@itwin/core-geometry 5.0.0-dev.62 → 5.0.0-dev.65
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/lib/cjs/bspline/BSpline1dNd.d.ts +90 -54
- package/lib/cjs/bspline/BSpline1dNd.d.ts.map +1 -1
- package/lib/cjs/bspline/BSpline1dNd.js +134 -99
- package/lib/cjs/bspline/BSpline1dNd.js.map +1 -1
- package/lib/cjs/bspline/BSplineCurve.d.ts +193 -155
- package/lib/cjs/bspline/BSplineCurve.d.ts.map +1 -1
- package/lib/cjs/bspline/BSplineCurve.js +245 -181
- package/lib/cjs/bspline/BSplineCurve.js.map +1 -1
- package/lib/cjs/bspline/BezierCurve3d.d.ts +3 -1
- package/lib/cjs/bspline/BezierCurve3d.d.ts.map +1 -1
- package/lib/cjs/bspline/BezierCurve3d.js +3 -5
- package/lib/cjs/bspline/BezierCurve3d.js.map +1 -1
- package/lib/cjs/bspline/KnotVector.d.ts +74 -54
- package/lib/cjs/bspline/KnotVector.d.ts.map +1 -1
- package/lib/cjs/bspline/KnotVector.js +127 -80
- package/lib/cjs/bspline/KnotVector.js.map +1 -1
- package/lib/cjs/curve/Arc3d.d.ts +2 -0
- package/lib/cjs/curve/Arc3d.d.ts.map +1 -1
- package/lib/cjs/curve/Arc3d.js +2 -0
- package/lib/cjs/curve/Arc3d.js.map +1 -1
- package/lib/cjs/geometry3d/PointHelpers.d.ts +3 -3
- package/lib/cjs/geometry3d/PointHelpers.js +3 -3
- package/lib/cjs/geometry3d/PointHelpers.js.map +1 -1
- package/lib/cjs/geometry3d/Ray3d.d.ts +2 -2
- package/lib/cjs/geometry3d/Ray3d.d.ts.map +1 -1
- package/lib/cjs/geometry3d/Ray3d.js +8 -11
- package/lib/cjs/geometry3d/Ray3d.js.map +1 -1
- package/lib/esm/bspline/BSpline1dNd.d.ts +90 -54
- package/lib/esm/bspline/BSpline1dNd.d.ts.map +1 -1
- package/lib/esm/bspline/BSpline1dNd.js +134 -99
- package/lib/esm/bspline/BSpline1dNd.js.map +1 -1
- package/lib/esm/bspline/BSplineCurve.d.ts +193 -155
- package/lib/esm/bspline/BSplineCurve.d.ts.map +1 -1
- package/lib/esm/bspline/BSplineCurve.js +245 -181
- package/lib/esm/bspline/BSplineCurve.js.map +1 -1
- package/lib/esm/bspline/BezierCurve3d.d.ts +3 -1
- package/lib/esm/bspline/BezierCurve3d.d.ts.map +1 -1
- package/lib/esm/bspline/BezierCurve3d.js +3 -5
- package/lib/esm/bspline/BezierCurve3d.js.map +1 -1
- package/lib/esm/bspline/KnotVector.d.ts +74 -54
- package/lib/esm/bspline/KnotVector.d.ts.map +1 -1
- package/lib/esm/bspline/KnotVector.js +127 -80
- package/lib/esm/bspline/KnotVector.js.map +1 -1
- package/lib/esm/curve/Arc3d.d.ts +2 -0
- package/lib/esm/curve/Arc3d.d.ts.map +1 -1
- package/lib/esm/curve/Arc3d.js +2 -0
- package/lib/esm/curve/Arc3d.js.map +1 -1
- package/lib/esm/geometry3d/PointHelpers.d.ts +3 -3
- package/lib/esm/geometry3d/PointHelpers.js +3 -3
- package/lib/esm/geometry3d/PointHelpers.js.map +1 -1
- package/lib/esm/geometry3d/Ray3d.d.ts +2 -2
- package/lib/esm/geometry3d/Ray3d.d.ts.map +1 -1
- package/lib/esm/geometry3d/Ray3d.js +8 -11
- package/lib/esm/geometry3d/Ray3d.js.map +1 -1
- package/package.json +5 -5
|
@@ -5,6 +5,7 @@
|
|
|
5
5
|
/** @packageDocumentation
|
|
6
6
|
* @module Bspline
|
|
7
7
|
*/
|
|
8
|
+
import { assert } from "@itwin/core-bentley";
|
|
8
9
|
import { Geometry } from "../Geometry";
|
|
9
10
|
import { NumberArray } from "../geometry3d/PointHelpers";
|
|
10
11
|
/**
|
|
@@ -16,68 +17,89 @@ export var BSplineWrapMode;
|
|
|
16
17
|
(function (BSplineWrapMode) {
|
|
17
18
|
/** No conversion performed. */
|
|
18
19
|
BSplineWrapMode[BSplineWrapMode["None"] = 0] = "None";
|
|
19
|
-
/**
|
|
20
|
-
*
|
|
20
|
+
/**
|
|
21
|
+
* The legacy periodic B-spline data was opened up by adding `degree` wrap-around poles.
|
|
22
|
+
* * This is typical of B-spline curves and surfaces constructed with maximum `degree - 1` continuity.
|
|
21
23
|
* * Knots are unaffected by this conversion.
|
|
22
24
|
*/
|
|
23
25
|
BSplineWrapMode[BSplineWrapMode["OpenByAddingControlPoints"] = 1] = "OpenByAddingControlPoints";
|
|
24
|
-
/**
|
|
26
|
+
/**
|
|
27
|
+
* The legacy periodic B-spline data was opened up by removing `degree` exterior knots.
|
|
25
28
|
* * This is typical of rational B-spline curves representing full circles and ellipses.
|
|
26
29
|
* * Poles are unaffected by this conversion.
|
|
27
30
|
*/
|
|
28
31
|
BSplineWrapMode[BSplineWrapMode["OpenByRemovingKnots"] = 2] = "OpenByRemovingKnots";
|
|
29
32
|
})(BSplineWrapMode || (BSplineWrapMode = {}));
|
|
30
33
|
/**
|
|
31
|
-
* Array of non-decreasing numbers acting as a knot
|
|
34
|
+
* Array of non-decreasing numbers acting as a knot vector for B-spline curves and surfaces.
|
|
32
35
|
*
|
|
33
36
|
* * Essential identity: numKnots = numPoles + order - 2 = numPoles + degree - 1
|
|
34
|
-
* * Various B-spline libraries have confusion over how many "end knots" are needed. Many libraries (including MicroStation
|
|
35
|
-
* demand order knots at each end for clamping.
|
|
37
|
+
* * Various B-spline libraries have confusion over how many "end knots" are needed. Many libraries (including MicroStation
|
|
38
|
+
* and Parasolid) demand order knots at each end for clamping. However, only order-1 are really needed. This class uses the
|
|
39
|
+
* order-1 convention.
|
|
36
40
|
* * A span is a single interval of the knots.
|
|
37
|
-
* * The left knot of span
|
|
41
|
+
* * The left knot of the span with index `k>=0` is the knot with index `k+degree-1`.
|
|
42
|
+
* * A knot vector is clamped when the first `degree` knots are equal and the last `degree` knots are equal.
|
|
43
|
+
* * The "active knot interval" is the subset of the knot vector sans its first and last `degree-1` knots, and serves as
|
|
44
|
+
* the parametric domain of the associated B-spline object.
|
|
38
45
|
* * This class provides queries to convert among spanIndex, knotIndex, spanFraction, fraction of knot range, and knot.
|
|
39
|
-
* *
|
|
40
|
-
* know their primary values (global knot, spanFraction).
|
|
46
|
+
* * Callers need to distinguish core computational inputs such as left knot index, knot value, span index, and span fraction.
|
|
41
47
|
* @public
|
|
42
48
|
*/
|
|
43
49
|
export class KnotVector {
|
|
44
50
|
/** The simple array of knot values. */
|
|
45
51
|
knots;
|
|
46
|
-
/**
|
|
52
|
+
/** The degree of basis functions defined in these knots. */
|
|
47
53
|
degree;
|
|
54
|
+
/** The leftmost knot value (of the active interval, ignoring unclamped leading knots). */
|
|
48
55
|
_knot0;
|
|
56
|
+
/** The rightmost knot value (of the active interval, ignoring unclamped leading knots). */
|
|
49
57
|
_knot1;
|
|
50
58
|
_wrapMode;
|
|
51
|
-
/**
|
|
59
|
+
/** Tolerance for considering two knots to be the same. */
|
|
52
60
|
static knotTolerance = 1.0e-9;
|
|
53
|
-
/** Return the leftmost knot value (of the active interval, ignoring unclamped leading knots)*/
|
|
54
|
-
get leftKnot() {
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
/** Return the
|
|
58
|
-
get
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
/**
|
|
62
|
-
get
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
61
|
+
/** Return the leftmost knot value (of the active interval, ignoring unclamped leading knots). */
|
|
62
|
+
get leftKnot() {
|
|
63
|
+
return this._knot0;
|
|
64
|
+
}
|
|
65
|
+
/** Return the rightmost knot value (of the active interval, ignoring unclamped leading knots). */
|
|
66
|
+
get rightKnot() {
|
|
67
|
+
return this._knot1;
|
|
68
|
+
}
|
|
69
|
+
/** Return the index of the leftmost knot of the active interval. */
|
|
70
|
+
get leftKnotIndex() {
|
|
71
|
+
return this.degree - 1;
|
|
72
|
+
}
|
|
73
|
+
/** Return the index of the rightmost knot of the active interval. */
|
|
74
|
+
get rightKnotIndex() {
|
|
75
|
+
return this.knots.length - this.degree;
|
|
76
|
+
}
|
|
77
|
+
/**
|
|
78
|
+
* Whether this KnotVector was created by converting legacy periodic data during deserialization. The conversion used
|
|
79
|
+
* is specified by BSplineWrapMode, and is reversed at serialization time.
|
|
80
|
+
*/
|
|
81
|
+
get wrappable() {
|
|
82
|
+
return this._wrapMode === undefined ? BSplineWrapMode.None : this._wrapMode;
|
|
83
|
+
}
|
|
84
|
+
set wrappable(value) {
|
|
85
|
+
this._wrapMode = value;
|
|
86
|
+
}
|
|
87
|
+
/** Return the number of Bezier spans. Note that this includes zero-length spans if there are repeated knots. */
|
|
88
|
+
get numSpans() {
|
|
89
|
+
return this.rightKnotIndex - this.leftKnotIndex;
|
|
90
|
+
}
|
|
66
91
|
/**
|
|
67
|
-
*
|
|
68
|
-
* * If knots is a number array or Float64Array,
|
|
69
|
-
* * If knots is a
|
|
70
|
-
* @param knots
|
|
71
|
-
* @param degree
|
|
92
|
+
* Private constructor.
|
|
93
|
+
* * If `knots` is a number array or Float64Array, then its values are copied to the instance array.
|
|
94
|
+
* * If `knots` is a number, the instance array is allocated to this size but left as zeros.
|
|
72
95
|
*/
|
|
73
96
|
constructor(knots, degree, wrapMode) {
|
|
74
97
|
this.degree = degree;
|
|
75
98
|
this._wrapMode = wrapMode;
|
|
76
|
-
// default values to satisfy compiler
|
|
99
|
+
// default values to satisfy compiler; real values happen in setupFixedValues or the final else clause defers to user
|
|
77
100
|
this._knot0 = 0.0;
|
|
78
101
|
this._knot1 = 1.0;
|
|
79
|
-
|
|
80
|
-
if (Array.isArray(knots)) { // remark: This ctor is private. The callers (as of April 2019) do not use this path.
|
|
102
|
+
if (Array.isArray(knots)) {
|
|
81
103
|
this.knots = new Float64Array(knots.length);
|
|
82
104
|
this.setKnots(knots);
|
|
83
105
|
this.setupFixedValues();
|
|
@@ -86,23 +108,32 @@ export class KnotVector {
|
|
|
86
108
|
this.knots = knots.slice();
|
|
87
109
|
this.setupFixedValues();
|
|
88
110
|
}
|
|
89
|
-
else { // caller is responsible for filling array separately
|
|
90
|
-
|
|
111
|
+
else { // caller is responsible for filling array separately
|
|
112
|
+
const knotSize = knots;
|
|
113
|
+
this.knots = new Float64Array(knotSize);
|
|
91
114
|
}
|
|
92
115
|
}
|
|
93
|
-
/**
|
|
94
|
-
clone() {
|
|
116
|
+
/** Copy degree and knots to a new KnotVector. */
|
|
117
|
+
clone() {
|
|
118
|
+
return new KnotVector(this.knots, this.degree, this.wrappable);
|
|
119
|
+
}
|
|
95
120
|
setupFixedValues() {
|
|
96
121
|
if (this.degree > 0 && this.knots.length > this.degree) {
|
|
97
122
|
this._knot0 = this.knots[this.degree - 1];
|
|
98
123
|
this._knot1 = this.knots[this.knots.length - this.degree];
|
|
99
124
|
}
|
|
100
125
|
}
|
|
101
|
-
/** Return the total knot distance from beginning to end. */
|
|
102
|
-
get knotLength01() { return this._knot1 - this._knot0; }
|
|
103
126
|
/**
|
|
104
|
-
*
|
|
105
|
-
*
|
|
127
|
+
* Return the length of the active knot interval.
|
|
128
|
+
* * This is the size of (one dimension of) the parametric domain for the associated B-spline object.
|
|
129
|
+
*/
|
|
130
|
+
get knotLength01() {
|
|
131
|
+
return this._knot1 - this._knot0;
|
|
132
|
+
}
|
|
133
|
+
/**
|
|
134
|
+
* Returns true if all numeric values have wraparound conditions that allow the knots to be closed with specified
|
|
135
|
+
* wrap mode.
|
|
136
|
+
* @param mode optional test mode. If undefined, use this.wrappable.
|
|
106
137
|
*/
|
|
107
138
|
testClosable(mode) {
|
|
108
139
|
if (mode === undefined)
|
|
@@ -136,7 +167,7 @@ export class KnotVector {
|
|
|
136
167
|
}
|
|
137
168
|
return false;
|
|
138
169
|
}
|
|
139
|
-
/** Test matching degree and knot values */
|
|
170
|
+
/** Test matching degree and knot values. */
|
|
140
171
|
isAlmostEqual(other) {
|
|
141
172
|
if (this.degree !== other.degree)
|
|
142
173
|
return false;
|
|
@@ -176,8 +207,9 @@ export class KnotVector {
|
|
|
176
207
|
}
|
|
177
208
|
return m;
|
|
178
209
|
}
|
|
179
|
-
/**
|
|
180
|
-
*
|
|
210
|
+
/**
|
|
211
|
+
* Transform knots such that the active knot range becomes [0,1].
|
|
212
|
+
* @returns false if and only if `this.knotLength01` is trivial.
