@huggingface/tasks 0.3.1 → 0.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +126 -179
- package/dist/index.d.ts +26 -13
- package/dist/index.js +125 -179
- package/package.json +1 -1
- package/src/default-widget-inputs.ts +2 -2
- package/src/index.ts +3 -0
- package/src/library-to-tasks.ts +1 -1
- package/src/model-data.ts +2 -0
- package/src/pipelines.ts +16 -12
- package/src/snippets/curl.ts +0 -1
- package/src/snippets/inputs.ts +0 -8
- package/src/snippets/js.ts +0 -1
- package/src/snippets/python.ts +0 -1
- package/src/tasks/index.ts +4 -4
- package/src/tokenizer-data.ts +24 -0
- package/src/tasks/conversational/about.md +0 -50
- package/src/tasks/conversational/data.ts +0 -66
package/dist/index.js
CHANGED
|
@@ -24,7 +24,7 @@ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
|
24
24
|
keras: ["image-classification"],
|
|
25
25
|
nemo: ["automatic-speech-recognition"],
|
|
26
26
|
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
27
|
-
paddlenlp: ["
|
|
27
|
+
paddlenlp: ["fill-mask", "summarization", "zero-shot-classification"],
|
|
28
28
|
peft: ["text-generation"],
|
|
29
29
|
"pyannote-audio": ["automatic-speech-recognition"],
|
|
30
30
|
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
@@ -895,17 +895,6 @@ var PIPELINE_DATA = {
|
|
|
895
895
|
modality: "nlp",
|
|
896
896
|
color: "indigo"
|
|
897
897
|
},
|
|
898
|
-
conversational: {
|
|
899
|
-
name: "Conversational",
|
|
900
|
-
subtasks: [
|
|
901
|
-
{
|
|
902
|
-
type: "dialogue-generation",
|
|
903
|
-
name: "Dialogue Generation"
|
|
904
|
-
}
|
|
905
|
-
],
|
|
906
|
-
modality: "nlp",
|
|
907
|
-
color: "green"
|
|
908
|
-
},
|
|
909
898
|
"feature-extraction": {
|
|
910
899
|
name: "Feature Extraction",
|
|
911
900
|
modality: "nlp",
|
|
@@ -918,6 +907,14 @@ var PIPELINE_DATA = {
|
|
|
918
907
|
type: "dialogue-modeling",
|
|
919
908
|
name: "Dialogue Modeling"
|
|
920
909
|
},
|
|
910
|
+
{
|
|
911
|
+
type: "dialogue-generation",
|
|
912
|
+
name: "Dialogue Generation"
|
|
913
|
+
},
|
|
914
|
+
{
|
|
915
|
+
type: "conversational",
|
|
916
|
+
name: "Conversational"
|
|
917
|
+
},
|
|
921
918
|
{
|
|
922
919
|
type: "language-modeling",
|
|
923
920
|
name: "Language Modeling"
|
|
@@ -1263,7 +1260,7 @@ var PIPELINE_DATA = {
|
|
|
1263
1260
|
color: "green"
|
|
1264
1261
|
},
|
|
1265
1262
|
"image-text-to-text": {
|
|
1266
|
-
name: "Image + Text to
|
|
1263
|
+
name: "Image + Text to Text (VLLMs)",
|
|
1267
1264
|
modality: "multimodal",
|
|
1268
1265
|
color: "red",
|
|
1269
1266
|
hideInDatasets: true
|
|
@@ -1321,6 +1318,11 @@ var PIPELINE_DATA = {
|
|
|
1321
1318
|
modality: "cv",
|
|
1322
1319
|
color: "green"
|
|
1323
1320
|
},
|
|
1321
|
+
"image-feature-extraction": {
|
|
1322
|
+
name: "Image Feature Extraction",
|
|
1323
|
+
modality: "cv",
|
|
1324
|
+
color: "indigo"
|
|
1325
|
+
},
|
|
1324
1326
|
other: {
|
|
1325
1327
|
name: "Other",
|
|
1326
1328
|
modality: "other",
|
|
@@ -1546,68 +1548,8 @@ var taskData3 = {
|
|
|
1546
1548
|
};
|
|
1547
1549
|
var data_default3 = taskData3;
|
|
1548
1550
|
|
|
1549
|
-
// src/tasks/conversational/data.ts
|
|
1550
|
-
var taskData4 = {
|
|
1551
|
-
datasets: [
|
|
1552
|
-
{
|
|
1553
|
-
description: "A dataset of 7k conversations explicitly designed to exhibit multiple conversation modes: displaying personality, having empathy, and demonstrating knowledge.",
