@itwin/core-geometry 4.9.0-dev.12 → 4.9.0-dev.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. package/CHANGELOG.md +6 -1
  2. package/lib/cjs/Geometry.d.ts +57 -46
  3. package/lib/cjs/Geometry.d.ts.map +1 -1
  4. package/lib/cjs/Geometry.js +73 -53
  5. package/lib/cjs/Geometry.js.map +1 -1
  6. package/lib/cjs/curve/Arc3d.d.ts +128 -34
  7. package/lib/cjs/curve/Arc3d.d.ts.map +1 -1
  8. package/lib/cjs/curve/Arc3d.js +174 -20
  9. package/lib/cjs/curve/Arc3d.js.map +1 -1
  10. package/lib/cjs/curve/CurveCollection.d.ts +2 -1
  11. package/lib/cjs/curve/CurveCollection.d.ts.map +1 -1
  12. package/lib/cjs/curve/CurveCollection.js +2 -1
  13. package/lib/cjs/curve/CurveCollection.js.map +1 -1
  14. package/lib/cjs/curve/CurveLocationDetail.d.ts +19 -1
  15. package/lib/cjs/curve/CurveLocationDetail.d.ts.map +1 -1
  16. package/lib/cjs/curve/CurveLocationDetail.js +39 -0
  17. package/lib/cjs/curve/CurveLocationDetail.js.map +1 -1
  18. package/lib/cjs/curve/LineString3d.js +1 -1
  19. package/lib/cjs/curve/LineString3d.js.map +1 -1
  20. package/lib/cjs/curve/OffsetOptions.d.ts +1 -1
  21. package/lib/cjs/curve/OffsetOptions.js +1 -1
  22. package/lib/cjs/curve/OffsetOptions.js.map +1 -1
  23. package/lib/cjs/curve/RegionOps.d.ts +2 -1
  24. package/lib/cjs/curve/RegionOps.d.ts.map +1 -1
  25. package/lib/cjs/curve/RegionOps.js +2 -1
  26. package/lib/cjs/curve/RegionOps.js.map +1 -1
  27. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.d.ts +23 -7
  28. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.d.ts.map +1 -1
  29. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js +43 -35
  30. package/lib/cjs/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
  31. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.d.ts +211 -0
  32. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -0
  33. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js +1000 -0
  34. package/lib/cjs/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -0
  35. package/lib/cjs/geometry3d/Angle.d.ts +18 -5
  36. package/lib/cjs/geometry3d/Angle.d.ts.map +1 -1
  37. package/lib/cjs/geometry3d/Angle.js +23 -7
  38. package/lib/cjs/geometry3d/Angle.js.map +1 -1
  39. package/lib/cjs/geometry3d/AngleSweep.d.ts +14 -1
  40. package/lib/cjs/geometry3d/AngleSweep.d.ts.map +1 -1
  41. package/lib/cjs/geometry3d/AngleSweep.js +47 -12
  42. package/lib/cjs/geometry3d/AngleSweep.js.map +1 -1
  43. package/lib/cjs/geometry3d/Matrix3d.d.ts +6 -4
  44. package/lib/cjs/geometry3d/Matrix3d.d.ts.map +1 -1
  45. package/lib/cjs/geometry3d/Matrix3d.js +6 -4
  46. package/lib/cjs/geometry3d/Matrix3d.js.map +1 -1
  47. package/lib/cjs/geometry3d/Point3dVector3d.d.ts +2 -3
  48. package/lib/cjs/geometry3d/Point3dVector3d.d.ts.map +1 -1
  49. package/lib/cjs/geometry3d/Point3dVector3d.js +2 -3
  50. package/lib/cjs/geometry3d/Point3dVector3d.js.map +1 -1
  51. package/lib/cjs/geometry3d/PointHelpers.d.ts +6 -5
  52. package/lib/cjs/geometry3d/PointHelpers.d.ts.map +1 -1
  53. package/lib/cjs/geometry3d/PointHelpers.js +11 -10
  54. package/lib/cjs/geometry3d/PointHelpers.js.map +1 -1
  55. package/lib/cjs/geometry3d/Range.d.ts +6 -1
  56. package/lib/cjs/geometry3d/Range.d.ts.map +1 -1
  57. package/lib/cjs/geometry3d/Range.js +9 -3
  58. package/lib/cjs/geometry3d/Range.js.map +1 -1
  59. package/lib/cjs/geometry3d/Transform.d.ts +1 -1
  60. package/lib/cjs/geometry3d/Transform.js +1 -1
  61. package/lib/cjs/geometry3d/Transform.js.map +1 -1
  62. package/lib/cjs/numerics/Newton.d.ts +3 -3
  63. package/lib/cjs/numerics/Newton.d.ts.map +1 -1
  64. package/lib/cjs/numerics/Newton.js +14 -16
  65. package/lib/cjs/numerics/Newton.js.map +1 -1
  66. package/lib/cjs/numerics/Polynomials.d.ts +2 -2
  67. package/lib/cjs/numerics/Polynomials.js +2 -2
  68. package/lib/cjs/numerics/Polynomials.js.map +1 -1
  69. package/lib/cjs/polyface/PolyfaceBuilder.d.ts +7 -4
  70. package/lib/cjs/polyface/PolyfaceBuilder.d.ts.map +1 -1
  71. package/lib/cjs/polyface/PolyfaceBuilder.js +8 -4
  72. package/lib/cjs/polyface/PolyfaceBuilder.js.map +1 -1
  73. package/lib/cjs/polyface/PolyfaceQuery.d.ts +3 -3
  74. package/lib/cjs/polyface/PolyfaceQuery.js +3 -3
  75. package/lib/cjs/polyface/PolyfaceQuery.js.map +1 -1
  76. package/lib/cjs/serialization/BGFBReader.js.map +1 -1
  77. package/lib/cjs/serialization/BGFBWriter.js +2 -2
  78. package/lib/cjs/serialization/BGFBWriter.js.map +1 -1
  79. package/lib/cjs/serialization/GeometrySamples.js.map +1 -1
  80. package/lib/cjs/topology/Graph.d.ts +1 -1
  81. package/lib/cjs/topology/Graph.js +2 -2
  82. package/lib/cjs/topology/Graph.js.map +1 -1
  83. package/lib/cjs/topology/HalfEdgeNodeXYZUV.d.ts +1 -1
  84. package/lib/cjs/topology/HalfEdgeNodeXYZUV.js +1 -1
  85. package/lib/cjs/topology/HalfEdgeNodeXYZUV.js.map +1 -1
  86. package/lib/cjs/topology/HalfEdgePointInGraphSearch.d.ts +57 -15
  87. package/lib/cjs/topology/HalfEdgePointInGraphSearch.d.ts.map +1 -1
  88. package/lib/cjs/topology/HalfEdgePointInGraphSearch.js +168 -127
  89. package/lib/cjs/topology/HalfEdgePointInGraphSearch.js.map +1 -1
  90. package/lib/cjs/topology/HalfEdgePositionDetail.d.ts +35 -35
  91. package/lib/cjs/topology/HalfEdgePositionDetail.d.ts.map +1 -1
  92. package/lib/cjs/topology/HalfEdgePositionDetail.js +63 -41
  93. package/lib/cjs/topology/HalfEdgePositionDetail.js.map +1 -1
  94. package/lib/cjs/topology/InsertAndRetriangulateContext.d.ts +64 -12
  95. package/lib/cjs/topology/InsertAndRetriangulateContext.d.ts.map +1 -1
  96. package/lib/cjs/topology/InsertAndRetriangulateContext.js +174 -75
  97. package/lib/cjs/topology/InsertAndRetriangulateContext.js.map +1 -1
  98. package/lib/cjs/topology/Triangulation.d.ts +16 -10
  99. package/lib/cjs/topology/Triangulation.d.ts.map +1 -1
  100. package/lib/cjs/topology/Triangulation.js +23 -30
  101. package/lib/cjs/topology/Triangulation.js.map +1 -1
  102. package/lib/esm/Geometry.d.ts +57 -46
  103. package/lib/esm/Geometry.d.ts.map +1 -1
  104. package/lib/esm/Geometry.js +73 -53
  105. package/lib/esm/Geometry.js.map +1 -1
  106. package/lib/esm/curve/Arc3d.d.ts +128 -34
  107. package/lib/esm/curve/Arc3d.d.ts.map +1 -1
  108. package/lib/esm/curve/Arc3d.js +172 -19
  109. package/lib/esm/curve/Arc3d.js.map +1 -1
  110. package/lib/esm/curve/CurveCollection.d.ts +2 -1
  111. package/lib/esm/curve/CurveCollection.d.ts.map +1 -1
  112. package/lib/esm/curve/CurveCollection.js +2 -1
  113. package/lib/esm/curve/CurveCollection.js.map +1 -1
  114. package/lib/esm/curve/CurveLocationDetail.d.ts +19 -1
  115. package/lib/esm/curve/CurveLocationDetail.d.ts.map +1 -1
  116. package/lib/esm/curve/CurveLocationDetail.js +39 -0
  117. package/lib/esm/curve/CurveLocationDetail.js.map +1 -1
  118. package/lib/esm/curve/LineString3d.js +1 -1
  119. package/lib/esm/curve/LineString3d.js.map +1 -1
  120. package/lib/esm/curve/OffsetOptions.d.ts +1 -1
  121. package/lib/esm/curve/OffsetOptions.js +1 -1
  122. package/lib/esm/curve/OffsetOptions.js.map +1 -1
  123. package/lib/esm/curve/RegionOps.d.ts +2 -1
  124. package/lib/esm/curve/RegionOps.d.ts.map +1 -1
  125. package/lib/esm/curve/RegionOps.js +2 -1
  126. package/lib/esm/curve/RegionOps.js.map +1 -1
  127. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.d.ts +23 -7
  128. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.d.ts.map +1 -1
  129. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js +43 -35
  130. package/lib/esm/curve/internalContexts/CurveCurveCloseApproachXY.js.map +1 -1
  131. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.d.ts +211 -0
  132. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.d.ts.map +1 -0
  133. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js +995 -0
  134. package/lib/esm/curve/internalContexts/EllipticalArcApproximationContext.js.map +1 -0
  135. package/lib/esm/geometry3d/Angle.d.ts +18 -5
  136. package/lib/esm/geometry3d/Angle.d.ts.map +1 -1
  137. package/lib/esm/geometry3d/Angle.js +23 -7
  138. package/lib/esm/geometry3d/Angle.js.map +1 -1
  139. package/lib/esm/geometry3d/AngleSweep.d.ts +14 -1
  140. package/lib/esm/geometry3d/AngleSweep.d.ts.map +1 -1
  141. package/lib/esm/geometry3d/AngleSweep.js +47 -12
  142. package/lib/esm/geometry3d/AngleSweep.js.map +1 -1
  143. package/lib/esm/geometry3d/Matrix3d.d.ts +6 -4
  144. package/lib/esm/geometry3d/Matrix3d.d.ts.map +1 -1
  145. package/lib/esm/geometry3d/Matrix3d.js +6 -4
  146. package/lib/esm/geometry3d/Matrix3d.js.map +1 -1
  147. package/lib/esm/geometry3d/Point3dVector3d.d.ts +2 -3
  148. package/lib/esm/geometry3d/Point3dVector3d.d.ts.map +1 -1
  149. package/lib/esm/geometry3d/Point3dVector3d.js +2 -3
  150. package/lib/esm/geometry3d/Point3dVector3d.js.map +1 -1
  151. package/lib/esm/geometry3d/PointHelpers.d.ts +6 -5
  152. package/lib/esm/geometry3d/PointHelpers.d.ts.map +1 -1
  153. package/lib/esm/geometry3d/PointHelpers.js +11 -10
  154. package/lib/esm/geometry3d/PointHelpers.js.map +1 -1
  155. package/lib/esm/geometry3d/Range.d.ts +6 -1
  156. package/lib/esm/geometry3d/Range.d.ts.map +1 -1
  157. package/lib/esm/geometry3d/Range.js +9 -3
  158. package/lib/esm/geometry3d/Range.js.map +1 -1
  159. package/lib/esm/geometry3d/Transform.d.ts +1 -1
  160. package/lib/esm/geometry3d/Transform.js +1 -1
  161. package/lib/esm/geometry3d/Transform.js.map +1 -1
  162. package/lib/esm/numerics/Newton.d.ts +3 -3
  163. package/lib/esm/numerics/Newton.d.ts.map +1 -1
  164. package/lib/esm/numerics/Newton.js +14 -16
  165. package/lib/esm/numerics/Newton.js.map +1 -1
  166. package/lib/esm/numerics/Polynomials.d.ts +2 -2
  167. package/lib/esm/numerics/Polynomials.js +2 -2
  168. package/lib/esm/numerics/Polynomials.js.map +1 -1
  169. package/lib/esm/polyface/PolyfaceBuilder.d.ts +7 -4
  170. package/lib/esm/polyface/PolyfaceBuilder.d.ts.map +1 -1
  171. package/lib/esm/polyface/PolyfaceBuilder.js +8 -4
  172. package/lib/esm/polyface/PolyfaceBuilder.js.map +1 -1
  173. package/lib/esm/polyface/PolyfaceQuery.d.ts +3 -3
  174. package/lib/esm/polyface/PolyfaceQuery.js +3 -3
  175. package/lib/esm/polyface/PolyfaceQuery.js.map +1 -1
  176. package/lib/esm/serialization/BGFBReader.js.map +1 -1
  177. package/lib/esm/serialization/BGFBWriter.js +2 -2
  178. package/lib/esm/serialization/BGFBWriter.js.map +1 -1
  179. package/lib/esm/serialization/GeometrySamples.js.map +1 -1
  180. package/lib/esm/topology/Graph.d.ts +1 -1
  181. package/lib/esm/topology/Graph.js +2 -2
  182. package/lib/esm/topology/Graph.js.map +1 -1
  183. package/lib/esm/topology/HalfEdgeNodeXYZUV.d.ts +1 -1
  184. package/lib/esm/topology/HalfEdgeNodeXYZUV.js +1 -1
  185. package/lib/esm/topology/HalfEdgeNodeXYZUV.js.map +1 -1
  186. package/lib/esm/topology/HalfEdgePointInGraphSearch.d.ts +57 -15
  187. package/lib/esm/topology/HalfEdgePointInGraphSearch.d.ts.map +1 -1
  188. package/lib/esm/topology/HalfEdgePointInGraphSearch.js +168 -127
  189. package/lib/esm/topology/HalfEdgePointInGraphSearch.js.map +1 -1
  190. package/lib/esm/topology/HalfEdgePositionDetail.d.ts +35 -35
  191. package/lib/esm/topology/HalfEdgePositionDetail.d.ts.map +1 -1
  192. package/lib/esm/topology/HalfEdgePositionDetail.js +63 -41
  193. package/lib/esm/topology/HalfEdgePositionDetail.js.map +1 -1
  194. package/lib/esm/topology/InsertAndRetriangulateContext.d.ts +64 -12
  195. package/lib/esm/topology/InsertAndRetriangulateContext.d.ts.map +1 -1
  196. package/lib/esm/topology/InsertAndRetriangulateContext.js +173 -74
  197. package/lib/esm/topology/InsertAndRetriangulateContext.js.map +1 -1
  198. package/lib/esm/topology/Triangulation.d.ts +16 -10
  199. package/lib/esm/topology/Triangulation.d.ts.map +1 -1
  200. package/lib/esm/topology/Triangulation.js +24 -31
  201. package/lib/esm/topology/Triangulation.js.map +1 -1
  202. package/package.json +3 -3
@@ -147,7 +147,7 @@ export declare class Transform implements BeJSONFunctions {
147
147
  static createFixedPointAndMatrix(fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform): Transform;
148
148
  /**
149
149
  * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps
150
- * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to 'b'.
150
+ * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.
151
151
  */
152
152
  static createMatrixPickupPutdown(matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform): Transform;
153
153
  /**
@@ -303,7 +303,7 @@ class Transform {
303
303
  }
304
304
  /**
305
305
  * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps
306
- * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to 'b'.
306
+ * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.
