,sEAAsE;IAC/D,eAAe,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAGjE,sEAAsE;IAC/D,wBAAwB,CAAC,KAAK,EAAE,OAAO,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG1E;;;OAGG;IACI,6BAA6B,CAAC,KAAK,EAAE,MAAM,EAAE,MAAM,CAAC,EAAE,OAAO,GAAG,OAAO;IAG9E;;;OAGG;IACI,kCAAkC,CAAC,MAAM,EAAE,OAAO,EAAE;IAG3D;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAkBnE,oDAAoD;IAC7C,gBAAgB,CAAC,KAAK,EAAE,QAAQ,EAAE,KAAK,GAAE,MAAY;IAI5D;;;;;;OAMG;IACI,YAAY,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,gBAAgB,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAQjG,4CAA4C;IACrC,WAAW,IAAI,MAAM;IAQ5B;;;;;OAKG;IACI,aAAa,CAAC,MAAM,CAAC,EAAE,QAAQ,GAAG,QAAQ,GAAG,SAAS;IAqD7D;;OAEG;IACI,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,KAAK,EAAE,MAAM,KAAK,GAAG,GAAG,GAAG;IAcjD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAUtE;;;;;OAKG;IACI,4BAA4B,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,EAAE,KAAK,EAAE,MAAM;IAyBrF;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAO,EAAE,QAAQ,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM;IAiCzG;;;;;;;;OAQG;IACI,kCAAkC,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,GAAI,IAAI;CAiCrF"}
|
|
@@ -714,19 +714,19 @@ class Matrix4d {
|
|
|
714
714
|
this._coffs[15] += scale * beta;
|
|
715
715
|
}
|
|
716
716
|
/**
|
|
717
|
-
* Multiply and replace contents of this matrix by A*this*AT where
|
|
718
|
-
* * A is a pure translation with final column [x,y,z,1]
|
|
719
|
-
* * this is this matrix.
|
|
720
|
-
* * AT is the transpose of A.
|
|
721
|
-
* @param ax x part of translation
|
|
722
|
-
* @param ay y part of translation
|
|
723
|
-
* @param az z part of translation
|
|
717
|
+
* Multiply and replace contents of ` this` matrix by `A*this*AT` where
|
|
718
|
+
* * `A` is a pure translation with final column [x,y,z,1].
|
|
719
|
+
* * `this` is this matrix.
|
|
720
|
+
* * `AT` is the transpose of A.
|
|
721
|
+
* @param ax x part of translation.
|
|
722
|
+
* @param ay y part of translation.
|
|
723
|
+
* @param az z part of translation.
|
|
724
724
|
*/
|
|
725
725
|
multiplyTranslationSandwichInPlace(ax, ay, az) {
|
|
726
726
|
const bx = this._coffs[3];
|
|
727
727
|
const by = this._coffs[7];
|
|
728
728
|
const bz = this._coffs[11];
|
|
729
|
-
// matrixB can be non-symmetric
|
|
729
|
+
// matrixB can be non-symmetric
|
|
730
730
|
const cx = this._coffs[12];
|
|
731
731
|
const cy = this._coffs[13];
|
|
732
732
|
const cz = this._coffs[14];
|
|
@@ -749,7 +749,7 @@ class Matrix4d {
|
|
|
749
749
|
this._coffs[12] += axBeta;
|
|
750
750
|
this._coffs[13] += ayBeta;
|
|
751
751
|
this._coffs[14] += azBeta;
|
|
752
|
-
// coffs[15] is unchanged
|
|
752
|
+
// coffs[15] is unchanged
|
|
753
753
|
}
|
|
754
754
|
}
|
|
755
755
|
exports.Matrix4d = Matrix4d;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"Matrix4d.js","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;AAC/F;;GAEG;;;AAEH,0CAAwD;AACxD,qDAAkD;AAClD,mEAAuE;AACvE,uDAAoD;AAEpD,uCAAkD;AAQlD;;;;;;;;;;;;;;GAcG;AACH,MAAa,QAAQ;IACX,MAAM,CAAe;IAC7B,gBAAwB,IAAI,CAAC,MAAM,GAAG,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAC7D,uCAAuC;IAChC,OAAO,CAAC,KAAe;QAC5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,2BAA2B;IACpB,KAAK,CAAC,MAAiB;QAC5B,IAAI,MAAM,KAAK,IAAI;YACjB,OAAO,IAAI,CAAC;QACd,IAAI,MAAM,KAAK,SAAS;YACtB,MAAM,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC1B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACpC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mCAAmC;IAC5B,OAAO;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IACvB,CAAC;IACD,uBAAuB;IAChB,WAAW;QAChB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;IAC5E,CAAC;IACO,MAAM,CAAC,MAAM,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,GAAW;QAC3E,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,IAAI,GAAG;eAC1B,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG;eAClB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG;eAClB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,CAAC;IAC1B,CAAC;IACD,uBAAuB;IAChB,UAAU,CAAC,MAAc,OAAO;QACrC,OAAO,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACtF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACpF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACtF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAChG,CAAC;IACD,2CAA2C;IACpC,MAAM,CAAC,UAAU,CAAC,MAAiB;QACxC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,EAAE,CAAC;YACjB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,QAAQ,EAAE,CAAC,CAAC,gBAAgB;IACzC,CAAC;IACD,+DAA+D;IACxD,MAAM,CAAC,eAAe,CAAC,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,MAAiB;QAC7P,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QAC1C,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,UAAU,CAAC,IAAa,EAAE,IAAa,EAAE,IAAa,EAAE,IAAa,EAAE,MAAiB;QACpG,OAAO,IAAI,CAAC,eAAe,CACzB,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IAC5C,CAAC;IACD;;;;OAIG;IACI,mBAAmB,CAAC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB;QAC7F,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;IACxB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,eAAe,CAAC,MAAiB,EAAE,MAAiB;QAChE,MAAM,MAAM,GAAG,MAAM,CAAC,MAAM,CAAC;QAC7B,MAAM,KAAK,GAAG,MAAM,CAAC,MAAM,CAAC;QAC5B,OAAO,QAAQ,CAAC,eAAe,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC1O,CAAC;IACD,iCAAiC;IAC1B,MAAM,CAAC,cAAc,CAAC,MAAiB;QAC5C,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACrC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,kFAAkF;IAC3E,MAAM,CAAC,oBAAoB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACnF,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACrC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,OAAO,MAAM,CAAC;IAChB,CAAC;IAED,mDAAmD;IAC5C,UAAU,CAAC,OAAiB,EAAE,KAAa,EAAE,MAAiB;QACnE,mDAAmD;QACnD,6DAA6D;QAC7D,+CAA+C;QAC/C,sEAAsE;QACtE,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAChD,OAAO,MAAM,CAAC;IAChB,CAAC;IAED;;;;;;;;;OASG;IACI,MAAM,CAAC,4BAA4B,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,MAAc,EAAE,MAAc,EAAE,MAAc,EAAE,MAAiB;QAC9I,OAAO,QAAQ,CAAC,eAAe,CAAC,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC5G,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,cAAc,CAAC,IAAa,EAAE,KAAc,EAAE,IAAa,EAAE,KAAc,EAAE,MAAiB;QAC1G,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,SAAS,EAAE,CAAC;YAChE,OAAO,QAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,MAAM,CAAC,CAAC;QAC3I,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,kFAAkF;IAC3E,WAAW,CAAC,IAAoB;QACrC,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;YAC9C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;gBAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC;oBACxB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YACxC,CAAC;QACH,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,OAAO,EAAE,CAAC;QACjB,CAAC;IACH,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAe;QAC5B,IAAI,CAAC,GAAG,GAAG,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC9D,OAAO,CAAC,CAAC;IACX,CAAC;IACD;;OAEG;IACI,MAAM;QACX,IAAI,CAAC,GAAG,GAAG,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC5C,OAAO,CAAC,CAAC;IACX,CAAC;IACD,0CAA0C;IACnC,aAAa,CAAC,KAAe;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC;IAC7D,CAAC;IACD,oDAAoD;IAC7C,YAAY,CAAC,KAAe,IAAa,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,KAAK,GAAG,CAAC,CAAC,CAAC;IACrF;;OAEG;IACI,MAAM;QACX,MAAM,KAAK,GAAG,EAAE,CAAC;QACjB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;YAC3B,MAAM,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAClB,KAAK,CAAC,IAAI,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACnG,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,MAAM,CAAC,QAAQ,CAAC,IAAoB;QACzC,MAAM,MAAM,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC9B,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAU,EAAE,IAAY,EAAE,MAAgB;QAC/D,OAAO,iBAAO,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,MAAM,CAAC,CAAC;IACjI,CAAC;IACD,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC9D;;OAEG;IACH,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACvB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACvB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG,CAAC;IAC/B,CAAC;IACD;;OAEG;IACI,QAAQ,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IACjE,iDAAiD;IAC1C,MAAM,KAAa,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IACnD,wDAAwD;IACjD,UAAU;QACf,OAAO,mBAAQ,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;IACnL,CAAC;IACD;;;OAGG;IACH,IAAW,WAAW;QACpB,IAAI,IAAI,CAAC,cAAc;YACrB,OAAO,SAAS,CAAC;QACnB,OAAO,qBAAS,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;IACrO,CAAC;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAe,EAAE,MAAiB;QAC5D,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YAClC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,MAAM,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;oBACnB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;wBACjC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;QACjD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,wCAAwC;IACjC,6BAA6B,CAAC,KAAe,EAAE,MAAiB;QACrE,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YAClC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC;gBAC5B,MAAM,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC;oBAChB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;wBACjC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAChD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,yCAAyC;IAClC,6BAA6B,CAAC,KAAe,EAAE,MAAiB;QACrE,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YACjC,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,IAAI,CAAC;gBAC9B,MAAM,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC;oBAChB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,CAAC;wBAClC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;wBAC1C,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;wBAC1C,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QACnD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,kCAAkC;IAC3B,eAAe,CAAC,MAAiB;QACtC,OAAO,QAAQ,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAChT,CAAC;IACD,8HAA8H;IACvH,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,iBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,OAAO,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IACtW,CAAC;IACD;;OAEG;IACI,kCAAkC,CAAC,IAAkB;QAC1D,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,IAAI,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC;QACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC;YAClC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YACZ,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAC5F,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAChG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;YAClG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtG,CAAC;IACH,CAAC;IACD,wHAAwH;IACjH,eAAe,CAAC,EAAU,EAAE,CAAS,EAAE,MAAgB;QAC5D,OAAO,IAAI,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxD,CAAC;IACD,wIAAwI;IACjI,oBAAoB,CAAC,GAAa,EAAE,OAAkB,EAAE,IAAY,GAAG;QAC5E,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAC/F,CAAC;IACD,uHAAuH;IAChH,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,iBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,OAAO,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IACtW,CAAC;IACD;OACG;IACI,YAAY,CAAC,QAAgB,EAAE,KAAe,EAAE,WAAmB;QACxE,MAAM,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC;QACvB,MAAM,CAAC,GAAG,WAAW,CAAC;QACtB,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;IAChD,CAAC;IACD;OACG;IACI,UAAU,CAAC,QAAgB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC5E,MAAM,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC;cACrB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;cACtB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;cACtB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7B,CAAC;IAED;OACG;IACI,SAAS,CAAC,YAAoB,EAAE,KAAe,EAAE,aAAqB;QAC3E,MAAM,CAAC,GAAG,YAAY,GAAG,CAAC,CAAC;QAC3B,MAAM,CAAC,GAAG,aAAa,GAAG,CAAC,CAAC;QAC5B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/C,CAAC;IACD;OACG;IACI,eAAe,CAAC,eAAuB,EAAE,KAAe,EAAE,gBAAwB;QACvF,MAAM,CAAC,GAAG,eAAe,CAAC;QAC1B,MAAM,CAAC,GAAG,gBAAgB,CAAC;QAC3B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;IACjD,CAAC;IACD;OACG;IACI,YAAY,CAAC,eAAuB,EAAE,KAAe,EAAE,aAAqB;QACjF,MAAM,CAAC,GAAG,eAAe,CAAC;QAC1B,MAAM,CAAC,GAAG,CAAC,GAAG,aAAa,CAAC;QAC5B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAChD,CAAC;IACD;OACG;IACI,IAAI,CAAC,QAAgB,EAAE,WAAmB;QAC/C,OAAO,IAAI,CAAC,MAAM,CAAC,QAAQ,GAAG,CAAC,GAAG,WAAW,CAAC,CAAC;IACjD,CAAC;IAED;OACG;IACI,OAAO,CAAC,QAAgB,EAAE,WAAmB,EAAE,KAAa;QACjE,IAAI,CAAC,MAAM,CAAC,QAAQ,GAAG,CAAC,GAAG,WAAW,CAAC,GAAG,KAAK,CAAC;IAClD,CAAC;IACD;;OAEG;IACI,4BAA4B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9F,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;QACtQ,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACjG,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,IAAI,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;YAC7D,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;YACd,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;YACd,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;QAChB,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,uGAAuG;IAChG,oCAAoC,CAAC,GAAc,EAAE,OAAkB;QAC5E,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,4BAA4B,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAClH,CAAC;IACD,sEAAsE;IAC/D,eAAe,CAAC,KAAc,EAAE,MAAgB;QACrD,OAAO,IAAI,CAAC,YAAY,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/F,CAAC;IACD,sEAAsE;IAC/D,wBAAwB,CAAC,KAAc,EAAE,MAAgB;QAC9D,OAAO,IAAI,CAAC,qBAAqB,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;OAGG;IACI,6BAA6B,CAAC,KAAa,EAAE,MAAgB;QAClE,OAAO,IAAI,CAAC,4BAA4B,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,GAAG,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,kCAAkC,CAAC,MAAiB;QACzD,MAAM,CAAC,OAAO,CAAC,CAAC,KAAK,EAAE,EAAE,CAAC,IAAI,CAAC,4BAA4B,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,GAAG,EAAE,KAAK,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QACjE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;IAC3B,CAAC;IACD,oDAAoD;IAC7C,gBAAgB,CAAC,KAAe,EAAE,QAAgB,GAAG;QAC1D,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;IAC9C,CAAC;IACD;;;;;;OAMG;IACI,YAAY,CAAC,SAAiB,EAAE,SAAiB,EAAE,gBAAwB,EAAE,KAAa;QAC/F,IAAI,KAAK,KAAK,GAAG;YACf,OAAO;QACT,IAAI,EAAE,GAAG,SAAS,GAAG,CAAC,GAAG,gBAAgB,CAAC;QAC1C,IAAI,EAAE,GAAG,SAAS,GAAG,CAAC,GAAG,gBAAgB,CAAC;QAC1C,KAAK,IAAI,CAAC,GAAG,gBAAgB,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAG,EAAE,EAAE,EAAG,EAAE,EAAE;YACrD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;IAC/C,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