|
|
181
213
|
*/
|
|
182
214
|
normalize() {
|
|
183
215
|
if (this.knotLength01 < KnotVector.knotTolerance)
|
|
@@ -195,8 +227,7 @@ export class KnotVector {
|
|
|
195
227
|
this.setupFixedValues();
|
|
196
228
|
return true;
|
|
197
229
|
}
|
|
198
|
-
/**
|
|
199
|
-
*/
|
|
230
|
+
/** Install knot values from an array, optionally ignoring first and last. */
|
|
200
231
|
setKnots(knots, skipFirstAndLast) {
|
|
201
232
|
const numAllocate = skipFirstAndLast ? knots.length - 2 : knots.length;
|
|
202
233
|
if (numAllocate !== this.knots.length)
|
|
@@ -211,17 +242,17 @@ export class KnotVector {
|
|
|
211
242
|
}
|
|
212
243
|
this.setupFixedValues();
|
|
213
244
|
}
|
|
214
|
-
/** Set knots to input array (CAPTURED) */
|
|
245
|
+
/** Set knots to input array (CAPTURED). */
|
|
215
246
|
setKnotsCapture(knots) {
|
|
216
247
|
this.knots = knots;
|
|
217
248
|
this.setupFixedValues();
|
|
218
249
|
}
|
|
219
250
|
/**
|
|
220
251
|
* Create knot vector with {degree-1} replicated knots at start and end, and uniform knots between.
|
|
221
|
-
* @param numPoles
|
|
222
|
-
* @param degree degree of polynomial
|
|
223
|
-
* @param a0 left knot value for active interval
|
|
224
|
-
* @param a1 right knot value for active interval
|
|
252
|
+
* @param numPoles number of poles.
|
|
253
|
+
* @param degree degree of polynomial.
|
|
254
|
+
* @param a0 left knot value for active interval.
|
|
255
|
+
* @param a1 right knot value for active interval.
|
|
225
256
|
*/
|
|
226
257
|
static createUniformClamped(numPoles, degree, a0, a1) {
|
|
227
258
|
const knots = new KnotVector(numPoles + degree - 1, degree);
|
|
@@ -238,24 +269,26 @@ export class KnotVector {
|
|
|
238
269
|
}
|
|
239
270
|
/**
|
|
240
271
|
* Create knot vector with wraparound knots at start and end, and uniform knots between.
|
|
241
|
-
* @param
|
|
242
|
-
*
|
|
243
|
-
*
|
|
244
|
-
*
|
|
272
|
+
* @param numInterval the number of intervals into which to uniformly divide the active knot interval `[a0,a1]`,
|
|
273
|
+
* creating `numInterval-1` equally spaced interior knots between `a0` and `a1`.
|
|
274
|
+
* This number is equal to the number of Bezier spans in the associated B-spline object.
|
|
275
|
+
* It is _not_ the pole count.
|
|
276
|
+
* @param degree degree of polynomial.
|
|
277
|
+
* @param a0 left knot value for active interval.
|
|
278
|
+
* @param a1 right knot value for active interval.
|
|
245
279
|
*/
|
|
246
280
|
static createUniformWrapped(numInterval, degree, a0, a1) {
|
|
247
281
|
const knots = new KnotVector(numInterval + 2 * degree - 1, degree);
|
|
248
282
|
const du = 1.0 / numInterval;
|
|
249
|
-
for (let i = 1 - degree, k = 0; i < numInterval + degree; i++, k++)
|
|
283
|
+
for (let i = 1 - degree, k = 0; i < numInterval + degree; i++, k++)
|
|
250
284
|
knots.knots[k] = Geometry.interpolate(a0, i * du, a1);
|
|
251
|
-
}
|
|
252
285
|
knots.setupFixedValues();
|
|
253
286
|
return knots;
|
|
254
287
|
}
|
|
255
288
|
/**
|
|
256
289
|
* Create knot vector with given knot values and degree.
|
|
257
|
-
* @param knotArray knot values
|
|
258
|
-
* @param degree degree of polynomial
|
|
290
|
+
* @param knotArray knot values.
|
|
291
|
+
* @param degree degree of polynomial.
|
|
259
292
|
* @param skipFirstAndLast true to skip copying the first and last knot values.
|
|
260
293
|
*/
|
|
261
294
|
static create(knotArray, degree, skipFirstAndLast) {
|
|
@@ -266,19 +299,24 @@ export class KnotVector {
|
|
|
266
299
|
}
|
|
267
300
|
/**
|
|
268
301
|
* Return the average of degree consecutive knots beginning at knotIndex.
|
|
302
|
+
* * If `knotIndex` is negative, return `leftKnot`.
|
|
303
|
+
* * If `knotIndex > rightKnotIndex` return `rightKnot`.
|
|
269
304
|
*/
|
|
270
305
|
grevilleKnot(knotIndex) {
|
|
271
306
|
if (knotIndex < 0)
|
|
272
307
|
return this.leftKnot;
|
|
273
308
|
if (knotIndex > this.rightKnotIndex)
|
|
274
309
|
return this.rightKnot;
|
|
310
|
+
knotIndex = Math.floor(knotIndex);
|
|
275
311
|
let sum = 0.0;
|
|
276
312
|
for (let i = knotIndex; i < knotIndex + this.degree; i++)
|
|
277
313
|
sum += this.knots[i];
|
|
278
314
|
return sum / this.degree;
|
|
279
315
|
}
|
|
280
|
-
/** Return an array
|
|
281
|
-
createBasisArray() {
|
|
316
|
+
/** Return an array of size `degree + 1`, e.g., to hold the set of relevant basis function values at a parameter. */
|
|
317
|
+
createBasisArray() {
|
|
318
|
+
return new Float64Array(this.degree + 1);
|
|
319
|
+
}
|
|
282
320
|
/** Convert localFraction within the interval following an indexed knot to a knot value. */
|
|
283
321
|
baseKnotFractionToKnot(knotIndex0, localFraction) {
|
|
284
322
|
const knot0 = this.knots[knotIndex0];
|
|
@@ -301,32 +339,38 @@ export class KnotVector {
|
|
|
301
339
|
fraction = Geometry.clamp(fraction, 0, 1); // B-splines are not extendable
|
|
302
340
|
return Geometry.interpolate(this.knots[this.degree - 1], fraction, this.knots[this.knots.length - this.degree]);
|
|
303
341
|
}
|
|
342
|
+
isKnotInValidSpan(knotIndex0, u) {
|
|
343
|
+
const spanIsValid = knotIndex0 >= this.degree - 1 && knotIndex0 + this.degree < this.knots.length;
|
|
344
|
+
const uIsInSpan = this.knots[knotIndex0] <= u && u <= this.knots[knotIndex0 + 1];
|
|
345
|
+
return spanIsValid && uIsInSpan;
|
|
346
|
+
}
|
|
304
347
|
/**
|
|
305
348
|
* Evaluate the B-spline basis functions f[] at a parameter u in a knot span.
|
|
306
349
|
* * This method implements the Mansfield-Cox-de Boor recurrence relation.
|
|
307
350
|
* @param knotIndex0 index of the left knot of the span.
|
|
308
351
|
* @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].
|
|
309
|
-
* @param f preallocated output array of order basis function values
|
|
310
|
-
* @returns true if and only if output array is sufficiently sized
|
|
352
|
+
* @param f preallocated output array of order basis function values.
|
|
353
|
+
* @returns true if and only if output array is sufficiently sized.
|
|
311
354
|
*/
|
|
312
355
|
evaluateBasisFunctions(knotIndex0, u, f) {
|
|
313
356
|
if (f.length < this.degree + 1)
|
|
314
357
|
return false;
|
|
358
|
+
assert(() => this.isKnotInValidSpan(knotIndex0, u), "knot is in a valid span");
|
|
315
359
|
f[0] = 1.0;
|
|
316
360
|
if (this.degree < 1)
|
|
317
361
|
return true;
|
|
318
|
-
// direct compute for linear part
|
|
362
|
+
// direct compute for linear part
|
|
319
363
|
const u0 = this.knots[knotIndex0];
|
|
320
364
|
const u1 = this.knots[knotIndex0 + 1];
|
|
321
365
|
f[1] = (u - u0) / (u1 - u0);
|
|
322
366
|
f[0] = 1.0 - f[1];
|
|
323
367
|
if (this.degree < 2)
|
|
324
368
|
return true;
|
|
325
|
-
//
|
|
326
|
-
// one or two values of the basis functions of one less degree from the preceding iteration
|
|
369
|
+
// each iteration of the outer loop evaluates the basis functions of degree depth+1 using
|
|
370
|
+
// one or two values of the basis functions of one less degree from the preceding iteration
|
|
327
371
|
for (let depth = 1; depth < this.degree; depth++) {
|
|
328
372
|
let kLeft = knotIndex0 - depth;
|
|
329
|
-
let kRight =
|
|
373
|
+
let kRight = knotIndex0 + 1;
|
|
330
374
|
let gCarry = 0.0;
|
|
331
375
|
for (let step = 0; step <= depth; step++) {
|
|
332
376
|
const tLeft = this.knots[kLeft++];
|
|
@@ -348,10 +392,10 @@ export class KnotVector {
|
|
|
348
392
|
* in a knot span.
|
|
349
393
|
* @param knotIndex0 index of the left knot of the span.
|
|
350
394
|
* @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].
|
|
351
|
-
* @param f preallocated output array of order basis function values
|
|
352
|
-
* @param df preallocated output array of order basis derivative values
|
|
353
|
-
* @param ddf optional preallocated output array of order basis second derivative values
|
|
354
|
-
* @returns true if and only if output arrays are sufficiently sized
|
|
395
|
+
* @param f preallocated output array of order basis function values.
|
|
396
|
+
* @param df preallocated output array of order basis derivative values.
|
|
397
|
+
* @param ddf optional preallocated output array of order basis second derivative values.
|
|
398
|
+
* @returns true if and only if output arrays are sufficiently sized.
|
|
355
399
|
*/
|
|
356
400
|
evaluateBasisFunctions1(knotIndex0, u, f, df, ddf) {
|
|
357
401
|
if (f.length < this.degree + 1)
|
|
@@ -360,15 +404,16 @@ export class KnotVector {
|
|
|
360
404
|
return false;
|
|
361
405
|
if (ddf && ddf.length < this.degree + 1)
|
|
362
406
|
return false;
|
|
407
|
+
assert(() => this.isKnotInValidSpan(knotIndex0, u), "knot is in a valid span");
|
|
363
408
|
f[0] = 1.0;
|
|
364
409
|
df[0] = 0.0;
|
|
365
410
|
if (this.degree < 1)
|
|
366
411
|
return true;
|
|
367
|
-
// direct compute for linear part
|
|
412
|
+
// direct compute for linear part
|
|
368
413
|
const u0 = this.knots[knotIndex0];
|
|
369
414
|
const u1 = this.knots[knotIndex0 + 1];
|
|
370
|
-
// ah = 1/(u1-u0)
|
|
371
|
-
//
|
|
415
|
+
// ah = 1/(u1-u0) is the derivative of fraction0
|
|
416
|
+
// -ah is the derivative of fraction1
|
|
372
417
|
let ah = 1.0 / (u1 - u0);
|
|
373
418
|
f[1] = (u - u0) * ah;
|
|
374
419
|
f[0] = 1.0 - f[1];
|
|
@@ -387,7 +432,7 @@ export class KnotVector {
|
|
|
387
432
|
let dgCarry = 0.0;
|
|
388
433
|
let ddgCarry = 0.0;
|
|
389
434
|
// f, df, ddf, are each row vectors with product of `step` linear terms.
|
|
390
|
-
// f is multiplied on the right by matrix V. Each row has 2 nonzero entries (which sum to 1)
|
|
435
|
+
// f is multiplied on the right by matrix V. Each row has 2 nonzero entries (which sum to 1) (0,0,1-fraction, fraction,0,0,0)
|
|
391
436
|
// Each row of the derivative dV is two entries (0,0, -1/h, 1/h,0,0,0)
|
|
392
437
|
// Hence fnew = f * V
|
|
393
438
|
// dfnew = df * V + f * dV
|
|
@@ -409,7 +454,7 @@ export class KnotVector {
|
|
|
409
454
|
df[step] = dgCarry + dg0;
|
|
410
455
|
gCarry = g1;
|
|
411
456
|
dgCarry = dg1;
|
|
412
|
-
if (ddf) { // do the backward reference to df before rewriting df
|
|
457
|
+
if (ddf) { // do the backward reference to df before rewriting df
|
|
413
458
|
const ddg1 = ddf[step] * fraction + dfSave;
|
|
414
459
|
const ddg0 = ddf[step] * fraction1 - dfSave;
|
|
415
460
|
ddf[step] = ddgCarry + ddg0;
|
|
@@ -423,9 +468,10 @@ export class KnotVector {
|
|
|
423
468
|
}
|
|
424
469
|
return true;
|
|
425
470
|
}
|
|
426
|
-
/**
|
|
471
|
+
/**
|
|
472
|
+
* Find the knot span bracketing knots[i] <= u < knots[i+1] and return i.
|
|
427
473
|
* * If u has no such bracket, return the smaller index of the closest nontrivial bracket.
|
|
428
|
-
* @param u value to bracket
|
|
474
|
+
* @param u value to bracket.
|
|
429
475
|
*/
|
|
430
476
|
knotToLeftKnotIndex(u) {
|
|
431
477
|
for (let i = this.leftKnotIndex; i < this.rightKnotIndex; ++i) {
|
|
@@ -441,7 +487,7 @@ export class KnotVector {
|
|
|
441
487
|
}
|
|
442
488
|
/**
|
|
443
489
|
* Given a span index, return the index of the knot at its left.
|
|
444
|
-
* @param spanIndex index of span
|
|
490
|
+
* @param spanIndex index of span.
|
|
445
491
|
*/
|
|
446
492
|
spanIndexToLeftKnotIndex(spanIndex) {
|
|
447
493
|
const d = this.degree;
|
|
@@ -456,7 +502,8 @@ export class KnotVector {
|
|
|
456
502
|
}
|
|
457
503
|
/**
|
|
458
504
|
* Given a span index, test if it is within range and has nonzero length.
|
|
459
|
-
* * note that a false return does not imply there are no more spans.
|
|
505
|
+
* * note that a false return does not imply there are no more spans. This may be a double knot (zero length span)
|
|
506
|
+
* followed by more real spans
|
|
460
507
|
* @param spanIndex index of span to test.