307
307
  */
308
308
  static createMatrixPickupPutdown(matrix, a, b, result) {
309
309
  // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b
@@ -1 +1 @@
1
- {"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAmE;AACnE,mDAAgD;AAChD,yCAAsC;AACtC,uDAA4C;AAC5C,uDAA2D;AAC3D,mCAAkC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAa,SAAS;IAGpB,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IAED,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,oBAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,mBAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,mBAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,0BAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,yBAAO,CAAC,UAAU,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,mBAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,mBAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,mBAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,mBAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,mBAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,mBAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,iBAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,mBAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,eAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,mBAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,mBAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,yBAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,mBAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF;AA3xBD,8BA2xBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module CartesianGeometry\r\n */\r\n\r\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\r\nimport { Point4d } from \"../geometry4d/Point4d\";\r\nimport { Matrix3d } from \"./Matrix3d\";\r\nimport { Point2d } from \"./Point2dVector2d\";\r\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\r\nimport { Range3d } from \"./Range\";\r\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\r\n\r\n/**\r\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\r\n * the columns of the Matrix3d being the local x,y,z axis directions.\r\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\r\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\r\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\r\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\r\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\r\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\r\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\r\n * * If `T` is a translation, no point is fixed by `T`.\r\n * * If `T` is the identity, all points are fixed by `T`.\r\n * * If `T` is a scale about a point, one point is fixed by `T`.\r\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\r\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\r\n * @public\r\n */\r\nexport class Transform implements BeJSONFunctions {\r\n private _origin: XYZ;\r\n private _matrix: Matrix3d;\r\n // Constructor accepts and uses pointer to content (no copy is done here).\r\n private constructor(origin: XYZ, matrix: Matrix3d) {\r\n this._origin = origin;\r\n this._matrix = matrix;\r\n }\r\n private static _identity?: Transform;\r\n /** The identity Transform. Value is frozen and cannot be modified. */\r\n public static get identity(): Transform {\r\n if (undefined === this._identity) {\r\n this._identity = Transform.createIdentity();\r\n this._identity.freeze();\r\n }\r\n return this._identity;\r\n }\r\n /** Freeze this instance (and its members) so it is read-only */\r\n public freeze(): Readonly<this> {\r\n this._origin.freeze();\r\n this._matrix.freeze();\r\n return Object.freeze(this);\r\n }\r\n /**\r\n * Copy contents from other Transform into this Transform\r\n * @param other source transform\r\n */\r\n public setFrom(other: Transform) {\r\n this._origin.setFrom(other._origin);\r\n this._matrix.setFrom(other._matrix);\r\n }\r\n /** Set this Transform to be an identity. */\r\n public setIdentity() {\r\n this._origin.setZero();\r\n this._matrix.setIdentity();\r\n }\r\n /**\r\n * Set this Transform instance from flexible inputs:\r\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\r\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\r\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\r\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\r\n * * If no input is provided, the identity Transform is returned.\r\n */\r\n public setFromJSON(json?: TransformProps | Transform): void {\r\n if (json) {\r\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\r\n this._origin.setFromJSON((json as any).origin);\r\n this._matrix.setFromJSON((json as any).matrix);\r\n return;\r\n }\r\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\r\n this._matrix.setRowValues(\r\n json[0][0], json[0][1], json[0][2],\r\n json[1][0], json[1][1], json[1][2],\r\n json[2][0], json[2][1], json[2][2],\r\n );\r\n this._origin.set(json[0][3], json[1][3], json[2][3]);\r\n return;\r\n }\r\n if (Geometry.isNumberArray(json, 12)) {\r\n this._matrix.setRowValues(\r\n json[0], json[1], json[2],\r\n json[4], json[5], json[6],\r\n json[8], json[9], json[10],\r\n );\r\n this._origin.set(json[3], json[7], json[11]);\r\n return;\r\n }\r\n }\r\n this.setIdentity();\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\r\n * `matrix` parts.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqual(other: Readonly<Transform>): boolean {\r\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\r\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\r\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toRows(): number[][] {\r\n return [\r\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\r\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\r\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\r\n ];\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toJSON(): TransformProps {\r\n return this.toRows();\r\n }\r\n /** Return a new Transform initialized by `Transform.setFromJSON` */\r\n public static fromJSON(json?: TransformProps): Transform {\r\n const result = Transform.createIdentity();\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\r\n public clone(result?: Transform): Transform {\r\n if (result) {\r\n result._matrix.setFrom(this._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.createFrom(this._origin),\r\n this._matrix.clone(),\r\n );\r\n }\r\n /**\r\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\r\n * * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\r\n */\r\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\r\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\r\n if (!modifiedMatrix)\r\n return undefined;\r\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\r\n }\r\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\r\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\r\n if (!origin)\r\n origin = Point3d.createZero();\r\n if (result) {\r\n result._origin = origin;\r\n result._matrix = matrix;\r\n return result;\r\n }\r\n return new Transform(origin, matrix);\r\n }\r\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\r\n public static createRowValues(\r\n qxx: number, qxy: number, qxz: number, ax: number,\r\n qyx: number, qyy: number, qyz: number, ay: number,\r\n qzx: number, qzy: number, qzz: number, az: number,\r\n result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.set(ax, ay, az);\r\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.create(ax, ay, az),\r\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\r\n );\r\n }\r\n /** Create a Transform with all zeros */\r\n public static createZero(result?: Transform): Transform {\r\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\r\n }\r\n /**\r\n * Create a Transform with translation provided by x,y,z parts.\r\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param x x part of translation\r\n * @param y y part of translation\r\n * @param z z part of translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\r\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\r\n }\r\n /**\r\n * Create a Transform with specified `translation` part.\r\n * * Translation Transform maps any vector `v` to `v + translation`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param translation x,y,z parts of the translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\r\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\r\n }\r\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\r\n public get matrix(): Matrix3d {\r\n return this._matrix;\r\n }\r\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\r\n public get origin(): XYZ {\r\n return this._origin;\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\r\n public getOrigin(): Point3d {\r\n return Point3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\r\n public getTranslation(): Vector3d {\r\n return Vector3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\r\n public getMatrix(): Matrix3d {\r\n return this._matrix.clone();\r\n }\r\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\r\n public get isIdentity(): boolean {\r\n return this._matrix.isIdentity && this._origin.isAlmostZero;\r\n }\r\n /** Create an identity transform */\r\n public static createIdentity(result?: Transform): Transform {\r\n if (result) {\r\n result._origin.setZero();\r\n result._matrix.setIdentity();\r\n return result;\r\n }\r\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\r\n }\r\n /**\r\n * Create a Transform using the given `origin` and `matrix`.\r\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\r\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\r\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\r\n * of the world-to-world transformation.\r\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\r\n */\r\n public static createOriginAndMatrix(\r\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.setFromPoint3d(origin);\r\n result._matrix.setFrom(matrix);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\r\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\r\n result,\r\n );\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\r\n public setOriginAndMatrixColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\r\n ): void {\r\n if (origin !== undefined)\r\n this._origin.setFrom(origin);\r\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix` */\r\n public static createOriginAndMatrixColumns(\r\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\r\n ): Transform {\r\n if (result)\r\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\r\n else\r\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\r\n return result;\r\n }\r\n /**\r\n * Create a Transform such that its `matrix` part is rigid.\r\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\r\n */\r\n public static createRigidFromOriginAndColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\r\n ): Transform | undefined {\r\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\r\n if (!matrix)\r\n return undefined;\r\n if (result) {\r\n // result._matrix was already modified to become rigid via createRigidFromColumns\r\n result._origin.setFrom(origin);\r\n return result;\r\n }\r\n /**\r\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\r\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\r\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\r\n * is passed by user in the next line.\r\n */\r\n result = Transform.createRefs(undefined, matrix);\r\n result._origin.setFromPoint3d(origin);\r\n return result;\r\n }\r\n /**\r\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\r\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\r\n */\r\n public static createFixedPointAndMatrix(\r\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\r\n ): Transform {\r\n if (fixedPoint) {\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n return Transform.createRefs(undefined, matrix.clone());\r\n }\r\n /**\r\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\r\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to 'b'.\r\n */\r\n public static createMatrixPickupPutdown(\r\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\r\n ): Transform {\r\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n /**\r\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\r\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n */\r\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\r\n const matrix = Matrix3d.createScale(scale, scale, scale);\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix, result);\r\n }\r\n /**\r\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different from the plane normal.\r\n * @param sweepVector vector for the sweep direction\r\n * @param planePoint any point on the plane\r\n * @param planeNormal vector normal to the plane.\r\n */\r\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\r\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\r\n if (matrix === undefined)\r\n return undefined;\r\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\r\n }\r\n /**\r\n * Transform the input 2d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\r\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point in place (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYAndZInPlace(point: XYAndZ): void {\r\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\r\n */\r\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\r\n */\r\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\r\n * first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\r\n * in the first 3 numbers of the array and `w` as the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\r\n */\r\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\r\n * pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\r\n * and `o*p + w` in the fourth.\r\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001.\r\n */\r\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n const coffs = this._matrix.coffs;\r\n const origin = this._origin;\r\n return Point4d.create(\r\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\r\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\r\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\r\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\r\n result,\r\n );\r\n }\r\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\r\n let point;\r\n for (point of points)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\r\n }\r\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\r\n for (const chain of chains)\r\n this.multiplyPoint3dArrayInPlace(chain);\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\r\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this._origin.x,\r\n point.y - this._origin.y,\r\n point.z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the homogenous point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\r\n * in the first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\r\n const w = weightedPoint.w;\r\n return this._matrix.multiplyInverseXYZW(\r\n weightedPoint.x - w * this.origin.x,\r\n weightedPoint.y - w * this.origin.y,\r\n weightedPoint.z - w * this.origin.z,\r\n w,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n x - this._origin.x,\r\n y - this._origin.y,\r\n z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\r\n * operations can complete.\r\n * @param useCached If true, accept prior cached inverse if available.\r\n * @returns `true` if matrix inverse completes, `false` otherwise.\r\n */\r\n public computeCachedInverse(useCached: boolean = true): boolean {\r\n return this._matrix.computeCachedInverse(useCached);\r\n }\r\n /**\r\n * Match the length of destination array with the length of source array\r\n * * If destination has more elements than source, remove the extra elements.\r\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\r\n * *\r\n * @param source the source array\r\n * @param dest the destination array\r\n * @param constructionFunction function to call to create new elements.\r\n */\r\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\r\n const numSource = source.length;\r\n const numDest = dest.length;\r\n if (numSource > numDest) {\r\n for (let i = numDest; i < numSource; i++) {\r\n dest.push(constructionFunction());\r\n }\r\n } else if (numDest > numSource) {\r\n dest.length = numSource;\r\n }\r\n return numSource;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\r\n * * If `result` is not given, return a new array.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return undefined;\r\n const originX = this.origin.x;\r\n const originY = this.origin.y;\r\n const originZ = this.origin.z;\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n points[i].x - originX,\r\n points[i].y - originY,\r\n points[i].z - originZ,\r\n result[i],\r\n );\r\n return result;\r\n }\r\n result = [];\r\n for (const point of points)\r\n result.push(\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - originX,\r\n point.y - originY,\r\n point.z - originZ,\r\n )!,\r\n );\r\n return result;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform in place.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\r\n */\r\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return false;\r\n for (const point of points)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this.origin.x,\r\n point.y - this.origin.y,\r\n point.z - this.origin.z,\r\n point,\r\n );\r\n return true;\r\n }\r\n /**\r\n * Transform the input 2d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Transform the input 3d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyVector(vector, result);\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform in place.\r\n * * The `origin` part of Transform is not used.\r\n */\r\n public multiplyVectorInPlace(vector: Vector3d): void {\r\n this._matrix.multiplyVectorInPlace(vector);\r\n }\r\n /**\r\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyXYZ(x, y, z, result);\r\n }\r\n /**\r\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\r\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\r\n * `[A*B Ab+a]`.\r\n * * @see [[multiplyTransformTransform]] documentation for math details.\r\n * @param transformA first operand\r\n * @param transformB second operand\r\n */\r\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\r\n Matrix3d.xyzPlusMatrixTimesXYZ(\r\n transformA._origin,\r\n transformA._matrix,\r\n transformB._origin,\r\n this._origin as Point3d,\r\n );\r\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Transform.\r\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Transform to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformTransform(other: Transform, result?: Transform) {\r\n if (!result)\r\n return Transform.createRefs(\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\r\n this._matrix.multiplyMatrixMatrix(other._matrix),\r\n );\r\n result.setMultiplyTransformTransform(this, other);\r\n return result;\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\r\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\r\n if (!result)\r\n return Transform.createRefs(\r\n this._origin.cloneAsPoint3d(),\r\n this._matrix.multiplyMatrixMatrix(other),\r\n );\r\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n /**\r\n * Return the range of the transformed corners.\r\n * * The 8 corners are transformed individually.\r\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\r\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\r\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\r\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\r\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\r\n */\r\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\r\n if (range.isNull)\r\n return range.clone(result);\r\n const lowX = range.low.x;\r\n const lowY = range.low.y;\r\n const lowZ = range.low.z;\r\n const highX = range.high.x;\r\n const highY = range.high.y;\r\n const highZ = range.high.z;\r\n result = Range3d.createNull(result);\r\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\r\n result.extendTransformedXYZ(this, highX, highY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\r\n result.extendTransformedXYZ(this, highX, lowY, highZ);\r\n result.extendTransformedXYZ(this, lowX, highY, highZ);\r\n result.extendTransformedXYZ(this, highX, highY, highZ);\r\n return result;\r\n }\r\n /**\r\n * Return a Transform which is the inverse of `this` Transform.\r\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\r\n * * Return `undefined` if this Transform's matrix is singular.\r\n */\r\n public inverse(result?: Transform): Transform | undefined {\r\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\r\n if (!matrixInverse)\r\n return undefined;\r\n if (result) {\r\n // result._matrix is already defined\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\r\n matrixInverse,\r\n );\r\n }\r\n /**\r\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\r\n * by the input points.\r\n * @param min the min corner of the range box\r\n * @param max the max corner of the range box\r\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\r\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\r\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\r\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\r\n * * NPC stands for `Normalized Projection Coordinate`\r\n */\r\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\r\n const diag = max.minus(min);\r\n if (diag.x === 0.0)\r\n diag.x = 1.0;\r\n if (diag.y === 0.0)\r\n diag.y = 1.0;\r\n if (diag.z === 0.0)\r\n diag.z = 1.0;\r\n const rMatrix = new Matrix3d();\r\n /**\r\n * [diag.x 0 0 min.x]\r\n * npcToGlobal = [ 0 diag.y 0 min.y]\r\n * [ 0 0 diag.y min.z]\r\n *\r\n * npcToGlobal * 0 = min\r\n * npcToGlobal * 1 = diag + min = max\r\n */\r\n if (npcToGlobal) {\r\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\r\n }\r\n /**\r\n * [1/diag.x 0 0 -min.x/diag.x]\r\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\r\n * [ 0 0 1/diag.y -min.z/diag.z]\r\n *\r\n * globalToNpc * min = min/diag - min/diag = 0\r\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\r\n */\r\n if (globalToNpc) {\r\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\r\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\r\n }\r\n }\r\n}\r\n"]}
1
