@huggingface/tasks 0.8.0 → 0.9.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +169 -85
- package/dist/index.d.ts +27 -2
- package/dist/index.js +169 -85
- package/package.json +1 -1
- package/src/model-libraries-snippets.ts +14 -0
- package/src/model-libraries.ts +23 -0
- package/src/tasks/feature-extraction/about.md +2 -9
- package/src/tasks/feature-extraction/data.ts +1 -2
- package/src/tasks/image-feature-extraction/about.md +23 -0
- package/src/tasks/image-feature-extraction/data.ts +51 -0
- package/src/tasks/index.ts +2 -1
package/dist/index.cjs
CHANGED
|
@@ -1724,7 +1724,7 @@ var taskData5 = {
|
|
|
1724
1724
|
}
|
|
1725
1725
|
],
|
|
1726
1726
|
spaces: [],
|
|
1727
|
-
summary: "Feature extraction
|
|
1727
|
+
summary: "Feature extraction is the task of extracting features learnt in a model.",
|
|
1728
1728
|
widgetModels: ["facebook/bart-base"]
|
|
1729
1729
|
};
|
|
1730
1730
|
var data_default5 = taskData5;
|
|
@@ -1890,8 +1890,57 @@ var taskData7 = {
|
|
|
1890
1890
|
};
|
|
1891
1891
|
var data_default7 = taskData7;
|
|
1892
1892
|
|
|
1893
|
-
// src/tasks/image-
|
|
1893
|
+
// src/tasks/image-feature-extraction/data.ts
|
|
1894
1894
|
var taskData8 = {
|
|
1895
|
+
datasets: [
|
|
1896
|
+
{
|
|
1897
|
+
description: "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.",
|
|
1898
|
+
id: "imagenet-1k"
|
|
1899
|
+
}
|
|
1900
|
+
],
|
|
1901
|
+
demo: {
|
|
1902
|
+
inputs: [
|
|
1903
|
+
{
|
|
1904
|
+
filename: "mask-generation-input.png",
|
|
1905
|
+
type: "img"
|
|
1906
|
+
}
|
|
1907
|
+
],
|
|
1908
|
+
outputs: [
|
|
1909
|
+
{
|
|
1910
|
+
table: [
|
|
1911
|
+
["Dimension 1", "Dimension 2", "Dimension 3"],
|
|
1912
|
+
["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"],
|
|
1913
|
+
["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"],
|
|
1914
|
+
["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"],
|
|
1915
|
+
["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"]
|
|
1916
|
+
],
|
|
1917
|
+
type: "tabular"
|
|
1918
|
+
}
|
|
1919
|
+
]
|
|
1920
|
+
},
|
|
1921
|
+
metrics: [],
|
|
1922
|
+
models: [
|
|
1923
|
+
{
|
|
1924
|
+
description: "A powerful image feature extraction model.",
|
|
1925
|
+
id: "timm/vit_large_patch14_dinov2.lvd142m"
|
|
1926
|
+
},
|
|
1927
|
+
{
|
|
1928
|
+
description: "A strong image feature extraction model.",
|
|
1929
|
+
id: "google/vit-base-patch16-224-in21k"
|
|
1930
|
+
},
|
|
1931
|
+
{
|
|
1932
|
+
description: "A robust image feature extraction models.",
|
|
1933
|
+
id: "facebook/dino-vitb16"
|
|
1934
|
+
}
|
|
1935
|
+
],
|
|
1936
|
+
spaces: [],
|
|
1937
|
+
summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
|
|
1938
|
+
widgetModels: []
|
|
1939
|
+
};
|
|
1940
|
+
var data_default8 = taskData8;
|
|
1941
|
+
|
|
1942
|
+
// src/tasks/image-to-image/data.ts
|
|
1943
|
+
var taskData9 = {
|
|
1895
1944
|
datasets: [
|
|
1896
1945
|
{
|
|
1897
1946
|
description: "Synthetic dataset, for image relighting",
|
|
@@ -1983,10 +2032,10 @@ var taskData8 = {
|
|
|
1983
2032
|
widgetModels: ["lllyasviel/sd-controlnet-canny"],
|
|
1984
2033
|
youtubeId: ""
|
|
1985
2034
|
};
|
|
1986
|
-
var
|
|
2035
|
+
var data_default9 = taskData9;
|
|
1987
2036
|