|
|
461
508
|
*/
|
|
462
509
|
isIndexOfRealSpan(spanIndex) {
|
|
@@ -464,7 +511,7 @@ export class KnotVector {
|
|
|
464
511
|
return !Geometry.isSmallMetricDistance(this.spanIndexToSpanLength(spanIndex));
|
|
465
512
|
return false;
|
|
466
513
|
}
|
|
467
|
-
/** Reflect all knots so `leftKnot` and `rightKnot` are maintained but interval lengths
|
|
514
|
+
/** Reflect all knots so `leftKnot` and `rightKnot` are maintained but interval lengths are reversed. */
|
|
468
515
|
reflectKnots() {
|
|
469
516
|
const a = this.leftKnot;
|
|
470
517
|
const b = this.rightKnot;
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"KnotVector.js","sourceRoot":"","sources":["../../../src/bspline/KnotVector.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAC/F;;GAEG;AAEH,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AACvC,OAAO,EAAE,WAAW,EAAE,MAAM,4BAA4B,CAAC;AAEzD;;;;GAIG;AACH,MAAM,CAAN,IAAY,eAaX;AAbD,WAAY,eAAe;IACzB,+BAA+B;IAC/B,qDAAQ,CAAA;IACR;;;OAGG;IACH,+FAA6B,CAAA;IAC7B;;;OAGG;IACH,mFAAuB,CAAA;AACzB,CAAC,EAbW,eAAe,KAAf,eAAe,QAa1B;AACD;;;;;;;;;;;;GAYG;AACH,MAAM,OAAO,UAAU;IACrB,uCAAuC;IAChC,KAAK,CAAe;IAC3B,mEAAmE;IAC5D,MAAM,CAAS;IACd,MAAM,CAAS;IACf,MAAM,CAAS;IAEf,SAAS,CAAmB;IACpC,0DAA0D;IACnD,MAAM,CAAU,aAAa,GAAG,MAAM,CAAC;IAC9C,+FAA+F;IAC/F,IAAW,QAAQ,KAAK,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IAC7C,gGAAgG;IAChG,IAAW,SAAS,KAAK,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IAC9C,mEAAmE;IACnE,IAAW,aAAa,KAAK,OAAO,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC;IACtD,oEAAoE;IACpE,IAAW,cAAc,KAAK,OAAO,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IACvE,iMAAiM;IACjM,IAAW,SAAS,KAAK,OAAO,IAAI,CAAC,SAAS,KAAK,SAAS,CAAC,CAAC,CAAC,eAAe,CAAC,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC;IACvG,IAAW,SAAS,CAAC,KAAsB,IAAI,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC,CAAC,CAAC;IACxE,iHAAiH;IACjH,IAAW,QAAQ,KAAK,OAAO,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,aAAa,CAAC,CAAC,CAAC;IAC1E;;;;;;OAMG;IACH,YAAoB,KAAuC,EAAE,MAAc,EAAE,QAA0B;QACrG,IAAI,CAAC,MAAM,GAAG,MAAM,CAAC;QACrB,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC;QAC1B,6GAA6G;QAC7G,IAAI,CAAC,MAAM,GAAG,GAAG,CAAC;QAClB,IAAI,CAAC,MAAM,GAAG,GAAG,CAAC;QAClB,oCAAoC;QACpC,IAAI,KAAK,CAAC,OAAO,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,uFAAuF;YACjH,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;YAC5C,IAAI,CAAC,QAAQ,CAAC,KAAK,CAAC,CAAC;YACrB,IAAI,CAAC,gBAAgB,EAAE,CAAC;QAC1B,CAAC;aAAM,IAAI,KAAK,YAAY,YAAY,EAAE,CAAC;YACzC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;YAC3B,IAAI,CAAC,gBAAgB,EAAE,CAAC;QAC1B,CAAC;aAAM,CAAC,CAAC,yDAAyD;YAChE,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,KAAK,CAAC,CAAC;QACvC,CAAC;IACH,CAAC;IACD,iDAAiD;IAC1C,KAAK,KAAiB,OAAO,IAAI,UAAU,CAAC,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACtF,gBAAgB;QACtB,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC,IAAI,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;YACvD,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;YAC1C,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC;QAC5D,CAAC;IACH,CAAC;IACD,4DAA4D;IAC5D,IAAW,YAAY,KAAa,OAAO,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IACvE;;;OAGG;IACI,YAAY,CAAC,IAAsB;QACxC,IAAI,IAAI,KAAK,SAAS;YACpB,IAAI,GAAG,IAAI,CAAC,SAAS,CAAC;QACxB,MAAM,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC;QAC3B,MAAM,aAAa,GAAG,IAAI,CAAC,aAAa,CAAC;QACzC,MAAM,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;QAC3C,IAAI,IAAI,KAAK,eAAe,CAAC,yBAAyB,EAAE,CAAC;YACvD,oFAAoF;YACpF,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;YAC9C,MAAM,UAAU,GAAG,cAAc,GAAG,aAAa,CAAC;YAClD,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,aAAa,GAAG,MAAM,EAAE,EAAE,EAAE,EAAE,CAAC;gBACnD,MAAM,EAAE,GAAG,EAAE,GAAG,UAAU,CAAC;gBAC3B,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBAChF,OAAO,KAAK,CAAC;YACjB,CAAC;YACD,OAAO,IAAI,CAAC;QACd,CAAC;QACD,IAAI,IAAI,KAAK,eAAe,CAAC,mBAAmB,EAAE,CAAC;YACjD,wEAAwE;YACxE,MAAM,WAAW,GAAG,MAAM,GAAG,CAAC,CAAC;YAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;YAC/B,MAAM,SAAS,GAAG,IAAI,CAAC,SAAS,CAAC;YACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,WAAW,EAAE,CAAC,EAAE,EAAE,CAAC;gBACrC,IAAI,IAAI,CAAC,GAAG,CAAC,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,aAAa,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBACpF,OAAO,KAAK,CAAC;gBACf,IAAI,IAAI,CAAC,GAAG,CAAC,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,cAAc,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBACtF,OAAO,KAAK,CAAC;YACjB,CAAC;YACD,OAAO,IAAI,CAAC;QACd,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,2CAA2C;IACpC,aAAa,CAAC,KAAiB;QACpC,IAAI,IAAI,CAAC,MAAM,KAAK,KAAK,CAAC,MAAM;YAAE,OAAO,KAAK,CAAC;QAC/C,OAAO,WAAW,CAAC,aAAa,CAAC,IAAI,CAAC,KAAK,EAAE,KAAK,CAAC,KAAK,EAAE,UAAU,CAAC,aAAa,CAAC,CAAC;IACtF,CAAC;IAED,yEAAyE;IAClE,mBAAmB,CAAC,IAAY;QACrC,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,MAAM,CAAC,IAAI,IAAI,CAAC,KAAK,EAAE,CAAC;YAC3B,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;gBAC/C,EAAE,CAAC,CAAC;iBACD,IAAI,IAAI,GAAG,CAAC;gBACf,MAAM;QACV,CAAC;QACD,OAAO,CAAC,CAAC;IACX,CAAC;IAED,+DAA+D;IACxD,0BAA0B,CAAC,SAAiB;QACjD,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,SAAS,IAAI,CAAC,IAAI,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC;YACpD,MAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC;YACnC,EAAE,CAAC,CAAC,CAAE,kBAAkB;YACxB,KAAK,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;gBACxC,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;gBACxB,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;oBAC/C,EAAE,CAAC,CAAC,CAAE,iCAAiC;qBACpC,IAAI,IAAI,GAAG,CAAC;oBACf,MAAM;YACV,CAAC;YACD,KAAK,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,EAAE,CAAC,EAAE,CAAC;gBACvD,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;gBACxB,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;oBAC/C,EAAE,CAAC,CAAC,CAAE,kCAAkC;qBACrC,IAAI,IAAI,GAAG,CAAC;oBACf,MAAM;YACV,CAAC;QACH,CAAC;QACD,OAAO,CAAC,CAAC;IACX,CAAC;IAED;;OAEG;IACI,SAAS;QACd,IAAI,IAAI,CAAC,YAAY,GAAG,UAAU,CAAC,aAAa;YAC9C,OAAO,KAAK,CAAC;QACf,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,YAAY,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC/B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,EAAE,CAAC;YACxC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,GAAG,OAAO,CAAC;QACvD,uEAAuE;QACvE,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,aAAa,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,EAAE,EAAE,CAAC;YAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QAC9I,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,EAAE,EAAE,CAAC;YAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QAC7I,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,GAAG,GAAG,CAAC;QACtC,IAAI,CAAC,gBAAgB,EAAE,CAAC;QACxB,OAAO,IAAI,CAAC;IACd,CAAC;IAED;OACG;IACI,QAAQ,CAAC,KAA8B,EAAE,gBAA0B;QACxE,MAAM,WAAW,GAAG,gBAAgB,CAAC,CAAC,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,MAAM,CAAC;QACvE,IAAI,WAAW,KAAK,IAAI,CAAC,KAAK,CAAC,MAAM;YACnC,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,WAAW,CAAC,CAAC;QAC7C,IAAI,gBAAgB,EAAE,CAAC;YACrB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,KAAK,CAAC,MAAM,EAAE,CAAC,EAAE;gBACvC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC;QAEjC,CAAC;aAAM,CAAC;YACN,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,EAAE,CAAC,EAAE;gBACnC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC;QAC7B,CAAC;QACD,IAAI,CAAC,gBAAgB,EAAE,CAAC;IAC1B,CAAC;IAED,2CAA2C;IACpC,eAAe,CAAC,KAAmB;QACxC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC;QACnB,IAAI,CAAC,gBAAgB,EAAE,CAAC;IAC1B,CAAC;IAED;;;;;;OAMG;IACI,MAAM,CAAC,oBAAoB,CAAC,QAAgB,EAAE,MAAc,EAAE,EAAU,EAAE,EAAU;QACzF,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,QAAQ,GAAG,MAAM,GAAG,CAAC,EAAE,MAAM,CAAC,CAAC;QAC5D,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,EAAE,CAAC,EAAE;YAAC,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC;QACtD,MAAM,EAAE,GAAG,GAAG,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,CAAC;QACrC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,GAAG,QAAQ,EAAE,CAAC,EAAE;YACxC,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QAC7C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,EAAE,CAAC,EAAE;YAAC,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC;QACtD,KAAK,CAAC,gBAAgB,EAAE,CAAC;QACzB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,oBAAoB,CAAC,WAAmB,EAAE,MAAc,EAAE,EAAU,EAAE,EAAU;QAC5F,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,WAAW,GAAG,CAAC,GAAG,MAAM,GAAG,CAAC,EAAE,MAAM,CAAC,CAAC;QACnE,MAAM,EAAE,GAAG,GAAG,GAAG,WAAW,CAAC;QAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,MAAM,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,WAAW,GAAG,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE,EAAE,CAAC;YACnE,KAAK,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,WAAW,CAAC,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,CAAC;QACxD,CAAC;QACD,KAAK,CAAC,gBAAgB,EAAE,CAAC;QACzB,OAAO,KAAK,CAAC;IACf,CAAC;IAED;;;;;OAKG;IACI,MAAM,CAAC,MAAM,CAAC,SAAkC,EAAE,MAAc,EAAE,gBAA0B;QACjG,MAAM,WAAW,GAAG,gBAAgB,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,CAAC;QAC/E,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,WAAW,EAAE,MAAM,CAAC,CAAC;QAClD,KAAK,CAAC,QAAQ,CAAC,SAAS,EAAE,gBAAgB,CAAC,CAAC;QAC5C,OAAO,KAAK,CAAC;IACf,CAAC;IAED;;OAEG;IACI,YAAY,CAAC,SAAiB;QACnC,IAAI,SAAS,GAAG,CAAC;YAAE,OAAO,IAAI,CAAC,QAAQ,CAAC;QACxC,IAAI,SAAS,GAAG,IAAI,CAAC,cAAc;YAAE,OAAO,IAAI,CAAC,SAAS,CAAC;QAC3D,IAAI,GAAG,GAAG,GAAG,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,SAAS,EAAE,CAAC,GAAG,SAAS,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC,EAAE;YACtD,GAAG,IAAI,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACvB,OAAO,GAAG,GAAG,IAAI,CAAC,MAAM,CAAC;IAC3B,CAAC;IACD,oEAAoE;IAC7D,gBAAgB,KAAmB,OAAO,IAAI,YAAY,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACrF,2FAA2F;IACpF,sBAAsB,CAAC,UAAkB,EAAE,aAAqB;QACrE,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QACrC,aAAa,GAAG,QAAQ,CAAC,KAAK,CAAC,aAAa,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACpD,OAAO,KAAK,GAAG,aAAa,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC;IACtE,CAAC;IACD,2EAA2E;IACpE,kBAAkB,CAAC,SAAiB,EAAE,aAAqB;QAChE,MAAM,CAAC,GAAG,IAAI,CAAC,wBAAwB,CAAC,SAAS,CAAC,CAAC;QACnD,aAAa,GAAG,QAAQ,CAAC,KAAK,CAAC,aAAa,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACpD,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,aAAa,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,CAAC;IACD,4FAA4F;IACrF,sBAAsB,CAAC,SAAiB,EAAE,aAAqB;QACpE,MAAM,IAAI,GAAG,IAAI,CAAC,kBAAkB,CAAC,SAAS,EAAE,aAAa,CAAC,CAAC;QAC/D,OAAO,CAAC,IAAI,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC;IACnE,CAAC;IACD,0DAA0D;IACnD,cAAc,CAAC,QAAgB;QACpC,QAAQ,GAAG,QAAQ,CAAC,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAG,+BAA+B;QAC5E,OAAO,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,EAAE,QAAQ,EAAE,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IAClH,CAAC;IACD;;;;;;;OAOG;IACI,sBAAsB,CAAC,UAAkB,EAAE,CAAS,EAAE,CAAe;QAC1E,IAAI,CAAC,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC5B,OAAO,KAAK,CAAC;QACf,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACX,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,qCAAqC;QACrC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAClC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QACtC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QAC5B,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAClB,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,yFAAyF;QACzF,4FAA4F;QAC5F,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,EAAE,CAAC;YACjD,IAAI,KAAK,GAAG,UAAU,GAAG,KAAK,CAAC;YAC/B,IAAI,MAAM,GAAG,KAAK,GAAG,KAAK,GAAG,CAAC,CAAC;YAC/B,IAAI,MAAM,GAAG,GAAG,CAAC;YACjB,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,IAAI,KAAK,EAAE,IAAI,EAAE,EAAE,CAAC;gBACzC,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC,CAAC;gBAClC,MAAM,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC;gBACpC,MAAM,QAAQ,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC;gBAChD,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,QAAQ,CAAC;gBAC9B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,QAAQ,CAAC,CAAC;gBACtC,CAAC,CAAC,IAAI,CAAC,GAAG,MAAM,GAAG,EAAE,CAAC;gBACtB,MAAM,GAAG,EAAE,CAAC;YACd,CAAC;YACD,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC;YACtB,kEAAkE;YAClE,qEAAqE;QACvE,CAAC;QACD,OAAO,IAAI,CAAC;IACd,CAAC;IAED;;;;;;;;;OASG;IACI,uBAAuB,CAAC,UAAkB,EAAE,CAAS,EAAE,CAAe,EAAE,EAAgB,EAAE,GAAkB;QACjH,IAAI,CAAC,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC5B,OAAO,KAAK,CAAC;QACf,IAAI,EAAE,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC7B,OAAO,KAAK,CAAC;QACf,IAAI,GAAG,IAAI,GAAG,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YACrC,OAAO,KAAK,CAAC;QACf,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QAAC,EAAE,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACxB,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,qCAAqC;QACrC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAClC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QACtC,qDAAqD;QACrD,wCAAwC;QACxC,IAAI,EAAE,GAAG,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QACzB,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,EAAE,CAAC;QACrB,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAClB,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC;QAAC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,IAAI,GAAG,EAAE,CAAC,CAAE,qEAAqE;YAC/E,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;YAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QAC7B,CAAC;QACD,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,EAAE,CAAC;YACjD,