,OAAO,mBAAQ,CAAC,cAAc,CAC5B,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EACtB,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EACtB,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EACxB,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAChC,CAAC;IACD;;;;;OAKG;IACI,aAAa,CAAC,MAAiB;QACpC,wFAAwF;QACxF,IAAI,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QACtC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC5E,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAE,uBAAuB;QACrG,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC5E,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC,uBAAuB;QACpG,qDAAqD;QACrD,6CAA6C;QAC7C,oFAAoF;QACpF,6FAA6F;QAC7F,wDAAwD;QACxD,8EAA8E;QAC9E,0EAA0E;QAC1E,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;QACrE,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,OAAO,GAAG,MAAM,CAAC,MAAM,EAAE,CAAC;QAChC,IAAI,YAAY,GAAG,YAAY,GAAG,GAAG;eAChC,YAAY,GAAG,YAAY,GAAG,GAAG;eACjC,YAAY,GAAG,YAAY,GAAG,GAAG,EAAE,CAAC;YACvC,MAAM,YAAY,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,OAAO,EAAE,YAAY,CAAC,CAAC;YACjF,IAAI,YAAY,KAAK,SAAS,EAAE,CAAC;gBAC/B,MAAM,MAAM,GAAG,GAAG,GAAG,YAAY,CAAC;gBAClC,MAAM,CAAC,gBAAgB,CAAC,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,CAAC,CAAC;gBAC5G,OAAO,MAAM,CAAC;YAChB,CAAC;QACH,CAAC;aAAM,CAAC;YACN,OAAO,SAAS,CAAC,CAAC,gFAAgF;QACpG,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;OAEG;IACI,SAAS,CAAC,CAA0B;QACzC,IAAI,CAAC;YACH,OAAO;gBACL,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC9E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;aAAC,CAAC;;YAEpF,OAAO;gBACL,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;gBAChE,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;gBAChE,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;gBAClE,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;aAAC,CAAC;IAC5E,CAAC;IACD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,EAAU;QACpE,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;YACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;YACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;IACzB,CAAC;IACD;;;;;OAKG;IACI,4BAA4B,CAAC,OAAgB,EAAE,OAAgB,EAAE,KAAa;QACnF,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEhC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEhC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEjC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAiB,EAAE,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,KAAa;QACvG,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,iCAAiC;QACjC,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAE9B,MAAM,IAAI,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAChC,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAExC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAExC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAClF,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAEzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,IAAI,CAAC;IAClC,CAAC;IACD;;;;;;;;OAQG;IACI,kCAAkC,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU;QAC1E,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,iCAAiC;QACjC,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAE3B,MAAM,IAAI,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC7B,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC;QAEzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC;QAEzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACrD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAE1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,6BAA6B;IAC/B,CAAC;CACF;AAluBD,4BAkuBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n/** @packageDocumentation\n * @module Numerics\n */\n\nimport { BeJSONFunctions, Geometry } from \"../Geometry\";\nimport { Matrix3d } from \"../geometry3d/Matrix3d\";\nimport { Point3d, Vector3d, XYZ } from \"../geometry3d/Point3dVector3d\";\nimport { Transform } from \"../geometry3d/Transform\";\nimport { XYAndZ } from \"../geometry3d/XYZProps\";\nimport { Point4d, Point4dProps } from \"./Point4d\";\n\n/**\n * Coordinate data with `Point4d` numeric data as an array `[x,y,z,w]`\n * @public\n */\nexport type Matrix4dProps = Point4dProps[];\n\n/**\n * * A Matrix4d is a matrix with 4 rows and 4 columns.\n * * The 4 rows may be described as the x,y,z,w rows.\n * * The 4 columns may be described as the x,y,z,w columns.\n * * The matrix is physically stored as a Float64Array with 16 numbers.\n * * The layout in the Float64Array is \"by row\"\n * * indices 0,1,2,3 are the \"x row\". They may be called the xx,xy,xz,xw entries\n * * indices 4,5,6,7 are the \"y row\" They may be called the yx,yy,yz,yw entries\n * * indices 8,9,10,11 are the \"z row\" They may be called the zx,zy,zz,zw entries\n * * indices 12,13,14,15 are the \"w row\". They may be called the wx,wy,wz,ww entries\n * * If \"w row\" contains numeric values 0,0,0,1, the Matrix4d is equivalent to a Transform with\n * * The upper left 3x3 matrix (entries 0,1,2,4,5,6,8,9,10) are the 3x3 matrix part of the transform\n * * The far right column entries xw,yw,zw are the \"origin\" (sometimes called \"translation\") part of the transform.\n * @public\n */\nexport class Matrix4d implements BeJSONFunctions {\n private _coffs: Float64Array;\n private constructor() { this._coffs = new Float64Array(16); }\n /** Copy matrix entries from `other` */\n public setFrom(other: Matrix4d): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = other._coffs[i];\n }\n /** Return a deep clone. */\n public clone(result?: Matrix4d): Matrix4d {\n if (result === this)\n return this;\n if (result === undefined)\n result = new Matrix4d();\n for (let i = 0; i < 16; i++)\n result._coffs[i] = this._coffs[i];\n return result;\n }\n /** zero this matrix4d in place. */\n public setZero(): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = 0;\n }\n /** set to identity. */\n public setIdentity(): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = 0;\n this._coffs[0] = this._coffs[5] = this._coffs[10] = this._coffs[15] = 1.0;\n }\n private static is1000(a: number, b: number, c: number, d: number, tol: number): boolean {\n return Math.abs(a - 1.0) <= tol\n && Math.abs(b) <= tol\n && Math.abs(c) <= tol\n && Math.abs(d) <= tol;\n }\n /** set to identity. */\n public isIdentity(tol: number = 1.0e-10): boolean {\n return Matrix4d.is1000(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3], tol)\n && Matrix4d.is1000(this._coffs[5], this._coffs[6], this._coffs[7], this._coffs[4], tol)\n && Matrix4d.is1000(this._coffs[10], this._coffs[11], this._coffs[8], this._coffs[9], tol)\n && Matrix4d.is1000(this._coffs[15], this._coffs[12], this._coffs[13], this._coffs[14], tol);\n }\n /** create a Matrix4d filled with zeros. */\n public static createZero(result?: Matrix4d): Matrix4d {\n if (result) {\n result.setZero();\n return result;\n }\n return new Matrix4d(); // this is zero.\n }\n /** create a Matrix4d with values supplied \"across the rows\" */\n public static createRowValues(cxx: number, cxy: number, cxz: number, cxw: number, cyx: number, cyy: number, cyz: number, cyw: number, czx: number, czy: number, czz: number, czw: number, cwx: number, cwy: number, cwz: number, cww: number, result?: Matrix4d): Matrix4d {\n result = result ? result : new Matrix4d();\n result._coffs[0] = cxx;\n result._coffs[1] = cxy;\n result._coffs[2] = cxz;\n result._coffs[3] = cxw;\n result._coffs[4] = cyx;\n result._coffs[5] = cyy;\n result._coffs[6] = cyz;\n result._coffs[7] = cyw;\n result._coffs[8] = czx;\n result._coffs[9] = czy;\n result._coffs[10] = czz;\n result._coffs[11] = czw;\n result._coffs[12] = cwx;\n result._coffs[13] = cwy;\n result._coffs[14] = cwz;\n result._coffs[15] = cww;\n return result;\n }\n /** Create a `Matrix4d` from 16 values appearing as `Point4d` for each row. */\n public static createRows(rowX: Point4d, rowY: Point4d, rowZ: Point4d, rowW: Point4d, result?: Matrix4d): Matrix4d {\n return this.createRowValues(\n rowX.x, rowX.y, rowX.z, rowX.w,\n rowY.x, rowY.y, rowY.z, rowY.w,\n rowZ.x, rowZ.y, rowZ.z, rowZ.w,\n rowW.x, rowW.y, rowW.z, rowW.w, result);\n }\n /** directly set columns from typical 3d data:\n *\n * * vectorX, vectorY, vectorZ as columns 0,1,2, with weight0.\n * * origin as column3, with weight 1\n */\n public setOriginAndVectors(origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d) {\n this._coffs[0] = vectorX.x;\n this._coffs[1] = vectorY.x;\n this._coffs[2] = vectorZ.x;\n this._coffs[3] = origin.x;\n this._coffs[4] = vectorX.y;\n this._coffs[5] = vectorY.y;\n this._coffs[6] = vectorZ.y;\n this._coffs[7] = origin.y;\n this._coffs[8] = vectorX.z;\n this._coffs[9] = vectorY.z;\n this._coffs[10] = vectorZ.z;\n this._coffs[11] = origin.z;\n this._coffs[12] = 0.0;\n this._coffs[13] = 0.0;\n this._coffs[14] = 0.0;\n this._coffs[15] = 1.0;\n }\n /** promote a transform to full Matrix4d (with 0001 in final row) */\n public static createTransform(source: Transform, result?: Matrix4d): Matrix4d {\n const matrix = source.matrix;\n const point = source.origin;\n return Matrix4d.createRowValues(matrix.coffs[0], matrix.coffs[1], matrix.coffs[2], point.x, matrix.coffs[3], matrix.coffs[4], matrix.coffs[5], point.y, matrix.coffs[6], matrix.coffs[7], matrix.coffs[8], point.z, 0, 0, 0, 1, result);\n }\n /** return an identity matrix. */\n public static createIdentity(result?: Matrix4d): Matrix4d {\n result = Matrix4d.createZero(result);\n result._coffs[0] = 1.0;\n result._coffs[5] = 1.0;\n result._coffs[10] = 1.0;\n result._coffs[15] = 1.0;\n return result;\n }\n /** return matrix with translation directly inserted (along with 1 on diagonal) */\n public static createTranslationXYZ(x: number, y: number, z: number, result?: Matrix4d): Matrix4d {\n result = Matrix4d.createZero(result);\n result._coffs[0] = 1.0;\n result._coffs[5] = 1.0;\n result._coffs[10] = 1.0;\n result._coffs[15] = 1.0;\n result._coffs[3] = x;\n result._coffs[7] = y;\n result._coffs[11] = z;\n return result;\n }\n\n /** return this matrix plus scale times matrixB. */\n public plusScaled(matrixB: Matrix4d, scale: number, result?: Matrix4d): Matrix4d {\n // If result is undefined, a real clone is created.\n // If result is \"this\" we get the pointer to this right back.\n // If result is other, \"this\" coffs are copied.\n // Then we can add matrixB. (Which we assume is different from this?)\n result = this.clone(result);\n for (let i = 0; i < 16; i++)\n result._coffs[i] += scale * matrixB._coffs[i];\n return result;\n }\n\n /**\n * Create a Matrix4d with translation and scaling values directly inserted (along with 1 as final diagonal entry)\n * @param tx x entry for translation column\n * @param ty y entry for translation column\n * @param tz z entry for translation column\n * @param scaleX x diagonal entry\n * @param scaleY y diagonal entry\n * @param scaleZ z diagonal entry\n * @param result optional result.\n */\n public static createTranslationAndScaleXYZ(tx: number, ty: number, tz: number, scaleX: number, scaleY: number, scaleZ: number, result?: Matrix4d): Matrix4d {\n return Matrix4d.createRowValues(scaleX, 0, 0, tx, 0, scaleY, 0, ty, 0, 0, scaleZ, tz, 0, 0, 0, 1, result);\n }\n /**\n * Create a mapping that scales and translates (no rotation) from box A to box B\n * @param lowA low point of box A\n * @param highA high point of box A\n * @param lowB low point of box B\n * @param highB high point of box B\n */\n public static createBoxToBox(lowA: Point3d, highA: Point3d, lowB: Point3d, highB: Point3d, result?: Matrix4d): Matrix4d | undefined {\n const ax = highA.x - lowA.x;\n const ay = highA.y - lowA.y;\n const az = highA.z - lowA.z;\n const bx = highB.x - lowB.x;\n const by = highB.y - lowB.y;\n const bz = highB.z - lowB.z;\n const abx = Geometry.conditionalDivideFraction(bx, ax);\n const aby = Geometry.conditionalDivideFraction(by, ay);\n const abz = Geometry.conditionalDivideFraction(bz, az);\n if (abx !== undefined && aby !== undefined && abz !== undefined) {\n return Matrix4d.createTranslationAndScaleXYZ(lowB.x - abx * lowA.x, lowB.y - aby * lowA.y, lowB.z - abz * lowA.z, abx, aby, abz, result);\n }\n return undefined;\n }\n /** Set from nested array json e.g. `[[1,2,3,4],[0,1,2,4],[0,2,5,1],[0,0,1,2]]` */\n public setFromJSON(json?: Matrix4dProps) {\n if (Geometry.isArrayOfNumberArray(json, 4, 4)) {\n for (let i = 0; i < 4; ++i) {\n for (let j = 0; j < 4; ++j)\n this._coffs[i * 4 + j] = json[i][j];\n }\n } else {\n this.setZero();\n }\n }\n /**\n * Return the largest (absolute) difference between this and other Matrix4d.\n * @param other matrix to compare to\n */\n public maxDiff(other: Matrix4d): number {\n let a = 0.0;\n for (let i = 0; i < 16; i++)\n a = Math.max(a, Math.abs(this._coffs[i] - other._coffs[i]));\n return a;\n }\n /**\n * Return the largest absolute value in the Matrix4d\n */\n public maxAbs(): number {\n let a = 0.0;\n for (let i = 0; i < 16; i++)\n a = Math.max(a, Math.abs(this._coffs[i]));\n return a;\n }\n /** Test for near-equality with `other` */\n public isAlmostEqual(other: Matrix4d): boolean {\n return Geometry.isSmallMetricDistance(this.maxDiff(other));\n }\n /** Test for exact (bitwise) equality with other. */\n public isExactEqual(other: Matrix4d): boolean { return this.maxDiff(other) === 0.0; }\n /**\n * Convert an Matrix4d to a Matrix4dProps.\n */\n public toJSON(): Matrix4dProps {\n const value = [];\n for (let i = 0; i < 4; ++i) {\n const row = i * 4;\n value.push([this._coffs[row], this._coffs[row + 1], this._coffs[row + 2], this._coffs[row + 3]]);\n }\n return value;\n }\n /** Create from nested array json e.g. `[[1,2,3,4],[0,1,2,4],[0,2,5,1],[0,0,1,2]]` */\n public static fromJSON(json?: Matrix4dProps) {\n const result = new Matrix4d();\n result.setFromJSON(json);\n return result;\n }\n /**\n * Return a point with entries from positions [i0, i0+step, i0+2*step, i0+3*step].\n * * There are no tests for index going out of the 0..15 range.\n * * Usual uses are:\n * * * i0 at left of row (0,4,8,12), step = 1 to extract a row.\n * * * i0 at top of row (0,1,2,3), step = 4 to extract a column\n * * * i0 = 0, step = 5 to extract the diagonal\n * @returns a Point4d with 4 entries taken from positions at steps in the flat 16-member array.\n * @param i0 start index (for 16 member array)\n * @param step step between members\n * @param result optional preallocated point.