|
|
1988
2037
|
// src/tasks/image-to-text/data.ts
|
|
1989
|
-
var
|
|
2038
|
+
var taskData10 = {
|
|
1990
2039
|
datasets: [
|
|
1991
2040
|
{
|
|
1992
2041
|
// TODO write proper description
|
|
@@ -2063,10 +2112,10 @@ var taskData9 = {
|
|
|
2063
2112
|
widgetModels: ["Salesforce/blip-image-captioning-base"],
|
|
2064
2113
|
youtubeId: ""
|
|
2065
2114
|
};
|
|
2066
|
-
var
|
|
2115
|
+
var data_default10 = taskData10;
|
|
2067
2116
|
|
|
2068
2117
|
// src/tasks/image-segmentation/data.ts
|
|
2069
|
-
var
|
|
2118
|
+
var taskData11 = {
|
|
2070
2119
|
datasets: [
|
|
2071
2120
|
{
|
|
2072
2121
|
description: "Scene segmentation dataset.",
|
|
@@ -2158,10 +2207,10 @@ var taskData10 = {
|
|
|
2158
2207
|
widgetModels: ["facebook/detr-resnet-50-panoptic"],
|
|
2159
2208
|
youtubeId: "dKE8SIt9C-w"
|
|
2160
2209
|
};
|
|
2161
|
-
var
|
|
2210
|
+
var data_default11 = taskData11;
|
|
2162
2211
|
|
|
2163
2212
|
// src/tasks/mask-generation/data.ts
|
|
2164
|
-
var
|
|
2213
|
+
var taskData12 = {
|
|
2165
2214
|
datasets: [],
|
|
2166
2215
|
demo: {
|
|
2167
2216
|
inputs: [
|
|
@@ -2210,10 +2259,10 @@ var taskData11 = {
|
|
|
2210
2259
|
widgetModels: [],
|
|
2211
2260
|
youtubeId: ""
|
|
2212
2261
|
};
|
|
2213
|
-
var
|
|
2262
|
+
var data_default12 = taskData12;
|
|
2214
2263
|
|
|
2215
2264
|
// src/tasks/object-detection/data.ts
|
|
2216
|
-
var
|
|
2265
|
+
var taskData13 = {
|
|
2217
2266
|
datasets: [
|
|
2218
2267
|
{
|
|
2219
2268
|
// TODO write proper description
|
|
@@ -2285,10 +2334,10 @@ var taskData12 = {
|
|
|
2285
2334
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2286
2335
|
youtubeId: "WdAeKSOpxhw"
|
|
2287
2336
|
};
|
|
2288
|
-
var
|
|
2337
|
+
var data_default13 = taskData13;
|
|
2289
2338
|
|
|
2290
2339
|
// src/tasks/depth-estimation/data.ts
|
|
2291
|
-
var
|
|
2340
|
+
var taskData14 = {
|
|
2292
2341
|
datasets: [
|
|
2293
2342
|
{
|
|
2294
2343
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2342,10 +2391,10 @@ var taskData13 = {
|
|
|
2342
2391
|
widgetModels: [""],
|
|
2343
2392
|
youtubeId: ""
|
|
2344
2393
|
};
|
|
2345
|
-
var
|
|
2394
|
+
var data_default14 = taskData14;
|
|
2346
2395
|
|
|
2347
2396
|
// src/tasks/placeholder/data.ts
|
|
2348
|
-
var
|
|
2397
|
+
var taskData15 = {
|
|
2349
2398
|
datasets: [],
|
|
2350
2399
|
demo: {
|
|
2351
2400
|
inputs: [],
|
|
@@ -2362,10 +2411,10 @@ var taskData14 = {
|
|
|
2362
2411
|
/// (eg, text2text-generation is the canonical ID of translation)
|
|
2363
2412
|
canonicalId: void 0
|
|
2364
2413
|
};
|
|
2365
|
-
var
|
|
2414
|
+
var data_default15 = taskData15;
|
|
2366
2415
|
|
|
2367
2416
|
// src/tasks/reinforcement-learning/data.ts
|
|
2368
|
-
var
|
|
2417
|
+
var taskData16 = {
|
|
2369
2418
|
datasets: [
|
|
2370
2419
|
{
|
|
2371
2420
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -2431,10 +2480,10 @@ var taskData15 = {
|
|
|
2431
2480
|
widgetModels: [],
|
|
2432
2481
|
youtubeId: "q0BiUn5LiBc"
|
|
2433
2482
|
};
|
|
2434
|
-
var
|
|
2483
|
+
var data_default16 = taskData16;
|
|
2435
2484
|
|
|
2436
2485
|
// src/tasks/question-answering/data.ts
|
|
2437
|
-
var
|
|
2486
|
+
var taskData17 = {
|
|
2438
2487
|
datasets: [
|
|
2439
2488
|