IAAI,KAAK,GAAG,UAAU,GAAG,KAAK,CAAC;YAC/B,IAAI,MAAM,GAAG,KAAK,GAAG,KAAK,GAAG,CAAC,CAAC;YAC/B,IAAI,MAAM,GAAG,GAAG,CAAC;YACjB,IAAI,OAAO,GAAG,GAAG,CAAC;YAClB,IAAI,QAAQ,GAAG,GAAG,CAAC;YACnB,wEAAwE;YACxE,+HAA+H;YAC/H,yEAAyE;YACzE,qBAAqB;YACrB,+BAA+B;YAC/B,oDAAoD;YACpD,qBAAqB;YACrB,sCAAsC;YACtC,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,IAAI,KAAK,EAAE,IAAI,EAAE,EAAE,CAAC;gBACzC,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC,CAAC;gBAClC,MAAM,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC;gBACpC,EAAE,GAAG,GAAG,GAAG,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC;gBAC5B,MAAM,QAAQ,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAClC,MAAM,SAAS,GAAG,GAAG,GAAG,QAAQ,CAAC;gBACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,QAAQ,CAAC;gBAC9B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,SAAS,CAAC;gBAC/B,MAAM,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBAC/C,MAAM,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBAChD,MAAM,MAAM,GAAG,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBACnC,CAAC,CAAC,IAAI,CAAC,GAAG,MAAM,GAAG,EAAE,CAAC;gBACtB,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,GAAG,GAAG,CAAC;gBACzB,MAAM,GAAG,EAAE,CAAC;gBACZ,OAAO,GAAG,GAAG,CAAC;gBACd,IAAI,GAAG,EAAE,CAAC,CAAE,0DAA0D;oBACpE,MAAM,IAAI,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,MAAM,CAAC;oBAC3C,MAAM,IAAI,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,SAAS,GAAG,MAAM,CAAC;oBAC5C,GAAG,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC;oBAC5B,QAAQ,GAAG,IAAI,CAAC;gBAClB,CAAC;YACH,CAAC;YACD,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC;YACtB,EAAE,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,OAAO,CAAC;YACxB,IAAI,GAAG;gBACL,GAAG,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,QAAQ,CAAC;QAC9B,CAAC;QACD,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;OAGG;IACI,mBAAmB,CAAC,CAAS;QAClC,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,aAAa,EAAE,CAAC,GAAG,IAAI,CAAC,cAAc,EAAE,EAAE,CAAC,EAAE,CAAC;YAC9D,IAAI,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC;gBACvB,OAAO,CAAC,CAAC;QACb,CAAC;QACD,gEAAgE;QAChE,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,EAAE,CAAC,GAAG,IAAI,CAAC,aAAa,EAAE,EAAE,CAAC,EAAE,CAAC;YAC9D,IAAI,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;gBAC/D,OAAO,CAAC,GAAG,CAAC,CAAC;QACjB,CAAC;QACD,OAAO,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC,CAAC,qBAAqB;IACvD,CAAC;IACD;;;OAGG;IACI,wBAAwB,CAAC,SAAiB;QAC/C,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,IAAI,SAAS,IAAI,GAAG;YAAE,OAAO,CAAC,GAAG,CAAC,CAAC;QACnC,OAAO,IAAI,CAAC,GAAG,CAAC,SAAS,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAChE,CAAC;IACD,8DAA8D;IACvD,qBAAqB,CAAC,SAAiB;QAC5C,MAAM,CAAC,GAAG,IAAI,CAAC,wBAAwB,CAAC,SAAS,CAAC,CAAC;QACnD,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,SAAiB;QACxC,IAAI,SAAS,IAAI,CAAC,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ;YAC7C,OAAO,CAAC,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,qBAAqB,CAAC,SAAS,CAAC,CAAC,CAAC;QAChF,OAAO,KAAK,CAAC;IACf,CAAC;IACD,mGAAmG;IAC5F,YAAY;QACjB,MAAM,CAAC,GAAG,IAAI,CAAC,QAAQ,CAAC;QACxB,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC;QACzB,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC;QACnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE;YAC/B,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1C,IAAI,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC;IACvB,CAAC;IAED,uHAAuH;IAChH,MAAM,CAAC,SAAS,CAAC,KAA8B,EAAE,MAAc,EAAE,mBAA6B,EAAE,QAA0B;QAC/H,MAAM,sBAAsB,GAAG,CAAC,mBAAmB,IAAI,QAAQ,KAAK,eAAe,CAAC,yBAAyB,CAAC,CAAC;QAC/G,MAAM,SAAS,GAAG,MAAM,GAAG,CAAC,CAAC;QAC7B,MAAM,UAAU,GAAG,KAAK,CAAC,MAAM,GAAG,MAAM,CAAC;QACzC,MAAM,EAAE,GAAG,KAAK,CAAC,SAAS,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,UAAU,CAAC,CAAC;QAC7B,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,MAAM,GAAa,EAAE,CAAC;QAC5B,IAAI,mBAAmB,EAAE,CAAC;YACxB,IAAI,sBAAsB;gBACxB,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,MAAM,CAAC,GAAG,KAAK,CAAC,CAAC;;gBAEhD,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1B,CAAC;QACD,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;YACtB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACjB,CAAC;QACD,IAAI,mBAAmB,EAAE,CAAC;YACxB,IAAI,sBAAsB;gBACxB,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,GAAG,MAAM,CAAC,GAAG,KAAK,CAAC,CAAC;;gBAE/C,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC;QACzC,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IAED,uHAAuH;IAChH,SAAS,CAAC,mBAA4B;QAC3C,MAAM,QAAQ,GAAG,CAAC,mBAAmB,IAAI,IAAI,CAAC,YAAY,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,SAAS,CAAC;QAC3F,OAAO,UAAU,CAAC,SAAS,CAAC,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,mBAAmB,EAAE,QAAQ,CAAC,CAAC;IACtF,CAAC","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n/** @packageDocumentation\n * @module Bspline\n */\n\nimport { Geometry } from \"../Geometry\";\nimport { NumberArray } from \"../geometry3d/PointHelpers\";\n\n/**\n * B-spline curve and surface types in this library are non-periodic. But they can be created from legacy periodic data.\n * This enumeration lists the possible ways a B-spline object can have been created from legacy periodic data.\n * @public\n */\nexport enum BSplineWrapMode {\n /** No conversion performed. */\n None = 0,\n /** The B-spline was opened up by adding degree wrap-around control points to the legacy periodic data.\n * * This is typical of B-splines constructed with maximum (degree - 1) continuity.\n * * Knots are unaffected by this conversion.\n */\n OpenByAddingControlPoints = 1,\n /** The B-spline was opened up by removing degree extreme knots from the legacy periodic data.\n * * This is typical of rational B-spline curves representing full circles and ellipses.\n * * Poles are unaffected by this conversion.\n */\n OpenByRemovingKnots = 2,\n}\n/**\n * Array of non-decreasing numbers acting as a knot array for B-splines.\n *\n * * Essential identity: numKnots = numPoles + order - 2 = numPoles + degree - 1\n * * Various B-spline libraries have confusion over how many \"end knots\" are needed. Many libraries (including MicroStation and Parasolid)\n * demand order knots at each end for clamping. But only order-1 are really needed. This class uses the order-1 convention.\n * * A span is a single interval of the knots.\n * * The left knot of span {k} is knot {k+degree-1}.\n * * This class provides queries to convert among spanIndex, knotIndex, spanFraction, fraction of knot range, and knot.\n * * Core computations (evaluateBasisFunctions) have leftKnotIndex and global knot value as inputs. Callers need to\n * know their primary values (global knot, spanFraction).\n * @public\n */\nexport class KnotVector {\n /** The simple array of knot values. */\n public knots: Float64Array;\n /** Return the degree of basis functions defined in these knots. */\n public degree: number;\n private _knot0: number;\n private _knot1: number;\n\n private _wrapMode?: BSplineWrapMode;\n /** tolerance for considering two knots to be the same. */\n public static readonly knotTolerance = 1.0e-9;\n /** Return the leftmost knot value (of the active interval, ignoring unclamped leading knots)*/\n public get leftKnot() { return this._knot0; }\n /** Return the rightmost knot value (of the active interval, ignoring unclamped leading knots)*/\n public get rightKnot() { return this._knot1; }\n /** Return the index of the leftmost knot of the active interval */\n public get leftKnotIndex() { return this.degree - 1; }\n /** Return the index of the rightmost knot of the active interval */\n public get rightKnotIndex() { return this.knots.length - this.degree; }\n /** Whether this KnotVector was created by converting legacy periodic data during deserialization. The conversion used is specified by BSplineWrapMode, and is reversed at serialization time. */\n public get wrappable() { return this._wrapMode === undefined ? BSplineWrapMode.None : this._wrapMode; }\n public set wrappable(value: BSplineWrapMode) { this._wrapMode = value; }\n /** Return the number of bezier spans. Note that this includes zero-length spans if there are repeated knots. */\n public get numSpans() { return this.rightKnotIndex - this.leftKnotIndex; }\n /**\n *\n * * If knots is a number array or Float64Array, the those values become the local knot array.\n * * If knots is a simple number, the local knot array is allocated to that size but left as zeros.\n * @param knots\n * @param degree\n */\n private constructor(knots: number[] | Float64Array | number, degree: number, wrapMode?: BSplineWrapMode) {\n this.degree = degree;\n this._wrapMode = wrapMode;\n // default values to satisfy compiler -- real values happen in setupFixedValues, or final else defers to user\n this._knot0 = 0.0;\n this._knot1 = 1.0;\n // satisfy the initialize checker ..\n if (Array.isArray(knots)) { // remark: This ctor is private. The callers (as of April 2019) do not use this path.\n this.knots = new Float64Array(knots.length);\n this.setKnots(knots);\n this.setupFixedValues();\n } else if (knots instanceof Float64Array) {\n this.knots = knots.slice();\n this.setupFixedValues();\n } else { // caller is responsible for filling array separately ...\n this.knots = new Float64Array(knots);\n }\n }\n /** copy degree and knots to a new KnotVector. */\n public clone(): KnotVector { return new KnotVector(this.knots, this.degree, this.wrappable); }\n private setupFixedValues() {\n if (this.degree > 0 && this.knots.length > this.degree) {\n this._knot0 = this.knots[this.degree - 1];\n this._knot1 = this.knots[this.knots.length - this.degree];\n }\n }\n /** Return the total knot distance from beginning to end. */\n public get knotLength01(): number { return this._knot1 - this._knot0; }\n /**\n * Returns true if all numeric values have wraparound conditions that allow the knots to be closed with specified wrap mode.\n * @param mode optional test mode. If undefined, use this.wrappable.\n */\n public testClosable(mode?: BSplineWrapMode): boolean {\n if (mode === undefined)\n mode = this.wrappable;\n const degree = this.degree;\n const leftKnotIndex = this.leftKnotIndex;\n const rightKnotIndex = this.rightKnotIndex;\n if (mode === BSplineWrapMode.OpenByAddingControlPoints) {\n // maximum continuity mode: we expect degree periodically extended knots at each end\n const period = this.rightKnot - this.leftKnot;\n const indexDelta = rightKnotIndex - leftKnotIndex;\n for (let k0 = 0; k0 < leftKnotIndex + degree; k0++) {\n const k1 = k0 + indexDelta;\n if (Math.abs(this.knots[k0] + period - this.knots[k1]) >= KnotVector.knotTolerance)\n return false;\n }\n return true;\n }\n if (mode === BSplineWrapMode.OpenByRemovingKnots) {\n // legacy periodic mode: we expect multiplicity degree knots at each end\n const numRepeated = degree - 1;\n const leftKnot = this.leftKnot;\n const rightKnot = this.rightKnot;\n for (let i = 0; i < numRepeated; i++) {\n if (Math.abs(leftKnot - this.knots[leftKnotIndex - i - 1]) >= KnotVector.knotTolerance)\n return false;\n if (Math.abs(rightKnot - this.knots[rightKnotIndex + i + 1]) >= KnotVector.knotTolerance)\n return false;\n }\n return true;\n }\n return false;\n }\n /** Test matching degree and knot values */\n public isAlmostEqual(other: KnotVector): boolean {\n if (this.degree !== other.degree) return false;\n return NumberArray.isAlmostEqual(this.knots, other.knots, KnotVector.knotTolerance);\n }\n\n /** Compute the multiplicity of the input knot, or zero if not a knot. */\n public getKnotMultiplicity(knot: number): number {\n let m = 0;\n for (const k of this.knots) {\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m;\n else if (knot < k)\n break;\n }\n return m;\n }\n\n /** Compute the multiplicity of the knot at the given index. */\n public getKnotMultiplicityAtIndex(knotIndex: number): number {\n let m = 0;\n if (knotIndex >= 0 && knotIndex < this.knots.length) {\n const knot = this.knots[knotIndex];\n ++m; // count this knot\n for (let i = knotIndex - 1; i >= 0; --i) {\n const k = this.knots[i];\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m; // found multiple to left of knot\n else if (knot > k)\n break;\n }\n for (let i = knotIndex + 1; i < this.knots.length; ++i) {\n const k = this.knots[i];\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m; // found multiple to right of knot\n else if (knot < k)\n break;\n }\n }\n return m;\n }\n\n /** Transform knots to span [0,1].\n * @returns false if and only if this.knotLength01 is trivial\n */\n public normalize(): boolean {\n if (this.knotLength01 < KnotVector.knotTolerance)\n return false;\n const divisor = 1.0 / this.knotLength01;\n const leftKnot = this.leftKnot;\n for (let i = 0; i < this.knots.length; ++i)\n this.knots[i] = (this.knots[i] - leftKnot) * divisor;\n // explicitly set rightKnot and its multiples to 1.0 to avoid round-off\n for (let i = this.rightKnotIndex - 1; i > this.leftKnotIndex && (this.knots[i] === this.knots[this.rightKnotIndex]); --i) this.knots[i] = 1.0;\n for (let i = this.rightKnotIndex + 1; i < this.knots.length && (this.knots[i] === this.knots[this.rightKnotIndex]); ++i) this.knots[i] = 1.0;\n this.knots[this.rightKnotIndex] = 1.0;\n this.setupFixedValues();\n return true;\n }\n\n /** install knot values from an array, optionally ignoring first and last.\n */\n public setKnots(knots: number[] | Float64Array, skipFirstAndLast?: boolean) {\n const numAllocate = skipFirstAndLast ? knots.length - 2 : knots.length;\n if (numAllocate !