\n */\n public getSteppedPoint(i0: number, step: number, result?: Point4d): Point4d {\n return Point4d.create(this._coffs[i0], this._coffs[i0 + step], this._coffs[i0 + 2 * step], this._coffs[i0 + 3 * step], result);\n }\n /** Return column 0 as Point4d. */\n public columnX(): Point4d { return this.getSteppedPoint(0, 4); }\n /** Return column 1 as Point4d. */\n public columnY(): Point4d { return this.getSteppedPoint(1, 4); }\n /** Return column 2 as Point4d. */\n public columnZ(): Point4d { return this.getSteppedPoint(2, 4); }\n /** Return column 3 as Point4d. */\n public columnW(): Point4d { return this.getSteppedPoint(3, 4); }\n /** Return row 0 as Point4d. */\n public rowX(): Point4d { return this.getSteppedPoint(0, 1); }\n /** Return row 1 as Point4d. */\n public rowY(): Point4d { return this.getSteppedPoint(4, 1); }\n /** Return row 2 as Point4d. */\n public rowZ(): Point4d { return this.getSteppedPoint(8, 1); }\n /** Return row 3 as Point4d. */\n public rowW(): Point4d { return this.getSteppedPoint(12, 1); }\n /**\n * Returns true if the w row has content other than [0,0,0,1]\n */\n public get hasPerspective(): boolean {\n return this._coffs[12] !== 0.0\n || this._coffs[13] !== 0.0\n || this._coffs[14] !== 0.0\n || this._coffs[15] !== 1.0;\n }\n /**\n * Return a Point4d with the diagonal entries of the matrix\n */\n public diagonal(): Point4d { return this.getSteppedPoint(0, 5); }\n /** return the weight component of this matrix */\n public weight(): number { return this._coffs[15]; }\n /** return the leading 3x3 matrix part of this matrix */\n public matrixPart(): Matrix3d {\n return Matrix3d.createRowValues(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[8], this._coffs[9], this._coffs[10]);\n }\n /**\n * Return the (affine, non-perspective) Transform with the upper 3 rows of this matrix\n * @return undefined if this Matrix4d has perspective effects in the w row.\n */\n public get asTransform(): Transform | undefined {\n if (this.hasPerspective)\n return undefined;\n return Transform.createRowValues(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3], this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[7], this._coffs[8], this._coffs[9], this._coffs[10], this._coffs[11]);\n }\n /** multiply this * other. */\n public multiplyMatrixMatrix(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n for (let i0 = 0; i0 < 16; i0 += 4) {\n for (let k = 0; k < 4; k++)\n result._coffs[i0 + k] =\n this._coffs[i0] * other._coffs[k] +\n this._coffs[i0 + 1] * other._coffs[k + 4] +\n this._coffs[i0 + 2] * other._coffs[k + 8] +\n this._coffs[i0 + 3] * other._coffs[k + 12];\n }\n return result;\n }\n /** multiply this * transpose(other). */\n public multiplyMatrixMatrixTranspose(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n let j = 0;\n for (let i0 = 0; i0 < 16; i0 += 4) {\n for (let k = 0; k < 16; k += 4)\n result._coffs[j++] =\n this._coffs[i0] * other._coffs[k] +\n this._coffs[i0 + 1] * other._coffs[k + 1] +\n this._coffs[i0 + 2] * other._coffs[k + 2] +\n this._coffs[i0 + 3] * other._coffs[k + 3];\n }\n return result;\n }\n /** multiply transpose (this) * other. */\n public multiplyMatrixTransposeMatrix(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n let j = 0;\n for (let i0 = 0; i0 < 4; i0 += 1) {\n for (let k0 = 0; k0 < 4; k0 += 1)\n result._coffs[j++] =\n this._coffs[i0] * other._coffs[k0] +\n this._coffs[i0 + 4] * other._coffs[k0 + 4] +\n this._coffs[i0 + 8] * other._coffs[k0 + 8] +\n this._coffs[i0 + 12] * other._coffs[k0 + 12];\n }\n return result;\n }\n /** Return a transposed matrix. */\n public cloneTransposed(result?: Matrix4d): Matrix4d {\n return Matrix4d.createRowValues(this._coffs[0], this._coffs[4], this._coffs[8], this._coffs[12], this._coffs[1], this._coffs[5], this._coffs[9], this._coffs[13], this._coffs[2], this._coffs[6], this._coffs[10], this._coffs[14], this._coffs[3], this._coffs[7], this._coffs[11], this._coffs[15], result);\n }\n /** multiply matrix times column [x,y,z,w]. return as Point4d. (And the returned value is NOT normalized down to unit w) */\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n result = result ? result : Point4d.createZero();\n return result.set(this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w, this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w, this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w, this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w);\n }\n /** multiply matrix times column vectors [x,y,z,w] where [x,y,z,w] appear in blocks in an array.\n * replace the xyzw in the block\n */\n public multiplyBlockedFloat64ArrayInPlace(data: Float64Array) {\n const n = data.length;\n let x, y, z, w;\n for (let i = 0; i + 3 < n; i += 4) {\n x = data[i];\n y = data[i + 1];\n z = data[i + 2];\n w = data[i + 3];\n data[i] = this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w;\n data[i + 1] = this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w;\n data[i + 2] = this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w;\n data[i + 3] = this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w;\n }\n }\n /** multiply matrix times XYAndZ and w. return as Point4d (And the returned value is NOT normalized down to unit w) */\n public multiplyPoint3d(pt: XYAndZ, w: number, result?: Point4d): Point4d {\n return this.multiplyXYZW(pt.x, pt.y, pt.z, w, result);\n }\n /** multiply matrix times and array of XYAndZ. return as array of Point4d (And the returned value is NOT normalized down to unit w) */\n public multiplyPoint3dArray(pts: XYAndZ[], results: Point4d[], w: number = 1.0): void {\n pts.forEach((pt, i) => { results[i] = this.multiplyXYZW(pt.x, pt.y, pt.z, w, results[i]); });\n }\n /** multiply [x,y,z,w] times matrix. return as Point4d. (And the returned value is NOT normalized down to unit w) */\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n result = result ? result : Point4d.createZero();\n return result.set(this._coffs[0] * x + this._coffs[4] * y + this._coffs[8] * z + this._coffs[12] * w, this._coffs[1] * x + this._coffs[5] * y + this._coffs[9] * z + this._coffs[13] * w, this._coffs[2] * x + this._coffs[6] * y + this._coffs[10] * z + this._coffs[14] * w, this._coffs[3] * x + this._coffs[7] * y + this._coffs[11] * z + this._coffs[15] * w);\n }\n /** Returns dot product of row rowIndex of this with column columnIndex of other.\n */\n public rowDotColumn(rowIndex: number, other: Matrix4d, columnIndex: number): number {\n const i = rowIndex * 4;\n const j = columnIndex;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 1] * other._coffs[j + 4]\n + this._coffs[i + 2] * other._coffs[j + 8]\n + this._coffs[i + 3] * other._coffs[j + 12];\n }\n /** Returns dot product of row rowIndex of this with [x y z w]\n */\n public rowDotXYZW(rowIndex: number, x: number, y: number, z: number, w: number): number {\n const i = rowIndex * 4;\n return this._coffs[i] * x\n + this._coffs[i + 1] * y\n + this._coffs[i + 2] * z\n + this._coffs[i + 3] * w;\n }\n\n /** Returns dot product of row rowIndexThis of this with row rowIndexOther of other.\n */\n public rowDotRow(rowIndexThis: number, other: Matrix4d, rowIndexOther: number): number {\n const i = rowIndexThis * 4;\n const j = rowIndexOther * 4;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 1] * other._coffs[j + 1]\n + this._coffs[i + 2] * other._coffs[j + 2]\n + this._coffs[i + 3] * other._coffs[j + 3];\n }\n /** Returns dot product of row rowIndexThis of this with row rowIndexOther of other.\n */\n public columnDotColumn(columnIndexThis: number, other: Matrix4d, columnIndexOther: number): number {\n const i = columnIndexThis;\n const j = columnIndexOther;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 4] * other._coffs[j + 4]\n + this._coffs[i + 8] * other._coffs[j + 8]\n + this._coffs[i + 12] * other._coffs[j + 12];\n }\n /** Returns dot product of column columnIndexThis of this with row rowIndexOther other.\n */\n public columnDotRow(columnIndexThis: number, other: Matrix4d, rowIndexOther: number): number {\n const i = columnIndexThis;\n const j = 4 * rowIndexOther;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 4] * other._coffs[j + 1]\n + this._coffs[i + 8] * other._coffs[j + 2]\n + this._coffs[i + 12] * other._coffs[j + 3];\n }\n /** Return a matrix entry by row and column index.\n */\n public atIJ(rowIndex: number, columnIndex: number): number {\n return this._coffs[rowIndex * 4 + columnIndex];\n }\n\n /** Set a matrix entry by row and column index.\n */\n public setAtIJ(rowIndex: number, columnIndex: number, value: number) {\n this._coffs[rowIndex * 4 + columnIndex] = value;\n }\n /** multiply matrix * [x,y,z,w]. immediately renormalize to return in a Point3d.\n * If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.\n */\n public multiplyXYZWQuietRenormalize(x: number, y: number, z: number, w: number, result?: Point3d): Point3d {\n result = result ? result : Point3d.createZero();\n result.set(this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w, this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w, this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w);\n const w1 = this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w;\n const qx = Geometry.conditionalDivideCoordinate(result.x, w1);\n const qy = Geometry.conditionalDivideCoordinate(result.y, w1);\n const qz = Geometry.conditionalDivideCoordinate(result.z, w1);\n if (qx !== undefined && qy !== undefined && qz !== undefined) {\n result.x = qx;\n result.y = qy;\n result.z = qz;\n }\n return result;\n }\n /** multiply matrix * an array of Point4d. immediately renormalize to return in an array of Point3d. */\n public multiplyPoint4dArrayQuietRenormalize(pts: Point4d[], results: Point3d[]): void {\n pts.forEach((pt, i) => { results[i] = this.multiplyXYZWQuietRenormalize(pt.x, pt.y, pt.z, pt.w, results[i]); });\n }\n /** multiply a Point4d, return with the optional result convention. */\n public multiplyPoint4d(point: Point4d, result?: Point4d): Point4d {\n return this.multiplyXYZW(point.xyzw[0], point.xyzw[1], point.xyzw[2], point.xyzw[3], result);\n }\n /** multiply a Point4d, return with the optional result convention. */\n public multiplyTransposePoint4d(point: Point4d, result?: Point4d): Point4d {\n return this.multiplyTransposeXYZW(point.xyzw[0], point.xyzw[1], point.xyzw[2], point.xyzw[3], result);\n }\n /** multiply matrix * point. This produces a weighted xyzw.\n * Immediately renormalize back to xyz and return (with optional result convention).\n * If zero weight appears in the result (i.e. input is on eyeplane)leave the mapped xyz untouched.\n */\n public multiplyPoint3dQuietNormalize(point: XYAndZ, result?: Point3d): Point3d {\n return this.multiplyXYZWQuietRenormalize(point.x, point.y, point.z, 1.0, result);\n }\n /** multiply each matrix * points[i]. This produces a weighted xyzw.\n * Immediately renormalize back to xyz and replace the original point.\n * If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.\n */\n public multiplyPoint3dArrayQuietNormalize(points: Point3d[]) {\n points.forEach((point) => this.multiplyXYZWQuietRenormalize(point.x, point.y, point.z, 1.0, point));\n }\n /**\n * Add the product terms [xx,xy,xz,xw, yx, yy, yz, yw, zx, zy, zz, zs, wx, wy, wz, ww] to respective entries in the matrix\n * @param x x component for products\n * @param y y component for products\n * @param z z component for products\n * @param w w component for products\n */\n public addMomentsInPlace(x: number, y: number, z: number, w: number) {\n this._coffs[0] += x * x;\n this._coffs[1] += x * y;\n this._coffs[2] += x * z;\n this._coffs[3] += x * w;\n this._coffs[4] += y * x;\n this._coffs[5] += y * y;\n this._coffs[6] += y * z;\n this._coffs[7] += y * w;\n this._coffs[8] += z * x;\n this._coffs[9] += z * y;\n this._coffs[10] += z * z;\n this._coffs[11] += z * w;\n this._coffs[12] += w * x;\n this._coffs[13] += w * y;\n this._coffs[14] += w * z;\n this._coffs[15] += w * w;\n }\n /** accumulate all coefficients of other to this. */\n public addScaledInPlace(other: Matrix4d, scale: number = 1.0) {\n for (let i = 0; i < 16; i++)\n this._coffs[i] += scale * other._coffs[i];\n }\n /**\n * Add scale times rowA to rowB.\n * @param rowIndexA row that is not modified\n * @param rowIndexB row that is modified.\n * @param firstColumnIndex first column modified. All from there to the right are updated\n * @param scale scale\n */\n public rowOperation(rowIndexA: number, rowIndexB: number, firstColumnIndex: number, scale: number) {\n if (scale === 0.0)\n return;\n let iA = rowIndexA * 4 + firstColumnIndex;\n let iB = rowIndexB * 4 + firstColumnIndex;\n for (let i = firstColumnIndex; i < 4; i++ , iA++ , iB++)\n this._coffs[iB] += scale * this._coffs[iA];\n }\n /** Return the determinant of the matrix. */\n public determinant(): number {\n const c = this._coffs;\n return Geometry.determinant4x4(\n c[0], c[1], c[2], c[3],\n c[4], c[5], c[6], c[7],\n c[8], c[9], c[10], c[11],\n c[12], c[13], c[14], c[15]);\n }\n /** Compute an inverse matrix.\n * * This uses direct formulas with various determinants.\n * * If result is given, it is ALWAYS filled with values \"prior to dividing by the determinant\".\n * *\n * @returns undefined if dividing by the determinant looks unsafe.\n */\n public createInverse(result?: Matrix4d): Matrix4d | undefined {\n // dividing each column by its maxAbs is more robust than dividing them by this.maxAbs()\n let maxAbs0 = this.columnX().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsA = 1.0 / maxAbs0;\n maxAbs0 = this.columnY().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsB = 1.0 / maxAbs0;\n maxAbs0 = this.columnZ().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsC = 1.0 / maxAbs0;\n maxAbs0 = this.columnW().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsD = 1.0 / maxAbs0;\n const columnA = this.columnX();\n const columnB = this.columnY();\n const columnC = this.columnZ();\n const columnD = this.columnW();\n columnA.scale(divMaxAbsA, columnA);\n columnB.scale(divMaxAbsB, columnB);\n columnC.scale(divMaxAbsC, columnC);\n columnD.scale(divMaxAbsD, columnD);\n const rowBCD = Point4d.perpendicularPoint4dPlane(columnB, columnC, columnD);\n const rowCDA = Point4d.perpendicularPoint4dPlane(columnA, columnD, columnC); // order for negation !\n const rowDAB = Point4d.perpendicularPoint4dPlane(columnD, columnA, columnB);\n const rowABC = Point4d.perpendicularPoint4dPlane(columnC, columnB, columnA); // order for negation !\n // The matrix is singular if the determinant is zero.\n // But what is the proper tolerance for zero?\n // The row values are generally cubes of entries. And the typical perspective matrix\n // has very different magnitudes in various parts. So a typical cube size is really hard.