{
|
|
2440
2489
|
// TODO write proper description
|
|
@@ -2498,10 +2547,10 @@ var taskData16 = {
|
|
|
2498
2547
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
2499
2548
|
youtubeId: "ajPx5LwJD-I"
|
|
2500
2549
|
};
|
|
2501
|
-
var
|
|
2550
|
+
var data_default17 = taskData17;
|
|
2502
2551
|
|
|
2503
2552
|
// src/tasks/sentence-similarity/data.ts
|
|
2504
|
-
var
|
|
2553
|
+
var taskData18 = {
|
|
2505
2554
|
datasets: [
|
|
2506
2555
|
{
|
|
2507
2556
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -2593,10 +2642,10 @@ var taskData17 = {
|
|
|
2593
2642
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
2594
2643
|
youtubeId: "VCZq5AkbNEU"
|
|
2595
2644
|
};
|
|
2596
|
-
var
|
|
2645
|
+
var data_default18 = taskData18;
|
|
2597
2646
|
|
|
2598
2647
|
// src/tasks/summarization/data.ts
|
|
2599
|
-
var
|
|
2648
|
+
var taskData19 = {
|
|
2600
2649
|
canonicalId: "text2text-generation",
|
|
2601
2650
|
datasets: [
|
|
2602
2651
|
{
|
|
@@ -2662,10 +2711,10 @@ var taskData18 = {
|
|
|
2662
2711
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
2663
2712
|
youtubeId: "yHnr5Dk2zCI"
|
|
2664
2713
|
};
|
|
2665
|
-
var
|
|
2714
|
+
var data_default19 = taskData19;
|
|
2666
2715
|
|
|
2667
2716
|
// src/tasks/table-question-answering/data.ts
|
|
2668
|
-
var
|
|
2717
|
+
var taskData20 = {
|
|
2669
2718
|
datasets: [
|
|
2670
2719
|
{
|
|
2671
2720
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -2716,10 +2765,10 @@ var taskData19 = {
|
|
|
2716
2765
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
2717
2766
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
2718
2767
|
};
|
|
2719
|
-
var
|
|
2768
|
+
var data_default20 = taskData20;
|
|
2720
2769
|
|
|
2721
2770
|
// src/tasks/tabular-classification/data.ts
|
|
2722
|
-
var
|
|
2771
|
+
var taskData21 = {
|
|
2723
2772
|
datasets: [
|
|
2724
2773
|
{
|
|
2725
2774
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2783,10 +2832,10 @@ var taskData20 = {
|
|
|
2783
2832
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
2784
2833
|
youtubeId: ""
|
|
2785
2834
|
};
|
|
2786
|
-
var
|
|
2835
|
+
var data_default21 = taskData21;
|
|
2787
2836
|
|
|
2788
2837
|
// src/tasks/tabular-regression/data.ts
|
|
2789
|
-
var
|
|
2838
|
+
var taskData22 = {
|
|
2790
2839
|
datasets: [
|
|
2791
2840
|
{
|
|
2792
2841
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2838,10 +2887,10 @@ var taskData21 = {
|
|
|
2838
2887
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
2839
2888
|
youtubeId: ""
|
|
2840
2889
|
};
|
|
2841
|
-
var
|
|
2890
|
+
var data_default22 = taskData22;
|
|
2842
2891
|
|
|
2843
2892
|
// src/tasks/text-to-image/data.ts
|
|
2844
|
-
var
|
|
2893
|
+
var taskData23 = {
|
|
2845
2894
|
datasets: [
|
|
2846
2895
|
{
|
|
2847
2896
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -2933,10 +2982,10 @@ var taskData22 = {
|
|
|
2933
2982
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
2934
2983
|
youtubeId: ""
|
|
2935
2984
|
};
|
|
2936
|
-
var
|
|
2985
|
+
var data_default23 = taskData23;
|
|
2937
2986
|
|
|
2938
2987
|
// src/tasks/text-to-speech/data.ts
|
|
2939
|
-
var
|
|
2988
|
+
var taskData24 = {
|
|
2940
2989
|
canonicalId: "text-to-audio",