== this.knots.length)\n this.knots = new Float64Array(numAllocate);\n if (skipFirstAndLast) {\n for (let i = 1; i + 1 < knots.length; i++)\n this.knots[i - 1] = knots[i];\n\n } else {\n for (let i = 0; i < knots.length; i++)\n this.knots[i] = knots[i];\n }\n this.setupFixedValues();\n }\n\n /** Set knots to input array (CAPTURED) */\n public setKnotsCapture(knots: Float64Array) {\n this.knots = knots;\n this.setupFixedValues();\n }\n\n /**\n * Create knot vector with {degree-1} replicated knots at start and end, and uniform knots between.\n * @param numPoles Number of poles\n * @param degree degree of polynomial\n * @param a0 left knot value for active interval\n * @param a1 right knot value for active interval\n */\n public static createUniformClamped(numPoles: number, degree: number, a0: number, a1: number): KnotVector {\n const knots = new KnotVector(numPoles + degree - 1, degree);\n let k = 0;\n for (let m = 0; m < degree; m++)knots.knots[k++] = a0;\n const du = 1.0 / (numPoles - degree);\n for (let i = 1; i + degree < numPoles; i++)\n knots.knots[k++] = a0 + i * du * (a1 - a0);\n for (let m = 0; m < degree; m++)knots.knots[k++] = a1;\n knots.setupFixedValues();\n return knots;\n }\n /**\n * Create knot vector with wraparound knots at start and end, and uniform knots between.\n * @param numInterval number of intervals in knot space. (NOT POLE COUNT)\n * @param degree degree of polynomial\n * @param a0 left knot value for active interval\n * @param a1 right knot value for active interval\n */\n public static createUniformWrapped(numInterval: number, degree: number, a0: number, a1: number): KnotVector {\n const knots = new KnotVector(numInterval + 2 * degree - 1, degree);\n const du = 1.0 / numInterval;\n for (let i = 1 - degree, k = 0; i < numInterval + degree; i++, k++) {\n knots.knots[k] = Geometry.interpolate(a0, i * du, a1);\n }\n knots.setupFixedValues();\n return knots;\n }\n\n /**\n * Create knot vector with given knot values and degree.\n * @param knotArray knot values\n * @param degree degree of polynomial\n * @param skipFirstAndLast true to skip copying the first and last knot values.\n */\n public static create(knotArray: number[] | Float64Array, degree: number, skipFirstAndLast?: boolean): KnotVector {\n const numAllocate = skipFirstAndLast ? knotArray.length - 2 : knotArray.length;\n const knots = new KnotVector(numAllocate, degree);\n knots.setKnots(knotArray, skipFirstAndLast);\n return knots;\n }\n\n /**\n * Return the average of degree consecutive knots beginning at knotIndex.\n */\n public grevilleKnot(knotIndex: number): number {\n if (knotIndex < 0) return this.leftKnot;\n if (knotIndex > this.rightKnotIndex) return this.rightKnot;\n let sum = 0.0;\n for (let i = knotIndex; i < knotIndex + this.degree; i++)\n sum += this.knots[i];\n return sum / this.degree;\n }\n /** Return an array sized for a set of the basis function values. */\n public createBasisArray(): Float64Array { return new Float64Array(this.degree + 1); }\n /** Convert localFraction within the interval following an indexed knot to a knot value. */\n public baseKnotFractionToKnot(knotIndex0: number, localFraction: number): number {\n const knot0 = this.knots[knotIndex0];\n localFraction = Geometry.clamp(localFraction, 0, 1);\n return knot0 + localFraction * (this.knots[knotIndex0 + 1] - knot0);\n }\n /** Convert localFraction within an indexed bezier span to a knot value. */\n public spanFractionToKnot(spanIndex: number, localFraction: number): number {\n const k = this.spanIndexToLeftKnotIndex(spanIndex);\n localFraction = Geometry.clamp(localFraction, 0, 1);\n return this.knots[k] + localFraction * (this.knots[k + 1] - this.knots[k]);\n }\n /** Convert localFraction within an indexed bezier span to fraction of active knot range. */\n public spanFractionToFraction(spanIndex: number, localFraction: number): number {\n const knot = this.spanFractionToKnot(spanIndex, localFraction);\n return (knot - this.leftKnot) / (this.rightKnot - this.leftKnot);\n }\n /** Return fraction of active knot range to knot value. */\n public fractionToKnot(fraction: number): number {\n fraction = Geometry.clamp(fraction, 0, 1); // B-splines are not extendable\n return Geometry.interpolate(this.knots[this.degree - 1], fraction, this.knots[this.knots.length - this.degree]);\n }\n /**\n * Evaluate the B-spline basis functions f[] at a parameter u in a knot span.\n * * This method implements the Mansfield-Cox-de Boor recurrence relation.\n * @param knotIndex0 index of the left knot of the span.\n * @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].\n * @param f preallocated output array of order basis function values\n * @returns true if and only if output array is sufficiently sized\n */\n public evaluateBasisFunctions(knotIndex0: number, u: number, f: Float64Array): boolean {\n if (f.length < this.degree + 1)\n return false;\n f[0] = 1.0;\n if (this.degree < 1)\n return true;\n // direct compute for linear part ...\n const u0 = this.knots[knotIndex0];\n const u1 = this.knots[knotIndex0 + 1];\n f[1] = (u - u0) / (u1 - u0);\n f[0] = 1.0 - f[1];\n if (this.degree < 2)\n return true;\n // Each iteration of the outer loop evaluates the basis functions of degree depth+1 using\n // one or two values of the basis functions of one less degree from the preceding iteration.\n for (let depth = 1; depth < this.degree; depth++) {\n let kLeft = knotIndex0 - depth;\n let kRight = kLeft + depth + 1;\n let gCarry = 0.0;\n for (let step = 0; step <= depth; step++) {\n const tLeft = this.knots[kLeft++];\n const tRight = this.knots[kRight++];\n const fraction = (u - tLeft) / (tRight - tLeft);\n const g1 = f[step] * fraction;\n const g0 = f[step] * (1.0 - fraction);\n f[step] = gCarry + g0;\n gCarry = g1;\n }\n f[depth + 1] = gCarry;\n // at this point, the head of f[] contains the depth+2 values at u\n // of the basis functions of degree depth+1 with support over [u0,u1)\n }\n return true;\n }\n\n /**\n * Evaluate basis functions f[], derivatives df[], and optional second derivatives ddf[] at a parameter u\n * in a knot span.\n * @param knotIndex0 index of the left knot of the span.\n * @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].\n * @param f preallocated output array of order basis function values\n * @param df preallocated output array of order basis derivative values\n * @param ddf optional preallocated output array of order basis second derivative values\n * @returns true if and only if output arrays are sufficiently sized\n */\n public evaluateBasisFunctions1(knotIndex0: number, u: number, f: Float64Array, df: Float64Array, ddf?: Float64Array): boolean {\n if (f.length < this.degree + 1)\n return false;\n if (df.length < this.degree + 1)\n return false;\n if (ddf && ddf.length < this.degree + 1)\n return false;\n f[0] = 1.0; df[0] = 0.0;\n if (this.degree < 1)\n return true;\n // direct compute for linear part ...\n const u0 = this.knots[knotIndex0];\n const u1 = this.knots[knotIndex0 + 1];\n // ah = 1/(u1-u0) is the derivative of fraction0\n // (-ah) is the derivative of fraction1.\n let ah = 1.0 / (u1 - u0);\n f[1] = (u - u0) * ah;\n f[0] = 1.0 - f[1];\n df[0] = -ah; df[1] = ah;\n if (ddf) { // first derivative started constant, second derivative started zero.\n ddf[0] = 0.0; ddf[1] = 0.0;\n }\n if (this.degree < 2)\n return true;\n for (let depth = 1; depth < this.degree; depth++) {\n let kLeft = knotIndex0 - depth;\n let kRight = kLeft + depth + 1;\n let gCarry = 0.0;\n let dgCarry = 0.0;\n let ddgCarry = 0.0;\n // f, df, ddf, are each row vectors with product of `step` linear terms.\n // f is multiplied on the right by matrix V. Each row has 2 nonzero entries (which sum to 1) (0,0,1-fraction, fraction,0,0,0)\n // Each row of the derivative dV is two entries (0,0, -1/h, 1/h,0,0,0)\n // Hence fnew = f * V\n // dfnew = df * V + f * dV\n // ddfnew = ddf * V + df*dV + df * dV + f * ddV\n // but ddV is zero so\n // ddfnew = ddf * V + 2 * df * dV\n for (let step = 0; step <= depth; step++) {\n const tLeft = this.knots[kLeft++];\n const tRight = this.knots[kRight++];\n ah = 1.0 / (tRight - tLeft);\n const fraction = (u - tLeft) * ah;\n const fraction1 = 1.0 - fraction;\n const g1 = f[step] * fraction;\n const g0 = f[step] * fraction1;\n const dg1 = df[step] * fraction + f[step] * ah;\n const dg0 = df[step] * fraction1 - f[step] * ah;\n const dfSave = 2.0 * df[step] * ah;\n f[step] = gCarry + g0;\n df[step] = dgCarry + dg0;\n gCarry = g1;\n dgCarry = dg1;\n if (ddf) { // do the backward reference to df before rewriting df !!!\n const ddg1 = ddf[step] * fraction + dfSave;\n const ddg0 = ddf[step] * fraction1 - dfSave;\n ddf[step] = ddgCarry + ddg0;\n ddgCarry = ddg1;\n }\n }\n f[depth + 1] = gCarry;\n df[depth + 1] = dgCarry;\n if (ddf)\n ddf[depth + 1] = ddgCarry;\n }\n return true;\n }\n /** Find the knot span bracketing knots[i] <= u < knots[i+1] and return i.\n * * If u has no such bracket, return the smaller index of the closest nontrivial bracket.\n * @param u value to bracket\n */\n public knotToLeftKnotIndex(u: number): number {\n for (let i = this.leftKnotIndex; i < this.rightKnotIndex; ++i) {\n if (u < this.knots[i + 1])\n return i;\n }\n // for u >= rightKnot, return left index of last nontrivial span\n for (let i = this.rightKnotIndex; i > this.leftKnotIndex; --i) {\n if (this.knots[i] - this.knots[i - 1] >= KnotVector.knotTolerance)\n return i - 1;\n }\n return this.rightKnotIndex - 1; // shouldn't get here\n }\n /**\n * Given a span index, return the index of the knot at its left.\n * @param spanIndex index of span\n */\n public spanIndexToLeftKnotIndex(spanIndex: number): number {\n const d = this.degree;\n if (spanIndex <= 0.0) return d - 1;\n return Math.min(spanIndex + d - 1, this.knots.length - d - 1);\n }\n /** Return the knot interval length of indexed bezier span. */\n public spanIndexToSpanLength(spanIndex: number): number {\n const k = this.spanIndexToLeftKnotIndex(spanIndex);\n return this.knots[k + 1] - this.knots[k];\n }\n /**\n * Given a span index, test if it is within range and has nonzero length.\n * * note that a false return does not imply there are no more spans. This may be a double knot (zero length span) followed by more real spans\n * @param spanIndex index of span to test.\n */\n public isIndexOfRealSpan(spanIndex: number): boolean {\n if (spanIndex >= 0 && spanIndex < this.numSpans)\n return !Geometry.isSmallMetricDistance(this.spanIndexToSpanLength(spanIndex));\n return false;\n }\n /** Reflect all knots so `leftKnot` and `rightKnot` are maintained but interval lengths reverse. */\n public reflectKnots() {\n const a = this.leftKnot;\n const b = this.rightKnot;\n const numKnots = this.knots.length;\n for (let i = 0; i < numKnots; i++)\n this.knots[i] = a + (b - this.knots[i]);\n this.knots.reverse();\n }\n\n /** Return a simple array form of the knots. Optionally replicate the first and last in classic over-clamped manner. */\n public static copyKnots(knots: number[] | Float64Array, degree: number, includeExtraEndKnot?: boolean, wrapMode?: BSplineWrapMode): number[] {\n const isExtraEndKnotPeriodic = (includeExtraEndKnot && wrapMode === BSplineWrapMode.OpenByAddingControlPoints);\n const leftIndex = degree - 1;\n const rightIndex = knots.length - degree;\n const a0 = knots[leftIndex];\n const a1 = knots[rightIndex];\n const delta = a1 - a0;\n const values: number[] = [];\n if (includeExtraEndKnot) {\n if (isExtraEndKnotPeriodic)\n values.push(knots[rightIndex - degree] - delta);\n else\n values.push(knots[0]);\n }\n for (const u of knots) {\n values.push(u);\n }\n if (includeExtraEndKnot) {\n if (isExtraEndKnotPeriodic)\n values.push(knots[leftIndex + degree] + delta);\n else\n values.push(knots[knots.length - 1]);\n }\n return values;\n }\n\n /** Return a simple array form of the knots. Optionally replicate the first and last in classic over-clamped manner. */\n public copyKnots(includeExtraEndKnot: boolean): number[] {\n const wrapMode = (includeExtraEndKnot && this.testClosable()) ? this.wrappable : undefined;\n return KnotVector.copyKnots(this.knots, this.degree, includeExtraEndKnot, wrapMode);\n }\n}\n"]}
|
|
1
|
+