+ {"version":3,"file":"Transform.js","sourceRoot":"","sources":["../../../src/geometry3d/Transform.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAmE;AACnE,mDAAgD;AAChD,yCAAsC;AACtC,uDAA4C;AAC5C,uDAA2D;AAC3D,mCAAkC;AAGlC;;;;;;;;;;;;;;;;GAgBG;AACH,MAAa,SAAS;IAGpB,0EAA0E;IAC1E,YAAoB,MAAW,EAAE,MAAgB;QAC/C,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;IACxB,CAAC;IAED,sEAAsE;IAC/D,MAAM,KAAK,QAAQ;QACxB,IAAI,SAAS,KAAK,IAAI,CAAC,SAAS,EAAE,CAAC;YACjC,IAAI,CAAC,SAAS,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;YAC5C,IAAI,CAAC,SAAS,CAAC,MAAM,EAAE,CAAC;QAC1B,CAAC;QACD,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,gEAAgE;IACzD,MAAM;QACX,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,IAAI,CAAC,OAAO,CAAC,MAAM,EAAE,CAAC;QACtB,OAAO,MAAM,CAAC,MAAM,CAAC,IAAI,CAAC,CAAC;IAC7B,CAAC;IACD;;;OAGG;IACI,OAAO,CAAC,KAAgB;QAC7B,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;QACpC,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IACtC,CAAC;IACD,4CAA4C;IACrC,WAAW;QAChB,IAAI,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;QACvB,IAAI,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;IAC7B,CAAC;IACD;;;;;;;OAOG;IACI,WAAW,CAAC,IAAiC;QAClD,IAAI,IAAI,EAAE,CAAC;YACT,IAAI,IAAI,YAAY,MAAM,IAAK,IAAY,CAAC,MAAM,IAAK,IAAY,CAAC,MAAM,EAAE,CAAC;gBAC3E,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,IAAI,CAAC,OAAO,CAAC,WAAW,CAAE,IAAY,CAAC,MAAM,CAAC,CAAC;gBAC/C,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,oBAAoB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC;gBAC9C,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAClC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CACnC,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;gBACrD,OAAO;YACT,CAAC;YACD,IAAI,mBAAQ,CAAC,aAAa,CAAC,IAAI,EAAE,EAAE,CAAC,EAAE,CAAC;gBACrC,IAAI,CAAC,OAAO,CAAC,YAAY,CACvB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EACzB,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAC3B,CAAC;gBACF,IAAI,CAAC,OAAO,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;gBAC7C,OAAO;YACT,CAAC;QACH,CAAC;QACD,IAAI,CAAC,WAAW,EAAE,CAAC;IACrB,CAAC;IACD;;;;OAIG;IACI,aAAa,CAAC,KAA0B;QAC7C,OAAO,IAAI,KAAK,KAAK,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,IAAI,IAAI,CAAC,MAAM,CAAC,aAAa,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;IAC9G,CAAC;IACD;;;;OAIG;IACI,2BAA2B,CAAC,KAAgB;QACjD,OAAO,IAAI,CAAC,OAAO,CAAC,aAAa,CAAC,KAAK,CAAC,OAAO,CAAC,IAAI,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAAC,KAAK,CAAC,OAAO,CAAC,CAAC;IAC9G,CAAC;IACD;;;OAGG;IACI,MAAM;QACX,OAAO;YACL,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;YACrF,CAAC,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;SACtF,CAAC;IACJ,CAAC;IACD;;;MAGE;IACK,MAAM;QACX,OAAO,IAAI,CAAC,MAAM,EAAE,CAAC;IACvB,CAAC;IACD,oEAAoE;IAC7D,MAAM,CAAC,QAAQ,CAAC,IAAqB;QAC1C,MAAM,MAAM,GAAG,SAAS,CAAC,cAAc,EAAE,CAAC;QAC1C,MAAM,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC;QACzB,OAAO,MAAM,CAAC;IAChB,CAAC;IACD,mGAAmG;IAC5F,KAAK,CAAC,MAAkB;QAC7B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;YACrC,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,EAChC,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CACrB,CAAC;IACJ,CAAC;IACD;;;OAGG;IACI,UAAU,CAAC,YAAuB,oBAAS,CAAC,GAAG;QACpD,MAAM,cAAc,GAAG,mBAAQ,CAAC,uBAAuB,CAAC,IAAI,CAAC,MAAM,EAAE,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,cAAc;YACjB,OAAO,SAAS,CAAC;QACnB,OAAO,IAAI,SAAS,CAAC,IAAI,CAAC,MAAM,CAAC,cAAc,EAAE,EAAE,cAAc,CAAC,CAAC;IACrE,CAAC;IACD,gGAAgG;IACzF,MAAM,CAAC,UAAU,CAAC,MAAuB,EAAE,MAAgB,EAAE,MAAkB;QACpF,IAAI,CAAC,MAAM;YACT,MAAM,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,MAAM,CAAC,OAAO,GAAG,MAAM,CAAC;YACxB,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACvC,CAAC;IACD,iHAAiH;IAC1G,MAAM,CAAC,eAAe,CAC3B,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,GAAW,EAAE,GAAW,EAAE,GAAW,EAAE,EAAU,EACjD,MAAkB;QAElB,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,CAAC;YAC/B,MAAM,CAAC,OAAO,CAAC,YAAY,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC;YACzE,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,IAAI,SAAS,CAClB,yBAAO,CAAC,MAAM,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAC,EAC1B,mBAAQ,CAAC,eAAe,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,CACtE,CAAC;IACJ,CAAC;IACD,wCAAwC;IACjC,MAAM,CAAC,UAAU,CAAC,MAAkB;QACzC,OAAO,SAAS,CAAC,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;;;OASG;IACI,MAAM,CAAC,oBAAoB,CAAC,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,IAAY,CAAC,EAAE,MAAkB;QAChG,OAAO,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,MAAM,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC3F,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,iBAAiB,CAAC,WAAgB,EAAE,MAAkB;QAClE,OAAO,SAAS,CAAC,UAAU,CAAC,WAAW,EAAE,mBAAQ,CAAC,cAAc,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9E,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,iFAAiF;IACjF,IAAW,MAAM;QACf,OAAO,IAAI,CAAC,OAAO,CAAC;IACtB,CAAC;IACD,6EAA6E;IACtE,SAAS;QACd,OAAO,yBAAO,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC1C,CAAC;IACD,8EAA8E;IACvE,cAAc;QACnB,OAAO,0BAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;IAC3C,CAAC;IACD,8EAA8E;IACvE,SAAS;QACd,OAAO,IAAI,CAAC,OAAO,CAAC,KAAK,EAAE,CAAC;IAC9B,CAAC;IACD,yEAAyE;IACzE,IAAW,UAAU;QACnB,OAAO,IAAI,CAAC,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,OAAO,CAAC,YAAY,CAAC;IAC9D,CAAC;IACD,mCAAmC;IAC5B,MAAM,CAAC,cAAc,CAAC,MAAkB;QAC7C,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,OAAO,EAAE,CAAC;YACzB,MAAM,CAAC,OAAO,CAAC,WAAW,EAAE,CAAC;YAC7B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,yBAAO,CAAC,UAAU,EAAE,EAAE,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC;IAC/E,CAAC;IACD;;;;;;;OAOG;IACI,MAAM,CAAC,qBAAqB,CACjC,MAAuB,EAAE,MAA4B,EAAE,MAAkB;QAEzE,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;YACtC,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,yBAAO,CAAC,UAAU,EAAE,EACvD,MAAM,KAAK,SAAS,CAAC,CAAC,CAAC,mBAAQ,CAAC,cAAc,EAAE,CAAC,CAAC,CAAC,MAAM,CAAC,KAAK,EAAE,EACjE,MAAM,CACP,CAAC;IACJ,CAAC;IACD,4GAA4G;IACrG,yBAAyB,CAC9B,MAAuB,EAAE,OAA6B,EAAE,OAA6B,EAAE,OAA6B;QAEpH,IAAI,MAAM,KAAK,SAAS;YACtB,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;QAC/B,IAAI,CAAC,OAAO,CAAC,UAAU,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;IACrD,CAAC;IACD,8EAA8E;IACvE,MAAM,CAAC,4BAA4B,CACxC,MAAW,EAAE,OAAiB,EAAE,OAAiB,EAAE,OAAiB,EAAE,MAAkB;QAExF,IAAI,MAAM;YACR,MAAM,CAAC,yBAAyB,CAAC,MAAM,EAAE,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC;;YAEpE,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,0BAAQ,CAAC,UAAU,CAAC,MAAM,CAAC,EAAE,mBAAQ,CAAC,aAAa,CAAC,OAAO,EAAE,OAAO,EAAE,OAAO,CAAC,CAAC,CAAC;QAChH,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,+BAA+B,CAC3C,MAAuB,EAAE,OAAiB,EAAE,OAAiB,EAAE,SAAoB,EAAE,MAAkB;QAEvG,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,OAAO,EAAE,OAAO,EAAE,SAAS,EAAE,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QACjH,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,iFAAiF;YACjF,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC;YAC/B,OAAO,MAAM,CAAC;QAChB,CAAC;QACD;;;;;WAKG;QACH,MAAM,GAAG,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,CAAC;QACjD,MAAM,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,CAAC,CAAC;QACtC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,MAAM,CAAC,yBAAyB,CACrC,UAA8B,EAAE,MAAgB,EAAE,MAAkB;QAEpE,IAAI,UAAU,EAAE,CAAC;YACf;;;eAGG;YACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;YAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;QAC9D,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CAAC,SAAS,EAAE,MAAM,CAAC,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACI,MAAM,CAAC,yBAAyB,CACrC,MAAgB,EAAE,CAAU,EAAE,CAAU,EAAE,MAAkB;QAE5D,mFAAmF;QACnF,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,CAAC,CAAC;QAC7D,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,CAAC,KAAK,EAAE,EAAE,MAAM,CAAC,CAAC;IAC9D,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,qBAAqB,CAAC,UAAmB,EAAE,KAAa,EAAE,MAAkB;QACxF,MAAM,MAAM,GAAG,mBAAQ,CAAC,WAAW,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACzD;;;WAGG;QACH,MAAM,MAAM,GAAG,mBAAQ,CAAC,sBAAsB,CAAC,UAAU,EAAE,MAAM,EAAE,UAAU,CAAC,CAAC;QAC/E,OAAO,SAAS,CAAC,UAAU,CAAC,MAAM,EAAE,MAAM,EAAE,MAAM,CAAC,CAAC;IACtD,CAAC;IACD;;;;;OAKG;IACI,MAAM,CAAC,+BAA+B,CAAC,WAAqB,EAAE,UAAkB,EAAE,WAAqB;QAC5G,MAAM,MAAM,GAAG,mBAAQ,CAAC,+BAA+B,CAAC,WAAW,EAAE,WAAW,CAAC,CAAC;QAClF,IAAI,MAAM,KAAK,SAAS;YACtB,OAAO,SAAS,CAAC;QACnB,OAAO,SAAS,CAAC,yBAAyB,CAAC,UAAU,EAAE,MAAM,CAAC,CAAC;IACjE,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAY,EAAE,MAAgB;QACnD,OAAO,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACjF,CAAC;IACD;;;OAGG;IACI,eAAe,CAAC,KAAa,EAAE,MAAgB;QACpD,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,MAAM,CAAC,CAAC;IACnF,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,KAAa;QACxC,OAAO,mBAAQ,CAAC,4BAA4B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,CAAC;IAClF,CAAC;IACD;;;OAGG;IACI,WAAW,CAAC,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC,EAAE,MAAgB;QACtE,kCAAkC;QAClC,OAAO,mBAAQ,CAAC,6BAA6B,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC7F,CAAC;IACD;;OAEG;IACI,oBAAoB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,IAAY,CAAC;QACrF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IACzG,CAAC;IACD;;OAEG;IACI,qBAAqB,CAAC,cAAsB,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;QAC7F,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,GAAG,GAAG,CAAC,GAAG,cAAc,CAAC;QAC/B,OAAO,CAAC,IAAI,CAAC,MAAM,CAAC,EAAE,CAAC,cAAc,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;IAC/G,CAAC;IACD;;;;;OAKG;IACI,YAAY,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QAC9E,OAAO,mBAAQ,CAAC,qCAAqC,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACxG,CAAC;IACD;;;;;OAKG;IACI,0BAA0B,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACjG,OAAO,mBAAQ,CAAC,mDAAmD,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACtH,CAAC;IACD;;;OAGG;IACI,yBAAyB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAqB;QACrF,OAAO,mBAAQ,CAAC,2CAA2C,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IAC3G,CAAC;IACD;;;;;;;OAOG;IACI,qBAAqB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACvF,MAAM,KAAK,GAAG,IAAI,CAAC,OAAO,CAAC,KAAK,CAAC;QACjC,MAAM,MAAM,GAAG,IAAI,CAAC,OAAO,CAAC;QAC5B,OAAO,iBAAO,CAAC,MAAM,CACnB,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,EAChD,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,GAAG,CAAC,EACpD,MAAM,CACP,CAAC;IACJ,CAAC;IACD,iGAAiG;IAC1F,2BAA2B,CAAC,MAAiB;QAClD,IAAI,KAAK,CAAC;QACV,KAAK,KAAK,IAAI,MAAM;YAClB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;IAC7E,CAAC;IACD,oGAAoG;IAC7F,gCAAgC,CAAC,MAAmB;QACzD,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,2BAA2B,CAAC,KAAK,CAAC,CAAC;IAC5C,CAAC;IACD;;;;;;OAMG;IACI,sBAAsB,CAAC,KAAa,EAAE,MAAgB;QAC3D,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EACxB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,sBAAsB,CAAC,aAAsB,EAAE,MAAgB;QACpE,MAAM,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC,OAAO,CAAC,mBAAmB,CACrC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,aAAa,CAAC,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACnC,CAAC,EACD,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;;OAMG;IACI,kBAAkB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAgB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,2BAA2B,CAC7C,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,EAClB,MAAM,CACP,CAAC;IACJ,CAAC;IACD;;;;;OAKG;IACI,oBAAoB,CAAC,YAAqB,IAAI;QACnD,OAAO,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,SAAS,CAAC,CAAC;IACtD,CAAC;IACD;;;;;;;;OAQG;IACI,MAAM,CAAC,iBAAiB,CAAC,MAAa,EAAE,IAAW,EAAE,oBAA+B;QACzF,MAAM,SAAS,GAAG,MAAM,CAAC,MAAM,CAAC;QAChC,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC;QAC5B,IAAI,SAAS,GAAG,OAAO,EAAE,CAAC;YACxB,KAAK,IAAI,CAAC,GAAG,OAAO,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;gBACzC,IAAI,CAAC,IAAI,CAAC,oBAAoB,EAAE,CAAC,CAAC;YACpC,CAAC;QACH,CAAC;aAAM,IAAI,OAAO,GAAG,SAAS,EAAE,CAAC;YAC/B,IAAI,CAAC,MAAM,GAAG,SAAS,CAAC;QAC1B,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;IACD;;;;;;;OAOG;IACI,2BAA2B,CAAC,MAAiB,EAAE,MAAkB;QACtE,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,SAAS,CAAC;QACnB,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,MAAM,OAAO,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,CAAC;QAC9B,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,OAAO,EACrB,MAAM,CAAC,CAAC,CAAC,CACV,CAAC;YACJ,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,MAAM,CAAC,IAAI,CACT,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,EACjB,KAAK,CAAC,CAAC,GAAG,OAAO,CACjB,CACH,CAAC;QACJ,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;OAKG;IACI,kCAAkC,CAAC,MAAiB;QACzD,IAAI,CAAC,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,IAAI,CAAC;YAC1C,OAAO,KAAK,CAAC;QACf,KAAK,MAAM,KAAK,IAAI,MAAM;YACxB,IAAI,CAAC,OAAO,CAAC,2BAA2B,CACtC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC,CAAC,EACvB,KAAK,CACN,CAAC;QACJ,OAAO,IAAI,CAAC;IACd,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACjF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,mBAAmB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC3E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,oBAAoB,CAAC,MAAiB,EAAE,MAAkB;QAC/D,IAAI,MAAM,EAAE,CAAC;YACX,MAAM,CAAC,GAAG,SAAS,CAAC,iBAAiB,CAAC,MAAM,EAAE,MAAM,EAAE,GAAG,EAAE,CAAC,yBAAO,CAAC,UAAU,EAAE,CAAC,CAAC;YAClF,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE;gBACxB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,MAAM,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC;YACnF,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,MAAM,GAAG,EAAE,CAAC;QACZ,KAAK,MAAM,CAAC,IAAI,MAAM;YACpB,MAAM,CAAC,IAAI,CAAC,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,CAAC,CAAC,CAAC,CAAC;QAC7E,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,cAAc,CAAC,MAAgB,EAAE,MAAiB;QACvD,OAAO,IAAI,CAAC,OAAO,CAAC,cAAc,CAAC,MAAM,EAAE,MAAM,CAAC,CAAC;IACrD,CAAC;IACD;;;OAGG;IACI,qBAAqB,CAAC,MAAgB;QAC3C,IAAI,CAAC,OAAO,CAAC,qBAAqB,CAAC,MAAM,CAAC,CAAC;IAC7C,CAAC;IACD;;;;OAIG;IACI,iBAAiB,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,MAAiB;QACzE,OAAO,IAAI,CAAC,OAAO,CAAC,WAAW,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,MAAM,CAAC,CAAC;IACnD,CAAC;IACD;;;;;;;OAOG;IACI,6BAA6B,CAAC,UAAqB,EAAE,UAAqB;QAC/E,mBAAQ,CAAC,qBAAqB,CAC5B,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,UAAU,CAAC,OAAO,EAClB,IAAI,CAAC,OAAkB,CACxB,CAAC;QACF,UAAU,CAAC,OAAO,CAAC,oBAAoB,CAAC,UAAU,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;IAC5E,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,0BAA0B,CAAC,KAAgB,EAAE,MAAkB;QACpE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,mBAAQ,CAAC,qBAAqB,CAAC,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,OAAO,EAAE,KAAK,CAAC,OAAO,CAAC,EACzE,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,OAAO,CAAC,CACjD,CAAC;QACJ,MAAM,CAAC,6BAA6B,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QAClD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;;;;;;OAaG;IACI,yBAAyB,CAAC,KAAe,EAAE,MAAkB;QAClE,IAAI,CAAC,MAAM;YACT,OAAO,SAAS,CAAC,UAAU,CACzB,IAAI,CAAC,OAAO,CAAC,cAAc,EAAE,EAC7B,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,CAAC,CACzC,CAAC;QACJ,IAAI,CAAC,OAAO,CAAC,oBAAoB,CAAC,KAAK,EAAE,MAAM,CAAC,OAAO,CAAC,CAAC;QACzD,MAAM,CAAC,OAAO,CAAC,OAAO,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC;QACrC,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;;;;;OAQG;IACI,aAAa,CAAC,KAAc,EAAE,MAAgB;QACnD,IAAI,KAAK,CAAC,MAAM;YACd,OAAO,KAAK,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC;QAC7B,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,IAAI,GAAG,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC;QACzB,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,KAAK,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC;QAC3B,MAAM,GAAG,eAAO,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC;QACpC,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACpD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACrD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,IAAI,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACtD,MAAM,CAAC,oBAAoB,CAAC,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,KAAK,CAAC,CAAC;QACvD,OAAO,MAAM,CAAC;IAChB,CAAC;IACD;;;;OAIG;IACI,OAAO,CAAC,MAAkB;QAC/B,MAAM,aAAa,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC;QAChF,IAAI,CAAC,aAAa;YAChB,OAAO,SAAS,CAAC;QACnB,IAAI,MAAM,EAAE,CAAC;YACX,oCAAoC;YACpC,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,MAAM,CAAC,OAAmB,CAAC,CAAC;YACzG,OAAO,MAAM,CAAC;QAChB,CAAC;QACD,OAAO,SAAS,CAAC,UAAU,CACzB,aAAa,CAAC,WAAW,CAAC,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC,EAC5E,aAAa,CACd,CAAC;IACJ,CAAC;IACD;;;;;;;;;;OAUG;IACI,MAAM,CAAC,aAAa,CAAC,GAAY,EAAE,GAAY,EAAE,WAAuB,EAAE,WAAuB;QACtG,MAAM,IAAI,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;QAC5B,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,IAAI,IAAI,CAAC,CAAC,KAAK,GAAG;YAChB,IAAI,CAAC,CAAC,GAAG,GAAG,CAAC;QACf,MAAM,OAAO,GAAG,IAAI,mBAAQ,EAAE,CAAC;QAC/B;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,mBAAQ,CAAC,WAAW,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACtD,SAAS,CAAC,qBAAqB,CAAC,GAAG,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAC7D,CAAC;QACD;;;;;;;WAOG;QACH,IAAI,WAAW,EAAE,CAAC;YAChB,MAAM,MAAM,GAAG,IAAI,yBAAO,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAC9E,mBAAQ,CAAC,WAAW,CAAC,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,GAAG,GAAG,IAAI,CAAC,CAAC,EAAE,OAAO,CAAC,CAAC;YACxE,SAAS,CAAC,qBAAqB,CAAC,MAAM,EAAE,OAAO,EAAE,WAAW,CAAC,CAAC;QAChE,CAAC;IACH,CAAC;CACF;AA3xBD,8BA2xBC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module CartesianGeometry\r\n */\r\n\r\nimport { AxisOrder, BeJSONFunctions, Geometry } from \"../Geometry\";\r\nimport { Point4d } from \"../geometry4d/Point4d\";\r\nimport { Matrix3d } from \"./Matrix3d\";\r\nimport { Point2d } from \"./Point2dVector2d\";\r\nimport { Point3d, Vector3d, XYZ } from \"./Point3dVector3d\";\r\nimport { Range3d } from \"./Range\";\r\nimport { TransformProps, XAndY, XYAndZ } from \"./XYZProps\";\r\n\r\n/**\r\n * A Transform consists of an origin and a Matrix3d. This describes a coordinate frame with this origin, with\r\n * the columns of the Matrix3d being the local x,y,z axis directions.\r\n * * The math for a Transform `T` consisting of a Matrix3d `M` and a Point3d `o` on a Vector3d `p` is: `Tp = M*p + o`.\r\n * In other words, `T` is a combination of two operations on `p`: the action of matrix multiplication, followed by a\r\n * translation. `Origin` is a traditional term for `o`, because `T` can be interpreted as a change of basis from the\r\n * global axes centered at the global origin, to a new set of axes specified by matrix M columns centered at `o`.\r\n * * Beware that for common transformations (e.g. scale about point, rotate around an axis) the `fixed point` that\r\n * is used when describing the transform is NOT the `origin` stored in the transform. Setup methods (e.g\r\n * createFixedPointAndMatrix, createScaleAboutPoint) take care of determining the appropriate origin coordinates.\r\n * * If `T` is a translation, no point is fixed by `T`.\r\n * * If `T` is the identity, all points are fixed by `T`.\r\n * * If `T` is a scale about a point, one point is fixed by `T`.\r\n * * If `T` is a rotation about an axis, a line is fixed by `T`.\r\n * * If `T` is a projection to the plane, a plane is fixed by `T`.\r\n * @public\r\n */\r\nexport class Transform implements BeJSONFunctions {\r\n private _origin: XYZ;\r\n private _matrix: Matrix3d;\r\n // Constructor accepts and uses pointer to content (no copy is done here).\r\n private constructor(origin: XYZ, matrix: Matrix3d) {\r\n this._origin = origin;\r\n this._matrix = matrix;\r\n }\r\n private static _identity?: Transform;\r\n /** The identity Transform. Value is frozen and cannot be modified. */\r\n public static get identity(): Transform {\r\n if (undefined === this._identity) {\r\n this._identity = Transform.createIdentity();\r\n this._identity.freeze();\r\n }\r\n return this._identity;\r\n }\r\n /** Freeze this instance (and its members) so it is read-only */\r\n public freeze(): Readonly<this> {\r\n this._origin.freeze();\r\n this._matrix.freeze();\r\n return Object.freeze(this);\r\n }\r\n /**\r\n * Copy contents from other Transform into this Transform\r\n * @param other source transform\r\n */\r\n public setFrom(other: Transform) {\r\n this._origin.setFrom(other._origin);\r\n this._matrix.setFrom(other._matrix);\r\n }\r\n /** Set this Transform to be an identity. */\r\n public setIdentity() {\r\n this._origin.setZero();\r\n this._matrix.setIdentity();\r\n }\r\n /**\r\n * Set this Transform instance from flexible inputs:\r\n * * Any object (such as another Transform or TransformProps) that has `origin` and `matrix` members\r\n * accepted by `Point3d.setFromJSON` and `Matrix3d.setFromJSON`\r\n * * An array of 3 number arrays, each with 4 entries which are rows in a 3x4 matrix.\r\n * * An array of 12 numbers, each block of 4 entries as a row 3x4 matrix.\r\n * * If no input is provided, the identity Transform is returned.\r\n */\r\n public setFromJSON(json?: TransformProps | Transform): void {\r\n if (json) {\r\n if (json instanceof Object && (json as any).origin && (json as any).matrix) {\r\n this._origin.setFromJSON((json as any).origin);\r\n this._matrix.setFromJSON((json as any).matrix);\r\n return;\r\n }\r\n if (Geometry.isArrayOfNumberArray(json, 3, 4)) {\r\n this._matrix.setRowValues(\r\n json[0][0], json[0][1], json[0][2],\r\n json[1][0], json[1][1], json[1][2],\r\n json[2][0], json[2][1], json[2][2],\r\n );\r\n this._origin.set(json[0][3], json[1][3], json[2][3]);\r\n return;\r\n }\r\n if (Geometry.isNumberArray(json, 12)) {\r\n this._matrix.setRowValues(\r\n json[0], json[1], json[2],\r\n json[4], json[5], json[6],\r\n json[8], json[9], json[10],\r\n );\r\n this._origin.set(json[3], json[7], json[11]);\r\n return;\r\n }\r\n }\r\n this.setIdentity();\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` and\r\n * `matrix` parts.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqual(other: Readonly<Transform>): boolean {\r\n return this === other || this.origin.isAlmostEqual(other.origin) && this.matrix.isAlmostEqual(other.matrix);\r\n }\r\n /**\r\n * Test for near equality with `other` Transform. Comparison uses the `isAlmostEqual` methods on the `origin` part\r\n * and the `isAlmostEqualAllowZRotation` method on the `matrix` part.\r\n * @param other Transform to compare to.\r\n */\r\n public isAlmostEqualAllowZRotation(other: Transform): boolean {\r\n return this._origin.isAlmostEqual(other._origin) && this._matrix.isAlmostEqualAllowZRotation(other._matrix);\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toRows(): number[][] {\r\n return [\r\n [this._matrix.coffs[0], this._matrix.coffs[1], this._matrix.coffs[2], this._origin.x],\r\n [this._matrix.coffs[3], this._matrix.coffs[4], this._matrix.coffs[5], this._origin.y],\r\n [this._matrix.coffs[6], this._matrix.coffs[7], this._matrix.coffs[8], this._origin.z],\r\n ];\r\n }\r\n /**\r\n * Return a 3 by 4 matrix containing the rows of this Transform.\r\n * * The transform's origin coordinates are the last entries of the 3 json arrays\r\n */\r\n public toJSON(): TransformProps {\r\n return this.toRows();\r\n }\r\n /** Return a new Transform initialized by `Transform.setFromJSON` */\r\n public static fromJSON(json?: TransformProps): Transform {\r\n const result = Transform.createIdentity();\r\n result.setFromJSON(json);\r\n return result;\r\n }\r\n /** Copy the contents of `this` transform into a new Transform (or to the result, if specified). */\r\n public clone(result?: Transform): Transform {\r\n if (result) {\r\n result._matrix.setFrom(this._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.createFrom(this._origin),\r\n this._matrix.clone(),\r\n );\r\n }\r\n /**\r\n * Return a modified copy of `this` Transform so that its `matrix` part is rigid (`origin` part is untouched).\r\n * * @see [[Matrix3d.axisOrderCrossProductsInPlace]] documentation for details of how the matrix is modified to rigid.\r\n */\r\n public cloneRigid(axisOrder: AxisOrder = AxisOrder.XYZ): Transform | undefined {\r\n const modifiedMatrix = Matrix3d.createRigidFromMatrix3d(this.matrix, axisOrder);\r\n if (!modifiedMatrix)\r\n return undefined;\r\n return new Transform(this.origin.cloneAsPoint3d(), modifiedMatrix);\r\n }\r\n /** Create a Transform with the given `origin` and `matrix`. Inputs are captured, not cloned. */\r\n public static createRefs(origin: XYZ | undefined, matrix: Matrix3d, result?: Transform): Transform {\r\n if (!origin)\r\n origin = Point3d.createZero();\r\n if (result) {\r\n result._origin = origin;\r\n result._matrix = matrix;\r\n return result;\r\n }\r\n return new Transform(origin, matrix);\r\n }\r\n /** Create a Transform with complete contents given. `q` inputs make the matrix and `a` inputs make the origin */\r\n public static createRowValues(\r\n qxx: number, qxy: number, qxz: number, ax: number,\r\n qyx: number, qyy: number, qyz: number, ay: number,\r\n qzx: number, qzy: number, qzz: number, az: number,\r\n result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.set(ax, ay, az);\r\n result._matrix.setRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz);\r\n return result;\r\n }\r\n return new Transform(\r\n Point3d.create(ax, ay, az),\r\n Matrix3d.createRowValues(qxx, qxy, qxz, qyx, qyy, qyz, qzx, qzy, qzz),\r\n );\r\n }\r\n /** Create a Transform with all zeros */\r\n public static createZero(result?: Transform): Transform {\r\n return Transform.createRowValues(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, result);\r\n }\r\n /**\r\n * Create a Transform with translation provided by x,y,z parts.\r\n * * Translation Transform maps any vector `v` to `v + p` where `p = (x,y,z)`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param x x part of translation\r\n * @param y y part of translation\r\n * @param z z part of translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslationXYZ(x: number = 0, y: number = 0, z: number = 0, result?: Transform): Transform {\r\n return Transform.createRefs(Vector3d.create(x, y, z), Matrix3d.createIdentity(), result);\r\n }\r\n /**\r\n * Create a Transform with specified `translation` part.