|
|
2941
2990
|
datasets: [
|
|
2942
2991
|
{
|
|
@@ -3001,10 +3050,10 @@ var taskData23 = {
|
|
|
3001
3050
|
widgetModels: ["suno/bark"],
|
|
3002
3051
|
youtubeId: "NW62DpzJ274"
|
|
3003
3052
|
};
|
|
3004
|
-
var
|
|
3053
|
+
var data_default24 = taskData24;
|
|
3005
3054
|
|
|
3006
3055
|
// src/tasks/token-classification/data.ts
|
|
3007
|
-
var
|
|
3056
|
+
var taskData25 = {
|
|
3008
3057
|
datasets: [
|
|
3009
3058
|
{
|
|
3010
3059
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3080,10 +3129,10 @@ var taskData24 = {
|
|
|
3080
3129
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3081
3130
|
youtubeId: "wVHdVlPScxA"
|
|
3082
3131
|
};
|
|
3083
|
-
var
|
|
3132
|
+
var data_default25 = taskData25;
|
|
3084
3133
|
|
|
3085
3134
|
// src/tasks/translation/data.ts
|
|
3086
|
-
var
|
|
3135
|
+
var taskData26 = {
|
|
3087
3136
|
canonicalId: "text2text-generation",
|
|
3088
3137
|
datasets: [
|
|
3089
3138
|
{
|
|
@@ -3145,10 +3194,10 @@ var taskData25 = {
|
|
|
3145
3194
|
widgetModels: ["t5-small"],
|
|
3146
3195
|
youtubeId: "1JvfrvZgi6c"
|
|
3147
3196
|
};
|
|
3148
|
-
var
|
|
3197
|
+
var data_default26 = taskData26;
|
|
3149
3198
|
|
|
3150
3199
|
// src/tasks/text-classification/data.ts
|
|
3151
|
-
var
|
|
3200
|
+
var taskData27 = {
|
|
3152
3201
|
datasets: [
|
|
3153
3202
|
{
|
|
3154
3203
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3233,10 +3282,10 @@ var taskData26 = {
|
|
|
3233
3282
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3234
3283
|
youtubeId: "leNG9fN9FQU"
|
|
3235
3284
|
};
|
|
3236
|
-
var
|
|
3285
|
+
var data_default27 = taskData27;
|
|
3237
3286
|
|
|
3238
3287
|
// src/tasks/text-generation/data.ts
|
|
3239
|
-
var
|
|
3288
|
+
var taskData28 = {
|
|
3240
3289
|
datasets: [
|
|
3241
3290
|
{
|
|
3242
3291
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3337,10 +3386,10 @@ var taskData27 = {
|
|
|
3337
3386
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
3338
3387
|
youtubeId: "Vpjb1lu0MDk"
|
|
3339
3388
|
};
|
|
3340
|
-
var
|
|
3389
|
+
var data_default28 = taskData28;
|
|
3341
3390
|
|
|
3342
3391
|
// src/tasks/text-to-video/data.ts
|
|
3343
|
-
var
|
|
3392
|
+
var taskData29 = {
|
|
3344
3393
|
datasets: [
|
|
3345
3394
|
{
|
|
3346
3395
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -3432,10 +3481,10 @@ var taskData28 = {
|
|
|
3432
3481
|
widgetModels: [],
|
|
3433
3482
|
youtubeId: void 0
|
|
3434
3483
|
};
|
|
3435
|
-
var
|
|
3484
|
+
var data_default29 = taskData29;
|
|
3436
3485
|
|
|
3437
3486
|
// src/tasks/unconditional-image-generation/data.ts
|
|
3438
|
-
var
|
|
3487
|
+
var taskData30 = {
|
|
3439
3488
|
datasets: [
|
|
3440
3489
|
{
|
|
3441
3490
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -3497,10 +3546,10 @@ var taskData29 = {
|
|
|
3497
3546
|
// TODO: Add related video
|
|
3498
3547
|
youtubeId: ""
|
|
3499
3548
|
};
|
|
3500
|
-
var
|
|
3549
|
+
var data_default30 = taskData30;
|
|
3501
3550
|
|
|
3502
3551
|
// src/tasks/video-classification/data.ts
|
|
3503
|
-
var
|
|
3552
|
+
var taskData31 = {
|
|
3504
3553
|
datasets: [
|
|
3505
3554
|
{
|
|
3506
3555
|
// TODO write proper description
|
|
@@ -3579,10 +3628,10 @@ var taskData30 = {