\n // Compute 4 different determinants. They should match.\n // If they are near zero, maybe a sign change is a red flag for singular case.\n // (And there's a lot less work to do that than was done to make the rows)\n result = Matrix4d.createRows(rowBCD, rowCDA, rowDAB, rowABC, result);\n const determinantA = rowBCD.dotProduct(columnA);\n const determinantB = rowCDA.dotProduct(columnB);\n const determinantC = rowDAB.dotProduct(columnC);\n const determinantD = rowABC.dotProduct(columnD);\n const maxAbs1 = result.maxAbs();\n if (determinantA * determinantB > 0.0\n && determinantA * determinantC > 0.0\n && determinantA * determinantD > 0.0) {\n const divisionTest = Geometry.conditionalDivideCoordinate(maxAbs1, determinantA);\n if (divisionTest !== undefined) {\n const divDet = 1.0 / determinantA;\n result.scaleRowsInPlace(divMaxAbsA * divDet, divMaxAbsB * divDet, divMaxAbsC * divDet, divMaxAbsD * divDet);\n return result;\n }\n } else {\n return undefined; // this is a useful spot to break to see if the 4 determinant test is effective.\n }\n return undefined;\n }\n /** Returns an array-of-arrays of the matrix rows, optionally passing each value through a function.\n * @param f optional function to provide alternate values for each entry (e.g. force fuzz to zero.)\n */\n public rowArrays(f?: (value: number) => any): any {\n if (f)\n return [\n [f(this._coffs[0]), f(this._coffs[1]), f(this._coffs[2]), f(this._coffs[3])],\n [f(this._coffs[4]), f(this._coffs[5]), f(this._coffs[6]), f(this._coffs[7])],\n [f(this._coffs[8]), f(this._coffs[9]), f(this._coffs[10]), f(this._coffs[11])],\n [f(this._coffs[12]), f(this._coffs[13]), f(this._coffs[14]), f(this._coffs[15])]];\n else\n return [\n [this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3]],\n [this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[7]],\n [this._coffs[8], this._coffs[9], this._coffs[10], this._coffs[11]],\n [this._coffs[12], this._coffs[13], this._coffs[14], this._coffs[15]]];\n }\n /**\n * Scale each row by respective scale factors.\n * @param ax scale factor for row 0\n * @param ay scale factor for row 1\n * @param az scale factor for row 2\n * @param aw scale factor for row 3\n */\n public scaleRowsInPlace(ax: number, ay: number, az: number, aw: number) {\n for (let i = 0; i < 4; i++)\n this._coffs[i] *= ax;\n for (let i = 4; i < 8; i++)\n this._coffs[i] *= ay;\n for (let i = 8; i < 12; i++)\n this._coffs[i] *= az;\n for (let i = 12; i < 16; i++)\n this._coffs[i] *= aw;\n }\n /**\n * add an outer product (single column times single row times scale factor) to this matrix.\n * @param vectorU column vector\n * @param vectorV row vector\n * @param scale scale factor\n */\n public addScaledOuterProductInPlace(vectorU: Point4d, vectorV: Point4d, scale: number) {\n let a = vectorU.x * scale;\n this._coffs[0] += a * vectorV.x;\n this._coffs[1] += a * vectorV.y;\n this._coffs[2] += a * vectorV.z;\n this._coffs[3] += a * vectorV.w;\n\n a = vectorU.y * scale;\n this._coffs[4] += a * vectorV.x;\n this._coffs[5] += a * vectorV.y;\n this._coffs[6] += a * vectorV.z;\n this._coffs[7] += a * vectorV.w;\n\n a = vectorU.z * scale;\n this._coffs[8] += a * vectorV.x;\n this._coffs[9] += a * vectorV.y;\n this._coffs[10] += a * vectorV.z;\n this._coffs[11] += a * vectorV.w;\n\n a = vectorU.w * scale;\n this._coffs[12] += a * vectorV.x;\n this._coffs[13] += a * vectorV.y;\n this._coffs[14] += a * vectorV.z;\n this._coffs[15] += a * vectorV.w;\n }\n /**\n * Add (in place) scale*A*B*AT where\n * * A is a pure translation with final column [x,y,z,1]\n * * B is the given `matrixB`\n * * AT is the transpose of A.\n * * scale is a multiplier.\n * @param matrixB the middle matrix.\n * @param ax x part of translation\n * @param ay y part of translation\n * @param az z part of translation\n * @param scale scale factor for entire product\n */\n public addTranslationSandwichInPlace(matrixB: Matrix4d, ax: number, ay: number, az: number, scale: number) {\n const bx = matrixB._coffs[3];\n const by = matrixB._coffs[7];\n const bz = matrixB._coffs[11];\n // matrixB can be non-symmetric!!\n const cx = matrixB._coffs[12];\n const cy = matrixB._coffs[13];\n const cz = matrixB._coffs[14];\n\n const beta = matrixB._coffs[15];\n const axBeta = ax * beta;\n const ayBeta = ay * beta;\n const azBeta = az * beta;\n this._coffs[0] += scale * (matrixB._coffs[0] + ax * bx + cx * ax + ax * axBeta);\n this._coffs[1] += scale * (matrixB._coffs[1] + ay * bx + cy * ax + ax * ayBeta);\n this._coffs[2] += scale * (matrixB._coffs[2] + az * bx + cz * ax + ax * azBeta);\n this._coffs[3] += scale * (bx + axBeta);\n\n this._coffs[4] += scale * (matrixB._coffs[4] + ax * by + cx * ay + ay * axBeta);\n this._coffs[5] += scale * (matrixB._coffs[5] + ay * by + cy * ay + ay * ayBeta);\n this._coffs[6] += scale * (matrixB._coffs[6] + az * by + cz * ay + ay * azBeta);\n this._coffs[7] += scale * (by + ayBeta);\n\n this._coffs[8] += scale * (matrixB._coffs[8] + ax * bz + cx * az + az * axBeta);\n this._coffs[9] += scale * (matrixB._coffs[9] + ay * bz + cy * az + az * ayBeta);\n this._coffs[10] += scale * (matrixB._coffs[10] + az * bz + cz * az + az * azBeta);\n this._coffs[11] += scale * (bz + azBeta);\n\n this._coffs[12] += scale * (cx + axBeta);\n this._coffs[13] += scale * (cy + ayBeta);\n this._coffs[14] += scale * (cz + azBeta);\n this._coffs[15] += scale * beta;\n }\n /**\n * Multiply and replace contents of this matrix by A*this*AT where\n * * A is a pure translation with final column [x,y,z,1]\n * * this is this matrix.\n * * AT is the transpose of A.\n * @param ax x part of translation\n * @param ay y part of translation\n * @param az z part of translation\n */\n public multiplyTranslationSandwichInPlace(ax: number, ay: number, az: number) {\n const bx = this._coffs[3];\n const by = this._coffs[7];\n const bz = this._coffs[11];\n // matrixB can be non-symmetric!!\n const cx = this._coffs[12];\n const cy = this._coffs[13];\n const cz = this._coffs[14];\n\n const beta = this._coffs[15];\n const axBeta = ax * beta;\n const ayBeta = ay * beta;\n const azBeta = az * beta;\n this._coffs[0] += (ax * bx + cx * ax + ax * axBeta);\n this._coffs[1] += (ay * bx + cy * ax + ax * ayBeta);\n this._coffs[2] += (az * bx + cz * ax + ax * azBeta);\n this._coffs[3] += axBeta;\n\n this._coffs[4] += (ax * by + cx * ay + ay * axBeta);\n this._coffs[5] += (ay * by + cy * ay + ay * ayBeta);\n this._coffs[6] += (az * by + cz * ay + ay * azBeta);\n this._coffs[7] += ayBeta;\n\n this._coffs[8] += (ax * bz + cx * az + az * axBeta);\n this._coffs[9] += (ay * bz + cy * az + az * ayBeta);\n this._coffs[10] += (az * bz + cz * az + az * azBeta);\n this._coffs[11] += azBeta;\n\n this._coffs[12] += axBeta;\n this._coffs[13] += ayBeta;\n this._coffs[14] += azBeta;\n // coffs[15] is unchanged !!!\n }\n}\n"]}
|
|
1
|
+
{"version":3,"file":"Matrix4d.js","sourceRoot":"","sources":["../../../src/geometry4d/Matrix4d.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;AAC/F;;GAEG;;;AAEH,0CAAwD;AACxD,qDAAkD;AAClD,mEAAuE;AACvE,uDAAoD;AAEpD,uCAAkD;AAQlD;;;;;;;;;;;;;;GAcG;AACH,MAAa,QAAQ;IACX,MAAM,CAAe;IAC7B,gBAAwB,IAAI,CAAC,MAAM,GAAG,IAAI,YAAY,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAC7D,uCAAuC;IAChC,OAAO,CAAC,KAAe;QAC5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;IACrC,CAAC;IACD,2BAA2B;IACpB,KAAK,CAAC,MAAiB;QAC5B,IAAI,MAAM,KAAK,IAAI;YACjB,OAAO,IAAI,CAAC;QACd,IAAI,MAAM,KAAK,SAAS;YACtB,MAAM,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC1B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QACpC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mCAAmC;IAC5B,OAAO;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;IACvB,CAAC;IACD,uBAAuB;IAChB,WAAW;QAChB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;IAC5E,CAAC;IACO,MAAM,CAAC,MAAM,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,GAAW;QAC3E,OAAO,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,IAAI,GAAG;eAC1B,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG;eAClB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG;eAClB,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,GAAG,CAAC;IAC1B,CAAC;IACD,uBAAuB;IAChB,UAAU,CAAC,MAAc,OAAO;QACrC,OAAO,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACtF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACpF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,GAAG,CAAC;eACtF,QAAQ,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,GAAG,CAAC,CAAC;IAChG,CAAC;IACD,2CAA2C;IACpC,MAAM,CAAC,UAAU,CAAC,MAAiB;QACxC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,EAAE,CAAC;YACjB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,QAAQ,EAAE,CAAC,CAAC,gBAAgB;IACzC,CAAC;IACD,+DAA+D;IACxD,MAAM,CAAC,eAAe,CAAC,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,MAAiB;QAC7P,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QAC1C,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,UAAU,CAAC,IAAa,EAAE,IAAa,EAAE,IAAa,EAAE,IAAa,EAAE,MAAiB;QACpG,OAAO,IAAI,CAAC,eAAe,CACzB,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAC9B,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IAC5C,CAAC;IACD;;;;OAIG;IACI,mBAAmB,CAAC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB;QAC7F,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAC5B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC;QAC3B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;IACxB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,eAAe,CAAC,MAAiB,EAAE,MAAiB;QAChE,MAAM,MAAM,GAAG,MAAM,CAAC,MAAM,CAAC;QAC7B,MAAM,KAAK,GAAG,MAAM,CAAC,MAAM,CAAC;QAC5B,OAAO,QAAQ,CAAC,eAAe,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC1O,CAAC;IACD,iCAAiC;IAC1B,MAAM,CAAC,cAAc,CAAC,MAAiB;QAC5C,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACrC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,kFAAkF;IAC3E,MAAM,CAAC,oBAAoB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACnF,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACrC,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACvB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC;QACxB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QACrB,MAAM,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtB,OAAO,MAAM,CAAC;IAChB,CAAC;IAED,mDAAmD;IAC5C,UAAU,CAAC,OAAiB,EAAE,KAAa,EAAE,MAAiB;QACnE,mDAAmD;QACnD,6DAA6D;QAC7D,+CAA+C;QAC/C,sEAAsE;QACtE,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,MAAM,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAChD,OAAO,MAAM,CAAC;IAChB,CAAC;IAED;;;;;;;;;OASG;IACI,MAAM,CAAC,4BAA4B,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,MAAc,EAAE,MAAc,EAAE,MAAc,EAAE,MAAiB;QAC9I,OAAO,QAAQ,CAAC,eAAe,CAAC,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,EAAE,EAAE,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC5G,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,cAAc,CAAC,IAAa,EAAE,KAAc,EAAE,IAAa,EAAE,KAAc,EAAE,MAAiB;QAC1G,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QAC5B,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,MAAM,GAAG,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QACvD,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,SAAS,EAAE,CAAC;YAChE,OAAO,QAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,GAAG,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,MAAM,CAAC,CAAC;QAC3I,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD,kFAAkF;IAC3E,WAAW,CAAC,IAAoB;QACrC,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;YAC9C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;gBAC3B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC;oBACxB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;YACxC,CAAC;QACH,CAAC;aAAM,CAAC;YACN,IAAI,CAAC,OAAO,EAAE,CAAC;QACjB,CAAC;IACH,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAe;QAC5B,IAAI,CAAC,GAAG,GAAG,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC9D,OAAO,CAAC,CAAC;IACX,CAAC;IACD;;OAEG;IACI,MAAM;QACX,IAAI,CAAC,GAAG,GAAG,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC5C,OAAO,CAAC,CAAC;IACX,CAAC;IACD,0CAA0C;IACnC,aAAa,CAAC,KAAe;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC;IAC7D,CAAC;IACD,oDAAoD;IAC7C,YAAY,CAAC,KAAe,IAAa,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,KAAK,GAAG,CAAC,CAAC,CAAC;IACrF;;OAEG;IACI,MAAM;QACX,MAAM,KAAK,GAAG,EAAE,CAAC;QACjB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;YAC3B,MAAM,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC;YAClB,KAAK,CAAC,IAAI,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACnG,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,MAAM,CAAC,QAAQ,CAAC,IAAoB;QACzC,MAAM,MAAM,GAAG,IAAI,QAAQ,EAAE,CAAC;QAC9B,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;OAWG;IACI,eAAe,CAAC,EAAU,EAAE,IAAY,EAAE,MAAgB;QAC/D,OAAO,iBAAO,CAAC,MAAM,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,EAAE,MAAM,CAAC,CAAC;IACjI,CAAC;IACD,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,kCAAkC;IAC3B,OAAO,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAChE,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7D,+BAA+B;IACxB,IAAI,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC9D;;OAEG;IACH,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACvB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG;eACvB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,KAAK,GAAG,CAAC;IAC/B,CAAC;IACD;;OAEG;IACI,QAAQ,KAAc,OAAO,IAAI,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IACjE,iDAAiD;IAC1C,MAAM,KAAa,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IACnD,wDAAwD;IACjD,UAAU;QACf,OAAO,mBAAQ,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;IACnL,CAAC;IACD;;;OAGG;IACH,IAAW,WAAW;QACpB,IAAI,IAAI,CAAC,cAAc;YACrB,OAAO,SAAS,CAAC;QACnB,OAAO,qBAAS,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;IACrO,CAAC;IACD,6BAA6B;IACtB,oBAAoB,CAAC,KAAe,EAAE,MAAiB;QAC5D,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YAClC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,MAAM,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;oBACnB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;wBACjC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;QACjD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,wCAAwC;IACjC,6BAA6B,CAAC,KAAe,EAAE,MAAiB;QACrE,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,EAAE,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YAClC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,IAAI,CAAC;gBAC5B,MAAM,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC;oBAChB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;wBACjC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;wBACzC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAChD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,yCAAyC;IAClC,6BAA6B,CAAC,KAAe,EAAE,MAAiB;QACrE,MAAM,GAAG,CAAC,MAAM,IAAI,MAAM,KAAK,IAAI,IAAI,MAAM,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,QAAQ,EAAE,CAAC;QACnF,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,IAAI,CAAC,EAAE,CAAC;YACjC,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,CAAC,EAAE,EAAE,IAAI,CAAC;gBAC9B,MAAM,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC;oBAChB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,CAAC;wBAClC,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;wBAC1C,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,CAAC,CAAC;wBAC1C,IAAI,CAAC,MAAM,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QACnD,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,kCAAkC;IAC3B,eAAe,CAAC,MAAiB;QACtC,OAAO,QAAQ,CAAC,eAAe,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAChT,CAAC;IACD,8HAA8H;IACvH,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,iBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,OAAO,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IACtW,CAAC;IACD;;OAEG;IACI,kCAAkC,CAAC,IAAkB;QAC1D,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,IAAI,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC;QACf,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,CAAC;YAClC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YACZ,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,CAAC,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YAChB,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAC5F,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAChG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;YAClG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACtG,CAAC;IACH,CAAC;IACD,wHAAwH;IACjH,eAAe,CAAC,EAAU,EAAE,CAAS,EAAE,MAAgB;QAC5D,OAAO,IAAI,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxD,CAAC;IACD,wIAAwI;IACjI,oBAAoB,CAAC,GAAa,EAAE,OAAkB,EAAE,IAAY,GAAG;QAC5E,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAC/F,CAAC;IACD,uHAAuH;IAChH,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,iBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,OAAO,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IACtW,CAAC;IACD;OACG;IACI,YAAY,CAAC,QAAgB,EAAE,KAAe,EAAE,WAAmB;QACxE,MAAM,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC;QACvB,MAAM,CAAC,GAAG,WAAW,CAAC;QACtB,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;IAChD,CAAC;IACD;OACG;IACI,UAAU,CAAC,QAAgB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC5E,MAAM,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC;cACrB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;cACtB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;cACtB,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;IAC7B,CAAC;IAED;OACG;IACI,SAAS,CAAC,YAAoB,EAAE,KAAe,EAAE,aAAqB;QAC3E,MAAM,CAAC,GAAG,YAAY,GAAG,CAAC,CAAC;QAC3B,MAAM,CAAC,GAAG,aAAa,GAAG,CAAC,CAAC;QAC5B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/C,CAAC;IACD;OACG;IACI,eAAe,CAAC,eAAuB,EAAE,KAAe,EAAE,gBAAwB;QACvF,MAAM,CAAC,GAAG,eAAe,CAAC;QAC1B,MAAM,CAAC,GAAG,gBAAgB,CAAC;QAC3B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;IACjD,CAAC;IACD;OACG;IACI,YAAY,CAAC,eAAuB,EAAE,KAAe,EAAE,aAAqB;QACjF,MAAM,CAAC,GAAG,eAAe,CAAC;QAC1B,MAAM,CAAC,GAAG,CAAC,GAAG,aAAa,CAAC;QAC5B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC;cACnC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC;cACxC,IAAI,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAChD,CAAC;IACD;OACG;IACI,IAAI,CAAC,QAAgB,EAAE,WAAmB;QAC/C,OAAO,IAAI,CAAC,MAAM,CAAC,QAAQ,GAAG,CAAC,GAAG,WAAW,CAAC,CAAC;IACjD,CAAC;IAED;OACG;IACI,OAAO,CAAC,QAAgB,EAAE,WAAmB,EAAE,KAAa;QACjE,IAAI,CAAC,MAAM,CAAC,QAAQ,GAAG,CAAC,GAAG,WAAW,CAAC,GAAG,KAAK,CAAC;IAClD,CAAC;IACD;;OAEG;IACI,4BAA4B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9F,MAAM,GAAG,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChD,MAAM,CAAC,GAAG,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;QACtQ,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QACjG,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;QAC9D,IAAI,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;YAC7D,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;YACd,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;YACd,MAAM,CAAC,CAAC,GAAG,EAAE,CAAC;QAChB,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,uGAAuG;IAChG,oCAAoC,CAAC,GAAc,EAAE,OAAkB;QAC5E,GAAG,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,4BAA4B,CAAC,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAClH,CAAC;IACD,sEAAsE;IAC/D,eAAe,CAAC,KAAc,EAAE,MAAgB;QACrD,OAAO,IAAI,CAAC,YAAY,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/F,CAAC;IACD,sEAAsE;IAC/D,wBAAwB,CAAC,KAAc,EAAE,MAAgB;QAC9D,OAAO,IAAI,CAAC,qBAAqB,CAAC,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;OAGG;IACI,6BAA6B,CAAC,KAAa,EAAE,MAAgB;QAClE,OAAO,IAAI,CAAC,4BAA4B,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,GAAG,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,kCAAkC,CAAC,MAAiB;QACzD,MAAM,CAAC,OAAO,CAAC,CAAC,KAAK,EAAE,EAAE,CAAC,IAAI,CAAC,4BAA4B,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,GAAG,EAAE,KAAK,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;;;;OAMG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QACjE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACxB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;IAC3B,CAAC;IACD,oDAAoD;IAC7C,gBAAgB,CAAC,KAAe,EAAE,QAAgB,GAAG;QAC1D,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;IAC9C,CAAC;IACD;;;;;;OAMG;IACI,YAAY,CAAC,SAAiB,EAAE,SAAiB,EAAE,gBAAwB,EAAE,KAAa;QAC/F,IAAI,KAAK,KAAK,GAAG;YACf,OAAO;QACT,IAAI,EAAE,GAAG,SAAS,GAAG,CAAC,GAAG,gBAAgB,CAAC;QAC1C,IAAI,EAAE,GAAG,SAAS,GAAG,CAAC,GAAG,gBAAgB,CAAC;QAC1C,KAAK,IAAI,CAAC,GAAG,gBAAgB,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAG,EAAE,EAAE,EAAG,EAAE,EAAE;YACrD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;IAC/C,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,OAAO,mBAAQ,CAAC,cAAc,CAC5B,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EACtB,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EACtB,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EACxB,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAChC,CAAC;IACD;;;;;OAKG;IACI,aAAa,CAAC,MAAiB;QACpC,wFAAwF;QACxF,IAAI,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QACtC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC,MAAM,EAAE,CAAC;QAClC,IAAI,OAAO,KAAK,GAAG;YAAE,OAAO,SAAS,CAAC;QACtC,MAAM,UAAU,GAAG,GAAG,GAAG,OAAO,CAAC;QACjC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,EAAE,CAAC;QAC/B,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,OAAO,CAAC,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC;QACnC,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC5E,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAE,uBAAuB;QACrG,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;QAC5E,MAAM,MAAM,GAAG,iBAAO,CAAC,yBAAyB,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC,uBAAuB;QACpG,qDAAqD;QACrD,6CAA6C;QAC7C,oFAAoF;QACpF,6FAA6F;QAC7F,wDAAwD;QACxD,8EAA8E;QAC9E,0EAA0E;QAC1E,MAAM,GAAG,QAAQ,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;QACrE,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,YAAY,GAAG,MAAM,CAAC,UAAU,CAAC,OAAO,CAAC,CAAC;QAChD,MAAM,OAAO,GAAG,MAAM,CAAC,MAAM,EAAE,CAAC;QAChC,IAAI,YAAY,GAAG,YAAY,GAAG,GAAG;eAChC,YAAY,GAAG,YAAY,GAAG,GAAG;eACjC,YAAY,GAAG,YAAY,GAAG,GAAG,EAAE,CAAC;YACvC,MAAM,YAAY,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,OAAO,EAAE,YAAY,CAAC,CAAC;YACjF,IAAI,YAAY,KAAK,SAAS,EAAE,CAAC;gBAC/B,MAAM,MAAM,GAAG,GAAG,GAAG,YAAY,CAAC;gBAClC,MAAM,CAAC,gBAAgB,CAAC,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,EAAE,UAAU,GAAG,MAAM,CAAC,CAAC;gBAC5G,OAAO,MAAM,CAAC;YAChB,CAAC;QACH,CAAC;aAAM,CAAC;YACN,OAAO,SAAS,CAAC,CAAC,gFAAgF;QACpG,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;OAEG;IACI,SAAS,CAAC,CAA0B;QACzC,IAAI,CAAC;YACH,OAAO;gBACL,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;gBAC5E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC9E,CAAC,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC;aAAC,CAAC;;YAEpF,OAAO;gBACL,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;gBAChE,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;gBAChE,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;gBAClE,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,EAAE,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;aAAC,CAAC;IAC5E,CAAC;IACD;;;;;;OAMG;IACI,gBAAgB,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,EAAU;QACpE,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;YACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;YACxB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;QACvB,KAAK,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,CAAC,EAAE;YAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,EAAE,CAAC;IACzB,CAAC;IACD;;;;;OAKG;IACI,4BAA4B,CAAC,OAAgB,EAAE,OAAgB,EAAE,KAAa;QACnF,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEhC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEhC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAChC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QAEjC,CAAC,GAAG,OAAO,CAAC,CAAC,GAAG,KAAK,CAAC;QACtB,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;QACjC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,CAAC,CAAC,CAAC;IACnC,CAAC;IACD;;;;;;;;;;;OAWG;IACI,6BAA6B,CAAC,OAAiB,EAAE,EAAU,EAAE,EAAU,EAAE,EAAU,EAAE,KAAa;QACvG,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,iCAAiC;QACjC,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC9B,MAAM,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAE9B,MAAM,IAAI,GAAG,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAChC,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAExC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAExC,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAChF,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,OAAO,CAAC,MAAM,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QAClF,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QAEzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,CAAC,EAAE,GAAG,MAAM,CAAC,CAAC;QACzC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,GAAG,IAAI,CAAC;IAClC,CAAC;IACD;;;;;;;;OAQG;IACI,kCAAkC,CAAC,EAAU,EAAE,EAAU,EAAE,EAAU;QAC1E,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;QAC1B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,+BAA+B;QAC/B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAE3B,MAAM,IAAI,GAAG,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC;QAC7B,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,MAAM,MAAM,GAAG,EAAE,GAAG,IAAI,CAAC;QACzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC;QAEzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,MAAM,CAAC;QAEzB,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACpD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,MAAM,CAAC,CAAC;QACrD,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAE1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,IAAI,MAAM,CAAC;QAC1B,yBAAyB;IAC3B,CAAC;CACF;AAluBD,4BAkuBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n/** @packageDocumentation\n * @module Numerics\n */\n\nimport { BeJSONFunctions, Geometry } from \"../Geometry\";\nimport { Matrix3d } from \"../geometry3d/Matrix3d\";\nimport { Point3d, Vector3d, XYZ } from \"../geometry3d/Point3dVector3d\";\nimport { Transform } from \"../geometry3d/Transform\";\nimport { XYAndZ } from \"../geometry3d/XYZProps\";\nimport { Point4d, Point4dProps } from \"./Point4d\";\n\n/**\n * Coordinate data with `Point4d` numeric data as an array `[x,y,z,w]`\n * @public\n */\nexport type Matrix4dProps = Point4dProps[];\n\n/**\n * * A Matrix4d is a matrix with 4 rows and 4 columns.\n * * The 4 rows may be described as the x,y,z,w rows.\n * * The 4 columns may be described as the x,y,z,w columns.\n * * The matrix is physically stored as a Float64Array with 16 numbers.\n * * The layout in the Float64Array is \"by row\"\n * * indices 0,1,2,3 are the \"x row\". They may be called the xx,xy,xz,xw entries\n * * indices 4,5,6,7 are the \"y row\" They may be called the yx,yy,yz,yw entries\n * * indices 8,9,10,11 are the \"z row\" They may be called the zx,zy,zz,zw entries\n * * indices 12,13,14,15 are the \"w row\". They may be called the wx,wy,wz,ww entries\n * * If \"w row\" contains numeric values 0,0,0,1, the Matrix4d is equivalent to a Transform with\n * * The upper left 3x3 matrix (entries 0,1,2,4,5,6,8,9,10) are the 3x3 matrix part of the transform\n * * The far right column entries xw,yw,zw are the \"origin\" (sometimes called \"translation\") part of the transform.\n * @public\n */\nexport class Matrix4d implements BeJSONFunctions {\n private _coffs: Float64Array;\n private constructor() { this._coffs = new Float64Array(16); }\n /** Copy matrix entries from `other` */\n public setFrom(other: Matrix4d): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = other._coffs[i];\n }\n /** Return a deep clone. */\n public clone(result?: Matrix4d): Matrix4d {\n if (result === this)\n return this;\n if (result === undefined)\n result = new Matrix4d();\n for (let i = 0; i < 16; i++)\n result._coffs[i] = this._coffs[i];\n return result;\n }\n /** zero this matrix4d in place. */\n public setZero(): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = 0;\n }\n /** set to identity. */\n public setIdentity(): void {\n for (let i = 0; i < 16; i++)\n this._coffs[i] = 0;\n this._coffs[0] = this._coffs[5] = this._coffs[10] = this._coffs[15] = 1.0;\n }\n private static is1000(a: number, b: number, c: number, d: number, tol: number): boolean {\n return Math.abs(a - 1.0) <= tol\n && Math.abs(b) <= tol\n && Math.abs(c) <= tol\n && Math.abs(d) <= tol;\n }\n /** set to identity. */\n public isIdentity(tol: number = 1.0e-10): boolean {\n return Matrix4d.is1000(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3], tol)\n && Matrix4d.is1000(this._coffs[5], this._coffs[6], this._coffs[7], this._coffs[4], tol)\n && Matrix4d.is1000(this._coffs[10], this._coffs[11], this._coffs[8], this._coffs[9], tol)\n && Matrix4d.is1000(this._coffs[15], this._coffs[12], this._coffs[13], this._coffs[14], tol);\n }\n /** create a Matrix4d filled with zeros. */\n public static createZero(result?: Matrix4d): Matrix4d {\n if (result) {\n result.setZero();\n return result;\n }\n return new Matrix4d(); // this is zero.