\r\n * * Translation Transform maps any vector `v` to `v + translation`\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n * @param translation x,y,z parts of the translation\r\n * @param result optional pre-allocated Transform\r\n * @returns new or updated transform\r\n */\r\n public static createTranslation(translation: XYZ, result?: Transform): Transform {\r\n return Transform.createRefs(translation, Matrix3d.createIdentity(), result);\r\n }\r\n /** Return a reference (and NOT a copy) to the `matrix` part of the Transform. */\r\n public get matrix(): Matrix3d {\r\n return this._matrix;\r\n }\r\n /** Return a reference (and NOT a copy) to the `origin` part of the Transform. */\r\n public get origin(): XYZ {\r\n return this._origin;\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Point3d` */\r\n public getOrigin(): Point3d {\r\n return Point3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `origin` part of the Transform, as a `Vector3d` */\r\n public getTranslation(): Vector3d {\r\n return Vector3d.createFrom(this._origin);\r\n }\r\n /** return a (clone of) the `matrix` part of the Transform, as a `Matrix3d` */\r\n public getMatrix(): Matrix3d {\r\n return this._matrix.clone();\r\n }\r\n /** test if the transform has `origin` = (0,0,0) and identity `matrix` */\r\n public get isIdentity(): boolean {\r\n return this._matrix.isIdentity && this._origin.isAlmostZero;\r\n }\r\n /** Create an identity transform */\r\n public static createIdentity(result?: Transform): Transform {\r\n if (result) {\r\n result._origin.setZero();\r\n result._matrix.setIdentity();\r\n return result;\r\n }\r\n return Transform.createRefs(Point3d.createZero(), Matrix3d.createIdentity());\r\n }\r\n /**\r\n * Create a Transform using the given `origin` and `matrix`.\r\n * * This is the appropriate construction when the columns of the matrix are coordinate axes of a\r\n * local-to-world mapping, and the given point is the axes' origin in world coordinates.\r\n * * This function is closely related to `createFixedPointAndMatrix` whose point input is the fixed point\r\n * of the world-to-world transformation.\r\n * * If origin is `undefined`, (0,0,0) is used. If matrix is `undefined` the identity matrix is used.\r\n */\r\n public static createOriginAndMatrix(\r\n origin: XYZ | undefined, matrix: Matrix3d | undefined, result?: Transform,\r\n ): Transform {\r\n if (result) {\r\n result._origin.setFromPoint3d(origin);\r\n result._matrix.setFrom(matrix);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n origin ? origin.cloneAsPoint3d() : Point3d.createZero(),\r\n matrix === undefined ? Matrix3d.createIdentity() : matrix.clone(),\r\n result,\r\n );\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix`. If `undefined` zero is used. */\r\n public setOriginAndMatrixColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d | undefined, vectorY: Vector3d | undefined, vectorZ: Vector3d | undefined,\r\n ): void {\r\n if (origin !== undefined)\r\n this._origin.setFrom(origin);\r\n this._matrix.setColumns(vectorX, vectorY, vectorZ);\r\n }\r\n /** Create a Transform using the given `origin` and columns of the `matrix` */\r\n public static createOriginAndMatrixColumns(\r\n origin: XYZ, vectorX: Vector3d, vectorY: Vector3d, vectorZ: Vector3d, result?: Transform,\r\n ): Transform {\r\n if (result)\r\n result.setOriginAndMatrixColumns(origin, vectorX, vectorY, vectorZ);\r\n else\r\n result = Transform.createRefs(Vector3d.createFrom(origin), Matrix3d.createColumns(vectorX, vectorY, vectorZ));\r\n return result;\r\n }\r\n /**\r\n * Create a Transform such that its `matrix` part is rigid.\r\n * @see [[Matrix3d.createRigidFromColumns]] for details of how the matrix is created to be rigid.\r\n */\r\n public static createRigidFromOriginAndColumns(\r\n origin: XYZ | undefined, vectorX: Vector3d, vectorY: Vector3d, axisOrder: AxisOrder, result?: Transform,\r\n ): Transform | undefined {\r\n const matrix = Matrix3d.createRigidFromColumns(vectorX, vectorY, axisOrder, result ? result._matrix : undefined);\r\n if (!matrix)\r\n return undefined;\r\n if (result) {\r\n // result._matrix was already modified to become rigid via createRigidFromColumns\r\n result._origin.setFrom(origin);\r\n return result;\r\n }\r\n /**\r\n * We don't want to pass \"origin\" to createRefs because createRefs does not clone \"origin\". That means if \"origin\"\r\n * is changed via Transform at any point, the initial \"origin\" passed by the user is also changed. To avoid that,\r\n * we pass \"undefined\" to createRefs so that it allocates a new point which then we set it to the \"origin\" which\r\n * is passed by user in the next line.\r\n */\r\n result = Transform.createRefs(undefined, matrix);\r\n result._origin.setFromPoint3d(origin);\r\n return result;\r\n }\r\n /**\r\n * Create a Transform with the specified `matrix`. Compute an `origin` (different from the given `fixedPoint`)\r\n * so that the `fixedPoint` maps back to itself. The returned Transform, transforms a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint (i.e., `Tp = M*(p-f) + f`).\r\n */\r\n public static createFixedPointAndMatrix(\r\n fixedPoint: XYAndZ | undefined, matrix: Matrix3d, result?: Transform,\r\n ): Transform {\r\n if (fixedPoint) {\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = Mf + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n return Transform.createRefs(undefined, matrix.clone());\r\n }\r\n /**\r\n * Create a transform with the specified `matrix` and points `a` and `b`. The returned Transform maps\r\n * point `p` to `M*(p-a) + b` (i.e., `Tp = M*(p-a) + b`), so maps `a` to `b`.\r\n */\r\n public static createMatrixPickupPutdown(\r\n matrix: Matrix3d, a: Point3d, b: Point3d, result?: Transform,\r\n ): Transform {\r\n // we define the origin o = b - M*a so Tp = M*p + o = M*p + (b - M*a) = M*(p-a) + b\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(b, matrix, a);\r\n return Transform.createRefs(origin, matrix.clone(), result);\r\n }\r\n /**\r\n * Create a Transform which leaves the fixedPoint unchanged and scales everything else around it by\r\n * a single scale factor. The returned Transform maps a point `p` to `M*p + (f - M*f)`\r\n * where `f` is the fixedPoint and M is the scale matrix (i.e., `Tp = M*(p-f) + f`).\r\n * * Visualization can be found at https://www.itwinjs.org/sandbox/SaeedTorabi/CubeTransform\r\n */\r\n public static createScaleAboutPoint(fixedPoint: Point3d, scale: number, result?: Transform): Transform {\r\n const matrix = Matrix3d.createScale(scale, scale, scale);\r\n /**\r\n * if f is a fixed point, then Tf = M*f + o = f where M is the matrix and o is the origin.\r\n * we define the origin o = f - M*f. Therefore, Tf = M*f + o = M*f + (f - M*f) = f.\r\n */\r\n const origin = Matrix3d.xyzMinusMatrixTimesXYZ(fixedPoint, matrix, fixedPoint);\r\n return Transform.createRefs(origin, matrix, result);\r\n }\r\n /**\r\n * Return a transformation which flattens space onto a plane, sweeping along a direction which may be different from the plane normal.\r\n * @param sweepVector vector for the sweep direction\r\n * @param planePoint any point on the plane\r\n * @param planeNormal vector normal to the plane.\r\n */\r\n public static createFlattenAlongVectorToPlane(sweepVector: Vector3d, planePoint: XYAndZ, planeNormal: Vector3d): Transform | undefined {\r\n const matrix = Matrix3d.createFlattenAlongVectorToPlane(sweepVector, planeNormal);\r\n if (matrix === undefined)\r\n return undefined;\r\n return Transform.createFixedPointAndMatrix(planePoint, matrix);\r\n }\r\n /**\r\n * Transform the input 2d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint2d(point: XAndY, result?: Point2d): Point2d {\r\n return Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyPoint3d(point: XYAndZ, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, result);\r\n }\r\n /**\r\n * Transform the input 3d point in place (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYAndZInPlace(point: XYAndZ): void {\r\n return Matrix3d.xyzPlusMatrixTimesXYZInPlace(this._origin, this._matrix, point);\r\n }\r\n /**\r\n * Transform the input 3d point (using `Tp = M*p + o`).\r\n * Return as a new point or in the pre-allocated result (if result is given).\r\n */\r\n public multiplyXYZ(x: number, y: number, z: number = 0, result?: Point3d): Point3d {\r\n // Tx = Mx + o so we return Mx + o\r\n return Matrix3d.xyzPlusMatrixTimesCoordinates(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,1). Return the result.\r\n */\r\n public multiplyComponentXYZ(componentIndex: number, x: number, y: number, z: number = 0): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return this.origin.at(componentIndex) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Multiply a specific row (component) of the 3x4 instance times (x,y,z,w). Return the result.\r\n */\r\n public multiplyComponentXYZW(componentIndex: number, x: number, y: number, z: number, w: number): number {\r\n const coffs = this._matrix.coffs;\r\n const idx = 3 * componentIndex;\r\n return (this.origin.at(componentIndex) * w) + (coffs[idx] * x) + (coffs[idx + 1] * y) + (coffs[idx + 2] * z);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as a new `Point4d`, or in the pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Point4d` formed by `Tp` in the\r\n * first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinates(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * Transform the homogeneous point. Return as new `Float64Array` with size 4, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o*w` and returns the `Float64Array` formed by `Tp`\r\n * in the first 3 numbers of the array and `w` as the fourth.\r\n * * Logically, this is multiplication by the 4x4 matrix formed from the 3x4 instance augmented with fourth row 0001.\r\n */\r\n public multiplyXYZWToFloat64Array(x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, w, result);\r\n }\r\n /**\r\n * * Transform the point. Return as new `Float64Array` with size 3, or in the pre-allocated `result` of sufficient size.\r\n * * If `p = (x,y,z)` then this method computes `Tp = M*p + o` and returns it as the first 3 elements of the array.\r\n */\r\n public multiplyXYZToFloat64Array(x: number, y: number, z: number, result?: Float64Array): Float64Array {\r\n return Matrix3d.xyzPlusMatrixTimesCoordinatesToFloat64Array(this._origin, this._matrix, x, y, z, result);\r\n }\r\n /**\r\n * Multiply the homogeneous point by the transpose of `this` Transform. Return as a new `Point4d` or in the\r\n * pre-allocated result (if result is given).\r\n * * If `p = (x,y,z)` then this method computes `M^t*p` and returns it in the first three coordinates of the `Point4d`,\r\n * and `o*p + w` in the fourth.\r\n * * Logically, this is multiplication by the transpose of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001.\r\n */\r\n public multiplyTransposeXYZW(x: number, y: number, z: number, w: number, result?: Point4d): Point4d {\r\n const coffs = this._matrix.coffs;\r\n const origin = this._origin;\r\n return Point4d.create(\r\n (x * coffs[0]) + (y * coffs[3]) + (z * coffs[6]),\r\n (x * coffs[1]) + (y * coffs[4]) + (z * coffs[7]),\r\n (x * coffs[2]) + (y * coffs[5]) + (z * coffs[8]),\r\n (x * origin.x) + (y * origin.y) + (z * origin.z) + w,\r\n result,\r\n );\r\n }\r\n /** For each point in the array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayInPlace(points: Point3d[]) {\r\n let point;\r\n for (point of points)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, point, point);\r\n }\r\n /** For each point in the 2d array, replace point by the transformed point (using `Tp = M*p + o`) */\r\n public multiplyPoint3dArrayArrayInPlace(chains: Point3d[][]) {\r\n for (const chain of chains)\r\n this.multiplyPoint3dArrayInPlace(chain);\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse`\r\n * Transform has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3d(point: XYAndZ, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this._origin.x,\r\n point.y - this._origin.y,\r\n point.z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the homogenous point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * This method computes `TInverse p = MInverse*p - w*MInverse*o` and returns the `Point4d` formed by `TInverse*p`\r\n * in the first three coordinates, and `w` in the fourth.\r\n * * Logically, this is multiplication by the inverse of the 4x4 matrix formed from the 3x4 instance augmented with\r\n * fourth row 0001. This is equivalent to the 4x4 matrix formed in similar fashion from the inverse of this instance.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint4d(weightedPoint: Point4d, result?: Point4d): Point4d | undefined {\r\n const w = weightedPoint.w;\r\n return this._matrix.multiplyInverseXYZW(\r\n weightedPoint.x - w * this.origin.x,\r\n weightedPoint.y - w * this.origin.y,\r\n weightedPoint.z - w * this.origin.z,\r\n w,\r\n result,\r\n );\r\n }\r\n /**\r\n * Multiply the point by the inverse Transform.\r\n * * If for a point `p` we have `Tp = M*p + o = q`, then `p = MInverse*(q - o) = TInverse q` so `TInverse` Transform\r\n * has matrix part `MInverse` and origin part `-MInverse*o`.\r\n * * Return as a new point or in the optional `result`.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInverseXYZ(x: number, y: number, z: number, result?: Point3d): Point3d | undefined {\r\n return this._matrix.multiplyInverseXYZAsPoint3d(\r\n x - this._origin.x,\r\n y - this._origin.y,\r\n z - this._origin.z,\r\n result,\r\n );\r\n }\r\n /**\r\n * * Compute (if needed) the inverse of the `matrix` part of the Transform, thereby ensuring inverse\r\n * operations can complete.\r\n * @param useCached If true, accept prior cached inverse if available.\r\n * @returns `true` if matrix inverse completes, `false` otherwise.\r\n */\r\n public computeCachedInverse(useCached: boolean = true): boolean {\r\n return this._matrix.computeCachedInverse(useCached);\r\n }\r\n /**\r\n * Match the length of destination array with the length of source array\r\n * * If destination has more elements than source, remove the extra elements.\r\n * * If destination has fewer elements than source, use `constructionFunction` to create new elements.\r\n * *\r\n * @param source the source array\r\n * @param dest the destination array\r\n * @param constructionFunction function to call to create new elements.\r\n */\r\n public static matchArrayLengths(source: any[], dest: any[], constructionFunction: () => any): number {\r\n const numSource = source.length;\r\n const numDest = dest.length;\r\n if (numSource > numDest) {\r\n for (let i = numDest; i < numSource; i++) {\r\n dest.push(constructionFunction());\r\n }\r\n } else if (numDest > numSource) {\r\n dest.length = numSource;\r\n }\r\n return numSource;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * If `result` is given, resize it to match the input `points` array and update it with original points `p[]`.\r\n * * If `result` is not given, return a new array.\r\n * * Returns `undefined` if the `matrix` part if this Transform is singular.\r\n */\r\n public multiplyInversePoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] | undefined {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return undefined;\r\n const originX = this.origin.x;\r\n const originY = this.origin.y;\r\n const originZ = this.origin.z;\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n points[i].x - originX,\r\n points[i].y - originY,\r\n points[i].z - originZ,\r\n result[i],\r\n );\r\n return result;\r\n }\r\n result = [];\r\n for (const point of points)\r\n result.push(\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - originX,\r\n point.y - originY,\r\n point.z - originZ,\r\n )!,\r\n );\r\n return result;\r\n }\r\n /**\r\n * Multiply each point in the array by the inverse of `this` Transform in place.\r\n * * For a transform `T = [M o]` the inverse transform `T' = [M' -M'o]` exists if and only if `M` has an inverse\r\n * `M'`. Indeed, for any point `p`, we have `T'Tp = T'(Mp + o) = M'(Mp + o) - M'o = M'Mp + M'o - M'o = p.`\r\n * * Returns `true` if the `matrix` part if this Transform is invertible and `false` if singular.\r\n */\r\n public multiplyInversePoint3dArrayInPlace(points: Point3d[]): boolean {\r\n if (!this._matrix.computeCachedInverse(true))\r\n return false;\r\n for (const point of points)\r\n this._matrix.multiplyInverseXYZAsPoint3d(\r\n point.x - this.origin.x,\r\n point.y - this.origin.y,\r\n point.z - this.origin.z,\r\n point,\r\n );\r\n return true;\r\n }\r\n /**\r\n * Transform the input 2d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint2dArray(points: Point2d[], result?: Point2d[]): Point2d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point2d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyPlusMatrixTimesXY(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Transform the input 3d point array (using `Tp = M*p + o`).\r\n * * If `result` is given, resize it to match the input `points` array and update it with transformed points.\r\n * * If `result` is not given, return a new array.\r\n */\r\n public multiplyPoint3dArray(points: Point3d[], result?: Point3d[]): Point3d[] {\r\n if (result) {\r\n const n = Transform.matchArrayLengths(points, result, () => Point3d.createZero());\r\n for (let i = 0; i < n; i++)\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, points[i], result[i]);\r\n return result;\r\n }\r\n result = [];\r\n for (const p of points)\r\n result.push(Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, p));\r\n return result;\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVector(vector: Vector3d, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyVector(vector, result);\r\n }\r\n /**\r\n * Multiply the vector by the `matrix` part of the Transform in place.\r\n * * The `origin` part of Transform is not used.\r\n */\r\n public multiplyVectorInPlace(vector: Vector3d): void {\r\n this._matrix.multiplyVectorInPlace(vector);\r\n }\r\n /**\r\n * Multiply the vector (x,y,z) by the `matrix` part of the Transform.\r\n * * The `origin` part of Transform is not used.\r\n * * If `result` is given, update it with the multiplication. Otherwise, create a new Vector3d.\r\n */\r\n public multiplyVectorXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d {\r\n return this._matrix.multiplyXYZ(x, y, z, result);\r\n }\r\n /**\r\n * Calculate `transformA * transformB` and store it into the calling instance (`this`).\r\n * * **Note:** If `transformA = [A a]` and `transformB = [B b]` then `transformA * transformB` is defined as\r\n * `[A*B Ab+a]`.\r\n * * @see [[multiplyTransformTransform]] documentation for math details.\r\n * @param transformA first operand\r\n * @param transformB second operand\r\n */\r\n public setMultiplyTransformTransform(transformA: Transform, transformB: Transform): void {\r\n Matrix3d.xyzPlusMatrixTimesXYZ(\r\n transformA._origin,\r\n transformA._matrix,\r\n transformB._origin,\r\n this._origin as Point3d,\r\n );\r\n transformA._matrix.multiplyMatrixMatrix(transformB._matrix, this._matrix);\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Transform.\r\n * * **Note:** If `this = [A a]` and `other = [B b]` then `this * other` is defined as `[A*B Ab+a]` because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other Transform with matrix part }\\bold{B}\\text{ and origin part }\\bold{b} & \\blockTransform{B}{b} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{b}=\\blockTransform{AB}{Ab + a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Transform to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformTransform(other: Transform, result?: Transform) {\r\n if (!result)\r\n return Transform.createRefs(\r\n Matrix3d.xyzPlusMatrixTimesXYZ(this._origin, this._matrix, other._origin),\r\n this._matrix.multiplyMatrixMatrix(other._matrix),\r\n );\r\n result.setMultiplyTransformTransform(this, other);\r\n return result;\r\n }\r\n /**\r\n * Multiply `this` Transform times `other` Matrix3d (considered to be a Transform with 0 `origin`).\r\n * * **Note:** If `this = [A a]` and `other = [B 0]`, then `this * other` is defined as [A*B a] because:\r\n * ```\r\n * equation\r\n * \\begin{matrix}\r\n * \\text{this Transform with matrix part }\\bold{A}\\text{ and origin part }\\bold{a} & \\blockTransform{A}{a}\\\\\r\n * \\text{other matrix }\\bold{B}\\text{ promoted to block Transform} & \\blockTransform{B}{0} \\\\\r\n * \\text{product}& \\blockTransform{A}{a}\\blockTransform{B}{0}=\\blockTransform{AB}{a}\r\n * \\end{matrix}\r\n * ```\r\n * @param other the `other` Matrix3d to be multiplied to `this` Transform.\r\n * @param result optional preallocated `result` to reuse.\r\n */\r\n public multiplyTransformMatrix3d(other: Matrix3d, result?: Transform): Transform {\r\n if (!result)\r\n return Transform.createRefs(\r\n this._origin.cloneAsPoint3d(),\r\n this._matrix.multiplyMatrixMatrix(other),\r\n );\r\n this._matrix.multiplyMatrixMatrix(other, result._matrix);\r\n result._origin.setFrom(this._origin);\r\n return result;\r\n }\r\n /**\r\n * Return the range of the transformed corners.\r\n * * The 8 corners are transformed individually.\r\n * * **Note:** Suppose you have a geometry, a range box around that geometry, and your Transform is a rotation.\r\n * If you rotate the range box and recompute a new range box around the rotated range box, then the new range\r\n * box will have a larger volume than the original range box. However, if you rotate the geometry itself and\r\n * then recompute the range box, it will be a tighter range box around the rotated geometry. `multiplyRange`\r\n * function creates the larger range box because it only has access to the range box and not the geometry itself.\r\n */\r\n public multiplyRange(range: Range3d, result?: Range3d): Range3d {\r\n if (range.isNull)\r\n return range.clone(result);\r\n const lowX = range.low.x;\r\n const lowY = range.low.y;\r\n const lowZ = range.low.z;\r\n const highX = range.high.x;\r\n const highY = range.high.y;\r\n const highZ = range.high.z;\r\n result = Range3d.createNull(result);\r\n result.extendTransformedXYZ(this, lowX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, highX, lowY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, highY, lowZ);\r\n result.extendTransformedXYZ(this, highX, highY, lowZ);\r\n result.extendTransformedXYZ(this, lowX, lowY, highZ);\r\n result.extendTransformedXYZ(this, highX, lowY, highZ);\r\n result.extendTransformedXYZ(this, lowX, highY, highZ);\r\n result.extendTransformedXYZ(this, highX, highY, highZ);\r\n return result;\r\n }\r\n /**\r\n * Return a Transform which is the inverse of `this` Transform.\r\n * * If `transform = [M o]` then `transformInverse = [MInverse -MInverse*o]`\r\n * * Return `undefined` if this Transform's matrix is singular.\r\n */\r\n public inverse(result?: Transform): Transform | undefined {\r\n const matrixInverse = this._matrix.inverse(result ? result._matrix : undefined);\r\n if (!matrixInverse)\r\n return undefined;\r\n if (result) {\r\n // result._matrix is already defined\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z, result._origin as Vector3d);\r\n return result;\r\n }\r\n return Transform.createRefs(\r\n matrixInverse.multiplyXYZ(-this._origin.x, -this._origin.y, -this._origin.z),\r\n matrixInverse,\r\n );\r\n }\r\n /**\r\n * Initialize 2 Transforms that map between the unit box (specified by 000 and 111) and the range box specified\r\n * by the input points.\r\n * @param min the min corner of the range box\r\n * @param max the max corner of the range box\r\n * @param npcToGlobal maps NPC coordinates into range box coordinates. Specifically, maps 000 to `min` and maps\r\n * 111 to `max`. This Transform is the inverse of `globalToNpc`. Object created by caller, re-initialized here.\r\n * @param globalToNpc maps range box coordinates into NPC coordinates. Specifically, maps `min` to 000 and maps\r\n * `max` to 111. This Transform is the inverse of `npcToGlobal`. Object created by caller, re-initialized here.\r\n * * NPC stands for `Normalized Projection Coordinate`\r\n */\r\n public static initFromRange(min: Point3d, max: Point3d, npcToGlobal?: Transform, globalToNpc?: Transform): void {\r\n const diag = max.minus(min);\r\n if (diag.x === 0.0)\r\n diag.x = 1.0;\r\n if (diag.y === 0.0)\r\n diag.y = 1.0;\r\n if (diag.z === 0.0)\r\n diag.z = 1.0;\r\n const rMatrix = new Matrix3d();\r\n /**\r\n * [diag.x 0 0 min.x]\r\n * npcToGlobal = [ 0 diag.y 0 min.y]\r\n * [ 0 0 diag.y min.z]\r\n *\r\n * npcToGlobal * 0 = min\r\n * npcToGlobal * 1 = diag + min = max\r\n */\r\n if (npcToGlobal) {\r\n Matrix3d.createScale(diag.x, diag.y, diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(min, rMatrix, npcToGlobal);\r\n }\r\n /**\r\n * [1/diag.x 0 0 -min.x/diag.x]\r\n * globalToNpc = [ 0 1/diag.y 0 -min.y/diag.y]\r\n * [ 0 0 1/diag.y -min.z/diag.z]\r\n *\r\n * globalToNpc * min = min/diag - min/diag = 0\r\n * globalToNpc * max = max/diag - min/diag = diag/diag = 1\r\n */\r\n if (globalToNpc) {\r\n const origin = new Point3d(-min.x / diag.x, -min.y / diag.y, -min.z / diag.z);\r\n Matrix3d.createScale(1.0 / diag.x, 1.0 / diag.y, 1.0 / diag.z, rMatrix);\r\n Transform.createOriginAndMatrix(origin, rMatrix, globalToNpc);\r\n }\r\n }\r\n}\r\n"]}
@@ -90,7 +90,7 @@ export declare class Newton1dUnbounded extends AbstractNewtonIterator {
90
90
  * Constructor for 1D newton iteration with derivatives.
