@hzhangxyz/ddss 0.0.10 → 0.0.29

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md ADDED
@@ -0,0 +1,144 @@
1
+ # Distributed Deductive System Sorts (DDSS)
2
+
3
+ DDSS is a distributed deductive system with a scalable architecture. It currently supports distributed engines including forward-chaining, E-graph, and more.
4
+
5
+ ## Design Philosophy
6
+
7
+ DDSS adopts a modular architecture that decomposes the deductive system into independent but collaborative sub-systems:
8
+
9
+ 1. **Separation of Concerns**: Each module focuses on a specific reasoning task
10
+ 2. **Concurrent Execution**: All modules collaborate asynchronously through a shared database, fully utilizing system resources
11
+ 3. **Persistent Storage**: Uses a database to store facts and ideas, ensuring data consistency
12
+
13
+ The system uses a database as the central hub, with two tables (`facts` and `ideas`) for interaction between sub-systems:
14
+
15
+ - **Eager engines** (e.g., forward-chaining): Read facts and eagerly produce new facts. They also add ideas to broadcast "I want this XXX" - indicating what new facts they need to produce more results.
16
+
17
+ - **Lazy engines** (e.g., E-graph): Could produce too many facts if eager, so they quietly accept facts without producing many. They only produce facts when they see ideas from other engines that they can (partially) fulfill.
18
+
19
+ ## Modules
20
+
21
+ - **Input** (`ddss/input.py`): Interactive input interface with BNF syntax parsing
22
+ - **Output** (`ddss/output.py`): Real-time display of facts and ideas from the database
23
+ - **Load** (`ddss/load.py`): Batch import of facts from standard input
24
+ - **Dump** (`ddss/dump.py`): Export all facts and ideas to output
25
+ - **DS** (`ddss/ds.py`): Forward-chaining deductive search engine
26
+ - **Egg** (`ddss/egg.py`): E-graph based equality reasoning engine
27
+
28
+ ## Installation
29
+
30
+ ### Using uvx (Recommended)
31
+
32
+ The simplest way is to run with `uvx`:
33
+
34
+ ```bash
35
+ uvx ddss
36
+ ```
37
+
38
+ This automatically installs all dependencies and starts the DDSS system.
39
+
40
+ ### Using pip
41
+
42
+ ```bash
43
+ pip install ddss
44
+ ddss
45
+ ```
46
+
47
+ ## Usage
48
+
49
+ ### Basic Usage
50
+
51
+ Run DDSS with a temporary SQLite database:
52
+
53
+ ```bash
54
+ ddss
55
+ ```
56
+
57
+ ### Specifying a Database
58
+
59
+ DDSS supports multiple database backends using the `-a` or `--addr` option:
60
+
61
+ ```bash
62
+ # SQLite (persistent)
63
+ ddss --addr sqlite:///path/to/database.db
64
+
65
+ # MySQL
66
+ ddss --addr mysql://user:password@host:port/database
67
+
68
+ # MariaDB
69
+ ddss --addr mariadb://user:password@host:port/database
70
+
71
+ # PostgreSQL
72
+ ddss --addr postgresql://user:password@host:port/database
73
+ ```
74
+
75
+ ### Selecting Components
76
+
77
+ By default, DDSS runs with all interactive components (`input`, `output`, `ds`, `egg`). You can select specific components using the `-c` or `--component` option:
78
+
79
+ ```bash
80
+ # Run only input and output (no inference engines)
81
+ ddss --component input output
82
+
83
+ # Run with only the forward-chaining engine
84
+ ddss --component input output ds
85
+
86
+ # Run with only the E-graph engine
87
+ ddss --component input output egg
88
+ ```
89
+
90
+ Available components:
91
+ - `input`: Interactive input interface
92
+ - `output`: Real-time display of facts and ideas
93
+ - `ds`: Forward-chaining deductive search engine
94
+ - `egg`: E-graph based equality reasoning engine
95
+ - `load`: Batch import facts from standard input
96
+ - `dump`: Export all facts and ideas to output
97
+
98
+ ### Interactive Usage
99
+
100
+ After starting, input facts and rules at the `input:` prompt. The syntax follows the format `premise => conclusion`:
101
+
102
+ **Example 1: Simple Inference**
103
+
104
+ Input a fact stating `a` is true:
105
+ ```
106
+ input: => a
107
+ ```
108
+
109
+ Input a rule stating if `a` then `b`:
110
+ ```
111
+ input: a => b
112
+ ```
113
+
114
+ The system automatically derives and displays `=> b`:
115
+ ```
116
+ fact: => b
117
+ ```
118
+
119
+ **Example 2: Equality Reasoning**
120
+
121
+ Input an equality relation `a == b`:
122
+ ```
123
+ input: => a == b
124
+ ```
125
+
126
+ Input an idea for `b == a` by creating a rule that requires it:
127
+ ```
128
+ input: b == a => target
129
+ ```
130
+
131
+ The system will derive both the idea and facts:
132
+ ```
133
+ idea: => b == a
134
+ fact: => b == a
135
+ fact: => target
136
+ ```
137
+
138
+ ## License
139
+
140
+ This project is licensed under the GNU Affero General Public License v3.0 or later. See [LICENSE.md](LICENSE.md) for details.
141
+
142
+ ## Links
143
+
144
+ - GitHub: https://github.com/USTC-KnowledgeComputingLab/ddss