\n }\n /** create a Matrix4d with values supplied \"across the rows\" */\n public static createRowValues(cxx: number, cxy: number, cxz: number, cxw: number, cyx: number, cyy: number, cyz: number, cyw: number, czx: number, czy: number, czz: number, czw: number, cwx: number, cwy: number, cwz: number, cww: number, result?: Matrix4d): Matrix4d {\n result = result ? result : new Matrix4d();\n result._coffs[0] = cxx;\n result._coffs[1] = cxy;\n result._coffs[2] = cxz;\n result._coffs[3] = cxw;\n result._coffs[4] = cyx;\n result._coffs[5] = cyy;\n result._coffs[6] = cyz;\n result._coffs[7] = cyw;\n result._coffs[8] = czx;\n result._coffs[9] = czy;\n result._coffs[10] = czz;\n result._coffs[11] = czw;\n result._coffs[12] = cwx;\n result._coffs[13] = cwy;\n result._coffs[14] = cwz;\n result._coffs[15] = cww;\n return result;\n }\n /** Create a `Matrix4d` from 16 values appearing as `Point4d` for each row. */\n public static createRows(rowX: Point4d, rowY: Point4d, rowZ: Point4d, rowW: Point4d, result?: Matrix4d): Matrix4d {\n return this.createRowValues(\n rowX.x, rowX.y, rowX.z, rowX.w,\n rowY.x, rowY.y, rowY.z, rowY.w,\n rowZ.x, rowZ.y, rowZ.z, rowZ.w,\n rowW.x, rowW.y, rowW.z, rowW.w, result);\n }\n /** directly set columns from typical 3d data:\n *\n * * vectorX, vectorY, vectorZ as columns 0,1,2, with weight0.\n * * origin as column3, with weight 1\n */\n public setOriginAndVectors(origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d) {\n this._coffs[0] = vectorX.x;\n this._coffs[1] = vectorY.x;\n this._coffs[2] = vectorZ.x;\n this._coffs[3] = origin.x;\n this._coffs[4] = vectorX.y;\n this._coffs[5] = vectorY.y;\n this._coffs[6] = vectorZ.y;\n this._coffs[7] = origin.y;\n this._coffs[8] = vectorX.z;\n this._coffs[9] = vectorY.z;\n this._coffs[10] = vectorZ.z;\n this._coffs[11] = origin.z;\n this._coffs[12] = 0.0;\n this._coffs[13] = 0.0;\n this._coffs[14] = 0.0;\n this._coffs[15] = 1.0;\n }\n /** promote a transform to full Matrix4d (with 0001 in final row) */\n public static createTransform(source: Transform, result?: Matrix4d): Matrix4d {\n const matrix = source.matrix;\n const point = source.origin;\n return Matrix4d.createRowValues(matrix.coffs[0], matrix.coffs[1], matrix.coffs[2], point.x, matrix.coffs[3], matrix.coffs[4], matrix.coffs[5], point.y, matrix.coffs[6], matrix.coffs[7], matrix.coffs[8], point.z, 0, 0, 0, 1, result);\n }\n /** return an identity matrix. */\n public static createIdentity(result?: Matrix4d): Matrix4d {\n result = Matrix4d.createZero(result);\n result._coffs[0] = 1.0;\n result._coffs[5] = 1.0;\n result._coffs[10] = 1.0;\n result._coffs[15] = 1.0;\n return result;\n }\n /** return matrix with translation directly inserted (along with 1 on diagonal) */\n public static createTranslationXYZ(x: number, y: number, z: number, result?: Matrix4d): Matrix4d {\n result = Matrix4d.createZero(result);\n result._coffs[0] = 1.0;\n result._coffs[5] = 1.0;\n result._coffs[10] = 1.0;\n result._coffs[15] = 1.0;\n result._coffs[3] = x;\n result._coffs[7] = y;\n result._coffs[11] = z;\n return result;\n }\n\n /** return this matrix plus scale times matrixB. */\n public plusScaled(matrixB: Matrix4d, scale: number, result?: Matrix4d): Matrix4d {\n // If result is undefined, a real clone is created.\n // If result is \"this\" we get the pointer to this right back.\n // If result is other, \"this\" coffs are copied.\n // Then we can add matrixB. (Which we assume is different from this?)\n result = this.clone(result);\n for (let i = 0; i < 16; i++)\n result._coffs[i] += scale * matrixB._coffs[i];\n return result;\n }\n\n /**\n * Create a Matrix4d with translation and scaling values directly inserted (along with 1 as final diagonal entry)\n * @param tx x entry for translation column\n * @param ty y entry for translation column\n * @param tz z entry for translation column\n * @param scaleX x diagonal entry\n * @param scaleY y diagonal entry\n * @param scaleZ z diagonal entry\n * @param result optional result.\n */\n public static createTranslationAndScaleXYZ(tx: number, ty: number, tz: number, scaleX: number, scaleY: number, scaleZ: number, result?: Matrix4d): Matrix4d {\n return Matrix4d.createRowValues(scaleX, 0, 0, tx, 0, scaleY, 0, ty, 0, 0, scaleZ, tz, 0, 0, 0, 1, result);\n }\n /**\n * Create a mapping that scales and translates (no rotation) from box A to box B\n * @param lowA low point of box A\n * @param highA high point of box A\n * @param lowB low point of box B\n * @param highB high point of box B\n */\n public static createBoxToBox(lowA: Point3d, highA: Point3d, lowB: Point3d, highB: Point3d, result?: Matrix4d): Matrix4d | undefined {\n const ax = highA.x - lowA.x;\n const ay = highA.y - lowA.y;\n const az = highA.z - lowA.z;\n const bx = highB.x - lowB.x;\n const by = highB.y - lowB.y;\n const bz = highB.z - lowB.z;\n const abx = Geometry.conditionalDivideFraction(bx, ax);\n const aby = Geometry.conditionalDivideFraction(by, ay);\n const abz = Geometry.conditionalDivideFraction(bz, az);\n if (abx !== undefined && aby !== undefined && abz !== undefined) {\n return Matrix4d.createTranslationAndScaleXYZ(lowB.x - abx * lowA.x, lowB.y - aby * lowA.y, lowB.z - abz * lowA.z, abx, aby, abz, result);\n }\n return undefined;\n }\n /** Set from nested array json e.g. `[[1,2,3,4],[0,1,2,4],[0,2,5,1],[0,0,1,2]]` */\n public setFromJSON(json?: Matrix4dProps) {\n if (Geometry.isArrayOfNumberArray(json, 4, 4)) {\n for (let i = 0; i < 4; ++i) {\n for (let j = 0; j < 4; ++j)\n this._coffs[i * 4 + j] = json[i][j];\n }\n } else {\n this.setZero();\n }\n }\n /**\n * Return the largest (absolute) difference between this and other Matrix4d.\n * @param other matrix to compare to\n */\n public maxDiff(other: Matrix4d): number {\n let a = 0.0;\n for (let i = 0; i < 16; i++)\n a = Math.max(a, Math.abs(this._coffs[i] - other._coffs[i]));\n return a;\n }\n /**\n * Return the largest absolute value in the Matrix4d\n */\n public maxAbs(): number {\n let a = 0.0;\n for (let i = 0; i < 16; i++)\n a = Math.max(a, Math.abs(this._coffs[i]));\n return a;\n }\n /** Test for near-equality with `other` */\n public isAlmostEqual(other: Matrix4d): boolean {\n return Geometry.isSmallMetricDistance(this.maxDiff(other));\n }\n /** Test for exact (bitwise) equality with other. */\n public isExactEqual(other: Matrix4d): boolean { return this.maxDiff(other) === 0.0; }\n /**\n * Convert an Matrix4d to a Matrix4dProps.\n */\n public toJSON(): Matrix4dProps {\n const value = [];\n for (let i = 0; i < 4; ++i) {\n const row = i * 4;\n value.push([this._coffs[row], this._coffs[row + 1], this._coffs[row + 2], this._coffs[row + 3]]);\n }\n return value;\n }\n /** Create from nested array json e.g. `[[1,2,3,4],[0,1,2,4],[0,2,5,1],[0,0,1,2]]` */\n public static fromJSON(json?: Matrix4dProps) {\n const result = new Matrix4d();\n result.setFromJSON(json);\n return result;\n }\n /**\n * Return a point with entries from positions [i0, i0+step, i0+2*step, i0+3*step].\n * * There are no tests for index going out of the 0..15 range.\n * * Usual uses are:\n * * * i0 at left of row (0,4,8,12), step = 1 to extract a row.\n * * * i0 at top of row (0,1,2,3), step = 4 to extract a column\n * * * i0 = 0, step = 5 to extract the diagonal\n * @returns a Point4d with 4 entries taken from positions at steps in the flat 16-member array.\n * @param i0 start index (for 16 member array)\n * @param step step between members\n * @param result optional preallocated point.\n */\n public getSteppedPoint(i0: number, step: number, result?: Point4d): Point4d {\n return Point4d.create(this._coffs[i0], this._coffs[i0 + step], this._coffs[i0 + 2 * step], this._coffs[i0 + 3 * step], result);\n }\n /** Return column 0 as Point4d. */\n public columnX(): Point4d { return this.getSteppedPoint(0, 4); }\n /** Return column 1 as Point4d. */\n public columnY(): Point4d { return this.getSteppedPoint(1, 4); }\n /** Return column 2 as Point4d. */\n public columnZ(): Point4d { return this.getSteppedPoint(2, 4); }\n /** Return column 3 as Point4d. */\n public columnW(): Point4d { return this.getSteppedPoint(3, 4); }\n /** Return row 0 as Point4d. */\n public rowX(): Point4d { return this.getSteppedPoint(0, 1); }\n /** Return row 1 as Point4d. */\n public rowY(): Point4d { return this.getSteppedPoint(4, 1); }\n /** Return row 2 as Point4d. */\n public rowZ(): Point4d { return this.getSteppedPoint(8, 1); }\n /** Return row 3 as Point4d. */\n public rowW(): Point4d { return this.getSteppedPoint(12, 1); }\n /**\n * Returns true if the w row has content other than [0,0,0,1]\n */\n public get hasPerspective(): boolean {\n return this._coffs[12] !== 0.0\n || this._coffs[13] !== 0.0\n || this._coffs[14] !== 0.0\n || this._coffs[15] !== 1.0;\n }\n /**\n * Return a Point4d with the diagonal entries of the matrix\n */\n public diagonal(): Point4d { return this.getSteppedPoint(0, 5); }\n /** return the weight component of this matrix */\n public weight(): number { return this._coffs[15]; }\n /** return the leading 3x3 matrix part of this matrix */\n public matrixPart(): Matrix3d {\n return Matrix3d.createRowValues(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[8], this._coffs[9], this._coffs[10]);\n }\n /**\n * Return the (affine, non-perspective) Transform with the upper 3 rows of this matrix\n * @return undefined if this Matrix4d has perspective effects in the w row.\n */\n public get asTransform(): Transform | undefined {\n if (this.hasPerspective)\n return undefined;\n return Transform.createRowValues(this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3], this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[7], this._coffs[8], this._coffs[9], this._coffs[10], this._coffs[11]);\n }\n /** multiply this * other. */\n public multiplyMatrixMatrix(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n for (let i0 = 0; i0 < 16; i0 += 4) {\n for (let k = 0; k < 4; k++)\n result._coffs[i0 + k] =\n this._coffs[i0] * other._coffs[k] +\n this._coffs[i0 + 1] * other._coffs[k + 4] +\n this._coffs[i0 + 2] * other._coffs[k + 8] +\n this._coffs[i0 + 3] * other._coffs[k + 12];\n }\n return result;\n }\n /** multiply this * transpose(other). */\n public multiplyMatrixMatrixTranspose(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n let j = 0;\n for (let i0 = 0; i0 < 16; i0 += 4) {\n for (let k = 0; k < 16; k += 4)\n result._coffs[j++] =\n this._coffs[i0] * other._coffs[k] +\n this._coffs[i0 + 1] * other._coffs[k + 1] +\n this._coffs[i0 + 2] * other._coffs[k + 2] +\n this._coffs[i0 + 3] * other._coffs[k + 3];\n }\n return result;\n }\n /** multiply transpose (this) * other. */\n public multiplyMatrixTransposeMatrix(other: Matrix4d, result?: Matrix4d): Matrix4d {\n result = (result && result !== this && result !== other) ? result : new Matrix4d();\n let j = 0;\n for (let i0 = 0; i0 < 4; i0 += 1) {\n for (let k0 = 0; k0 < 4; k0 += 1)\n result._coffs[j++] =\n this._coffs[i0] * other._coffs[k0] +\n this._coffs[i0 + 4] * other._coffs[k0 + 4] +\n this._coffs[i0 + 8] * other._coffs[k0 + 8] +\n this._coffs[i0 + 12] * other._coffs[k0 + 12];\n }\n return result;\n }\n /** Return a transposed matrix. */\n public cloneTransposed(result?: Matrix4d): Matrix4d {\n return Matrix4d.createRowValues(this._coffs[0], this._coffs[4], this._coffs[8], this._coffs[12], this._coffs[1], this._coffs[5], this._coffs[9], this._coffs[13], this._coffs[2], this._coffs[6], this._coffs[10], this._coffs[14], this._coffs[3], this._coffs[7], this._coffs[11], this._coffs[15], result);\n }\n /** multiply matrix times column [x,y,z,w]. return as Point4d. (And the returned value is NOT normalized down to unit w) */\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n result = result ? result : Point4d.createZero();\n return result.set(this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w, this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w, this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w, this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w);\n }\n /** multiply matrix times column vectors [x,y,z,w] where [x,y,z,w] appear in blocks in an array.\n * replace the xyzw in the block\n */\n public multiplyBlockedFloat64ArrayInPlace(data: Float64Array) {\n const n = data.length;\n let x, y, z, w;\n for (let i = 0; i + 3 < n; i += 4) {\n x = data[i];\n y = data[i + 1];\n z = data[i + 2];\n w = data[i + 3];\n data[i] = this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w;\n data[i + 1] = this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w;\n data[i + 2] = this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w;\n data[i + 3] = this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w;\n }\n }\n /** multiply matrix times XYAndZ and w. return as Point4d (And the returned value is NOT normalized down to unit w) */\n public multiplyPoint3d(pt: XYAndZ, w: number, result?: Point4d): Point4d {\n return this.multiplyXYZW(pt.x, pt.y, pt.z, w, result);\n }\n /** multiply matrix times and array of XYAndZ. return as array of Point4d (And the returned value is NOT normalized down to unit w) */\n public multiplyPoint3dArray(pts: XYAndZ[], results: Point4d[], w: number = 1.0): void {\n pts.forEach((pt, i) => { results[i] = this.multiplyXYZW(pt.x, pt.y, pt.z, w, results[i]); });\n }\n /** multiply [x,y,z,w] times matrix. return as Point4d. (And the returned value is NOT normalized down to unit w) */\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\n result = result ? result : Point4d.createZero();\n return result.set(this._coffs[0] * x + this._coffs[4] * y + this._coffs[8] * z + this._coffs[12] * w, this._coffs[1] * x + this._coffs[5] * y + this._coffs[9] * z + this._coffs[13] * w, this._coffs[2] * x + this._coffs[6] * y + this._coffs[10] * z + this._coffs[14] * w, this._coffs[3] * x + this._coffs[7] * y + this._coffs[11] * z + this._coffs[15] * w);\n }\n /** Returns dot product of row rowIndex of this with column columnIndex of other.\n */\n public rowDotColumn(rowIndex: number, other: Matrix4d, columnIndex: number): number {\n const i = rowIndex * 4;\n const j = columnIndex;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 1] * other._coffs[j + 4]\n + this._coffs[i + 2] * other._coffs[j + 8]\n + this._coffs[i + 3] * other._coffs[j + 12];\n }\n /** Returns dot product of row rowIndex of this with [x y z w]\n */\n public rowDotXYZW(rowIndex: number, x: number, y: number, z: number, w: number): number {\n const i = rowIndex * 4;\n return this._coffs[i] * x\n + this._coffs[i + 1] * y\n + this._coffs[i + 2] * z\n + this._coffs[i + 3] * w;\n }\n\n /** Returns dot product of row rowIndexThis of this with row rowIndexOther of other.\n */\n public rowDotRow(rowIndexThis: number, other: Matrix4d, rowIndexOther: number): number {\n const i = rowIndexThis * 4;\n const j = rowIndexOther * 4;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 1] * other._coffs[j + 1]\n + this._coffs[i + 2] * other._coffs[j + 2]\n + this._coffs[i + 3] * other._coffs[j + 3];\n }\n /** Returns dot product of row rowIndexThis of this with row rowIndexOther of other.