91
91
  * @param func function that returns both function value and derivative.
92
92
  */
93
- constructor(func: NewtonEvaluatorRtoRD);
93
+ constructor(func: NewtonEvaluatorRtoRD, maxIterations?: number);
94
94
  /** Set the independent variable, i.e., x_n. */
95
95
  setX(x: number): boolean;
96
96
  /** Get the independent variable, i.e., x_n. */
@@ -137,7 +137,7 @@ export declare class Newton1dUnboundedApproximateDerivative extends AbstractNewt
137
137
  * Constructor for 1D newton iteration with approximate derivatives.
138
138
  * @param func function that only returns function value (and not derivative).
139
139
  */
140
- constructor(func: NewtonEvaluatorRtoR);
140
+ constructor(func: NewtonEvaluatorRtoR, maxIterations?: number);
141
141
  /** Set the independent variable, i.e., x_n. */
142
142
  setX(x: number): boolean;
143
143
  /** Get the independent variable, i.e., x_n. */
@@ -196,7 +196,7 @@ export declare class Newton2dUnboundedWithDerivative extends AbstractNewtonItera
196
196
  * Constructor for 2D newton iteration with derivatives.
197
197
  * @param func function that returns both function value and derivative.
198
198
  */
199
- constructor(func: NewtonEvaluatorRRtoRRD);
199
+ constructor(func: NewtonEvaluatorRRtoRRD, maxIterations?: number);
200
200
  /** Set the current uv parameters, i.e., `X_n = (u_n, v_n)`. */
201
201
  setUV(u: number, v: number): boolean;
202
202
  /** Get the current u parameter of X_n, i.e., u_n. */
@@ -1 +1 @@
1
- {"version":3,"file":"Newton.d.ts","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,yBAAyB,CAAC;AACzD,OAAO,EAAE,yBAAyB,EAAE,MAAM,yCAAyC,CAAC;AAEpF,OAAO,EAAE,OAAO,EAAE,MAAM,+BAA+B,CAAC;AAMxD;;;;GAIG;AACH,8BAAsB,sBAAsB;IAC1C,wGAAwG;aACxF,WAAW,IAAI,OAAO;IACtC;;;OAGG;aACa,eAAe,IAAI,MAAM;IACzC;;;OAGG;aACa,gBAAgB,CAAC,WAAW,EAAE,OAAO,GAAG,OAAO;IAC/D;;;;;;;;;;;OAWG;IACH,SAAS,aACP,iBAAiB,GAAE,MAAgB,EACnC,2BAA2B,GAAE,MAAU,EACvC,aAAa,GAAE,MAAW;IAM5B,sEAAsE;IACtE,SAAS,CAAC,YAAY,EAAE,MAAM,CAAK;IACnC,gDAAgD;IAChD,SAAS,CAAC,4BAA4B,EAAE,MAAM,CAAC;IAC/C,4FAA4F;IAC5F,SAAS,CAAC,kBAAkB,EAAE,MAAM,CAAC;IACrC,8BAA8B;IAC9B,SAAS,CAAC,cAAc,EAAE,MAAM,CAAC;IACjC,uDAAuD;IAChD,aAAa,EAAE,MAAM,CAAK;IACjC;;;;;OAKG;IACI,eAAe,CAAC,KAAK,EAAE,MAAM,GAAG,OAAO;IAQ9C;;;;;;OAMG;IACI,aAAa,IAAI,OAAO;CAYhC;AACD;;;;GAIG;AACH,8BAAsB,oBAAoB;IACxC,qDAAqD;aACrC,QAAQ,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAC5C,gDAAgD;IACzC,QAAQ,EAAG,MAAM,CAAC;IACzB,uDAAuD;IAChD,WAAW,EAAG,MAAM,CAAC;CAC7B;AACD;;;;;;GAMG;AACH,qBAAa,iBAAkB,SAAQ,sBAAsB;IAC3D,OAAO,CAAC,KAAK,CAAuB;IACpC,0BAA0B;IAC1B,OAAO,CAAC,YAAY,CAAU;IAC9B,wBAAwB;IACxB,OAAO,CAAC,SAAS,CAAU;IAC3B,iBAAiB;IACjB,OAAO,CAAC,OAAO,CAAU;IACzB;;;OAGG;gBACgB,IAAI,EAAE,oBAAoB;IAK7C,+CAA+C;IACxC,IAAI,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAI/B,+CAA+C;IACxC,IAAI,IAAI,MAAM;IAGrB,qCAAqC;IAC9B,SAAS,CAAC,CAAC,EAAE,MAAM,GAAG,IAAI;IAGjC,sEAAsE;IAC/D,gBAAgB,IAAI,OAAO;IAIlC,6CAA6C;IACtC,WAAW,IAAI,OAAO;IAU7B,qFAAqF;IAC9E,eAAe,IAAI,MAAM;CAGjC;AAED;;;GAGG;AACH,8BAAsB,mBAAmB;IACvC,mDAAmD;aACnC,QAAQ,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAC5C,qDAAqD;IAC9C,QAAQ,EAAG,MAAM,CAAC;CAC1B;AAED;;;;;;GAMG;AACH,qBAAa,sCAAuC,SAAQ,sBAAsB;IAChF,OAAO,CAAC,KAAK,CAAsB;IACnC,0BAA0B;IAC1B,OAAO,CAAC,YAAY,CAAU;IAC9B,wBAAwB;IACxB,OAAO,CAAC,SAAS,CAAU;IAC3B;;;;OAIG;IACI,WAAW,EAAE,MAAM,CAAC;IAE3B;;;OAGG;gBACgB,IAAI,EAAE,mBAAmB;IAK5C,+CAA+C;IACxC,IAAI,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAI/B,+CAA+C;IACxC,IAAI,IAAI,MAAM;IAGrB,sEAAsE;IAC/D,gBAAgB,IAAI,OAAO;IAIlC,uEAAuE;IAChE,WAAW,IAAI,OAAO;IAc7B,qFAAqF;IAC9E,eAAe,IAAI,MAAM;CAGjC;AAED;;;GAGG;AACH,8BAAsB,sBAAsB;IAC1C;;;OAGG;aACa,QAAQ,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,OAAO;IACvD;;;;;;;OAOG;IACI,QAAQ,EAAG,yBAAyB,CAAC;IAC5C;;;OAGG;;CAIJ;AAED;;;;;;;;;;;GAWG;AACH,qBAAa,+BAAgC,SAAQ,sBAAsB;IACzE,OAAO,CAAC,KAAK,CAAyB;IACtC,sCAAsC;IACtC,OAAO,CAAC,YAAY,CAAW;IAC/B,kDAAkD;IAClD,OAAO,CAAC,UAAU,CAAU;IAC5B;;;OAGG;gBACgB,IAAI,EAAE,sBAAsB;IAO/C,+DAA+D;IACxD,KAAK,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,OAAO;IAI3C,qDAAqD;IAC9C,IAAI,IAAI,MAAM;IAGrB,qDAAqD;IAC9C,IAAI,IAAI,MAAM;IAGrB,kHAAkH;IAC3G,gBAAgB,IAAI,OAAO;IAKlC;;;OAGG;IACI,WAAW,IAAI,OAAO;IAe7B;;OAEG;IACI,eAAe,IAAI,MAAM;CAMjC;AACD;;;;GAIG;AACH,qBAAa,YAAY;IACvB;;;;;;;;OAQG;WACW,WAAW,CACvB,CAAC,EAAE,MAAM,EACT,IAAI,EAAE,CAAC,CAAC,EAAE,MAAM,KAAK,MAAM,GAAG,SAAS,EACvC,UAAU,EAAE,CAAC,CAAC,EAAE,MAAM,KAAK,MAAM,GAAG,SAAS,EAC7C,iBAAiB,GAAE,MAAoC,GACtD,MAAM,GAAG,SAAS;CAyBtB;AAED;;;GAGG;AACH,qBAAa,+BAAgC,SAAQ,sBAAsB;IACzE,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,KAAK,CAAQ;IACrB,OAAO,CAAC,KAAK,CAAQ;gBACT,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc;IAOnD,QAAQ,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,GAAG,OAAO;CAmB/D;AAED;;;GAGG;AACH,qBAAa,8BAA+B,SAAQ,oBAAoB;IACtE,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAU;IACzB,OAAO,CAAC,OAAO,CAA4B;gBAC/B,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,OAAO;IAM5C,QAAQ,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO;CAoB5C;AAED;;;GAGG;AACH,qBAAa,gCAAiC,SAAQ,sBAAsB;IAC1E,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAA4B;IAC3C,OAAO,CAAC,OAAO,CAA4B;gBAC/B,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc;IAOnD,QAAQ,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,GAAG,OAAO;CAqC/D"}
1
+ {"version":3,"file":"Newton.d.ts","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":"AAUA,OAAO,EAAE,cAAc,EAAE,MAAM,yBAAyB,CAAC;AACzD,OAAO,EAAE,yBAAyB,EAAE,MAAM,yCAAyC,CAAC;AAEpF,OAAO,EAAE,OAAO,EAAE,MAAM,+BAA+B,CAAC;AAMxD;;;;GAIG;AACH,8BAAsB,sBAAsB;IAC1C,wGAAwG;aACxF,WAAW,IAAI,OAAO;IACtC;;;OAGG;aACa,eAAe,IAAI,MAAM;IACzC;;;OAGG;aACa,gBAAgB,CAAC,WAAW,EAAE,OAAO,GAAG,OAAO;IAC/D;;;;;;;;;;;OAWG;IACH,SAAS,aACP,iBAAiB,GAAE,MAAgB,EACnC,2BAA2B,GAAE,MAAU,EACvC,aAAa,GAAE,MAAW;IAM5B,sEAAsE;IACtE,SAAS,CAAC,YAAY,EAAE,MAAM,CAAK;IACnC,gDAAgD;IAChD,SAAS,CAAC,4BAA4B,EAAE,MAAM,CAAC;IAC/C,4FAA4F;IAC5F,SAAS,CAAC,kBAAkB,EAAE,MAAM,CAAC;IACrC,8BAA8B;IAC9B,SAAS,CAAC,cAAc,EAAE,MAAM,CAAC;IACjC,uDAAuD;IAChD,aAAa,EAAE,MAAM,CAAK;IACjC;;;;;OAKG;IACI,eAAe,CAAC,KAAK,EAAE,MAAM,GAAG,OAAO;IAQ9C;;;;;;OAMG;IACI,aAAa,IAAI,OAAO;CAYhC;AACD;;;;GAIG;AACH,8BAAsB,oBAAoB;IACxC,qDAAqD;aACrC,QAAQ,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAC5C,gDAAgD;IACzC,QAAQ,EAAG,MAAM,CAAC;IACzB,uDAAuD;IAChD,WAAW,EAAG,MAAM,CAAC;CAC7B;AACD;;;;;;GAMG;AACH,qBAAa,iBAAkB,SAAQ,sBAAsB;IAC3D,OAAO,CAAC,KAAK,CAAuB;IACpC,0BAA0B;IAC1B,OAAO,CAAC,YAAY,CAAU;IAC9B,wBAAwB;IACxB,OAAO,CAAC,SAAS,CAAU;IAC3B,iBAAiB;IACjB,OAAO,CAAC,OAAO,CAAU;IACzB;;;OAGG;gBACgB,IAAI,EAAE,oBAAoB,EAAE,aAAa,CAAC,EAAE,MAAM;IAKrE,+CAA+C;IACxC,IAAI,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAI/B,+CAA+C;IACxC,IAAI,IAAI,MAAM;IAGrB,qCAAqC;IAC9B,SAAS,CAAC,CAAC,EAAE,MAAM,GAAG,IAAI;IAGjC,sEAAsE;IAC/D,gBAAgB,IAAI,OAAO;IAIlC,6CAA6C;IACtC,WAAW,IAAI,OAAO;IAU7B,qFAAqF;IAC9E,eAAe,IAAI,MAAM;CAGjC;AAED;;;GAGG;AACH,8BAAsB,mBAAmB;IACvC,mDAAmD;aACnC,QAAQ,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAC5C,qDAAqD;IAC9C,QAAQ,EAAG,MAAM,CAAC;CAC1B;AAED;;;;;;GAMG;AACH,qBAAa,sCAAuC,SAAQ,sBAAsB;IAChF,OAAO,CAAC,KAAK,CAAsB;IACnC,0BAA0B;IAC1B,OAAO,CAAC,YAAY,CAAU;IAC9B,wBAAwB;IACxB,OAAO,CAAC,SAAS,CAAU;IAC3B;;;;OAIG;IACI,WAAW,EAAE,MAAM,CAAC;IAE3B;;;OAGG;gBACgB,IAAI,EAAE,mBAAmB,EAAE,aAAa,CAAC,EAAE,MAAM;IAKpE,+CAA+C;IACxC,IAAI,CAAC,CAAC,EAAE,MAAM,GAAG,OAAO;IAI/B,+CAA+C;IACxC,IAAI,IAAI,MAAM;IAGrB,sEAAsE;IAC/D,gBAAgB,IAAI,OAAO;IAIlC,uEAAuE;IAChE,WAAW,IAAI,OAAO;IAc7B,qFAAqF;IAC9E,eAAe,IAAI,MAAM;CAGjC;AAED;;;GAGG;AACH,8BAAsB,sBAAsB;IAC1C;;;OAGG;aACa,QAAQ,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,OAAO;IACvD;;;;;;;OAOG;IACI,QAAQ,EAAG,yBAAyB,CAAC;IAC5C;;;OAGG;;CAIJ;AAED;;;;;;;;;;;GAWG;AACH,qBAAa,+BAAgC,SAAQ,sBAAsB;IACzE,OAAO,CAAC,KAAK,CAAyB;IACtC,sCAAsC;IACtC,OAAO,CAAC,YAAY,CAAW;IAC/B,kDAAkD;IAClD,OAAO,CAAC,UAAU,CAAU;IAC5B;;;OAGG;gBACgB,IAAI,EAAE,sBAAsB,EAAE,aAAa,CAAC,EAAE,MAAM;IAMvE,+DAA+D;IACxD,KAAK,CAAC,CAAC,EAAE,MAAM,EAAE,CAAC,EAAE,MAAM,GAAG,OAAO;IAI3C,qDAAqD;IAC9C,IAAI,IAAI,MAAM;IAGrB,qDAAqD;IAC9C,IAAI,IAAI,MAAM;IAGrB,kHAAkH;IAC3G,gBAAgB,IAAI,OAAO;IAIlC;;;OAGG;IACI,WAAW,IAAI,OAAO;IAY7B;;OAEG;IACI,eAAe,IAAI,MAAM;CAMjC;AACD;;;;GAIG;AACH,qBAAa,YAAY;IACvB;;;;;;;;OAQG;WACW,WAAW,CACvB,CAAC,EAAE,MAAM,EACT,IAAI,EAAE,CAAC,CAAC,EAAE,MAAM,KAAK,MAAM,GAAG,SAAS,EACvC,UAAU,EAAE,CAAC,CAAC,EAAE,MAAM,KAAK,MAAM,GAAG,SAAS,EAC7C,iBAAiB,GAAE,MAAoC,GACtD,MAAM,GAAG,SAAS;CAyBtB;AAED;;;GAGG;AACH,qBAAa,+BAAgC,SAAQ,sBAAsB;IACzE,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,KAAK,CAAQ;IACrB,OAAO,CAAC,KAAK,CAAQ;gBACT,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc;IAOnD,QAAQ,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,GAAG,OAAO;CAmB/D;AAED;;;GAGG;AACH,qBAAa,8BAA+B,SAAQ,oBAAoB;IACtE,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAU;IACzB,OAAO,CAAC,OAAO,CAA4B;gBAC/B,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,OAAO;IAM5C,QAAQ,CAAC,SAAS,EAAE,MAAM,GAAG,OAAO;CAoB5C;AAED;;;GAGG;AACH,qBAAa,gCAAiC,SAAQ,sBAAsB;IAC1E,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAAiB;IAChC,OAAO,CAAC,OAAO,CAA4B;IAC3C,OAAO,CAAC,OAAO,CAA4B;gBAC/B,MAAM,EAAE,cAAc,EAAE,MAAM,EAAE,cAAc;IAOnD,QAAQ,CAAC,SAAS,EAAE,MAAM,EAAE,SAAS,EAAE,MAAM,GAAG,OAAO;CAqC/D"}
@@ -96,8 +96,8 @@ class Newton1dUnbounded extends AbstractNewtonIterator {
96
96
  * Constructor for 1D newton iteration with derivatives.
97
97
  * @param func function that returns both function value and derivative.
98
98
  */
99
- constructor(func) {
100
- super();
99
+ constructor(func, maxIterations) {
100
+ super(undefined, undefined, maxIterations);
101
101
  this._func = func;
102
102
  this.setTarget(0);
103
103
  }
@@ -155,8 +155,8 @@ class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterator {
155
155
  * Constructor for 1D newton iteration with approximate derivatives.
156
156
  * @param func function that only returns function value (and not derivative).