|
|
|
3579
3628
|
widgetModels: [],
|
|
3580
3629
|
youtubeId: ""
|
|
3581
3630
|
};
|
|
3582
|
-
var
|
|
3631
|
+
var data_default31 = taskData31;
|
|
3583
3632
|
|
|
3584
3633
|
// src/tasks/visual-question-answering/data.ts
|
|
3585
|
-
var
|
|
3634
|
+
var taskData32 = {
|
|
3586
3635
|
datasets: [
|
|
3587
3636
|
{
|
|
3588
3637
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -3672,10 +3721,10 @@ var taskData31 = {
|
|
|
3672
3721
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
3673
3722
|
youtubeId: ""
|
|
3674
3723
|
};
|
|
3675
|
-
var
|
|
3724
|
+
var data_default32 = taskData32;
|
|
3676
3725
|
|
|
3677
3726
|
// src/tasks/zero-shot-classification/data.ts
|
|
3678
|
-
var
|
|
3727
|
+
var taskData33 = {
|
|
3679
3728
|
datasets: [
|
|
3680
3729
|
{
|
|
3681
3730
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3734,10 +3783,10 @@ var taskData32 = {
|
|
|
3734
3783
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
3735
3784
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
3736
3785
|
};
|
|
3737
|
-
var
|
|
3786
|
+
var data_default33 = taskData33;
|
|
3738
3787
|
|
|
3739
3788
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
3740
|
-
var
|
|
3789
|
+
var taskData34 = {
|
|
3741
3790
|
datasets: [
|
|
3742
3791
|
{
|
|
3743
3792
|
// TODO write proper description
|
|
@@ -3811,10 +3860,10 @@ var taskData33 = {
|
|
|
3811
3860
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
3812
3861
|
youtubeId: ""
|
|
3813
3862
|
};
|
|
3814
|
-
var
|
|
3863
|
+
var data_default34 = taskData34;
|
|
3815
3864
|
|
|
3816
3865
|
// src/tasks/zero-shot-object-detection/data.ts
|
|
3817
|
-
var
|
|
3866
|
+
var taskData35 = {
|
|
3818
3867
|
datasets: [],
|
|
3819
3868
|
demo: {
|
|
3820
3869
|
inputs: [
|
|
@@ -3869,7 +3918,7 @@ var taskData34 = {
|
|
|
3869
3918
|
widgetModels: [],
|
|
3870
3919
|
youtubeId: ""
|
|
3871
3920
|
};
|
|
3872
|
-
var
|
|
3921
|
+
var data_default35 = taskData35;
|
|
3873
3922
|
|
|
3874
3923
|
// src/tasks/index.ts
|
|
3875
3924
|
var TASKS_MODEL_LIBRARIES = {
|
|
@@ -3931,7 +3980,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3931
3980
|
"text-to-3d": [],
|
|
3932
3981
|
"image-to-3d": []
|
|
3933
3982
|
};
|
|
3934
|
-
function getData(type, partialTaskData =
|
|
3983
|
+
function getData(type, partialTaskData = data_default15) {
|
|
3935
3984
|
return {
|
|
3936
3985
|
...partialTaskData,
|
|
3937
3986
|
id: type,
|
|
@@ -3943,52 +3992,52 @@ var TASKS_DATA = {
|
|
|
3943
3992
|
"audio-classification": getData("audio-classification", data_default),
|
|
3944
3993
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
3945
3994
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
3946
|
-
"depth-estimation": getData("depth-estimation",
|
|
3995
|
+
"depth-estimation": getData("depth-estimation", data_default14),
|
|
3947
3996
|
"document-question-answering": getData("document-question-answering", data_default4),
|
|
3948
3997
|
"feature-extraction": getData("feature-extraction", data_default5),
|
|
3949
3998
|
"fill-mask": getData("fill-mask", data_default6),
|
|
3950
3999
|
"graph-ml": void 0,
|
|
3951
4000
|
"image-classification": getData("image-classification", data_default7),