{"version":3,"file":"KnotVector.js","sourceRoot":"","sources":["../../../src/bspline/KnotVector.ts"],"names":[],"mappings":"AAAA;;;+FAG+F;AAC/F;;GAEG;AAEH,OAAO,EAAE,MAAM,EAAE,MAAM,qBAAqB,CAAC;AAC7C,OAAO,EAAE,QAAQ,EAAE,MAAM,aAAa,CAAC;AACvC,OAAO,EAAE,WAAW,EAAE,MAAM,4BAA4B,CAAC;AAEzD;;;;GAIG;AACH,MAAM,CAAN,IAAY,eAeX;AAfD,WAAY,eAAe;IACzB,+BAA+B;IAC/B,qDAAQ,CAAA;IACR;;;;OAIG;IACH,+FAA6B,CAAA;IAC7B;;;;OAIG;IACH,mFAAuB,CAAA;AACzB,CAAC,EAfW,eAAe,KAAf,eAAe,QAe1B;AACD;;;;;;;;;;;;;;;GAeG;AACH,MAAM,OAAO,UAAU;IACrB,uCAAuC;IAChC,KAAK,CAAe;IAC3B,4DAA4D;IACrD,MAAM,CAAS;IACtB,0FAA0F;IAClF,MAAM,CAAS;IACvB,2FAA2F;IACnF,MAAM,CAAS;IACf,SAAS,CAAmB;IACpC,0DAA0D;IACnD,MAAM,CAAU,aAAa,GAAG,MAAM,CAAC;IAC9C,iGAAiG;IACjG,IAAW,QAAQ;QACjB,OAAO,IAAI,CAAC,MAAM,CAAC;IACrB,CAAC;IACD,kGAAkG;IAClG,IAAW,SAAS;QAClB,OAAO,IAAI,CAAC,MAAM,CAAC;IACrB,CAAC;IACD,oEAAoE;IACpE,IAAW,aAAa;QACtB,OAAO,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC;IACzB,CAAC;IACD,qEAAqE;IACrE,IAAW,cAAc;QACvB,OAAO,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC;IACzC,CAAC;IACD;;;OAGG;IACH,IAAW,SAAS;QAClB,OAAO,IAAI,CAAC,SAAS,KAAK,SAAS,CAAC,CAAC,CAAC,eAAe,CAAC,IAAI,CAAC,CAAC,CAAC,IAAI,CAAC,SAAS,CAAC;IAC9E,CAAC;IACD,IAAW,SAAS,CAAC,KAAsB;QACzC,IAAI,CAAC,SAAS,GAAG,KAAK,CAAC;IACzB,CAAC;IACD,gHAAgH;IAChH,IAAW,QAAQ;QACjB,OAAO,IAAI,CAAC,cAAc,GAAG,IAAI,CAAC,aAAa,CAAC;IAClD,CAAC;IACD;;;;OAIG;IACH,YAAoB,KAAuC,EAAE,MAAc,EAAE,QAA0B;QACrG,IAAI,CAAC,MAAM,GAAG,MAAM,CAAC;QACrB,IAAI,CAAC,SAAS,GAAG,QAAQ,CAAC;QAC1B,qHAAqH;QACrH,IAAI,CAAC,MAAM,GAAG,GAAG,CAAC;QAClB,IAAI,CAAC,MAAM,GAAG,GAAG,CAAC;QAClB,IAAI,KAAK,CAAC,OAAO,CAAC,KAAK,CAAC,EAAE,CAAC;YACzB,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;YAC5C,IAAI,CAAC,QAAQ,CAAC,KAAK,CAAC,CAAC;YACrB,IAAI,CAAC,gBAAgB,EAAE,CAAC;QAC1B,CAAC;aAAM,IAAI,KAAK,YAAY,YAAY,EAAE,CAAC;YACzC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC,KAAK,EAAE,CAAC;YAC3B,IAAI,CAAC,gBAAgB,EAAE,CAAC;QAC1B,CAAC;aAAM,CAAC,CAAC,qDAAqD;YAC5D,MAAM,QAAQ,GAAG,KAAK,CAAC;YACvB,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,QAAQ,CAAC,CAAC;QAC1C,CAAC;IACH,CAAC;IACD,iDAAiD;IAC1C,KAAK;QACV,OAAO,IAAI,UAAU,CAAC,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,SAAS,CAAC,CAAC;IACjE,CAAC;IACO,gBAAgB;QACtB,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC,IAAI,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC;YACvD,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;YAC1C,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC;QAC5D,CAAC;IACH,CAAC;IACD;;;OAGG;IACH,IAAW,YAAY;QACrB,OAAO,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC;IACnC,CAAC;IACD;;;;OAIG;IACI,YAAY,CAAC,IAAsB;QACxC,IAAI,IAAI,KAAK,SAAS;YACpB,IAAI,GAAG,IAAI,CAAC,SAAS,CAAC;QACxB,MAAM,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC;QAC3B,MAAM,aAAa,GAAG,IAAI,CAAC,aAAa,CAAC;QACzC,MAAM,cAAc,GAAG,IAAI,CAAC,cAAc,CAAC;QAC3C,IAAI,IAAI,KAAK,eAAe,CAAC,yBAAyB,EAAE,CAAC;YACvD,oFAAoF;YACpF,MAAM,MAAM,GAAG,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC;YAC9C,MAAM,UAAU,GAAG,cAAc,GAAG,aAAa,CAAC;YAClD,KAAK,IAAI,EAAE,GAAG,CAAC,EAAE,EAAE,GAAG,aAAa,GAAG,MAAM,EAAE,EAAE,EAAE,EAAE,CAAC;gBACnD,MAAM,EAAE,GAAG,EAAE,GAAG,UAAU,CAAC;gBAC3B,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC,GAAG,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBAChF,OAAO,KAAK,CAAC;YACjB,CAAC;YACD,OAAO,IAAI,CAAC;QACd,CAAC;QACD,IAAI,IAAI,KAAK,eAAe,CAAC,mBAAmB,EAAE,CAAC;YACjD,wEAAwE;YACxE,MAAM,WAAW,GAAG,MAAM,GAAG,CAAC,CAAC;YAC/B,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;YAC/B,MAAM,SAAS,GAAG,IAAI,CAAC,SAAS,CAAC;YACjC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,WAAW,EAAE,CAAC,EAAE,EAAE,CAAC;gBACrC,IAAI,IAAI,CAAC,GAAG,CAAC,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,aAAa,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBACpF,OAAO,KAAK,CAAC;gBACf,IAAI,IAAI,CAAC,GAAG,CAAC,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,cAAc,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;oBACtF,OAAO,KAAK,CAAC;YACjB,CAAC;YACD,OAAO,IAAI,CAAC;QACd,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,4CAA4C;IACrC,aAAa,CAAC,KAAiB;QACpC,IAAI,IAAI,CAAC,MAAM,KAAK,KAAK,CAAC,MAAM;YAC9B,OAAO,KAAK,CAAC;QACf,OAAO,WAAW,CAAC,aAAa,CAAC,IAAI,CAAC,KAAK,EAAE,KAAK,CAAC,KAAK,EAAE,UAAU,CAAC,aAAa,CAAC,CAAC;IACtF,CAAC;IACD,yEAAyE;IAClE,mBAAmB,CAAC,IAAY;QACrC,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,MAAM,CAAC,IAAI,IAAI,CAAC,KAAK,EAAE,CAAC;YAC3B,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;gBAC/C,EAAE,CAAC,CAAC;iBACD,IAAI,IAAI,GAAG,CAAC;gBACf,MAAM;QACV,CAAC;QACD,OAAO,CAAC,CAAC;IACX,CAAC;IACD,+DAA+D;IACxD,0BAA0B,CAAC,SAAiB;QACjD,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,IAAI,SAAS,IAAI,CAAC,IAAI,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC;YACpD,MAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC;YACnC,EAAE,CAAC,CAAC,CAAC,kBAAkB;YACvB,KAAK,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,EAAE,CAAC,IAAI,CAAC,EAAE,EAAE,CAAC,EAAE,CAAC;gBACxC,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;gBACxB,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;oBAC/C,EAAE,CAAC,CAAC,CAAC,iCAAiC;qBACnC,IAAI,IAAI,GAAG,CAAC;oBACf,MAAM;YACV,CAAC;YACD,KAAK,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,EAAE,CAAC,EAAE,CAAC;gBACvD,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;gBACxB,IAAI,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,UAAU,CAAC,aAAa;oBAC/C,EAAE,CAAC,CAAC,CAAC,kCAAkC;qBACpC,IAAI,IAAI,GAAG,CAAC;oBACf,MAAM;YACV,CAAC;QACH,CAAC;QACD,OAAO,CAAC,CAAC;IACX,CAAC;IACD;;;OAGG;IACI,SAAS;QACd,IAAI,IAAI,CAAC,YAAY,GAAG,UAAU,CAAC,aAAa;YAC9C,OAAO,KAAK,CAAC;QACf,MAAM,OAAO,GAAG,GAAG,GAAG,IAAI,CAAC,YAAY,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,QAAQ,CAAC;QAC/B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,EAAE,CAAC;YACxC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,GAAG,OAAO,CAAC;QACvD,uEAAuE;QACvE,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,aAAa,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,EAAE,EAAE,CAAC;YACtH,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACtB,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,CAAC,EAAE,EAAE,CAAC;YACrH,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACtB,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,cAAc,CAAC,GAAG,GAAG,CAAC;QACtC,IAAI,CAAC,gBAAgB,EAAE,CAAC;QACxB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,6EAA6E;IACtE,QAAQ,CAAC,KAA8B,EAAE,gBAA0B;QACxE,MAAM,WAAW,GAAG,gBAAgB,CAAC,CAAC,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,MAAM,CAAC;QACvE,IAAI,WAAW,KAAK,IAAI,CAAC,KAAK,CAAC,MAAM;YACnC,IAAI,CAAC,KAAK,GAAG,IAAI,YAAY,CAAC,WAAW,CAAC,CAAC;QAC7C,IAAI,gBAAgB,EAAE,CAAC;YACrB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,KAAK,CAAC,MAAM,EAAE,CAAC,EAAE;gBACvC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC;QACjC,CAAC;aAAM,CAAC;YACN,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,MAAM,EAAE,CAAC,EAAE;gBACnC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC;QAC7B,CAAC;QACD,IAAI,CAAC,gBAAgB,EAAE,CAAC;IAC1B,CAAC;IACD,4CAA4C;IACrC,eAAe,CAAC,KAAmB;QACxC,IAAI,CAAC,KAAK,GAAG,KAAK,CAAC;QACnB,IAAI,CAAC,gBAAgB,EAAE,CAAC;IAC1B,CAAC;IACD;;;;;;OAMG;IACI,MAAM,CAAC,oBAAoB,CAAC,QAAgB,EAAE,MAAc,EAAE,EAAU,EAAE,EAAU;QACzF,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,QAAQ,GAAG,MAAM,GAAG,CAAC,EAAE,MAAM,CAAC,CAAC;QAC5D,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,EAAE,CAAC,EAAE;YAC7B,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC;QACxB,MAAM,EAAE,GAAG,GAAG,GAAG,CAAC,QAAQ,GAAG,MAAM,CAAC,CAAC;QACrC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,GAAG,QAAQ,EAAE,CAAC,EAAE;YACxC,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QAC7C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,MAAM,EAAE,CAAC,EAAE;YAC7B,KAAK,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC;QACxB,KAAK,CAAC,gBAAgB,EAAE,CAAC;QACzB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,WAAmB,EAAE,MAAc,EAAE,EAAU,EAAE,EAAU;QAC5F,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,WAAW,GAAG,CAAC,GAAG,MAAM,GAAG,CAAC,EAAE,MAAM,CAAC,CAAC;QACnE,MAAM,EAAE,GAAG,GAAG,GAAG,WAAW,CAAC;QAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,GAAG,MAAM,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,WAAW,GAAG,MAAM,EAAE,CAAC,EAAE,EAAE,CAAC,EAAE;YAChE,KAAK,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,QAAQ,CAAC,WAAW,CAAC,EAAE,EAAE,CAAC,GAAG,EAAE,EAAE,EAAE,CAAC,CAAC;QACxD,KAAK,CAAC,gBAAgB,EAAE,CAAC;QACzB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,MAAM,CAAC,SAAkC,EAAE,MAAc,EAAE,gBAA0B;QACjG,MAAM,WAAW,GAAG,gBAAgB,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,MAAM,CAAC;QAC/E,MAAM,KAAK,GAAG,IAAI,UAAU,CAAC,WAAW,EAAE,MAAM,CAAC,CAAC;QAClD,KAAK,CAAC,QAAQ,CAAC,SAAS,EAAE,gBAAgB,CAAC,CAAC;QAC5C,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;OAIG;IACI,YAAY,CAAC,SAAiB;QACnC,IAAI,SAAS,GAAG,CAAC;YACf,OAAO,IAAI,CAAC,QAAQ,CAAC;QACvB,IAAI,SAAS,GAAG,IAAI,CAAC,cAAc;YACjC,OAAO,IAAI,CAAC,SAAS,CAAC;QACxB,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC;QAClC,IAAI,GAAG,GAAG,GAAG,CAAC;QACd,KAAK,IAAI,CAAC,GAAG,SAAS,EAAE,CAAC,GAAG,SAAS,GAAG,IAAI,CAAC,MAAM,EAAE,CAAC,EAAE;YACtD,GAAG,IAAI,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACvB,OAAO,GAAG,GAAG,IAAI,CAAC,MAAM,CAAC;IAC3B,CAAC;IACD,oHAAoH;IAC7G,gBAAgB;QACrB,OAAO,IAAI,YAAY,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC;IAC3C,CAAC;IACD,2FAA2F;IACpF,sBAAsB,CAAC,UAAkB,EAAE,aAAqB;QACrE,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QACrC,aAAa,GAAG,QAAQ,CAAC,KAAK,CAAC,aAAa,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACpD,OAAO,KAAK,GAAG,aAAa,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC;IACtE,CAAC;IACD,2EAA2E;IACpE,kBAAkB,CAAC,SAAiB,EAAE,aAAqB;QAChE,MAAM,CAAC,GAAG,IAAI,CAAC,wBAAwB,CAAC,SAAS,CAAC,CAAC;QACnD,aAAa,GAAG,QAAQ,CAAC,KAAK,CAAC,aAAa,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACpD,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,aAAa,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,CAAC;IACD,4FAA4F;IACrF,sBAAsB,CAAC,SAAiB,EAAE,aAAqB;QACpE,MAAM,IAAI,GAAG,IAAI,CAAC,kBAAkB,CAAC,SAAS,EAAE,aAAa,CAAC,CAAC;QAC/D,OAAO,CAAC,IAAI,GAAG,IAAI,CAAC,QAAQ,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC;IACnE,CAAC;IACD,0DAA0D;IACnD,cAAc,CAAC,QAAgB;QACpC,QAAQ,GAAG,QAAQ,CAAC,KAAK,CAAC,QAAQ,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,+BAA+B;QAC1E,OAAO,QAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,GAAG,CAAC,CAAC,EAAE,QAAQ,EAAE,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;IAClH,CAAC;IACO,iBAAiB,CAAC,UAAkB,EAAE,CAAS;QACrD,MAAM,WAAW,GAAG,UAAU,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC,IAAI,UAAU,GAAG,IAAI,CAAC,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC;QAClG,MAAM,SAAS,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,IAAI,CAAC,IAAI,CAAC,IAAI,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QACjF,OAAO,WAAW,IAAI,SAAS,CAAC;IAClC,CAAC;IACD;;;;;;;OAOG;IACI,sBAAsB,CAAC,UAAkB,EAAE,CAAS,EAAE,CAAe;QAC1E,IAAI,CAAC,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC5B,OAAO,KAAK,CAAC;QACf,MAAM,CAAC,GAAG,EAAE,CAAC,IAAI,CAAC,iBAAiB,CAAC,UAAU,EAAE,CAAC,CAAC,EAAE,yBAAyB,CAAC,CAAC;QAC/E,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACX,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,iCAAiC;QACjC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAClC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QACtC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QAC5B,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAClB,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,yFAAyF;QACzF,2FAA2F;QAC3F,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,EAAE,CAAC;YACjD,IAAI,KAAK,GAAG,UAAU,GAAG,KAAK,CAAC;YAC/B,IAAI,MAAM,GAAG,UAAU,GAAG,CAAC,CAAC;YAC5B,IAAI,MAAM,GAAG,GAAG,CAAC;YACjB,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,IAAI,KAAK,EAAE,IAAI,EAAE,EAAE,CAAC;gBACzC,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC,CAAC;gBAClC,MAAM,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC;gBACpC,MAAM,QAAQ,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC;gBAChD,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,QAAQ,CAAC;gBAC9B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,GAAG,GAAG,QAAQ,CAAC,CAAC;gBACtC,CAAC,CAAC,IAAI,CAAC,GAAG,MAAM,GAAG,EAAE,CAAC;gBACtB,MAAM,GAAG,EAAE,CAAC;YACd,CAAC;YACD,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC;YACtB,kEAAkE;YAClE,qEAAqE;QACvE,CAAC;QACD,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;;;;;;OASG;IACI,uBAAuB,CAC5B,UAAkB,EAAE,CAAS,EAAE,CAAe,EAAE,EAAgB,EAAE,GAAkB;QAEpF,IAAI,CAAC,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC5B,OAAO,KAAK,CAAC;QACf,IAAI,EAAE,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YAC7B,OAAO,KAAK,CAAC;QACf,IAAI,GAAG,IAAI,GAAG,CAAC,MAAM,GAAG,IAAI,CAAC,MAAM,GAAG,CAAC;YACrC,OAAO,KAAK,CAAC;QACf,MAAM,CAAC,GAAG,EAAE,CAAC,IAAI,CAAC,iBAAiB,CAAC,UAAU,EAAE,CAAC,CAAC,EAAE,yBAAyB,CAAC,CAAC;QAC/E,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACX,EAAE,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACZ,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,iCAAiC;QACjC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,CAAC,CAAC;QAClC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC;QACtC,gDAAgD;QAChD,qCAAqC;QACrC,IAAI,EAAE,GAAG,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;QACzB,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,EAAE,CAAC;QACrB,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAClB,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC;QAAC,EAAE,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;QACxB,IAAI,GAAG,EAAE,CAAC,CAAC,qEAAqE;YAC9E,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;YACb,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,CAAC;QACD,IAAI,IAAI,CAAC,MAAM,GAAG,CAAC;YACjB,OAAO,IAAI,CAAC;QACd,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,IAAI,CAAC,MAAM,EAAE,KAAK,EAAE,EAAE,CAAC;YACjD,IAAI,KAAK,GAAG,UAAU,GAAG,KAAK,CAAC;YAC/B,IAAI,MAAM,GAAG,KAAK,GAAG,KAAK,GAAG,CAAC,CAAC;YAC/B,IAAI,MAAM,GAAG,GAAG,CAAC;YACjB,IAAI,OAAO,GAAG,GAAG,CAAC;YAClB,IAAI,QAAQ,GAAG,GAAG,CAAC;YACnB,wEAAwE;YACxE,8HAA8H;YAC9H,yEAAyE;YACzE,qBAAqB;YACrB,+BAA+B;YAC/B,oDAAoD;YACpD,qBAAqB;YACrB,sCAAsC;YACtC,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,IAAI,KAAK,EAAE,IAAI,EAAE,EAAE,CAAC;gBACzC,MAAM,KAAK,GAAG,IAAI,CAAC,KAAK,CAAC,KAAK,EAAE,CAAC,CAAC;gBAClC,MAAM,MAAM,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,EAAE,CAAC,CAAC;gBACpC,EAAE,GAAG,GAAG,GAAG,CAAC,MAAM,GAAG,KAAK,CAAC,CAAC;gBAC5B,MAAM,QAAQ,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,EAAE,CAAC;gBAClC,MAAM,SAAS,GAAG,GAAG,GAAG,QAAQ,CAAC;gBACjC,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,QAAQ,CAAC;gBAC9B,MAAM,EAAE,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,SAAS,CAAC;gBAC/B,MAAM,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBAC/C,MAAM,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,SAAS,GAAG,CAAC,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBAChD,MAAM,MAAM,GAAG,GAAG,GAAG,EAAE,CAAC,IAAI,CAAC,GAAG,EAAE,CAAC;gBACnC,CAAC,CAAC,IAAI,CAAC,GAAG,MAAM,GAAG,EAAE,CAAC;gBACtB,EAAE,CAAC,IAAI,CAAC,GAAG,OAAO,GAAG,GAAG,CAAC;gBACzB,MAAM,GAAG,EAAE,CAAC;gBACZ,OAAO,GAAG,GAAG,CAAC;gBACd,IAAI,GAAG,EAAE,CAAC,CAAC,sDAAsD;oBAC/D,MAAM,IAAI,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,MAAM,CAAC;oBAC3C,MAAM,IAAI,GAAG,GAAG,CAAC,IAAI,CAAC,GAAG,SAAS,GAAG,MAAM,CAAC;oBAC5C,GAAG,CAAC,IAAI,CAAC,GAAG,QAAQ,GAAG,IAAI,CAAC;oBAC5B,QAAQ,GAAG,IAAI,CAAC;gBAClB,CAAC;YACH,CAAC;YACD,CAAC,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC;YACtB,EAAE,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,OAAO,CAAC;YACxB,IAAI,GAAG;gBACL,GAAG,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,QAAQ,CAAC;QAC9B,CAAC;QACD,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,mBAAmB,CAAC,CAAS;QAClC,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,aAAa,EAAE,CAAC,GAAG,IAAI,CAAC,cAAc,EAAE,EAAE,CAAC,EAAE,CAAC;YAC9D,IAAI,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC;gBACvB,OAAO,CAAC,CAAC;QACb,CAAC;QACD,gEAAgE;QAChE,KAAK,IAAI,CAAC,GAAG,IAAI,CAAC,cAAc,EAAE,CAAC,GAAG,IAAI,CAAC,aAAa,EAAE,EAAE,CAAC,EAAE,CAAC;YAC9D,IAAI,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,UAAU,CAAC,aAAa;gBAC/D,OAAO,CAAC,GAAG,CAAC,CAAC;QACjB,CAAC;QACD,OAAO,IAAI,CAAC,cAAc,GAAG,CAAC,CAAC,CAAC,qBAAqB;IACvD,CAAC;IACD;;;OAGG;IACI,wBAAwB,CAAC,SAAiB;QAC/C,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;QACtB,IAAI,SAAS,IAAI,GAAG;YAClB,OAAO,CAAC,GAAG,CAAC,CAAC;QACf,OAAO,IAAI,CAAC,GAAG,CAAC,SAAS,GAAG,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAChE,CAAC;IACD,8DAA8D;IACvD,qBAAqB,CAAC,SAAiB;QAC5C,MAAM,CAAC,GAAG,IAAI,CAAC,wBAAwB,CAAC,SAAS,CAAC,CAAC;QACnD,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;IAC3C,CAAC;IACD;;;;;OAKG;IACI,iBAAiB,CAAC,SAAiB;QACxC,IAAI,SAAS,IAAI,CAAC,IAAI,SAAS,GAAG,IAAI,CAAC,QAAQ;YAC7C,OAAO,CAAC,QAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,qBAAqB,CAAC,SAAS,CAAC,CAAC,CAAC;QAChF,OAAO,KAAK,CAAC;IACf,CAAC;IACD,wGAAwG;IACjG,YAAY;QACjB,MAAM,CAAC,GAAG,IAAI,CAAC,QAAQ,CAAC;QACxB,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC;QACzB,MAAM,QAAQ,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC;QACnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,EAAE;YAC/B,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1C,IAAI,CAAC,KAAK,CAAC,OAAO,EAAE,CAAC;IACvB,CAAC;IACD,uHAAuH;IAChH,MAAM,CAAC,SAAS,CACrB,KAA8B,EAAE,MAAc,EAAE,mBAA6B,EAAE,QAA0B;QAEzG,MAAM,sBAAsB,GAAG,CAAC,mBAAmB,IAAI,QAAQ,KAAK,eAAe,CAAC,yBAAyB,CAAC,CAAC;QAC/G,MAAM,SAAS,GAAG,MAAM,GAAG,CAAC,CAAC;QAC7B,MAAM,UAAU,GAAG,KAAK,CAAC,MAAM,GAAG,MAAM,CAAC;QACzC,MAAM,EAAE,GAAG,KAAK,CAAC,SAAS,CAAC,CAAC;QAC5B,MAAM,EAAE,GAAG,KAAK,CAAC,UAAU,CAAC,CAAC;QAC7B,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,MAAM,GAAa,EAAE,CAAC;QAC5B,IAAI,mBAAmB,EAAE,CAAC;YACxB,IAAI,sBAAsB;gBACxB,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,UAAU,GAAG,MAAM,CAAC,GAAG,KAAK,CAAC,CAAC;;gBAEhD,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;QAC1B,CAAC;QACD,KAAK,MAAM,CAAC,IAAI,KAAK,EAAE,CAAC;YACtB,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACjB,CAAC;QACD,IAAI,mBAAmB,EAAE,CAAC;YACxB,IAAI,sBAAsB;gBACxB,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,GAAG,MAAM,CAAC,GAAG,KAAK,CAAC,CAAC;;gBAE/C,MAAM,CAAC,IAAI,CAAC,KAAK,CAAC,KAAK,CAAC,MAAM,GAAG,CAAC,CAAC,CAAC,CAAC;QACzC,CAAC;QACD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,uHAAuH;IAChH,SAAS,CAAC,mBAA4B;QAC3C,MAAM,QAAQ,GAAG,CAAC,mBAAmB,IAAI,IAAI,CAAC,YAAY,EAAE,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,SAAS,CAAC;QAC3F,OAAO,UAAU,CAAC,SAAS,CAAC,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,MAAM,EAAE,mBAAmB,EAAE,QAAQ,CAAC,CAAC;IACtF,CAAC","sourcesContent":["/*---------------------------------------------------------------------------------------------\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\n* See LICENSE.md in the project root for license terms and full copyright notice.\n*--------------------------------------------------------------------------------------------*/\n/** @packageDocumentation\n * @module Bspline\n */\n\nimport { assert } from \"@itwin/core-bentley\";\nimport { Geometry } from \"../Geometry\";\nimport { NumberArray } from \"../geometry3d/PointHelpers\";\n\n/**\n * B-spline curve and surface types in this library are non-periodic. But they can be created from legacy periodic data.\n * This enumeration lists the possible ways a B-spline object can have been created from legacy periodic data.\n * @public\n */\nexport enum BSplineWrapMode {\n /** No conversion performed. */\n None = 0,\n /**\n * The legacy periodic B-spline data was opened up by adding `degree` wrap-around poles.\n * * This is typical of B-spline curves and surfaces constructed with maximum `degree - 1` continuity.\n * * Knots are unaffected by this conversion.\n */\n OpenByAddingControlPoints = 1,\n /**\n * The legacy periodic B-spline data was opened up by removing `degree` exterior knots.\n * * This is typical of rational B-spline curves representing full circles and ellipses.\n * * Poles are unaffected by this conversion.\n */\n OpenByRemovingKnots = 2,\n}\n/**\n * Array of non-decreasing numbers acting as a knot vector for B-spline curves and surfaces.\n *\n * * Essential identity: numKnots = numPoles + order - 2 = numPoles + degree - 1\n * * Various B-spline libraries have confusion over how many \"end knots\" are needed. Many libraries (including MicroStation\n * and Parasolid) demand order knots at each end for clamping. However, only order-1 are really needed. This class uses the\n * order-1 convention.\n * * A span is a single interval of the knots.\n * * The left knot of the span with index `k>=0` is the knot with index `k+degree-1`.\n * * A knot vector is clamped when the first `degree` knots are equal and the last `degree` knots are equal.\n * * The \"active knot interval\" is the subset of the knot vector sans its first and last `degree-1` knots, and serves as\n * the parametric domain of the associated B-spline object.\n * * This class provides queries to convert among spanIndex, knotIndex, spanFraction, fraction of knot range, and knot.\n * * Callers need to distinguish core computational inputs such as left knot index, knot value, span index, and span fraction.\n * @public\n */\nexport class KnotVector {\n /** The simple array of knot values. */\n public knots: Float64Array;\n /** The degree of basis functions defined in these knots. */\n public degree: number;\n /** The leftmost knot value (of the active interval, ignoring unclamped leading knots). */\n private _knot0: number;\n /** The rightmost knot value (of the active interval, ignoring unclamped leading knots). */\n private _knot1: number;\n private _wrapMode?: BSplineWrapMode;\n /** Tolerance for considering two knots to be the same. */\n public static readonly knotTolerance = 1.0e-9;\n /** Return the leftmost knot value (of the active interval, ignoring unclamped leading knots). */\n public get leftKnot() {\n return this._knot0;\n }\n /** Return the rightmost knot value (of the active interval, ignoring unclamped leading knots). */\n public get rightKnot() {\n return this._knot1;\n }\n /** Return the index of the leftmost knot of the active interval. */\n public get leftKnotIndex() {\n return this.degree - 1;\n }\n /** Return the index of the rightmost knot of the active interval. */\n public get rightKnotIndex() {\n return this.knots.length - this.degree;\n }\n /**\n * Whether this KnotVector was created by converting legacy periodic data during deserialization. The conversion used\n * is specified by BSplineWrapMode, and is reversed at serialization time.\n */\n public get wrappable() {\n return this._wrapMode === undefined ? BSplineWrapMode.None : this._wrapMode;\n }\n public set wrappable(value: BSplineWrapMode) {\n this._wrapMode = value;\n }\n /** Return the number of Bezier spans. Note that this includes zero-length spans if there are repeated knots. */\n public get numSpans() {\n return this.rightKnotIndex - this.leftKnotIndex;\n }\n /**\n * Private constructor.\n * * If `knots` is a number array or Float64Array, then its values are copied to the instance array.\n * * If `knots` is a number, the instance array is allocated to this size but left as zeros.\n */\n private constructor(knots: number[] | Float64Array | number, degree: number, wrapMode?: BSplineWrapMode) {\n this.degree = degree;\n this._wrapMode = wrapMode;\n // default values to satisfy compiler; real values happen in setupFixedValues or the final else clause defers to user\n this._knot0 = 0.0;\n this._knot1 = 1.0;\n if (Array.isArray(knots)) {\n this.knots = new Float64Array(knots.length);\n this.setKnots(knots);\n this.setupFixedValues();\n } else if (knots instanceof Float64Array) {\n this.knots = knots.slice();\n this.setupFixedValues();\n } else { // caller is responsible for filling array separately\n const knotSize = knots;\n this.knots = new Float64Array(knotSize);\n }\n }\n /** Copy degree and knots to a new KnotVector. */\n public clone(): KnotVector {\n return new KnotVector(this.knots, this.degree, this.wrappable);\n }\n private setupFixedValues() {\n if (this.degree > 0 && this.knots.length > this.degree) {\n this._knot0 = this.knots[this.degree - 1];\n this._knot1 = this.knots[this.knots.length - this.degree];\n }\n }\n /**\n * Return the length of the active knot interval.\n * * This is the size of (one dimension of) the parametric domain for the associated B-spline object.\n */\n public get knotLength01(): number {\n return this._knot1 - this._knot0;\n }\n /**\n * Returns true if all numeric values have wraparound conditions that allow the knots to be closed with specified\n * wrap mode.\n * @param mode optional test mode. If undefined, use this.wrappable.\n */\n public testClosable(mode?: BSplineWrapMode): boolean {\n if (mode === undefined)\n mode = this.wrappable;\n const degree = this.degree;\n const leftKnotIndex = this.leftKnotIndex;\n const rightKnotIndex = this.rightKnotIndex;\n if (mode === BSplineWrapMode.OpenByAddingControlPoints) {\n // maximum continuity mode: we expect degree periodically extended knots at each end\n const period = this.rightKnot - this.leftKnot;\n const indexDelta = rightKnotIndex - leftKnotIndex;\n for (let k0 = 0; k0 < leftKnotIndex + degree; k0++) {\n const k1 = k0 + indexDelta;\n if (Math.abs(this.knots[k0] + period - this.knots[k1]) >= KnotVector.knotTolerance)\n return false;\n }\n return true;\n }\n if (mode === BSplineWrapMode.OpenByRemovingKnots) {\n // legacy periodic mode: we expect multiplicity degree knots at each end\n const numRepeated = degree - 1;\n const leftKnot = this.leftKnot;\n const rightKnot = this.rightKnot;\n for (let i = 0; i < numRepeated; i++) {\n if (Math.abs(leftKnot - this.knots[leftKnotIndex - i - 1]) >= KnotVector.knotTolerance)\n return false;\n if (Math.abs(rightKnot - this.knots[rightKnotIndex + i + 1]) >= KnotVector.knotTolerance)\n return false;\n }\n return true;\n }\n return false;\n }\n /** Test matching degree and knot values. */\n public isAlmostEqual(other: KnotVector): boolean {\n if (this.degree !== other.degree)\n return false;\n return NumberArray.isAlmostEqual(this.knots, other.knots, KnotVector.knotTolerance);\n }\n /** Compute the multiplicity of the input knot, or zero if not a knot. */\n public getKnotMultiplicity(knot: number): number {\n let m = 0;\n for (const k of this.knots) {\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m;\n else if (knot < k)\n break;\n }\n return m;\n }\n /** Compute the multiplicity of the knot at the given index. */\n public getKnotMultiplicityAtIndex(knotIndex: number): number {\n let m = 0;\n if (knotIndex >= 0 && knotIndex < this.knots.length) {\n const knot = this.knots[knotIndex];\n ++m; // count this knot\n for (let i = knotIndex - 1; i >= 0; --i) {\n const k = this.knots[i];\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m; // found multiple to left of knot\n else if (knot > k)\n break;\n }\n for (let i = knotIndex + 1; i < this.knots.length; ++i) {\n const k = this.knots[i];\n if (Math.abs(k - knot) < KnotVector.knotTolerance)\n ++m; // found multiple to right of knot\n else if (knot < k)\n break;\n }\n }\n return m;\n }\n /**\n * Transform knots such that the active knot range becomes [0,1].\n * @returns false if and only if `this.knotLength01` is trivial.\n */\n public normalize(): boolean {\n if (this.knotLength01 < KnotVector.knotTolerance)\n return false;\n const divisor = 1.0 / this.knotLength01;\n const leftKnot = this.leftKnot;\n for (let i = 0; i < this.knots.length; ++i)\n this.knots[i] = (this.knots[i] - leftKnot) * divisor;\n // explicitly set rightKnot and its multiples to 1.0 to avoid round-off\n for (let i = this.rightKnotIndex - 1; i > this.leftKnotIndex && (this.knots[i] === this.knots[this.rightKnotIndex]); --i)\n this.knots[i] = 1.0;\n for (let i = this.rightKnotIndex + 1; i < this.knots.length && (this.knots[i] === this.knots[this.rightKnotIndex]); ++i)\n this.knots[i] = 1.0;\n this.knots[this.rightKnotIndex] = 1.0;\n this.setupFixedValues();\n return true;\n }\n /** Install knot values from an array, optionally ignoring first and last. */\n public setKnots(knots: number[] | Float64Array, skipFirstAndLast?: boolean) {\n const numAllocate = skipFirstAndLast ? knots.length - 2 : knots.length;\n if (numAllocate !== this.knots.length)\n this.knots = new Float64Array(numAllocate);\n if (skipFirstAndLast) {\n for (let i = 1; i + 1 < knots.length; i++)\n this.knots[i - 1] = knots[i];\n } else {\n for (let i = 0; i < knots.length; i++)\n this.knots[i] = knots[i];\n }\n this.setupFixedValues();\n }\n /** Set knots to input array (CAPTURED). */\n public setKnotsCapture(knots: Float64Array) {\n this.knots = knots;\n this.setupFixedValues();\n }\n /**\n * Create knot vector with {degree-1} replicated knots at start and end, and uniform knots between.