157
157
  */
158
- constructor(func) {
159
- super();
158
+ constructor(func, maxIterations) {
159
+ super(undefined, undefined, maxIterations);
160
160
  this._func = func;
161
161
  this.derivativeH = 1.0e-8;
162
162
  }
@@ -226,8 +226,7 @@ class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
226
226
  * Constructor for 2D newton iteration with derivatives.
227
227
  * @param func function that returns both function value and derivative.
228
228
  */
229
- constructor(func) {
230
- const maxIterations = 100; // Was default (15). We observed 49 iters to achieve 1e-11 tol with tangent geometry.
229
+ constructor(func, maxIterations) {
231
230
  super(undefined, undefined, maxIterations);
232
231
  this._func = func;
233
232
  this._currentStep = Point2dVector2d_1.Vector2d.createZero();
@@ -248,7 +247,6 @@ class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
248
247
  }
249
248
  /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */
250
249
  applyCurrentStep() {
251
- // print approximations for debug
252
250
  // console.log("(" + (this._currentUV.x - this._currentStep.x) + "," + (this._currentUV.y - this._currentStep.y) + ")");
253
251
  return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);
254
252
  }
@@ -257,15 +255,15 @@ class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {
257
255
  * compute `dX = (du, dv)`.
258
256
  */
259
257
  computeStep() {
260
- if (this._func.evaluate(this._currentUV.x, this._currentUV.y)) {
261
- const fA = this._func.currentF;
262
- if ( // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:
263
- Polynomials_1.SmallSystem.linearSystem2d(fA.vectorU.x, fA.vectorV.x, // x_u(X_n), x_v(X_n): 1st row of J evaluated at X_n
264
- fA.vectorU.y, fA.vectorV.y, // y_u(X_n), y_v(X_n): 2nd row of J evaluated at X_n
265
- fA.origin.x, fA.origin.y, // F(X_n) := (x(X_n), y(X_n))
266
- this._currentStep))
267
- return true;
268
- }
258
+ if (!this._func.evaluate(this._currentUV.x, this._currentUV.y))
259
+ return false;
260
+ const fA = this._func.currentF;
261
+ const jCol0 = fA.vectorU;
262
+ const jCol1 = fA.vectorV;
263
+ const fX = fA.origin;
264
+ // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:
265
+ if (Polynomials_1.SmallSystem.linearSystem2d(jCol0.x, jCol1.x, jCol0.y, jCol1.y, fX.x, fX.y, this._currentStep))
266
+ return true;
269
267
  return false;
270
268
  }
271
269
  /**
@@ -1 +1 @@
1
- {"version":3,"file":"Newton.js","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAuC;AAEvC,uFAAoF;AACpF,mEAAkE;AAElE,+CAA4C;AAC5C,+CAA4C;AAE5C,+BAA+B;AAE/B;;;;GAIG;AACH,MAAsB,sBAAsB;IAa1C;;;;;;;;;;;OAWG;IACH,YACE,oBAA4B,OAAO,EACnC,8BAAsC,CAAC,EACvC,gBAAwB,EAAE;QAM5B,sEAAsE;QAC5D,iBAAY,GAAW,CAAC,CAAC;QAOnC,uDAAuD;QAChD,kBAAa,GAAW,CAAC,CAAC;QAb/B,IAAI,CAAC,kBAAkB,GAAG,iBAAiB,CAAC;QAC5C,IAAI,CAAC,4BAA4B,GAAG,2BAA2B,CAAC;QAChE,IAAI,CAAC,cAAc,GAAG,aAAa,CAAC;IACtC,CAAC;IAWD;;;;;OAKG;IACI,eAAe,CAAC,KAAa;QAClC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,IAAI,CAAC,kBAAkB,EAAE,CAAC;YAC9C,IAAI,CAAC,YAAY,EAAE,CAAC;YACpB,OAAO,IAAI,CAAC,YAAY,IAAI,IAAI,CAAC,4BAA4B,CAAC;QAChE,CAAC;QACD,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,aAAa;QAClB,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,IAAI,CAAC,aAAa,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,aAAa,EAAE,GAAG,IAAI,CAAC,cAAc,IAAI,IAAI,CAAC,WAAW,EAAE,EAAE,CAAC;YACxE,IAAI,IAAI,CAAC,eAAe,CAAC,IAAI,CAAC,eAAe,EAAE,CAAC,IAAI,IAAI,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC;gBAChF,6FAA6F;gBAC7F,OAAO,IAAI,CAAC;YACd,CAAC;YACD,IAAI,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC;QAC/B,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;CACF;AA7ED,wDA6EC;AACD;;;;GAIG;AACH,MAAsB,oBAAoB;CAOzC;AAPD,oDAOC;AACD;;;;;;GAMG;AACH,MAAa,iBAAkB,SAAQ,sBAAsB;IAQ3D;;;OAGG;IACH,YAAmB,IAA0B;QAC3C,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACpB,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,qCAAqC;IAC9B,SAAS,CAAC,CAAS;QACxB,IAAI,CAAC,OAAO,GAAG,CAAC,CAAC;IACnB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,6CAA6C;IACtC,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,GAAG,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,CAAC;YAC1G,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;gBACvB,OAAO,IAAI,CAAC;YACd,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAlDD,8CAkDC;AAED;;;GAGG;AACH,MAAsB,mBAAmB;CAKxC;AALD,kDAKC;AAED;;;;;;GAMG;AACH,MAAa,sCAAuC,SAAQ,sBAAsB;IAahF;;;OAGG;IACH,YAAmB,IAAyB;QAC1C,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,WAAW,GAAG,MAAM,CAAC;IAC5B,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,uEAAuE;IAChE,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,SAAS;YACzC,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,WAAW,CAAC,EAAE,CAAC;gBAC3D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,aAAa;gBAC7C,MAAM,EAAE,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC;gBAChF,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;oBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;oBACvB,OAAO,IAAI,CAAC;gBACd,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAvDD,wFAuDC;AAED;;;GAGG;AACH,MAAsB,sBAAsB;IAe1C;;;OAGG;IACH;QACE,IAAI,CAAC,QAAQ,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC5D,CAAC;CACF;AAtBD,wDAsBC;AAED;;;;;;;;;;;GAWG;AACH,MAAa,+BAAgC,SAAQ,sBAAsB;IAMzE;;;OAGG;IACH,YAAmB,IAA4B;QAC7C,MAAM,aAAa,GAAG,GAAG,CAAC,CAAE,qFAAqF;QACjH,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,YAAY,GAAG,0BAAQ,CAAC,UAAU,EAAE,CAAC;QAC1C,IAAI,CAAC,UAAU,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;IACzC,CAAC;IACD,+DAA+D;IACxD,KAAK,CAAC,CAAS,EAAE,CAAS;QAC/B,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC;IACd,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,kHAAkH;IAC3G,gBAAgB;QACrB,iCAAiC;QACjC,wHAAwH;QACxH,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;OAGG;IACI,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,EAAE,CAAC;YAC9D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC;YAC/B,KAAM,yFAAyF;YAC7F,yBAAW,CAAC,cAAc,CACxB,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,oDAAoD;YAChF,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,EAAE,CAAC,OAAO,CAAC,CAAC,EAAE,oDAAoD;YAChF,EAAE,CAAC,MAAM,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,EAAI,6BAA6B;YACzD,IAAI,CAAC,YAAY,CAClB;gBAED,OAAO,IAAI,CAAC;QAChB,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;OAEG;IACI,eAAe;QACpB,OAAO,mBAAQ,CAAC,QAAQ,CACtB,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,EACzD,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,CAC1D,CAAC;IACJ,CAAC;CACF;AAhED,0EAgEC;AACD;;;;GAIG;AACH,MAAa,YAAY;IACvB;;;;;;;;OAQG;IACI,MAAM,CAAC,WAAW,CACvB,CAAS,EACT,IAAuC,EACvC,UAA6C,EAC7C,oBAA4B,mBAAQ,CAAC,kBAAkB;QAEvD,IAAI,YAAY,GAAG,CAAC,CAAC;QACrB,IAAI,SAAiB,CAAC;QACtB,MAAM,MAAM,GAAG,OAAO,CAAC;QACvB,KAAK,IAAI,SAAS,GAAG,CAAC,EAAE,SAAS,GAAG,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC;YACpD,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAClB,MAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC;YACzB,IAAI,CAAC,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACxC,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;gBACvD,IAAI,EAAE,KAAK,SAAS;oBAClB,OAAO,SAAS,CAAC;gBACnB,CAAC,IAAI,EAAE,CAAC;gBACR,oDAAoD;gBACpD,SAAS,GAAG,iBAAiB,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC;gBACrD,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC;oBAC7B,YAAY,EAAE,CAAC;oBACf,IAAI,EAAE,KAAK,GAAG,IAAI,YAAY,GAAG,CAAC,EAAI,wCAAwC;wBAC5E,OAAO,CAAC,CAAC;gBACb,CAAC;qBAAM,CAAC;oBACN,YAAY,GAAG,CAAC,CAAC;gBACnB,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAxCD,oCAwCC;AAED;;;GAGG;AACH,MAAa,+BAAgC,SAAQ,sBAAsB;IAKzE,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,KAAK,GAAG,aAAK,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,CAAC,KAAK,GAAG,aAAK,CAAC,UAAU,EAAE,CAAC;IAClC,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;WAQG;QACH,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,GAAG,EACzF,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,EACnD,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,CACtD,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AA/BD,0EA+BC;AAED;;;GAGG;AACH,MAAa,8BAA+B,SAAQ,oBAAoB;IAItE,YAAY,MAAsB,EAAE,MAAe;QACjD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB;QAC/B;;;;;;;WAOG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,GAAG,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,CAAC;QAChD,IAAI,CAAC,WAAW,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,CAAC;QAC7F,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AA9BD,wEA8BC;AAED;;;GAGG;AACH,MAAa,gCAAiC,SAAQ,sBAAsB;IAK1E,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;QACzD,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;;;WAUG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,GAAG,EACH,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACrC,GAAG,EACH,CAAC,CAAC,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,EACxC,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,GAAG,CACJ,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAjDD,4EAiDC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { Geometry } from \"../Geometry\";\r\nimport { CurvePrimitive } from \"../curve/CurvePrimitive\";\r\nimport { Plane3dByOriginAndVectors } from \"../geometry3d/Plane3dByOriginAndVectors\";\r\nimport { Point2d, Vector2d } from \"../geometry3d/Point2dVector2d\";\r\nimport { Point3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Ray3d } from \"../geometry3d/Ray3d\";\r\nimport { SmallSystem } from \"./Polynomials\";\r\n\r\n// cspell:word currentdFdX XYRR\r\n\r\n/**\r\n * Base class for Newton iterations in various dimensions.\r\n * Dimension-specific classes carry all dimension-related data and answer generalized queries from this base class.\r\n * @internal\r\n */\r\nexport abstract class AbstractNewtonIterator {\r\n /** Compute a step. The current x and function values must be retained for use in later method calls. */\r\n public abstract computeStep(): boolean;\r\n /**\r\n * Return the current step size, scaled for use in tolerance tests.\r\n * * This is a single number, typically the max of various per-dimension `dx/(1+x)` for the x and dx of that dimension.\r\n */\r\n public abstract currentStepSize(): number;\r\n /**\r\n * Apply the current step (in all dimensions).\r\n * @param isFinalStep true if this is a final step.\r\n */\r\n public abstract applyCurrentStep(isFinalStep: boolean): boolean;\r\n /**\r\n * The constructor.\r\n * @param stepSizeTarget tolerance to consider a single step converged.\r\n * This number should be \"moderately\" strict. Because 2 successive convergences are required,\r\n * it is expected that a first \"accept\" for (say) 10 to 14 digit step will be followed by another\r\n * iteration. A well behaved newton would then hypothetically double the number of digits to\r\n * 20 to 28. Since the IEEE double only carries 16 digits, this second-convergence step will\r\n * typically achieve full precision.\r\n * @param successiveConvergenceTarget number of successive convergences required for acceptance.\r\n * @param maxIterations max number of iterations. A typical newton step converges in 3 to 6 iterations.\r\n * Allow 15 to 20 to catch difficult cases.\r\n */\r\n protected constructor(\r\n stepSizeTolerance: number = 1.0e-11,\r\n successiveConvergenceTarget: number = 2,\r\n maxIterations: number = 15,\r\n ) {\r\n this._stepSizeTolerance = stepSizeTolerance;\r\n this._successiveConvergenceTarget = successiveConvergenceTarget;\r\n this._maxIterations = maxIterations;\r\n }\r\n /** Number of consecutive steps which passed convergence condition. */\r\n protected _numAccepted: number = 0;\r\n /** Target number of successive convergences. */\r\n protected _successiveConvergenceTarget: number;\r\n /** Convergence target (the implementation-specific currentStepSize is compared to this). */\r\n protected _stepSizeTolerance: number;\r\n /** Max iterations allowed. */\r\n protected _maxIterations: number;\r\n /** Number of iterations (incremented at each step). */\r\n public numIterations: number = 0;\r\n /**\r\n * Test if a step is converged.\r\n * * Convergence is accepted with enough (_successiveConvergenceTarget) small steps (according to _stepSizeTolerance)\r\n * occur in succession.\r\n * @param delta step size as reported by currentStepSize.\r\n */\r\n public testConvergence(delta: number): boolean {\r\n if (Math.abs(delta) < this._stepSizeTolerance) {\r\n this._numAccepted++;\r\n return this._numAccepted >= this._successiveConvergenceTarget;\r\n }\r\n this._numAccepted = 0;\r\n return false;\r\n }\r\n /**\r\n * Run iterations, calling various methods from base and derived classes:\r\n * * computeStep -- typically evaluate derivatives and solve linear system.\r\n * * currentStepSize -- return numeric measure of the step just computed by computeStep.\r\n * * testConvergence -- test if the step from currentStepSize (along with recent steps) is converged.\r\n * * applyCurrentStep -- apply the step to the independent variables.\r\n */\r\n public runIterations(): boolean {\r\n this._numAccepted = 0;\r\n this.numIterations = 0;\r\n while (this.numIterations++ < this._maxIterations && this.computeStep()) {\r\n if (this.testConvergence(this.currentStepSize()) && this.applyCurrentStep(true)) {\r\n // console.log(\"iter: \" + this.numIterations); // print number of Newton iterations for debug\r\n return true;\r\n }\r\n this.applyCurrentStep(false);\r\n }\r\n return false;\r\n }\r\n}\r\n/**\r\n * Object to evaluate a newton function. The object must retain most-recent function and derivative\r\n * values for immediate query.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoRD {\r\n /** Evaluate the function and its derivative at x. */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function value, i.e., f(x_n). */\r\n public currentF!: number;\r\n /** Most recent evaluated derivative, i.e., f'(x_n). */\r\n public currentdFdX!: number;\r\n}\r\n/**\r\n * Newton iterator for use when both function and derivative can be evaluated.\r\n * To solve `f(x) = 0`, the Newton iteration is `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n)`.\r\n * To solve `f(x) = target` which is equivalent to solving `g(x) = f(x) - target = 0`, the Newton iteration is\r\n * `x_{n+1} = x_n - dx = x_n - g(x_n)/g'(x_n) = x_n - (f(x_n)-target)/f'(x_n)`.\r\n * @internal\r\n */\r\nexport class Newton1dUnbounded extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoRD;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /** The target */\r\n private _target!: number;\r\n /**\r\n * Constructor for 1D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRtoRD) {\r\n super();\r\n this._func = func;\r\n this.setTarget(0);\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Set the target function value. */\r\n public setTarget(y: number): void {\r\n this._target = y;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Compute the univariate newton step dx. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const dx = Geometry.conditionalDivideFraction(this._func.currentF - this._target, this._func.currentdFdX);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a newton function (without derivative). The object must retain most-recent function value.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoR {\r\n /** Evaluate function value into member currentF */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function evaluation, i.e., f(x_n). */\r\n public currentF!: number;\r\n}\r\n\r\n/**\r\n * Newton iteration for a univariate function, using approximate derivatives.\r\n * To approximate the derivatives we use a small step `h`, i.e., `f'(x_n) = (f(x_n + h) - f(x_n)) / h`.\r\n * Therefore, to solve `f(x) = 0`, the iteration is\r\n * `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n) = x_n - f(x_n) * h / (f(x_n + h) - f(x_n))`.\r\n * @internal\r\n */\r\nexport class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoR;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /**\r\n * Step size for approximate derivative for the iteration.\r\n * * Initialized to 1e-8, which is appropriate for iteration in fraction space.\r\n * * Should be larger for iteration with real distance as x.\r\n */\r\n public derivativeH: number; // h\r\n\r\n /**\r\n * Constructor for 1D newton iteration with approximate derivatives.\r\n * @param func function that only returns function value (and not derivative).\r\n */\r\n public constructor(func: NewtonEvaluatorRtoR) {\r\n super();\r\n this._func = func;\r\n this.derivativeH = 1.0e-8;\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Univariate newton step dx, computed with approximate derivative. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const fA = this._func.currentF; // f(x_n)\r\n if (this._func.evaluate(this._currentX + this.derivativeH)) {\r\n const fB = this._func.currentF; // f(x_n + h)\r\n const dx = Geometry.conditionalDivideFraction(fA, (fB - fA) / this.derivativeH);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a 2-parameter newton function with derivatives.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRRtoRRD {\r\n /**\r\n * Iteration controller calls this to ask for evaluation of the function and its two partial derivatives.\r\n * * The implementation returns true, it must set the currentF object.\r\n */\r\n public abstract evaluate(x: number, y: number): boolean;\r\n /**\r\n * Most recent function evaluation as parts of the plane.\r\n * * See doc of [[Newton2dUnboundedWithDerivative]] class for info on 2d newton method.\r\n * * For `F(u,v) := (x(u,v), y(u,v))` the returned plane stores the following evaluations at current value `X := (u,v)`:\r\n * * `origin` = F(X) = (x(X), y(X))\r\n * * `vectorU` = F_u(X) = partial deriv of F wrt u at X = (x_u(X), y_u(X)) = 1st col of Jacobian matrix evaluated at X\r\n * * `vectorV` = F_v(X) = partial deriv of F wrt v at X = (x_v(X), y_v(X)) = 2nd col of Jacobian matrix evaluated at X\r\n */\r\n public currentF!: Plane3dByOriginAndVectors;\r\n /**\r\n * Constructor.\r\n * * This creates a currentF object to (repeatedly) receive function and derivatives.\r\n */\r\n public constructor() {\r\n this.currentF = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n}\r\n\r\n/**\r\n * Implement evaluation steps for newton iteration in 2 dimensions, using caller supplied NewtonEvaluatorRRtoRRD object.