|
|
3952
|
-
"image-
|
|
4001
|
+
"image-feature-extraction": getData("image-feature-extraction", data_default8),
|
|
4002
|
+
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3953
4003
|
"image-text-to-text": void 0,
|
|
3954
|
-
"image-to-image": getData("image-to-image",
|
|
3955
|
-
"image-to-text": getData("image-to-text",
|
|
4004
|
+
"image-to-image": getData("image-to-image", data_default9),
|
|
4005
|
+
"image-to-text": getData("image-to-text", data_default10),
|
|
3956
4006
|
"image-to-video": void 0,
|
|
3957
|
-
"mask-generation": getData("mask-generation",
|
|
4007
|
+
"mask-generation": getData("mask-generation", data_default12),
|
|
3958
4008
|
"multiple-choice": void 0,
|
|
3959
|
-
"object-detection": getData("object-detection",
|
|
3960
|
-
"video-classification": getData("video-classification",
|
|
4009
|
+
"object-detection": getData("object-detection", data_default13),
|
|
4010
|
+
"video-classification": getData("video-classification", data_default31),
|
|
3961
4011
|
other: void 0,
|
|
3962
|
-
"question-answering": getData("question-answering",
|
|
3963
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
4012
|
+
"question-answering": getData("question-answering", data_default17),
|
|
4013
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default16),
|
|
3964
4014
|
robotics: void 0,
|
|
3965
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
3966
|
-
summarization: getData("summarization",
|
|
3967
|
-
"table-question-answering": getData("table-question-answering",
|
|
4015
|
+
"sentence-similarity": getData("sentence-similarity", data_default18),
|
|
4016
|
+
summarization: getData("summarization", data_default19),
|
|
4017
|
+
"table-question-answering": getData("table-question-answering", data_default20),
|
|
3968
4018
|
"table-to-text": void 0,
|
|
3969
|
-
"tabular-classification": getData("tabular-classification",
|
|
3970
|
-
"tabular-regression": getData("tabular-regression",
|
|
4019
|
+
"tabular-classification": getData("tabular-classification", data_default21),
|
|
4020
|
+
"tabular-regression": getData("tabular-regression", data_default22),
|
|
3971
4021
|
"tabular-to-text": void 0,
|
|
3972
|
-
"text-classification": getData("text-classification",
|
|
3973
|
-
"text-generation": getData("text-generation",
|
|
4022
|
+
"text-classification": getData("text-classification", data_default27),
|
|
4023
|
+
"text-generation": getData("text-generation", data_default28),
|
|
3974
4024
|
"text-retrieval": void 0,
|
|
3975
|
-
"text-to-image": getData("text-to-image",
|
|
3976
|
-
"text-to-speech": getData("text-to-speech",
|
|
4025
|
+
"text-to-image": getData("text-to-image", data_default23),
|
|
4026
|
+
"text-to-speech": getData("text-to-speech", data_default24),
|
|
3977
4027
|
"text-to-audio": void 0,
|
|
3978
|
-
"text-to-video": getData("text-to-video",
|
|
4028
|
+
"text-to-video": getData("text-to-video", data_default29),
|
|
3979
4029
|
"text2text-generation": void 0,
|
|
3980
4030
|
"time-series-forecasting": void 0,
|
|
3981
|
-
"token-classification": getData("token-classification",
|
|
3982
|
-
translation: getData("translation",
|
|
3983
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