\n */\n public columnDotColumn(columnIndexThis: number, other: Matrix4d, columnIndexOther: number): number {\n const i = columnIndexThis;\n const j = columnIndexOther;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 4] * other._coffs[j + 4]\n + this._coffs[i + 8] * other._coffs[j + 8]\n + this._coffs[i + 12] * other._coffs[j + 12];\n }\n /** Returns dot product of column columnIndexThis of this with row rowIndexOther other.\n */\n public columnDotRow(columnIndexThis: number, other: Matrix4d, rowIndexOther: number): number {\n const i = columnIndexThis;\n const j = 4 * rowIndexOther;\n return this._coffs[i] * other._coffs[j]\n + this._coffs[i + 4] * other._coffs[j + 1]\n + this._coffs[i + 8] * other._coffs[j + 2]\n + this._coffs[i + 12] * other._coffs[j + 3];\n }\n /** Return a matrix entry by row and column index.\n */\n public atIJ(rowIndex: number, columnIndex: number): number {\n return this._coffs[rowIndex * 4 + columnIndex];\n }\n\n /** Set a matrix entry by row and column index.\n */\n public setAtIJ(rowIndex: number, columnIndex: number, value: number) {\n this._coffs[rowIndex * 4 + columnIndex] = value;\n }\n /** multiply matrix * [x,y,z,w]. immediately renormalize to return in a Point3d.\n * If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.\n */\n public multiplyXYZWQuietRenormalize(x: number, y: number, z: number, w: number, result?: Point3d): Point3d {\n result = result ? result : Point3d.createZero();\n result.set(this._coffs[0] * x + this._coffs[1] * y + this._coffs[2] * z + this._coffs[3] * w, this._coffs[4] * x + this._coffs[5] * y + this._coffs[6] * z + this._coffs[7] * w, this._coffs[8] * x + this._coffs[9] * y + this._coffs[10] * z + this._coffs[11] * w);\n const w1 = this._coffs[12] * x + this._coffs[13] * y + this._coffs[14] * z + this._coffs[15] * w;\n const qx = Geometry.conditionalDivideCoordinate(result.x, w1);\n const qy = Geometry.conditionalDivideCoordinate(result.y, w1);\n const qz = Geometry.conditionalDivideCoordinate(result.z, w1);\n if (qx !== undefined && qy !== undefined && qz !== undefined) {\n result.x = qx;\n result.y = qy;\n result.z = qz;\n }\n return result;\n }\n /** multiply matrix * an array of Point4d. immediately renormalize to return in an array of Point3d. */\n public multiplyPoint4dArrayQuietRenormalize(pts: Point4d[], results: Point3d[]): void {\n pts.forEach((pt, i) => { results[i] = this.multiplyXYZWQuietRenormalize(pt.x, pt.y, pt.z, pt.w, results[i]); });\n }\n /** multiply a Point4d, return with the optional result convention. */\n public multiplyPoint4d(point: Point4d, result?: Point4d): Point4d {\n return this.multiplyXYZW(point.xyzw[0], point.xyzw[1], point.xyzw[2], point.xyzw[3], result);\n }\n /** multiply a Point4d, return with the optional result convention. */\n public multiplyTransposePoint4d(point: Point4d, result?: Point4d): Point4d {\n return this.multiplyTransposeXYZW(point.xyzw[0], point.xyzw[1], point.xyzw[2], point.xyzw[3], result);\n }\n /** multiply matrix * point. This produces a weighted xyzw.\n * Immediately renormalize back to xyz and return (with optional result convention).\n * If zero weight appears in the result (i.e. input is on eyeplane)leave the mapped xyz untouched.\n */\n public multiplyPoint3dQuietNormalize(point: XYAndZ, result?: Point3d): Point3d {\n return this.multiplyXYZWQuietRenormalize(point.x, point.y, point.z, 1.0, result);\n }\n /** multiply each matrix * points[i]. This produces a weighted xyzw.\n * Immediately renormalize back to xyz and replace the original point.\n * If zero weight appears in the result (i.e. input is on eyeplane) leave the mapped xyz untouched.\n */\n public multiplyPoint3dArrayQuietNormalize(points: Point3d[]) {\n points.forEach((point) => this.multiplyXYZWQuietRenormalize(point.x, point.y, point.z, 1.0, point));\n }\n /**\n * Add the product terms [xx,xy,xz,xw, yx, yy, yz, yw, zx, zy, zz, zs, wx, wy, wz, ww] to respective entries in the matrix\n * @param x x component for products\n * @param y y component for products\n * @param z z component for products\n * @param w w component for products\n */\n public addMomentsInPlace(x: number, y: number, z: number, w: number) {\n this._coffs[0] += x * x;\n this._coffs[1] += x * y;\n this._coffs[2] += x * z;\n this._coffs[3] += x * w;\n this._coffs[4] += y * x;\n this._coffs[5] += y * y;\n this._coffs[6] += y * z;\n this._coffs[7] += y * w;\n this._coffs[8] += z * x;\n this._coffs[9] += z * y;\n this._coffs[10] += z * z;\n this._coffs[11] += z * w;\n this._coffs[12] += w * x;\n this._coffs[13] += w * y;\n this._coffs[14] += w * z;\n this._coffs[15] += w * w;\n }\n /** accumulate all coefficients of other to this. */\n public addScaledInPlace(other: Matrix4d, scale: number = 1.0) {\n for (let i = 0; i < 16; i++)\n this._coffs[i] += scale * other._coffs[i];\n }\n /**\n * Add scale times rowA to rowB.\n * @param rowIndexA row that is not modified\n * @param rowIndexB row that is modified.\n * @param firstColumnIndex first column modified. All from there to the right are updated\n * @param scale scale\n */\n public rowOperation(rowIndexA: number, rowIndexB: number, firstColumnIndex: number, scale: number) {\n if (scale === 0.0)\n return;\n let iA = rowIndexA * 4 + firstColumnIndex;\n let iB = rowIndexB * 4 + firstColumnIndex;\n for (let i = firstColumnIndex; i < 4; i++ , iA++ , iB++)\n this._coffs[iB] += scale * this._coffs[iA];\n }\n /** Return the determinant of the matrix. */\n public determinant(): number {\n const c = this._coffs;\n return Geometry.determinant4x4(\n c[0], c[1], c[2], c[3],\n c[4], c[5], c[6], c[7],\n c[8], c[9], c[10], c[11],\n c[12], c[13], c[14], c[15]);\n }\n /** Compute an inverse matrix.\n * * This uses direct formulas with various determinants.\n * * If result is given, it is ALWAYS filled with values \"prior to dividing by the determinant\".\n * *\n * @returns undefined if dividing by the determinant looks unsafe.\n */\n public createInverse(result?: Matrix4d): Matrix4d | undefined {\n // dividing each column by its maxAbs is more robust than dividing them by this.maxAbs()\n let maxAbs0 = this.columnX().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsA = 1.0 / maxAbs0;\n maxAbs0 = this.columnY().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsB = 1.0 / maxAbs0;\n maxAbs0 = this.columnZ().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsC = 1.0 / maxAbs0;\n maxAbs0 = this.columnW().maxAbs();\n if (maxAbs0 === 0.0) return undefined;\n const divMaxAbsD = 1.0 / maxAbs0;\n const columnA = this.columnX();\n const columnB = this.columnY();\n const columnC = this.columnZ();\n const columnD = this.columnW();\n columnA.scale(divMaxAbsA, columnA);\n columnB.scale(divMaxAbsB, columnB);\n columnC.scale(divMaxAbsC, columnC);\n columnD.scale(divMaxAbsD, columnD);\n const rowBCD = Point4d.perpendicularPoint4dPlane(columnB, columnC, columnD);\n const rowCDA = Point4d.perpendicularPoint4dPlane(columnA, columnD, columnC); // order for negation !\n const rowDAB = Point4d.perpendicularPoint4dPlane(columnD, columnA, columnB);\n const rowABC = Point4d.perpendicularPoint4dPlane(columnC, columnB, columnA); // order for negation !\n // The matrix is singular if the determinant is zero.\n // But what is the proper tolerance for zero?\n // The row values are generally cubes of entries. And the typical perspective matrix\n // has very different magnitudes in various parts. So a typical cube size is really hard.\n // Compute 4 different determinants. They should match.\n // If they are near zero, maybe a sign change is a red flag for singular case.\n // (And there's a lot less work to do that than was done to make the rows)\n result = Matrix4d.createRows(rowBCD, rowCDA, rowDAB, rowABC, result);\n const determinantA = rowBCD.dotProduct(columnA);\n const determinantB = rowCDA.dotProduct(columnB);\n const determinantC = rowDAB.dotProduct(columnC);\n const determinantD = rowABC.dotProduct(columnD);\n const maxAbs1 = result.maxAbs();\n if (determinantA * determinantB > 0.0\n && determinantA * determinantC > 0.0\n && determinantA * determinantD > 0.0) {\n const divisionTest = Geometry.conditionalDivideCoordinate(maxAbs1, determinantA);\n if (divisionTest !== undefined) {\n const divDet = 1.0 / determinantA;\n result.scaleRowsInPlace(divMaxAbsA * divDet, divMaxAbsB * divDet, divMaxAbsC * divDet, divMaxAbsD * divDet);\n return result;\n }\n } else {\n return undefined; // this is a useful spot to break to see if the 4 determinant test is effective.\n }\n return undefined;\n }\n /** Returns an array-of-arrays of the matrix rows, optionally passing each value through a function.\n * @param f optional function to provide alternate values for each entry (e.g. force fuzz to zero.)\n */\n public rowArrays(f?: (value: number) => any): any {\n if (f)\n return [\n [f(this._coffs[0]), f(this._coffs[1]), f(this._coffs[2]), f(this._coffs[3])],\n [f(this._coffs[4]), f(this._coffs[5]), f(this._coffs[6]), f(this._coffs[7])],\n [f(this._coffs[8]), f(this._coffs[9]), f(this._coffs[10]), f(this._coffs[11])],\n [f(this._coffs[12]), f(this._coffs[13]), f(this._coffs[14]), f(this._coffs[15])]];\n else\n return [\n [this._coffs[0], this._coffs[1], this._coffs[2], this._coffs[3]],\n [this._coffs[4], this._coffs[5], this._coffs[6], this._coffs[7]],\n [this._coffs[8], this._coffs[9], this._coffs[10], this._coffs[11]],\n [this._coffs[12], this._coffs[13], this._coffs[14], this._coffs[15]]];\n }\n /**\n * Scale each row by respective scale factors.\n * @param ax scale factor for row 0\n * @param ay scale factor for row 1\n * @param az scale factor for row 2\n * @param aw scale factor for row 3\n */\n public scaleRowsInPlace(ax: number, ay: number, az: number, aw: number) {\n for (let i = 0; i < 4; i++)\n this._coffs[i] *= ax;\n for (let i = 4; i < 8; i++)\n this._coffs[i] *= ay;\n for (let i = 8; i < 12; i++)\n this._coffs[i] *= az;\n for (let i = 12; i < 16; i++)\n this._coffs[i] *= aw;\n }\n /**\n * add an outer product (single column times single row times scale factor) to this matrix.\n * @param vectorU column vector\n * @param vectorV row vector\n * @param scale scale factor\n */\n public addScaledOuterProductInPlace(vectorU: Point4d, vectorV: Point4d, scale: number) {\n let a = vectorU.x * scale;\n this._coffs[0] += a * vectorV.x;\n this._coffs[1] += a * vectorV.y;\n this._coffs[2] += a * vectorV.z;\n this._coffs[3] += a * vectorV.w;\n\n a = vectorU.y * scale;\n this._coffs[4] += a * vectorV.x;\n this._coffs[5] += a * vectorV.y;\n this._coffs[6] += a * vectorV.z;\n this._coffs[7] += a * vectorV.w;\n\n a = vectorU.z * scale;\n this._coffs[8] += a * vectorV.x;\n this._coffs[9] += a * vectorV.y;\n this._coffs[10] += a * vectorV.z;\n this._coffs[11] += a * vectorV.w;\n\n a = vectorU.w * scale;\n this._coffs[12] += a * vectorV.x;\n this._coffs[13] += a * vectorV.y;\n this._coffs[14] += a * vectorV.z;\n this._coffs[15] += a * vectorV.w;\n }\n /**\n * Add (in place) scale*A*B*AT where\n * * A is a pure translation with final column [x,y,z,1]\n * * B is the given `matrixB`\n * * AT is the transpose of A.\n * * scale is a multiplier.\n * @param matrixB the middle matrix.\n * @param ax x part of translation\n * @param ay y part of translation\n * @param az z part of translation\n * @param scale scale factor for entire product\n */\n public addTranslationSandwichInPlace(matrixB: Matrix4d, ax: number, ay: number, az: number, scale: number) {\n const bx = matrixB._coffs[3];\n const by = matrixB._coffs[7];\n const bz = matrixB._coffs[11];\n // matrixB can be non-symmetric!!\n const cx = matrixB._coffs[12];\n const cy = matrixB._coffs[13];\n const cz = matrixB._coffs[14];\n\n const beta = matrixB._coffs[15];\n const axBeta = ax * beta;\n const ayBeta = ay * beta;\n const azBeta = az * beta;\n this._coffs[0] += scale * (matrixB._coffs[0] + ax * bx + cx * ax + ax * axBeta);\n this._coffs[1] += scale * (matrixB._coffs[1] + ay * bx + cy * ax + ax * ayBeta);\n this._coffs[2] += scale * (matrixB._coffs[2] + az * bx + cz * ax + ax * azBeta);\n this._coffs[3] += scale * (bx + axBeta);\n\n this._coffs[4] += scale * (matrixB._coffs[4] + ax * by + cx * ay + ay * axBeta);\n this._coffs[5] += scale * (matrixB._coffs[5] + ay * by + cy * ay + ay * ayBeta);\n this._coffs[6] += scale * (matrixB._coffs[6] + az * by + cz * ay + ay * azBeta);\n this._coffs[7] += scale * (by + ayBeta);\n\n this._coffs[8] += scale * (matrixB._coffs[8] + ax * bz + cx * az + az * axBeta);\n this._coffs[9] += scale * (matrixB._coffs[9] + ay * bz + cy * az + az * ayBeta);\n this._coffs[10] += scale * (matrixB._coffs[10] + az * bz + cz * az + az * azBeta);\n this._coffs[11] += scale * (bz + azBeta);\n\n this._coffs[12] += scale * (cx + axBeta);\n this._coffs[13] += scale * (cy + ayBeta);\n this._coffs[14] += scale * (cz + azBeta);\n this._coffs[15] += scale * beta;\n }\n /**\n * Multiply and replace contents of ` this` matrix by `A*this*AT` where\n * * `A` is a pure translation with final column [x,y,z,1].\n * * `this` is this matrix.\n * * `AT` is the transpose of A.\n * @param ax x part of translation.\n * @param ay y part of translation.\n * @param az z part of translation.\n */\n public multiplyTranslationSandwichInPlace(ax: number, ay: number, az: number) : void {\n const bx = this._coffs[3];\n const by = this._coffs[7];\n const bz = this._coffs[11];\n // matrixB can be non-symmetric\n const cx = this._coffs[12];\n const cy = this._coffs[13];\n const cz = this._coffs[14];\n\n const beta = this._coffs[15];\n const axBeta = ax * beta;\n const ayBeta = ay * beta;\n const azBeta = az * beta;\n this._coffs[0] += (ax * bx + cx * ax + ax * axBeta);\n this._coffs[1] += (ay * bx + cy * ax + ax * ayBeta);\n this._coffs[2] += (az * bx + cz * ax + ax * azBeta);\n this._coffs[3] += axBeta;\n\n this._coffs[4] += (ax * by + cx * ay + ay * axBeta);\n this._coffs[5] += (ay * by + cy * ay + ay * ayBeta);\n this._coffs[6] += (az * by + cz * ay + ay * azBeta);\n this._coffs[7] += ayBeta;\n\n this._coffs[8] += (ax * bz + cx * az + az * axBeta);\n this._coffs[9] += (ay * bz + cy * az + az * ayBeta);\n this._coffs[10] += (az * bz + cz * az + az * azBeta);\n this._coffs[11] += azBeta;\n\n this._coffs[12] += axBeta;\n this._coffs[13] += ayBeta;\n this._coffs[14] += azBeta;\n // coffs[15] is unchanged\n }\n}\n"]}
|
|
@@ -16,8 +16,8 @@ import { Matrix4d } from "./Matrix4d";
|
|
|
16
16
|
* * e.g. entry 03 is summed x.