\r\n * * Suppose we want to find the roots of `F(u,v) := (x(u,v), y(u,v))`. Writing `X := (u,v)` and `F(X)` as column vectors,\r\n * the 2D Newton's iteration to find a root of `F` is given by:\r\n * `X_{n+1} = X_n - dX = X_n - JInv(X_n)F(X_n)`, where `JInv` is the inverse of the Jacobian matrix `J`, and `J` is\r\n * defined by the partial derivatives of the component functions of F:\r\n *\r\n * `[dx/du dx/dv]`\r\n *\r\n * `[dy/du dy/dv]`\r\n * @internal\r\n */\r\nexport class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRRtoRRD;\r\n /** Current step, or dX = (du, dv). */\r\n private _currentStep: Vector2d;\r\n /** Current uv parameters, or X_n = (u_n, v_n). */\r\n private _currentUV: Point2d;\r\n /**\r\n * Constructor for 2D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRRtoRRD) {\r\n const maxIterations = 100; // Was default (15). We observed 49 iters to achieve 1e-11 tol with tangent geometry.\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this._currentStep = Vector2d.createZero();\r\n this._currentUV = Point2d.createZero();\r\n }\r\n /** Set the current uv parameters, i.e., `X_n = (u_n, v_n)`. */\r\n public setUV(u: number, v: number): boolean {\r\n this._currentUV.set(u, v);\r\n return true;\r\n }\r\n /** Get the current u parameter of X_n, i.e., u_n. */\r\n public getU(): number {\r\n return this._currentUV.x;\r\n }\r\n /** Get the current v parameter of X_n, i.e., v_n. */\r\n public getV(): number {\r\n return this._currentUV.y;\r\n }\r\n /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */\r\n public applyCurrentStep(): boolean {\r\n // print approximations for debug\r\n // console.log(\"(\" + (this._currentUV.x - this._currentStep.x) + \",\" + (this._currentUV.y - this._currentStep.y) + \")\");\r\n return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);\r\n }\r\n /**\r\n * Evaluate the functions and derivatives at `X_n = (u_n, v_n)`, and solve the Jacobian matrix equation to\r\n * compute `dX = (du, dv)`.\r\n */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentUV.x, this._currentUV.y)) {\r\n const fA = this._func.currentF;\r\n if ( // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:\r\n SmallSystem.linearSystem2d(\r\n fA.vectorU.x, fA.vectorV.x, // x_u(X_n), x_v(X_n): 1st row of J evaluated at X_n\r\n fA.vectorU.y, fA.vectorV.y, // y_u(X_n), y_v(X_n): 2nd row of J evaluated at X_n\r\n fA.origin.x, fA.origin.y, // F(X_n) := (x(X_n), y(X_n))\r\n this._currentStep, // dX\r\n )\r\n )\r\n return true;\r\n }\r\n return false;\r\n }\r\n /**\r\n * Return the current relative step size, i.e., the larger absolute component of `dX / (1 + |X_n|)`\r\n */\r\n public currentStepSize(): number {\r\n return Geometry.maxAbsXY(\r\n this._currentStep.x / (1.0 + Math.abs(this._currentUV.x)),\r\n this._currentStep.y / (1.0 + Math.abs(this._currentUV.y)),\r\n );\r\n }\r\n}\r\n/**\r\n * SimpleNewton has static methods for newton methods with evaluated functions presented as immediate arguments\r\n * (not function object).\r\n * @internal\r\n */\r\nexport class SimpleNewton {\r\n /**\r\n * Run a one-dimensional newton iteration with separate functions for function and derivative.\r\n * * Completion is at 2 (TWO) successive passes at `absoluteTolerance + relTol * abs(x)`, where relTol is\r\n * chosen internally.\r\n * * `absoluteTolerance` is usually aggressively tight -- should come into play only for x near zero.\r\n * * The `relTol` is fluffy (for instance around 1e-11) but in properly converging cases the extra pass after\r\n * first success normally moves to full machine precision.\r\n * * This is an open-loop newton -- it just runs, and returns undefined if anything bad happens.\r\n */\r\n public static runNewton1D(\r\n x: number,\r\n func: (x: number) => number | undefined,\r\n derivative: (x: number) => number | undefined,\r\n absoluteTolerance: number = Geometry.smallFloatingPoint,\r\n ): number | undefined {\r\n let numConverged = 0;\r\n let tolerance: number;\r\n const relTol = 1.0e-11;\r\n for (let iteration = 0; iteration < 20; iteration++) {\r\n const f = func(x);\r\n const df = derivative(x);\r\n if (f !== undefined && df !== undefined) {\r\n const dx = Geometry.conditionalDivideCoordinate(f, df);\r\n if (dx === undefined)\r\n return undefined;\r\n x -= dx;\r\n // console.log(x); // print approximations for debug\r\n tolerance = absoluteTolerance + Math.abs(x) * relTol;\r\n if (Math.abs(dx) < tolerance) {\r\n numConverged++;\r\n if (dx === 0.0 || numConverged > 1) // bypass convergence count on true 0 dx\r\n return x;\r\n } else {\r\n numConverged = 0;\r\n }\r\n }\r\n }\r\n return undefined;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY intersection between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectionXYRRToRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _rayP: Ray3d;\r\n private _rayQ: Ray3d;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._rayP = Ray3d.createZero();\r\n this._rayQ = Ray3d.createZero();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find an intersection between xy-curves P(u) = (x_p(u), y_p(u)) and Q(v) = (x_q(v), y_q(v)) we should solve\r\n * F(u,v) := P(u) - Q(v) = (0,0)\r\n * Using the Newton method we can find the fractions u and v at the intersection via\r\n * [u_{n+1}] [u_n] [x_p'(u_n) -x_q'(v_n)] [x_p(u_n) - x_q(v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [y_p'(u_n) -y_q'(v_n)] [y_p(u_n) - y_q(v_n)]\r\n * Note that this is xy intersection so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAndDerivative(fractionU, this._rayP);\r\n this._curveQ.fractionToPointAndDerivative(fractionV, this._rayQ);\r\n this.currentF.setOriginAndVectorsXYZ(\r\n this._rayP.origin.x - this._rayQ.origin.x, this._rayP.origin.y - this._rayQ.origin.y, 0.0,\r\n this._rayP.direction.x, this._rayP.direction.y, 0.0,\r\n -this._rayQ.direction.x, -this._rayQ.direction.y, 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between a curve primitive and a point using the Newton method.\r\n * @internal\r\n */\r\nexport class CurvePointCloseApproachXYRtoRD extends NewtonEvaluatorRtoRD {\r\n private _curveP: CurvePrimitive;\r\n private _pointQ: Point3d;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, pointQ: Point3d) {\r\n super();\r\n this._curveP = curveP;\r\n this._pointQ = pointQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number): boolean {\r\n /**\r\n * To find a close approach between xy-curve P(u) and xy-point q we should solve\r\n * F(u) := P'(u).(P(u) - q) = 0\r\n * For a solution u, the segment S(u) := P(u) - q is perpendicular to the curve tangent P'(u), which means S(u) is a close approach.\r\n * Using the Newton method we can find the fractions u at the close approach location via\r\n * u_{n+1} = u_n + F(u_n)/F'(u_n) = u_n + [ P'(u_n).S(u_n) ]/[ P''(u_n).S(u_n) + P'(u_n).P'(u_n) ]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n const segX = this._planeP.origin.x - this._pointQ.x;\r\n const segY = this._planeP.origin.y - this._pointQ.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n this.currentF = pDerivX * segX + pDerivY * segY;\r\n this.currentdFdX = p2DerivX * segX + pDerivX * pDerivX + p2DerivY * segY + pDerivY * pDerivY;\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveCloseApproachXYRRtoRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n private _planeQ: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n this._planeQ = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find a close approach between xy-curves P(u) and Q(v) we should solve\r\n * F(u,v) := (P'(u).(P(u) - Q(v)), Q'(v).(P(u) - Q(v))) = (0,0)\r\n * For a solution (u,v), the segment S(u,v) := P(u) - Q(v) is perpendicular to the curve tangents P'(u) and Q'(v),\r\n * which means S(u,v) is a close approach.\r\n * Using the Newton method we can find the fractions u and v at the close approach location via\r\n * [u_{n+1}] [u_n] [P''(u_n).S(u_n,v_n) + P'(u_n).P'(u_n) -P'(u_n).Q'(v_n)] [P'(u_n).S(u_n,v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [Q'(v_n).P'(u_n) Q''(v_n).S(u_n,v_n) - Q'(v_n).Q'(v_n)] [Q'(v_n).S(u_n,v_n)]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n this._curveQ.fractionToPointAnd2Derivatives(fractionV, this._planeQ);\r\n const segX = this._planeP.origin.x - this._planeQ.origin.x;\r\n const segY = this._planeP.origin.y - this._planeQ.origin.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const qDerivX = this._planeQ.vectorU.x;\r\n const qDerivY = this._planeQ.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n const q2DerivX = this._planeQ.vectorV.x;\r\n const q2DerivY = this._planeQ.vectorV.y;\r\n this.currentF.setOriginAndVectorsXYZ(\r\n pDerivX * segX + pDerivY * segY,\r\n qDerivX * segX + qDerivY * segY,\r\n 0.0,\r\n p2DerivX * segX + p2DerivY * segY + pDerivX * pDerivX + pDerivY * pDerivY,\r\n qDerivX * pDerivX + qDerivY * pDerivY,\r\n 0.0,\r\n -(pDerivX * qDerivX + pDerivY * qDerivY),\r\n q2DerivX * segX + q2DerivY * segY - qDerivX * qDerivX - qDerivY * qDerivY,\r\n 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n"]}
1
+ {"version":3,"file":"Newton.js","sourceRoot":"","sources":["../../../src/numerics/Newton.ts"],"names":[],"mappings":";AAAA;;;+FAG+F;;;AAE/F;;GAEG;AAEH,0CAAuC;AAEvC,uFAAoF;AACpF,mEAAkE;AAElE,+CAA4C;AAC5C,+CAA4C;AAE5C,+BAA+B;AAE/B;;;;GAIG;AACH,MAAsB,sBAAsB;IAa1C;;;;;;;;;;;OAWG;IACH,YACE,oBAA4B,OAAO,EACnC,8BAAsC,CAAC,EACvC,gBAAwB,EAAE;QAM5B,sEAAsE;QAC5D,iBAAY,GAAW,CAAC,CAAC;QAOnC,uDAAuD;QAChD,kBAAa,GAAW,CAAC,CAAC;QAb/B,IAAI,CAAC,kBAAkB,GAAG,iBAAiB,CAAC;QAC5C,IAAI,CAAC,4BAA4B,GAAG,2BAA2B,CAAC;QAChE,IAAI,CAAC,cAAc,GAAG,aAAa,CAAC;IACtC,CAAC;IAWD;;;;;OAKG;IACI,eAAe,CAAC,KAAa;QAClC,IAAI,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,IAAI,CAAC,kBAAkB,EAAE,CAAC;YAC9C,IAAI,CAAC,YAAY,EAAE,CAAC;YACpB,OAAO,IAAI,CAAC,YAAY,IAAI,IAAI,CAAC,4BAA4B,CAAC;QAChE,CAAC;QACD,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;;;;;OAMG;IACI,aAAa;QAClB,IAAI,CAAC,YAAY,GAAG,CAAC,CAAC;QACtB,IAAI,CAAC,aAAa,GAAG,CAAC,CAAC;QACvB,OAAO,IAAI,CAAC,aAAa,EAAE,GAAG,IAAI,CAAC,cAAc,IAAI,IAAI,CAAC,WAAW,EAAE,EAAE,CAAC;YACxE,IAAI,IAAI,CAAC,eAAe,CAAC,IAAI,CAAC,eAAe,EAAE,CAAC,IAAI,IAAI,CAAC,gBAAgB,CAAC,IAAI,CAAC,EAAE,CAAC;gBAChF,6FAA6F;gBAC7F,OAAO,IAAI,CAAC;YACd,CAAC;YACD,IAAI,CAAC,gBAAgB,CAAC,KAAK,CAAC,CAAC;QAC/B,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;CACF;AA7ED,wDA6EC;AACD;;;;GAIG;AACH,MAAsB,oBAAoB;CAOzC;AAPD,oDAOC;AACD;;;;;;GAMG;AACH,MAAa,iBAAkB,SAAQ,sBAAsB;IAQ3D;;;OAGG;IACH,YAAmB,IAA0B,EAAE,aAAsB;QACnE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACpB,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,qCAAqC;IAC9B,SAAS,CAAC,CAAS;QACxB,IAAI,CAAC,OAAO,GAAG,CAAC,CAAC;IACnB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,6CAA6C;IACtC,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,GAAG,IAAI,CAAC,OAAO,EAAE,IAAI,CAAC,KAAK,CAAC,WAAW,CAAC,CAAC;YAC1G,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;gBACvB,OAAO,IAAI,CAAC;YACd,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAlDD,8CAkDC;AAED;;;GAGG;AACH,MAAsB,mBAAmB;CAKxC;AALD,kDAKC;AAED;;;;;;GAMG;AACH,MAAa,sCAAuC,SAAQ,sBAAsB;IAahF;;;OAGG;IACH,YAAmB,IAAyB,EAAE,aAAsB;QAClE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,WAAW,GAAG,MAAM,CAAC;IAC5B,CAAC;IACD,+CAA+C;IACxC,IAAI,CAAC,CAAS;QACnB,IAAI,CAAC,SAAS,GAAG,CAAC,CAAC;QACnB,OAAO,IAAI,CAAC;IACd,CAAC;IACD,+CAA+C;IACxC,IAAI;QACT,OAAO,IAAI,CAAC,SAAS,CAAC;IACxB,CAAC;IACD,sEAAsE;IAC/D,gBAAgB;QACrB,qFAAqF;QACrF,OAAO,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC;IACvD,CAAC;IACD,uEAAuE;IAChE,WAAW;QAChB,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,CAAC,EAAE,CAAC;YACxC,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,SAAS;YACzC,IAAI,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,SAAS,GAAG,IAAI,CAAC,WAAW,CAAC,EAAE,CAAC;gBAC3D,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,CAAC,aAAa;gBAC7C,MAAM,EAAE,GAAG,mBAAQ,CAAC,yBAAyB,CAAC,EAAE,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,CAAC,WAAW,CAAC,CAAC;gBAChF,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;oBACrB,IAAI,CAAC,YAAY,GAAG,EAAE,CAAC;oBACvB,OAAO,IAAI,CAAC;gBACd,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,KAAK,CAAC;IACf,CAAC;IACD,qFAAqF;IAC9E,eAAe;QACpB,OAAO,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,YAAY,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,SAAS,CAAC,CAAC,CAAC,CAAC;IACxE,CAAC;CACF;AAvDD,wFAuDC;AAED;;;GAGG;AACH,MAAsB,sBAAsB;IAe1C;;;OAGG;IACH;QACE,IAAI,CAAC,QAAQ,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC5D,CAAC;CACF;AAtBD,wDAsBC;AAED;;;;;;;;;;;GAWG;AACH,MAAa,+BAAgC,SAAQ,sBAAsB;IAMzE;;;OAGG;IACH,YAAmB,IAA4B,EAAE,aAAsB;QACrE,KAAK,CAAC,SAAS,EAAE,SAAS,EAAE,aAAa,CAAC,CAAC;QAC3C,IAAI,CAAC,KAAK,GAAG,IAAI,CAAC;QAClB,IAAI,CAAC,YAAY,GAAG,0BAAQ,CAAC,UAAU,EAAE,CAAC;QAC1C,IAAI,CAAC,UAAU,GAAG,yBAAO,CAAC,UAAU,EAAE,CAAC;IACzC,CAAC;IACD,+DAA+D;IACxD,KAAK,CAAC,CAAS,EAAE,CAAS;QAC/B,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAC1B,OAAO,IAAI,CAAC;IACd,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,qDAAqD;IAC9C,IAAI;QACT,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;IAC3B,CAAC;IACD,kHAAkH;IAC3G,gBAAgB;QACrB,wHAAwH;QACxH,OAAO,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,GAAG,IAAI,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC;IACtG,CAAC;IACD;;;OAGG;IACI,WAAW;QAChB,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,EAAE,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC;YAC5D,OAAO,KAAK,CAAC;QACf,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,QAAQ,CAAC;QAC/B,MAAM,KAAK,GAAG,EAAE,CAAC,OAAO,CAAC;QACzB,MAAM,KAAK,GAAG,EAAE,CAAC,OAAO,CAAC;QACzB,MAAM,EAAE,GAAG,EAAE,CAAC,MAAM,CAAC;QACrB,yFAAyF;QACzF,IAAI,yBAAW,CAAC,cAAc,CAAC,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,YAAY,CAAC;YAC/F,OAAO,IAAI,CAAC;QACd,OAAO,KAAK,CAAC;IACf,CAAC;IACD;;OAEG;IACI,eAAe;QACpB,OAAO,mBAAQ,CAAC,QAAQ,CACtB,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,EACzD,IAAI,CAAC,YAAY,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,CAC1D,CAAC;IACJ,CAAC;CACF;AA3DD,0EA2DC;AACD;;;;GAIG;AACH,MAAa,YAAY;IACvB;;;;;;;;OAQG;IACI,MAAM,CAAC,WAAW,CACvB,CAAS,EACT,IAAuC,EACvC,UAA6C,EAC7C,oBAA4B,mBAAQ,CAAC,kBAAkB;QAEvD,IAAI,YAAY,GAAG,CAAC,CAAC;QACrB,IAAI,SAAiB,CAAC;QACtB,MAAM,MAAM,GAAG,OAAO,CAAC;QACvB,KAAK,IAAI,SAAS,GAAG,CAAC,EAAE,SAAS,GAAG,EAAE,EAAE,SAAS,EAAE,EAAE,CAAC;YACpD,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YAClB,MAAM,EAAE,GAAG,UAAU,CAAC,CAAC,CAAC,CAAC;YACzB,IAAI,CAAC,KAAK,SAAS,IAAI,EAAE,KAAK,SAAS,EAAE,CAAC;gBACxC,MAAM,EAAE,GAAG,mBAAQ,CAAC,2BAA2B,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC;gBACvD,IAAI,EAAE,KAAK,SAAS;oBAClB,OAAO,SAAS,CAAC;gBACnB,CAAC,IAAI,EAAE,CAAC;gBACR,oDAAoD;gBACpD,SAAS,GAAG,iBAAiB,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,MAAM,CAAC;gBACrD,IAAI,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC;oBAC7B,YAAY,EAAE,CAAC;oBACf,IAAI,EAAE,KAAK,GAAG,IAAI,YAAY,GAAG,CAAC,EAAI,wCAAwC;wBAC5E,OAAO,CAAC,CAAC;gBACb,CAAC;qBAAM,CAAC;oBACN,YAAY,GAAG,CAAC,CAAC;gBACnB,CAAC;YACH,CAAC;QACH,CAAC;QACD,OAAO,SAAS,CAAC;IACnB,CAAC;CACF;AAxCD,oCAwCC;AAED;;;GAGG;AACH,MAAa,+BAAgC,SAAQ,sBAAsB;IAKzE,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,KAAK,GAAG,aAAK,CAAC,UAAU,EAAE,CAAC;QAChC,IAAI,CAAC,KAAK,GAAG,aAAK,CAAC,UAAU,EAAE,CAAC;IAClC,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;WAQG;QACH,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,OAAO,CAAC,4BAA4B,CAAC,SAAS,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC;QACjE,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,MAAM,CAAC,CAAC,EAAE,GAAG,EACzF,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,EACnD,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,SAAS,CAAC,CAAC,EAAE,GAAG,CACtD,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AA/BD,0EA+BC;AAED;;;GAGG;AACH,MAAa,8BAA+B,SAAQ,oBAAoB;IAItE,YAAY,MAAsB,EAAE,MAAe;QACjD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB;QAC/B;;;;;;;WAOG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,CAAC,CAAC;QACpD,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,GAAG,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,CAAC;QAChD,IAAI,CAAC,WAAW,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,CAAC;QAC7F,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AA9BD,wEA8BC;AAED;;;GAGG;AACH,MAAa,gCAAiC,SAAQ,sBAAsB;IAK1E,YAAY,MAAsB,EAAE,MAAsB;QACxD,KAAK,EAAE,CAAC;QACR,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,MAAM,CAAC;QACtB,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;QACzD,IAAI,CAAC,OAAO,GAAG,qDAAyB,CAAC,aAAa,EAAE,CAAC;IAC3D,CAAC;IACM,QAAQ,CAAC,SAAiB,EAAE,SAAiB;QAClD;;;;;;;;;;WAUG;QACH,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,IAAI,CAAC,OAAO,CAAC,8BAA8B,CAAC,SAAS,EAAE,IAAI,CAAC,OAAO,CAAC,CAAC;QACrE,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,IAAI,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,IAAI,CAAC,OAAO,CAAC,MAAM,CAAC,CAAC,CAAC;QAC3D,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,OAAO,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACvC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,MAAM,QAAQ,GAAG,IAAI,CAAC,OAAO,CAAC,OAAO,CAAC,CAAC,CAAC;QACxC,IAAI,CAAC,QAAQ,CAAC,sBAAsB,CAClC,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,OAAO,GAAG,IAAI,GAAG,OAAO,GAAG,IAAI,EAC/B,GAAG,EACH,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACrC,GAAG,EACH,CAAC,CAAC,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,CAAC,EACxC,QAAQ,GAAG,IAAI,GAAG,QAAQ,GAAG,IAAI,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,GAAG,OAAO,EACzE,GAAG,CACJ,CAAC;QACF,OAAO,IAAI,CAAC;IACd,CAAC;CACF;AAjDD,4EAiDC","sourcesContent":["/*---------------------------------------------------------------------------------------------\r\n* Copyright (c) Bentley Systems, Incorporated. All rights reserved.\r\n* See LICENSE.md in the project root for license terms and full copyright notice.\r\n*--------------------------------------------------------------------------------------------*/\r\n\r\n/** @packageDocumentation\r\n * @module Numerics\r\n */\r\n\r\nimport { Geometry } from \"../Geometry\";\r\nimport { CurvePrimitive } from \"../curve/CurvePrimitive\";\r\nimport { Plane3dByOriginAndVectors } from \"../geometry3d/Plane3dByOriginAndVectors\";\r\nimport { Point2d, Vector2d } from \"../geometry3d/Point2dVector2d\";\r\nimport { Point3d } from \"../geometry3d/Point3dVector3d\";\r\nimport { Ray3d } from \"../geometry3d/Ray3d\";\r\nimport { SmallSystem } from \"./Polynomials\";\r\n\r\n// cspell:word currentdFdX XYRR\r\n\r\n/**\r\n * Base class for Newton iterations in various dimensions.\r\n * Dimension-specific classes carry all dimension-related data and answer generalized queries from this base class.\r\n * @internal\r\n */\r\nexport abstract class AbstractNewtonIterator {\r\n /** Compute a step. The current x and function values must be retained for use in later method calls. */\r\n public abstract computeStep(): boolean;\r\n /**\r\n * Return the current step size, scaled for use in tolerance tests.\r\n * * This is a single number, typically the max of various per-dimension `dx/(1+x)` for the x and dx of that dimension.\r\n */\r\n public abstract currentStepSize(): number;\r\n /**\r\n * Apply the current step (in all dimensions).\r\n * @param isFinalStep true if this is a final step.