3984
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
4031
|
+
"token-classification": getData("token-classification", data_default25),
|
|
4032
|
+
translation: getData("translation", data_default26),
|
|
4033
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default30),
|
|
4034
|
+
"visual-question-answering": getData("visual-question-answering", data_default32),
|
|
3985
4035
|
"voice-activity-detection": void 0,
|
|
3986
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
3987
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
3988
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
3989
|
-
"text-to-3d": getData("text-to-3d",
|
|
3990
|
-
"image-to-3d": getData("image-to-3d",
|
|
3991
|
-
"image-feature-extraction": getData("image-feature-extraction", data_default14)
|
|
4036
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default33),
|
|
4037
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
|
|
4038
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
|
|
4039
|
+
"text-to-3d": getData("text-to-3d", data_default15),
|
|
4040
|
+
"image-to-3d": getData("image-to-3d", data_default15)
|
|
3992
4041
|
};
|
|
3993
4042
|
|
|
3994
4043
|
// src/model-libraries-snippets.ts
|
|
@@ -4121,6 +4170,13 @@ var keras = (model) => [
|
|
|
4121
4170
|
model = from_pretrained_keras("${model.id}")
|
|
4122
4171
|
`
|
|
4123
4172
|
];
|
|
4173
|
+
var keras_nlp = (model) => [
|
|
4174
|
+
`import keras_nlp
|
|
4175
|
+
|
|
4176
|
+
tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}")
|
|
4177
|
+
backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}")
|
|
4178
|
+
`
|
|
4179
|
+
];
|
|
4124
4180
|
var open_clip = (model) => [
|
|
4125
4181
|
`import open_clip
|
|
4126
4182
|
|
|
@@ -4455,6 +4511,11 @@ IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
|
|
|
4455
4511
|
// Please see provided C# file for more details
|
|
4456
4512
|
`
|
|
4457
4513
|
];
|
|
4514
|
+
var voicecraft = (model) => [
|
|
4515
|
+
`from voicecraft import VoiceCraft
|
|
4516
|
+
|
|
4517
|
+
model = VoiceCraft.from_pretrained("${model.id}")`
|
|
4518
|
+
];
|
|
4458
4519
|
var mlx = (model) => [
|
|
4459
4520
|
`pip install huggingface_hub hf_transfer
|
|
4460
4521
|
|
|
@@ -4574,6 +4635,15 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4574
4635
|
repoName: "doctr",
|
|
4575
4636
|
repoUrl: "https://github.com/mindee/doctr"
|
|
4576
4637
|
},
|
|
4638
|
+
elm: {
|
|
4639
|
+
prettyLabel: "ELM",
|
|
4640
|
+
repoName: "elm",
|
|
4641
|
+
repoUrl: "https://github.com/slicex-ai/elm",
|
|
4642
|
+
filter: false,
|
|
4643
|
+
countDownloads: {
|
|
4644
|
+
wildcard: { path: "*/slicex_elm_config.json" }
|
|
4645
|
+
}
|
|
4646
|
+
},
|
|
4577
4647
|
espnet: {
|
|
4578
4648
|
prettyLabel: "ESPnet",
|
|
4579
4649
|
repoName: "ESPnet",
|
|
@@ -4643,6 +4713,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4643
4713
|
filter: true,
|
|
4644
4714
|
countDownloads: { term: { path: "saved_model.pb" } }
|
|
4645
4715
|
},
|
|
4716
|
+
"keras-nlp": {
|
|
4717
|
+
prettyLabel: "KerasNLP",
|
|
4718
|
+
repoName: "KerasNLP",
|
|
4719
|
+
repoUrl: "https://keras.io/keras_nlp/",
|
|
4720
|
+
docsUrl: "https://github.com/keras-team/keras-nlp",
|
|
4721