\n * @param numPoles number of poles.\n * @param degree degree of polynomial.\n * @param a0 left knot value for active interval.\n * @param a1 right knot value for active interval.\n */\n public static createUniformClamped(numPoles: number, degree: number, a0: number, a1: number): KnotVector {\n const knots = new KnotVector(numPoles + degree - 1, degree);\n let k = 0;\n for (let m = 0; m < degree; m++)\n knots.knots[k++] = a0;\n const du = 1.0 / (numPoles - degree);\n for (let i = 1; i + degree < numPoles; i++)\n knots.knots[k++] = a0 + i * du * (a1 - a0);\n for (let m = 0; m < degree; m++)\n knots.knots[k++] = a1;\n knots.setupFixedValues();\n return knots;\n }\n /**\n * Create knot vector with wraparound knots at start and end, and uniform knots between.\n * @param numInterval the number of intervals into which to uniformly divide the active knot interval `[a0,a1]`,\n * creating `numInterval-1` equally spaced interior knots between `a0` and `a1`.\n * This number is equal to the number of Bezier spans in the associated B-spline object.\n * It is _not_ the pole count.\n * @param degree degree of polynomial.\n * @param a0 left knot value for active interval.\n * @param a1 right knot value for active interval.\n */\n public static createUniformWrapped(numInterval: number, degree: number, a0: number, a1: number): KnotVector {\n const knots = new KnotVector(numInterval + 2 * degree - 1, degree);\n const du = 1.0 / numInterval;\n for (let i = 1 - degree, k = 0; i < numInterval + degree; i++, k++)\n knots.knots[k] = Geometry.interpolate(a0, i * du, a1);\n knots.setupFixedValues();\n return knots;\n }\n /**\n * Create knot vector with given knot values and degree.\n * @param knotArray knot values.\n * @param degree degree of polynomial.\n * @param skipFirstAndLast true to skip copying the first and last knot values.\n */\n public static create(knotArray: number[] | Float64Array, degree: number, skipFirstAndLast?: boolean): KnotVector {\n const numAllocate = skipFirstAndLast ? knotArray.length - 2 : knotArray.length;\n const knots = new KnotVector(numAllocate, degree);\n knots.setKnots(knotArray, skipFirstAndLast);\n return knots;\n }\n /**\n * Return the average of degree consecutive knots beginning at knotIndex.\n * * If `knotIndex` is negative, return `leftKnot`.\n * * If `knotIndex > rightKnotIndex` return `rightKnot`.\n */\n public grevilleKnot(knotIndex: number): number {\n if (knotIndex < 0)\n return this.leftKnot;\n if (knotIndex > this.rightKnotIndex)\n return this.rightKnot;\n knotIndex = Math.floor(knotIndex);\n let sum = 0.0;\n for (let i = knotIndex; i < knotIndex + this.degree; i++)\n sum += this.knots[i];\n return sum / this.degree;\n }\n /** Return an array of size `degree + 1`, e.g., to hold the set of relevant basis function values at a parameter. */\n public createBasisArray(): Float64Array {\n return new Float64Array(this.degree + 1);\n }\n /** Convert localFraction within the interval following an indexed knot to a knot value. */\n public baseKnotFractionToKnot(knotIndex0: number, localFraction: number): number {\n const knot0 = this.knots[knotIndex0];\n localFraction = Geometry.clamp(localFraction, 0, 1);\n return knot0 + localFraction * (this.knots[knotIndex0 + 1] - knot0);\n }\n /** Convert localFraction within an indexed bezier span to a knot value. */\n public spanFractionToKnot(spanIndex: number, localFraction: number): number {\n const k = this.spanIndexToLeftKnotIndex(spanIndex);\n localFraction = Geometry.clamp(localFraction, 0, 1);\n return this.knots[k] + localFraction * (this.knots[k + 1] - this.knots[k]);\n }\n /** Convert localFraction within an indexed bezier span to fraction of active knot range. */\n public spanFractionToFraction(spanIndex: number, localFraction: number): number {\n const knot = this.spanFractionToKnot(spanIndex, localFraction);\n return (knot - this.leftKnot) / (this.rightKnot - this.leftKnot);\n }\n /** Return fraction of active knot range to knot value. */\n public fractionToKnot(fraction: number): number {\n fraction = Geometry.clamp(fraction, 0, 1); // B-splines are not extendable\n return Geometry.interpolate(this.knots[this.degree - 1], fraction, this.knots[this.knots.length - this.degree]);\n }\n private isKnotInValidSpan(knotIndex0: number, u: number): boolean {\n const spanIsValid = knotIndex0 >= this.degree - 1 && knotIndex0 + this.degree < this.knots.length;\n const uIsInSpan = this.knots[knotIndex0] <= u && u <= this.knots[knotIndex0 + 1];\n return spanIsValid && uIsInSpan;\n }\n /**\n * Evaluate the B-spline basis functions f[] at a parameter u in a knot span.\n * * This method implements the Mansfield-Cox-de Boor recurrence relation.\n * @param knotIndex0 index of the left knot of the span.\n * @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].\n * @param f preallocated output array of order basis function values.\n * @returns true if and only if output array is sufficiently sized.\n */\n public evaluateBasisFunctions(knotIndex0: number, u: number, f: Float64Array): boolean {\n if (f.length < this.degree + 1)\n return false;\n assert(() => this.isKnotInValidSpan(knotIndex0, u), \"knot is in a valid span\");\n f[0] = 1.0;\n if (this.degree < 1)\n return true;\n // direct compute for linear part\n const u0 = this.knots[knotIndex0];\n const u1 = this.knots[knotIndex0 + 1];\n f[1] = (u - u0) / (u1 - u0);\n f[0] = 1.0 - f[1];\n if (this.degree < 2)\n return true;\n // each iteration of the outer loop evaluates the basis functions of degree depth+1 using\n // one or two values of the basis functions of one less degree from the preceding iteration\n for (let depth = 1; depth < this.degree; depth++) {\n let kLeft = knotIndex0 - depth;\n let kRight = knotIndex0 + 1;\n let gCarry = 0.0;\n for (let step = 0; step <= depth; step++) {\n const tLeft = this.knots[kLeft++];\n const tRight = this.knots[kRight++];\n const fraction = (u - tLeft) / (tRight - tLeft);\n const g1 = f[step] * fraction;\n const g0 = f[step] * (1.0 - fraction);\n f[step] = gCarry + g0;\n gCarry = g1;\n }\n f[depth + 1] = gCarry;\n // at this point, the head of f[] contains the depth+2 values at u\n // of the basis functions of degree depth+1 with support over [u0,u1)\n }\n return true;\n }\n /**\n * Evaluate basis functions f[], derivatives df[], and optional second derivatives ddf[] at a parameter u\n * in a knot span.\n * @param knotIndex0 index of the left knot of the span.\n * @param u value in the knot span: knot[knotIndex0] <= u <= knot[knotIndex0 + 1].\n * @param f preallocated output array of order basis function values.\n * @param df preallocated output array of order basis derivative values.\n * @param ddf optional preallocated output array of order basis second derivative values.\n * @returns true if and only if output arrays are sufficiently sized.\n */\n public evaluateBasisFunctions1(\n knotIndex0: number, u: number, f: Float64Array, df: Float64Array, ddf?: Float64Array,\n ): boolean {\n if (f.length < this.degree + 1)\n return false;\n if (df.length < this.degree + 1)\n return false;\n if (ddf && ddf.length < this.degree + 1)\n return false;\n assert(() => this.isKnotInValidSpan(knotIndex0, u), \"knot is in a valid span\");\n f[0] = 1.0;\n df[0] = 0.0;\n if (this.degree < 1)\n return true;\n // direct compute for linear part\n const u0 = this.knots[knotIndex0];\n const u1 = this.knots[knotIndex0 + 1];\n // ah = 1/(u1-u0) is the derivative of fraction0\n // -ah is the derivative of fraction1\n let ah = 1.0 / (u1 - u0);\n f[1] = (u - u0) * ah;\n f[0] = 1.0 - f[1];\n df[0] = -ah; df[1] = ah;\n if (ddf) { // first derivative started constant, second derivative started zero.\n ddf[0] = 0.0;\n ddf[1] = 0.0;\n }\n if (this.degree < 2)\n return true;\n for (let depth = 1; depth < this.degree; depth++) {\n let kLeft = knotIndex0 - depth;\n let kRight = kLeft + depth + 1;\n let gCarry = 0.0;\n let dgCarry = 0.0;\n let ddgCarry = 0.0;\n // f, df, ddf, are each row vectors with product of `step` linear terms.\n // f is multiplied on the right by matrix V. Each row has 2 nonzero entries (which sum to 1) (0,0,1-fraction, fraction,0,0,0)\n // Each row of the derivative dV is two entries (0,0, -1/h, 1/h,0,0,0)\n // Hence fnew = f * V\n // dfnew = df * V + f * dV\n // ddfnew = ddf * V + df*dV + df * dV + f * ddV\n // but ddV is zero so\n // ddfnew = ddf * V + 2 * df * dV\n for (let step = 0; step <= depth; step++) {\n const tLeft = this.knots[kLeft++];\n const tRight = this.knots[kRight++];\n ah = 1.0 / (tRight - tLeft);\n const fraction = (u - tLeft) * ah;\n const fraction1 = 1.0 - fraction;\n const g1 = f[step] * fraction;\n const g0 = f[step] * fraction1;\n const dg1 = df[step] * fraction + f[step] * ah;\n const dg0 = df[step] * fraction1 - f[step] * ah;\n const dfSave = 2.0 * df[step] * ah;\n f[step] = gCarry + g0;\n df[step] = dgCarry + dg0;\n gCarry = g1;\n dgCarry = dg1;\n if (ddf) { // do the backward reference to df before rewriting df\n const ddg1 = ddf[step] * fraction + dfSave;\n const ddg0 = ddf[step] * fraction1 - dfSave;\n ddf[step] = ddgCarry + ddg0;\n ddgCarry = ddg1;\n }\n }\n f[depth + 1] = gCarry;\n df[depth + 1] = dgCarry;\n if (ddf)\n ddf[depth + 1] = ddgCarry;\n }\n return true;\n }\n /**\n * Find the knot span bracketing knots[i] <= u < knots[i+1] and return i.\n * * If u has no such bracket, return the smaller index of the closest nontrivial bracket.\n * @param u value to bracket.\n */\n public knotToLeftKnotIndex(u: number): number {\n for (let i = this.leftKnotIndex; i < this.rightKnotIndex; ++i) {\n if (u < this.knots[i + 1])\n return i;\n }\n // for u >= rightKnot, return left index of last nontrivial span\n for (let i = this.rightKnotIndex; i > this.leftKnotIndex; --i) {\n if (this.knots[i] - this.knots[i - 1] >= KnotVector.knotTolerance)\n return i - 1;\n }\n return this.rightKnotIndex - 1; // shouldn't get here\n }\n /**\n * Given a span index, return the index of the knot at its left.\n * @param spanIndex index of span.\n */\n public spanIndexToLeftKnotIndex(spanIndex: number): number {\n const d = this.degree;\n if (spanIndex <= 0.0)\n return d - 1;\n return Math.min(spanIndex + d - 1, this.knots.length - d - 1);\n }\n /** Return the knot interval length of indexed bezier span. */\n public spanIndexToSpanLength(spanIndex: number): number {\n const k = this.spanIndexToLeftKnotIndex(spanIndex);\n return this.knots[k + 1] - this.knots[k];\n }\n /**\n * Given a span index, test if it is within range and has nonzero length.\n * * note that a false return does not imply there are no more spans. This may be a double knot (zero length span)\n * followed by more real spans\n * @param spanIndex index of span to test.\n */\n public isIndexOfRealSpan(spanIndex: number): boolean {\n if (spanIndex >= 0 && spanIndex < this.numSpans)\n return !Geometry.isSmallMetricDistance(this.spanIndexToSpanLength(spanIndex));\n return false;\n }\n /** Reflect all knots so `leftKnot` and `rightKnot` are maintained but interval lengths are reversed. */\n public reflectKnots(): void {\n const a = this.leftKnot;\n const b = this.rightKnot;\n const numKnots = this.knots.length;\n for (let i = 0; i < numKnots; i++)\n this.knots[i] = a + (b - this.knots[i]);\n this.knots.reverse();\n }\n /** Return a simple array form of the knots. Optionally replicate the first and last in classic over-clamped manner. */\n public static copyKnots(\n knots: number[] | Float64Array, degree: number, includeExtraEndKnot?: boolean, wrapMode?: BSplineWrapMode,\n ): number[] {\n const isExtraEndKnotPeriodic = (includeExtraEndKnot && wrapMode === BSplineWrapMode.OpenByAddingControlPoints);\n const leftIndex = degree - 1;\n const rightIndex = knots.length - degree;\n const a0 = knots[leftIndex];\n const a1 = knots[rightIndex];\n const delta = a1 - a0;\n const values: number[] = [];\n if (includeExtraEndKnot) {\n if (isExtraEndKnotPeriodic)\n values.push(knots[rightIndex - degree] - delta);\n else\n values.push(knots[0]);\n }\n for (const u of knots) {\n values.push(u);\n }\n if (includeExtraEndKnot) {\n if (isExtraEndKnotPeriodic)\n values.push(knots[leftIndex + degree] + delta);\n else\n values.push(knots[knots.length - 1]);\n }\n return values;\n }\n /** Return a simple array form of the knots. Optionally replicate the first and last in classic over-clamped manner. */\n public copyKnots(includeExtraEndKnot: boolean): number[] {\n const wrapMode = (includeExtraEndKnot && this.testClosable()) ? this.wrappable : undefined;\n return KnotVector.copyKnots(this.knots, this.degree, includeExtraEndKnot, wrapMode);\n }\n}\n"]}
|
package/lib/esm/curve/Arc3d.d.ts
CHANGED
|
@@ -632,6 +632,8 @@ export declare class Arc3d extends CurvePrimitive implements BeJSONFunctions {
|
|
|
632
632
|
projectedParameterRange(ray: Vector3d | Ray3d, lowHigh?: Range1d): Range1d | undefined;
|
|
633
633
|
/**
|
|
634
634
|
* Construct a circular arc chain approximation to the instance elliptical arc.
|
|
635
|
+
* * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/ArcApproximationGeneral and
|
|
636
|
+
* https://www.itwinjs.org/sandbox/SaeedTorabi/ArcApproximation
|
|
635
637
|
* @param options bundle of options for sampling an elliptical arc (use default options if undefined).
|
|
636
638
|
* @returns the approximating curve chain, the circular instance, or undefined if construction fails.
|
|
637
639
|
*/
|