\r\n */\r\n public abstract applyCurrentStep(isFinalStep: boolean): boolean;\r\n /**\r\n * The constructor.\r\n * @param stepSizeTarget tolerance to consider a single step converged.\r\n * This number should be \"moderately\" strict. Because 2 successive convergences are required,\r\n * it is expected that a first \"accept\" for (say) 10 to 14 digit step will be followed by another\r\n * iteration. A well behaved newton would then hypothetically double the number of digits to\r\n * 20 to 28. Since the IEEE double only carries 16 digits, this second-convergence step will\r\n * typically achieve full precision.\r\n * @param successiveConvergenceTarget number of successive convergences required for acceptance.\r\n * @param maxIterations max number of iterations. A typical newton step converges in 3 to 6 iterations.\r\n * Allow 15 to 20 to catch difficult cases.\r\n */\r\n protected constructor(\r\n stepSizeTolerance: number = 1.0e-11,\r\n successiveConvergenceTarget: number = 2,\r\n maxIterations: number = 15,\r\n ) {\r\n this._stepSizeTolerance = stepSizeTolerance;\r\n this._successiveConvergenceTarget = successiveConvergenceTarget;\r\n this._maxIterations = maxIterations;\r\n }\r\n /** Number of consecutive steps which passed convergence condition. */\r\n protected _numAccepted: number = 0;\r\n /** Target number of successive convergences. */\r\n protected _successiveConvergenceTarget: number;\r\n /** Convergence target (the implementation-specific currentStepSize is compared to this). */\r\n protected _stepSizeTolerance: number;\r\n /** Max iterations allowed. */\r\n protected _maxIterations: number;\r\n /** Number of iterations (incremented at each step). */\r\n public numIterations: number = 0;\r\n /**\r\n * Test if a step is converged.\r\n * * Convergence is accepted with enough (_successiveConvergenceTarget) small steps (according to _stepSizeTolerance)\r\n * occur in succession.\r\n * @param delta step size as reported by currentStepSize.\r\n */\r\n public testConvergence(delta: number): boolean {\r\n if (Math.abs(delta) < this._stepSizeTolerance) {\r\n this._numAccepted++;\r\n return this._numAccepted >= this._successiveConvergenceTarget;\r\n }\r\n this._numAccepted = 0;\r\n return false;\r\n }\r\n /**\r\n * Run iterations, calling various methods from base and derived classes:\r\n * * computeStep -- typically evaluate derivatives and solve linear system.\r\n * * currentStepSize -- return numeric measure of the step just computed by computeStep.\r\n * * testConvergence -- test if the step from currentStepSize (along with recent steps) is converged.\r\n * * applyCurrentStep -- apply the step to the independent variables.\r\n */\r\n public runIterations(): boolean {\r\n this._numAccepted = 0;\r\n this.numIterations = 0;\r\n while (this.numIterations++ < this._maxIterations && this.computeStep()) {\r\n if (this.testConvergence(this.currentStepSize()) && this.applyCurrentStep(true)) {\r\n // console.log(\"iter: \" + this.numIterations); // print number of Newton iterations for debug\r\n return true;\r\n }\r\n this.applyCurrentStep(false);\r\n }\r\n return false;\r\n }\r\n}\r\n/**\r\n * Object to evaluate a newton function. The object must retain most-recent function and derivative\r\n * values for immediate query.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoRD {\r\n /** Evaluate the function and its derivative at x. */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function value, i.e., f(x_n). */\r\n public currentF!: number;\r\n /** Most recent evaluated derivative, i.e., f'(x_n). */\r\n public currentdFdX!: number;\r\n}\r\n/**\r\n * Newton iterator for use when both function and derivative can be evaluated.\r\n * To solve `f(x) = 0`, the Newton iteration is `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n)`.\r\n * To solve `f(x) = target` which is equivalent to solving `g(x) = f(x) - target = 0`, the Newton iteration is\r\n * `x_{n+1} = x_n - dx = x_n - g(x_n)/g'(x_n) = x_n - (f(x_n)-target)/f'(x_n)`.\r\n * @internal\r\n */\r\nexport class Newton1dUnbounded extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoRD;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /** The target */\r\n private _target!: number;\r\n /**\r\n * Constructor for 1D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRtoRD, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this.setTarget(0);\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Set the target function value. */\r\n public setTarget(y: number): void {\r\n this._target = y;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Compute the univariate newton step dx. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const dx = Geometry.conditionalDivideFraction(this._func.currentF - this._target, this._func.currentdFdX);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a newton function (without derivative). The object must retain most-recent function value.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRtoR {\r\n /** Evaluate function value into member currentF */\r\n public abstract evaluate(x: number): boolean;\r\n /** Most recent function evaluation, i.e., f(x_n). */\r\n public currentF!: number;\r\n}\r\n\r\n/**\r\n * Newton iteration for a univariate function, using approximate derivatives.\r\n * To approximate the derivatives we use a small step `h`, i.e., `f'(x_n) = (f(x_n + h) - f(x_n)) / h`.\r\n * Therefore, to solve `f(x) = 0`, the iteration is\r\n * `x_{n+1} = x_n - dx = x_n - f(x_n)/f'(x_n) = x_n - f(x_n) * h / (f(x_n + h) - f(x_n))`.\r\n * @internal\r\n */\r\nexport class Newton1dUnboundedApproximateDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRtoR;\r\n /** Current step is dx. */\r\n private _currentStep!: number;\r\n /** Current X is x_n. */\r\n private _currentX!: number;\r\n /**\r\n * Step size for approximate derivative for the iteration.\r\n * * Initialized to 1e-8, which is appropriate for iteration in fraction space.\r\n * * Should be larger for iteration with real distance as x.\r\n */\r\n public derivativeH: number; // h\r\n\r\n /**\r\n * Constructor for 1D newton iteration with approximate derivatives.\r\n * @param func function that only returns function value (and not derivative).\r\n */\r\n public constructor(func: NewtonEvaluatorRtoR, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this.derivativeH = 1.0e-8;\r\n }\r\n /** Set the independent variable, i.e., x_n. */\r\n public setX(x: number): boolean {\r\n this._currentX = x;\r\n return true;\r\n }\r\n /** Get the independent variable, i.e., x_n. */\r\n public getX(): number {\r\n return this._currentX;\r\n }\r\n /** Move the current X by the just-computed step, i.e., `x_n - dx`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(this._currentX - this._currentStep); // print approximations for debug\r\n return this.setX(this._currentX - this._currentStep);\r\n }\r\n /** Univariate newton step dx, computed with approximate derivative. */\r\n public computeStep(): boolean {\r\n if (this._func.evaluate(this._currentX)) {\r\n const fA = this._func.currentF; // f(x_n)\r\n if (this._func.evaluate(this._currentX + this.derivativeH)) {\r\n const fB = this._func.currentF; // f(x_n + h)\r\n const dx = Geometry.conditionalDivideFraction(fA, (fB - fA) / this.derivativeH);\r\n if (dx !== undefined) {\r\n this._currentStep = dx;\r\n return true;\r\n }\r\n }\r\n }\r\n return false;\r\n }\r\n /** Return the current step size as a relative number, i.e., `|dx / (1 + |x_n|)|`. */\r\n public currentStepSize(): number {\r\n return Math.abs(this._currentStep / (1.0 + Math.abs(this._currentX)));\r\n }\r\n}\r\n\r\n/**\r\n * Object to evaluate a 2-parameter newton function with derivatives.\r\n * @internal\r\n */\r\nexport abstract class NewtonEvaluatorRRtoRRD {\r\n /**\r\n * Iteration controller calls this to ask for evaluation of the function and its two partial derivatives.\r\n * * The implementation returns true, it must set the currentF object.\r\n */\r\n public abstract evaluate(x: number, y: number): boolean;\r\n /**\r\n * Most recent function evaluation as parts of the plane.\r\n * * See doc of [[Newton2dUnboundedWithDerivative]] class for info on 2d newton method.\r\n * * For `F(u,v) := (x(u,v), y(u,v))` the returned plane stores the following evaluations at current value `X := (u,v)`:\r\n * * `origin` = F(X) = (x(X), y(X))\r\n * * `vectorU` = F_u(X) = partial deriv of F wrt u at X = (x_u(X), y_u(X)) = 1st col of Jacobian matrix evaluated at X\r\n * * `vectorV` = F_v(X) = partial deriv of F wrt v at X = (x_v(X), y_v(X)) = 2nd col of Jacobian matrix evaluated at X\r\n */\r\n public currentF!: Plane3dByOriginAndVectors;\r\n /**\r\n * Constructor.\r\n * * This creates a currentF object to (repeatedly) receive function and derivatives.\r\n */\r\n public constructor() {\r\n this.currentF = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n}\r\n\r\n/**\r\n * Implement evaluation steps for newton iteration in 2 dimensions, using caller supplied NewtonEvaluatorRRtoRRD object.\r\n * * Suppose we want to find the roots of `F(u,v) := (x(u,v), y(u,v))`. Writing `X := (u,v)` and `F(X)` as column vectors,\r\n * the 2D Newton's iteration to find a root of `F` is given by:\r\n * `X_{n+1} = X_n - dX = X_n - JInv(X_n)F(X_n)`, where `JInv` is the inverse of the Jacobian matrix `J`, and `J` is\r\n * defined by the partial derivatives of the component functions of F:\r\n *\r\n * `[dx/du dx/dv]`\r\n *\r\n * `[dy/du dy/dv]`\r\n * @internal\r\n */\r\nexport class Newton2dUnboundedWithDerivative extends AbstractNewtonIterator {\r\n private _func: NewtonEvaluatorRRtoRRD;\r\n /** Current step, or dX = (du, dv). */\r\n private _currentStep: Vector2d;\r\n /** Current uv parameters, or X_n = (u_n, v_n). */\r\n private _currentUV: Point2d;\r\n /**\r\n * Constructor for 2D newton iteration with derivatives.\r\n * @param func function that returns both function value and derivative.\r\n */\r\n public constructor(func: NewtonEvaluatorRRtoRRD, maxIterations?: number) {\r\n super(undefined, undefined, maxIterations);\r\n this._func = func;\r\n this._currentStep = Vector2d.createZero();\r\n this._currentUV = Point2d.createZero();\r\n }\r\n /** Set the current uv parameters, i.e., `X_n = (u_n, v_n)`. */\r\n public setUV(u: number, v: number): boolean {\r\n this._currentUV.set(u, v);\r\n return true;\r\n }\r\n /** Get the current u parameter of X_n, i.e., u_n. */\r\n public getU(): number {\r\n return this._currentUV.x;\r\n }\r\n /** Get the current v parameter of X_n, i.e., v_n. */\r\n public getV(): number {\r\n return this._currentUV.y;\r\n }\r\n /** Update the current uv parameter by currentStep, i.e., compute `X_{n+1} := X_n - dX = (u_n - du, v_n - dv)`. */\r\n public applyCurrentStep(): boolean {\r\n // console.log(\"(\" + (this._currentUV.x - this._currentStep.x) + \",\" + (this._currentUV.y - this._currentStep.y) + \")\");\r\n return this.setUV(this._currentUV.x - this._currentStep.x, this._currentUV.y - this._currentStep.y);\r\n }\r\n /**\r\n * Evaluate the functions and derivatives at `X_n = (u_n, v_n)`, and solve the Jacobian matrix equation to\r\n * compute `dX = (du, dv)`.\r\n */\r\n public computeStep(): boolean {\r\n if (!this._func.evaluate(this._currentUV.x, this._currentUV.y))\r\n return false;\r\n const fA = this._func.currentF;\r\n const jCol0 = fA.vectorU;\r\n const jCol1 = fA.vectorV;\r\n const fX = fA.origin;\r\n // Given X_{n+1} = X_n - dX = X_n - JInv(X_n) F(X_n), we solve J(X_n) dX = F(X_n) for dX:\r\n if (SmallSystem.linearSystem2d(jCol0.x, jCol1.x, jCol0.y, jCol1.y, fX.x, fX.y, this._currentStep))\r\n return true;\r\n return false;\r\n }\r\n /**\r\n * Return the current relative step size, i.e., the larger absolute component of `dX / (1 + |X_n|)`\r\n */\r\n public currentStepSize(): number {\r\n return Geometry.maxAbsXY(\r\n this._currentStep.x / (1.0 + Math.abs(this._currentUV.x)),\r\n this._currentStep.y / (1.0 + Math.abs(this._currentUV.y)),\r\n );\r\n }\r\n}\r\n/**\r\n * SimpleNewton has static methods for newton methods with evaluated functions presented as immediate arguments\r\n * (not function object).\r\n * @internal\r\n */\r\nexport class SimpleNewton {\r\n /**\r\n * Run a one-dimensional newton iteration with separate functions for function and derivative.\r\n * * Completion is at 2 (TWO) successive passes at `absoluteTolerance + relTol * abs(x)`, where relTol is\r\n * chosen internally.\r\n * * `absoluteTolerance` is usually aggressively tight -- should come into play only for x near zero.\r\n * * The `relTol` is fluffy (for instance around 1e-11) but in properly converging cases the extra pass after\r\n * first success normally moves to full machine precision.\r\n * * This is an open-loop newton -- it just runs, and returns undefined if anything bad happens.\r\n */\r\n public static runNewton1D(\r\n x: number,\r\n func: (x: number) => number | undefined,\r\n derivative: (x: number) => number | undefined,\r\n absoluteTolerance: number = Geometry.smallFloatingPoint,\r\n ): number | undefined {\r\n let numConverged = 0;\r\n let tolerance: number;\r\n const relTol = 1.0e-11;\r\n for (let iteration = 0; iteration < 20; iteration++) {\r\n const f = func(x);\r\n const df = derivative(x);\r\n if (f !== undefined && df !== undefined) {\r\n const dx = Geometry.conditionalDivideCoordinate(f, df);\r\n if (dx === undefined)\r\n return undefined;\r\n x -= dx;\r\n // console.log(x); // print approximations for debug\r\n tolerance = absoluteTolerance + Math.abs(x) * relTol;\r\n if (Math.abs(dx) < tolerance) {\r\n numConverged++;\r\n if (dx === 0.0 || numConverged > 1) // bypass convergence count on true 0 dx\r\n return x;\r\n } else {\r\n numConverged = 0;\r\n }\r\n }\r\n }\r\n return undefined;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY intersection between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveIntersectionXYRRToRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _rayP: Ray3d;\r\n private _rayQ: Ray3d;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._rayP = Ray3d.createZero();\r\n this._rayQ = Ray3d.createZero();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find an intersection between xy-curves P(u) = (x_p(u), y_p(u)) and Q(v) = (x_q(v), y_q(v)) we should solve\r\n * F(u,v) := P(u) - Q(v) = (0,0)\r\n * Using the Newton method we can find the fractions u and v at the intersection via\r\n * [u_{n+1}] [u_n] [x_p'(u_n) -x_q'(v_n)] [x_p(u_n) - x_q(v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [y_p'(u_n) -y_q'(v_n)] [y_p(u_n) - y_q(v_n)]\r\n * Note that this is xy intersection so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAndDerivative(fractionU, this._rayP);\r\n this._curveQ.fractionToPointAndDerivative(fractionV, this._rayQ);\r\n this.currentF.setOriginAndVectorsXYZ(\r\n this._rayP.origin.x - this._rayQ.origin.x, this._rayP.origin.y - this._rayQ.origin.y, 0.0,\r\n this._rayP.direction.x, this._rayP.direction.y, 0.0,\r\n -this._rayQ.direction.x, -this._rayQ.direction.y, 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between a curve primitive and a point using the Newton method.\r\n * @internal\r\n */\r\nexport class CurvePointCloseApproachXYRtoRD extends NewtonEvaluatorRtoRD {\r\n private _curveP: CurvePrimitive;\r\n private _pointQ: Point3d;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, pointQ: Point3d) {\r\n super();\r\n this._curveP = curveP;\r\n this._pointQ = pointQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number): boolean {\r\n /**\r\n * To find a close approach between xy-curve P(u) and xy-point q we should solve\r\n * F(u) := P'(u).(P(u) - q) = 0\r\n * For a solution u, the segment S(u) := P(u) - q is perpendicular to the curve tangent P'(u), which means S(u) is a close approach.\r\n * Using the Newton method we can find the fractions u at the close approach location via\r\n * u_{n+1} = u_n + F(u_n)/F'(u_n) = u_n + [ P'(u_n).S(u_n) ]/[ P''(u_n).S(u_n) + P'(u_n).P'(u_n) ]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n const segX = this._planeP.origin.x - this._pointQ.x;\r\n const segY = this._planeP.origin.y - this._pointQ.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n this.currentF = pDerivX * segX + pDerivY * segY;\r\n this.currentdFdX = p2DerivX * segX + pDerivX * pDerivX + p2DerivY * segY + pDerivY * pDerivY;\r\n return true;\r\n }\r\n}\r\n\r\n/**\r\n * Class to evaluate XY close approach between 2 curve primitives using the Newton method.\r\n * @internal\r\n */\r\nexport class CurveCurveCloseApproachXYRRtoRRD extends NewtonEvaluatorRRtoRRD {\r\n private _curveP: CurvePrimitive;\r\n private _curveQ: CurvePrimitive;\r\n private _planeP: Plane3dByOriginAndVectors;\r\n private _planeQ: Plane3dByOriginAndVectors;\r\n constructor(curveP: CurvePrimitive, curveQ: CurvePrimitive) {\r\n super();\r\n this._curveP = curveP;\r\n this._curveQ = curveQ;\r\n this._planeP = Plane3dByOriginAndVectors.createXYPlane();\r\n this._planeQ = Plane3dByOriginAndVectors.createXYPlane();\r\n }\r\n public evaluate(fractionU: number, fractionV: number): boolean {\r\n /**\r\n * To find a close approach between xy-curves P(u) and Q(v) we should solve\r\n * F(u,v) := (P'(u).(P(u) - Q(v)), Q'(v).(P(u) - Q(v))) = (0,0)\r\n * For a solution (u,v), the segment S(u,v) := P(u) - Q(v) is perpendicular to the curve tangents P'(u) and Q'(v),\r\n * which means S(u,v) is a close approach.\r\n * Using the Newton method we can find the fractions u and v at the close approach location via\r\n * [u_{n+1}] [u_n] [P''(u_n).S(u_n,v_n) + P'(u_n).P'(u_n) -P'(u_n).Q'(v_n)] [P'(u_n).S(u_n,v_n)]\r\n * = - Inv( )\r\n * [v_{n+1}] [v_n] [Q'(v_n).P'(u_n) Q''(v_n).S(u_n,v_n) - Q'(v_n).Q'(v_n)] [Q'(v_n).S(u_n,v_n)]\r\n * Note that this is xy close approach so we can ignore z.\r\n */\r\n this._curveP.fractionToPointAnd2Derivatives(fractionU, this._planeP);\r\n this._curveQ.fractionToPointAnd2Derivatives(fractionV, this._planeQ);\r\n const segX = this._planeP.origin.x - this._planeQ.origin.x;\r\n const segY = this._planeP.origin.y - this._planeQ.origin.y;\r\n const pDerivX = this._planeP.vectorU.x;\r\n const pDerivY = this._planeP.vectorU.y;\r\n const qDerivX = this._planeQ.vectorU.x;\r\n const qDerivY = this._planeQ.vectorU.y;\r\n const p2DerivX = this._planeP.vectorV.x;\r\n const p2DerivY = this._planeP.vectorV.y;\r\n const q2DerivX = this._planeQ.vectorV.x;\r\n const q2DerivY = this._planeQ.vectorV.y;\r\n this.currentF.setOriginAndVectorsXYZ(\r\n pDerivX * segX + pDerivY * segY,\r\n qDerivX * segX + qDerivY * segY,\r\n 0.0,\r\n p2DerivX * segX + p2DerivY * segY + pDerivX * pDerivX + pDerivY * pDerivY,\r\n qDerivX * pDerivX + qDerivY * pDerivY,\r\n 0.0,\r\n -(pDerivX * qDerivX + pDerivY * qDerivY),\r\n q2DerivX * segX + q2DerivY * segY - qDerivX * qDerivX - qDerivY * qDerivY,\r\n 0.0,\r\n );\r\n return true;\r\n }\r\n}\r\n"]}