|
+
snippets: keras_nlp
|
|
4722
|
+
},
|
|
4646
4723
|
k2: {
|
|
4647
4724
|
prettyLabel: "K2",
|
|
4648
4725
|
repoName: "k2",
|
|
@@ -4859,6 +4936,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4859
4936
|
wildcard: { path: "*.sentis" }
|
|
4860
4937
|
}
|
|
4861
4938
|
},
|
|
4939
|
+
voicecraft: {
|
|
4940
|
+
prettyLabel: "VoiceCraft",
|
|
4941
|
+
repoName: "VoiceCraft",
|
|
4942
|
+
repoUrl: "https://github.com/jasonppy/VoiceCraft",
|
|
4943
|
+
docsUrl: "https://github.com/jasonppy/VoiceCraft",
|
|
4944
|
+
snippets: voicecraft
|
|
4945
|
+
},
|
|
4862
4946
|
whisperkit: {
|
|
4863
4947
|
prettyLabel: "WhisperKit",
|
|
4864
4948
|
repoName: "WhisperKit",
|
package/dist/index.d.ts
CHANGED
|
@@ -799,6 +799,17 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
799
799
|
repoName: string;
|
|
800
800
|
repoUrl: string;
|
|
801
801
|
};
|
|
802
|
+
elm: {
|
|
803
|
+
prettyLabel: string;
|
|
804
|
+
repoName: string;
|
|
805
|
+
repoUrl: string;
|
|
806
|
+
filter: false;
|
|
807
|
+
countDownloads: {
|
|
808
|
+
wildcard: {
|
|
809
|
+
path: string;
|
|
810
|
+
};
|
|
811
|
+
};
|
|
812
|
+
};
|
|
802
813
|
espnet: {
|
|
803
814
|
prettyLabel: string;
|
|
804
815
|
repoName: string;
|
|
@@ -878,6 +889,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
878
889
|
};
|
|
879
890
|
};
|
|
880
891
|
};
|
|
892
|
+
"keras-nlp": {
|
|
893
|
+
prettyLabel: string;
|
|
894
|
+
repoName: string;
|
|
895
|
+
repoUrl: string;
|
|
896
|
+
docsUrl: string;
|
|
897
|
+
snippets: (model: ModelData) => string[];
|
|
898
|
+
};
|
|
881
899
|
k2: {
|
|
882
900
|
prettyLabel: string;
|
|
883
901
|
repoName: string;
|
|
@@ -1132,6 +1150,13 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
1132
1150
|
};
|
|
1133
1151
|
};
|
|
1134
1152
|
};
|
|
1153
|
+
voicecraft: {
|
|
1154
|
+
prettyLabel: string;
|
|
1155
|
+
repoName: string;
|
|
1156
|
+
repoUrl: string;
|
|
1157
|
+
docsUrl: string;
|
|
1158
|
+
snippets: (model: ModelData) => string[];
|
|
1159
|
+
};
|
|
1135
1160
|
whisperkit: {
|
|
1136
1161
|
prettyLabel: string;
|
|
1137
1162
|
repoName: string;
|
|
@@ -1144,8 +1169,8 @@ declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
1144
1169
|
};
|
|
1145
1170
|
};
|
|
1146
1171
|
type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
|
|
1147
|
-
declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
|
|
1148
|
-
declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "whisperkit")[];
|
|
1172
|
+
declare const ALL_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
1173
|
+
declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("sklearn" | "adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "bertopic" | "diffusers" | "doctr" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gliner" | "grok" | "keras" | "keras-nlp" | "k2" | "mindspore" | "ml-agents" | "mlx" | "mlx-image" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "sample-factory" | "sentence-transformers" | "setfit" | "spacy" | "span-marker" | "speechbrain" | "stable-baselines3" | "stanza" | "tensorflowtts" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
1149
1174
|
|
|
1150
1175
|
/**
|
|
1151
1176
|
* Mapping from library name to its supported tasks.
|