|
|
17
17
|
* * In this level:
|
|
18
18
|
* * the `absoluteQuantity` member is undefined.
|
|
19
|
-
* * the `localToWorldMap` and `radiiOfGyration` are created
|
|
20
|
-
* * Second level: after a call to inertiaProductsToPrincipalAxes
|
|
19
|
+
* * the `localToWorldMap` and `radiiOfGyration` are created but have undefined contents.
|
|
20
|
+
* * Second level: after a call to `inertiaProductsToPrincipalAxes`, the `localToWorldMap`, `absoluteQuantity` and
|
|
21
21
|
* `radiiOfGyration` are filled in.
|
|
22
22
|
* @public
|
|
23
23
|
*/
|
|
@@ -37,11 +37,20 @@ export declare class MomentData {
|
|
|
37
37
|
* * This set up with its inverse already constructed.
|
|
38
38
|
*/
|
|
39
39
|
localToWorldMap: Transform;
|
|
40
|
+
/** Radii of gyration (square roots of principal second moments). */
|
|
41
|
+
radiusOfGyration: Vector3d;
|
|
42
|
+
/**
|
|
43
|
+
* Principal quantity (e.g. length, area, or volume). This is undefined in raw moments, and becomes defined by
|
|
44
|
+
* inertiaProductsToPrincipalAxes.
|
|
45
|
+
*/
|
|
46
|
+
absoluteQuantity?: number;
|
|
40
47
|
private static _vectorA?;
|
|
41
48
|
private static _vectorB?;
|
|
42
49
|
private static _vectorC?;
|
|
43
50
|
private _point0;
|
|
44
51
|
private _point1;
|
|
52
|
+
/** Constructor. */
|
|
53
|
+
private constructor();
|
|
45
54
|
/**
|
|
46
55
|
* Return the lower-right (3,3) entry in the sums.
|
|
47
56
|
* * This is the quantity (i.e. length, area, or volume) summed.
|
|
@@ -59,15 +68,6 @@ export declare class MomentData {
|
|
|
59
68
|
setOriginFromGrowableXYZArrayIfNeeded(points: GrowableXYZArray): void;
|
|
60
69
|
/** If `this.needOrigin` flag is set, copy `origin` to `this.origin` and clear the flag. */
|
|
61
70
|
setOriginXYZIfNeeded(x: number, y: number, z: number): void;
|
|
62
|
-
/** Radii of gyration (square roots of principal second moments). */
|
|
63
|
-
radiusOfGyration: Vector3d;
|
|
64
|
-
/**
|
|
65
|
-
* Principal quantity (e.g. length, area, or volume). This is undefined in raw moments, and becomes defined by
|
|
66
|
-
* inertiaProductsToPrincipalAxes.
|
|
67
|
-
*/
|
|
68
|
-
absoluteQuantity?: number;
|
|
69
|
-
/** Constructor. */
|
|
70
|
-
private constructor();
|
|
71
71
|
/**
|
|
72
72
|
* Create moments with optional origin.
|
|
73
73
|
* * Origin and needOrigin are quirky.
|
|
@@ -95,7 +95,8 @@ export declare class MomentData {
|
|
|
95
95
|
* * Hence x axis is long direction.
|
|
96
96
|
* * Hence planar data generates large moment as Z.
|
|
97
97
|
* @param origin The origin used for the inertia products.
|
|
98
|
-
* @param inertiaProducts The inertia products: sums or integrals of
|
|
98
|
+
* @param inertiaProducts The inertia products: sums or integrals of
|
|
99
|
+
* [xx,xy,xz,xw; yx,yy,yz,yw; zx,zy,zz,zw; wx,wy,wz,w].
|
|
99
100
|
*/
|
|
100
101
|
static inertiaProductsToPrincipalAxes(origin: XYZ, inertiaProducts: Matrix4d): MomentData | undefined;
|
|
101
102
|
/**
|
|
@@ -122,43 +123,40 @@ export declare class MomentData {
|
|
|
122
123
|
shiftOriginAndSumsToCentroidOfSums(): boolean;
|
|
123
124
|
/**
|
|
124
125
|
* Revise the accumulated sums.
|
|
125
|
-
* *
|
|
126
|
-
* *
|
|
127
|
-
|
|
126
|
+
* * Add (ax,ay,az) to the origin coordinates.
|
|
127
|
+
* * Apply the negative translation to the sums.
|
|
128
|
+
*/
|
|
128
129
|
shiftOriginAndSumsByXYZ(ax: number, ay: number, az: number): void;
|
|
129
130
|
/** Revise the accumulated sums so they are based at a specified origin. */
|
|
130
131
|
shiftOriginAndSumsToNewOrigin(newOrigin: XYAndZ): void;
|
|
131
132
|
/**
|
|
132
|
-
* Compute moments of a triangle from the origin
|
|
133
|
-
*
|
|
134
|
-
* * If `pointA` is undefined, use `this.origin` as pointA
|
|
135
|
-
|
|
136
|
-
*/
|
|
133
|
+
* Compute moments of a triangle from the origin. Accumulate them to `this.sums`.
|
|
134
|
+
* * If `this.needOrigin` is set, `this.origin` is set to `pointB`.
|
|
135
|
+
* * If `pointA` is undefined, use `this.origin` as `pointA`.
|
|
136
|
+
*/
|
|
137
137
|
accumulateTriangleMomentsXY(pointA: XAndY | undefined, pointB: XAndY, pointC: XAndY): void;
|
|
138
|
-
/** Add scaled outer product of (4d, unit weight) point to this.sums
|
|
138
|
+
/** Add scaled outer product of (4d, unit weight) point to `this.sums`. */
|
|
139
139
|
accumulateScaledOuterProduct(point: XYAndZ, scaleFactor: number): void;
|
|
140
140
|
/** Accumulate wire moment integral from pointA to pointB */
|
|
141
141
|
accumulateLineMomentsXYZ(pointA: Point3d, pointB: Point3d): void;
|
|
142
142
|
/**
|
|
143
|
-
* Compute moments of triangles from a base point to the given linestring.
|
|
144
|
-
*
|
|
145
|
-
* * If `
|
|
146
|
-
* * If `this.needOrigin` is set, the first point of the array is captured as local origin for subsequent sums.
|
|
147
|
-
*
|
|
143
|
+
* Compute moments of triangles from a base point to the given linestring. Accumulate them to `this.sums`.
|
|
144
|
+
* * If `this.needOrigin` is set, `this.origin` is set to the first point of the array.
|
|
145
|
+
* * If `sweepBase` is undefined, use `this.origin` as `sweepBase`.
|
|
148
146
|
*/
|
|
149
147
|
accumulateTriangleToLineStringMomentsXY(sweepBase: XAndY | undefined, points: GrowableXYZArray): void;
|
|
150
148
|
/**
|
|
151
|
-
*
|
|
152
|
-
* * Sandwich this between transforms with columns [vectorU, vectorV, 0000, origin].
|
|
153
|
-
* parts of vectors).
|
|
154
|
-
* *
|
|
149
|
+
* Assemble XX, YY, XY products into a full matrix form [xx,xy,0,0; xy,yy,0,0; 0,0,0,0; 0,0,0,1].
|
|
150
|
+
* * Sandwich this between transforms with columns [vectorU, vectorV, 0000, origin].
|
|
151
|
+
* (column weights 0001; only xy parts of vectors).
|
|
152
|
+
* * Scale by detJ for the xy-only determinant of the vectors.
|
|
155
153
|
* @param productXX
|
|
156
154
|
* @param productXY
|
|
157
155
|
* @param productYY
|
|
158
|
-
* @param area
|
|
159
|
-
* @param origin
|
|
160
|
-
* @param vectorU
|
|
161
|
-
* @param vectorV
|
|
156
|
+
* @param area area in caller's system.
|
|
157
|
+
* @param origin caller's origin.
|
|
158
|
+
* @param vectorU caller's U axis (not necessarily unit).
|
|
159
|
+
* @param vectorV caller's V axis (not necessarily unit).
|
|
162
160
|
*/
|
|
163
161
|
accumulateXYProductsInCentroidalFrame(productXX: number, productXY: number, productYY: number, area: number, origin: XAndY, vectorU: XAndY, vectorV: XAndY): void;
|
|
164
162
|
/**
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"MomentData.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/MomentData.ts"],"names":[],"mappings":"AAaA,OAAO,EAAE,gBAAgB,EAAE,MAAM,gCAAgC,CAAC;AAClE,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AAGtC;;;;;;;;;;;;;;;;GAgBG;AACH,qBAAa,UAAU;IACrB,4BAA4B;IACrB,MAAM,EAAE,OAAO,CAAC;IACvB,6CAA6C;IACtC,UAAU,EAAE,OAAO,CAAC;IAC3B;;;;OAIG;IACI,IAAI,EAAE,QAAQ,CAAC;IACtB;;;OAGG;IACI,eAAe,EAAE,SAAS,CAAC;
|
|
1
|
+
{"version":3,"file":"MomentData.d.ts","sourceRoot":"","sources":["../../../src/geometry4d/MomentData.ts"],"names":[],"mappings":"AAaA,OAAO,EAAE,gBAAgB,EAAE,MAAM,gCAAgC,CAAC;AAClE,OAAO,EAAE,QAAQ,EAAE,MAAM,wBAAwB,CAAC;AAClD,OAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,GAAG,EAAE,MAAM,+BAA+B,CAAC;AACvE,OAAO,EAAE,SAAS,EAAE,MAAM,yBAAyB,CAAC;AACpD,OAAO,EAAE,KAAK,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AACvD,OAAO,EAAE,QAAQ,EAAE,MAAM,YAAY,CAAC;AAGtC;;;;;;;;;;;;;;;;GAgBG;AACH,qBAAa,UAAU;IACrB,4BAA4B;IACrB,MAAM,EAAE,OAAO,CAAC;IACvB,6CAA6C;IACtC,UAAU,EAAE,OAAO,CAAC;IAC3B;;;;OAIG;IACI,IAAI,EAAE,QAAQ,CAAC;IACtB;;;OAGG;IACI,eAAe,EAAE,SAAS,CAAC;IAClC,oEAAoE;IAC7D,gBAAgB,EAAE,QAAQ,CAAC;IAClC;;;OAGG;IACI,gBAAgB,CAAC,EAAE,MAAM,CAAC;IAEjC,OAAO,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAU;IAClC,OAAO,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAU;IAClC,OAAO,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAU;IAClC,OAAO,CAAC,OAAO,CAAoB;IACnC,OAAO,CAAC,OAAO,CAAoB;IACnC,mBAAmB;IACnB,OAAO;IASP;;;OAGG;IACH,IAAW,WAAW,IAAI,MAAM,CAE/B;IACD;;;;OAIG;IACI,UAAU,CAAC,UAAU,EAAE,MAAM,GAAG,MAAM;IAG7C,2FAA2F;IACpF,iBAAiB,CAAC,MAAM,EAAE,OAAO;IAMxC,2FAA2F;IACpF,qCAAqC,CAAC,MAAM,EAAE,gBAAgB;IAMrE,2FAA2F;IACpF,oBAAoB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM;IAM3D;;;;;;;MAOE;WACY,MAAM,CAAC,MAAM,CAAC,EAAE,OAAO,GAAG,SAAS,EAAE,UAAU,GAAE,OAAe,GAAG,UAAU;IAS3F;;;OAGG;WACW,+BAA+B,CAAC,QAAQ,EAAE,QAAQ,GAAG,QAAQ;IAM3E,6DAA6D;WAC/C,+BAA+B,CAAC,IAAI,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ;IAoB/E;;;OAGG;WACW,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,GAAG,UAAU,GAAG,SAAS;IAQ9E;;;;;;;;OAQG;WACW,8BAA8B,CAAC,MAAM,EAAE,GAAG,EAAE,eAAe,EAAE,QAAQ,GAAG,UAAU,GAAG,SAAS;IA2B5G;;;;;;;;;;;;;;OAcG;WACW,0BAA0B,CAAC,KAAK,EAAE,UAAU,GAAG,SAAS,EAAE,KAAK,EAAE,UAAU,GAAG,SAAS,GAAG,OAAO;IA8B/G,qEAAqE;IAC9D,SAAS,CAAC,MAAM,CAAC,EAAE,OAAO;IAOjC,0DAA0D;IACnD,gCAAgC,CAAC,MAAM,EAAE,OAAO,EAAE;IAUzD,+DAA+D;IACxD,kCAAkC,IAAI,OAAO;IAQpD;;;;OAIG;IACI,uBAAuB,CAAC,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM,EAAE,EAAE,EAAE,MAAM;IAIjE,2EAA2E;IACpE,6BAA6B,CAAC,SAAS,EAAE,MAAM;IAGtD;;;;OAIG;IACI,2BAA2B,CAAC,MAAM,EAAE,KAAK,GAAG,SAAS,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK;IAkC1F,0EAA0E;IACnE,4BAA4B,CAAC,KAAK,EAAE,MAAM,EAAE,WAAW,EAAE,MAAM;IAOtE,4DAA4D;IACrD,wBAAwB,CAAC,MAAM,EAAE,OAAO,EAAE,MAAM,EAAE,OAAO;IAmBhE;;;;OAIG;IACI,uCAAuC,CAAC,SAAS,EAAE,KAAK,GAAG,SAAS,EAAE,MAAM,EAAE,gBAAgB;IAYrG;;;;;;;;;;;;OAYG;IACI,qCAAqC,CAC1C,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,EACvD,IAAI,EAAE,MAAM,EAAE,MAAM,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK,EAAE,OAAO,EAAE,KAAK;IAmB7D;;;;OAIG;IACI,kBAAkB,CAAC,KAAK,EAAE,UAAU,EAAE,KAAK,EAAE,MAAM;IAM1D;;;;OAIG;IACI,4BAA4B,CAAC,MAAM,EAAE,OAAO,EAAE,QAAQ,EAAE,QAAQ,EAAE,KAAK,EAAE,MAAM;IAMtF,qCAAqC;IAC9B,MAAM,IAAI,GAAG;CAQrB"}
|