|
|
1554
|
-
id: "blended_skill_talk"
|
|
1555
|
-
},
|
|
1556
|
-
{
|
|
1557
|
-
description: "ConvAI is a dataset of human-to-bot conversations labeled for quality. This data can be used to train a metric for evaluating dialogue systems",
|
|
1558
|
-
id: "conv_ai_2"
|
|
1559
|
-
},
|
|
1560
|
-
{
|
|
1561
|
-
description: "EmpatheticDialogues, is a dataset of 25k conversations grounded in emotional situations",
|
|
1562
|
-
id: "empathetic_dialogues"
|
|
1563
|
-
}
|
|
1564
|
-
],
|
|
1565
|
-
demo: {
|
|
1566
|
-
inputs: [
|
|
1567
|
-
{
|
|
1568
|
-
label: "Input",
|
|
1569
|
-
content: "Hey my name is Julien! How are you?",
|
|
1570
|
-
type: "text"
|
|
1571
|
-
}
|
|
1572
|
-
],
|
|
1573
|
-
outputs: [
|
|
1574
|
-
{
|
|
1575
|
-
label: "Answer",
|
|
1576
|
-
content: "Hi Julien! My name is Julia! I am well.",
|
|
1577
|
-
type: "text"
|
|
1578
|
-
}
|
|
1579
|
-
]
|
|
1580
|
-
},
|
|
1581
|
-
metrics: [
|
|
1582
|
-
{
|
|
1583
|
-
description: "BLEU score is calculated by counting the number of shared single or subsequent tokens between the generated sequence and the reference. Subsequent n tokens are called \u201Cn-grams\u201D. Unigram refers to a single token while bi-gram refers to token pairs and n-grams refer to n subsequent tokens. The score ranges from 0 to 1, where 1 means the translation perfectly matched and 0 did not match at all",
|
|
1584
|
-
id: "bleu"
|
|
1585
|
-
}
|
|
1586
|
-
],
|
|
1587
|
-
models: [
|
|
1588
|
-
{
|
|
1589
|
-
description: "A faster and smaller model than the famous BERT model.",
|
|
1590
|
-
id: "facebook/blenderbot-400M-distill"
|
|
1591
|
-
},
|
|
1592
|
-
{
|
|
1593
|
-
description: "DialoGPT is a large-scale pretrained dialogue response generation model for multiturn conversations.",
|
|
1594
|
-
id: "microsoft/DialoGPT-large"
|
|
1595
|
-
}
|
|
1596
|
-
],
|
|
1597
|
-
spaces: [
|
|
1598
|
-
{
|
|
1599
|
-
description: "A chatbot based on Blender model.",
|
|
1600
|
-
id: "EXFINITE/BlenderBot-UI"
|
|
1601
|
-
}
|
|
1602
|
-
],
|
|
1603
|
-
summary: "Conversational response modelling is the task of generating conversational text that is relevant, coherent and knowledgable given a prompt. These models have applications in chatbots, and as a part of voice assistants",
|
|
1604
|
-
widgetModels: ["facebook/blenderbot-400M-distill"],
|
|
1605
|
-
youtubeId: ""
|
|
1606
|
-
};
|
|
1607
|
-
var data_default4 = taskData4;
|
|
1608
|
-
|
|
1609
1551
|
// src/tasks/document-question-answering/data.ts
|
|
1610
|
-
var
|
|
1552
|
+
var taskData4 = {
|
|
1611
1553
|
datasets: [
|
|
1612
1554
|
{
|
|
1613
1555
|
// TODO write proper description
|
|
@@ -1677,10 +1619,10 @@ var taskData5 = {
|
|
|
1677
1619
|
widgetModels: ["impira/layoutlm-document-qa"],
|
|
1678
1620
|
youtubeId: ""
|
|
1679
1621
|
};
|
|
1680
|
-
var
|
|
1622
|
+
var data_default4 = taskData4;
|
|
1681
1623
|
|
|
1682
1624
|
// src/tasks/feature-extraction/data.ts
|
|
1683
|
-
var
|
|
1625
|
+
var taskData5 = {
|
|
1684
1626
|
datasets: [
|
|
1685
1627
|
{
|
|
1686
1628
|
description: "Wikipedia dataset containing cleaned articles of all languages. Can be used to train `feature-extraction` models.",
|
|
@@ -1723,10 +1665,10 @@ var taskData6 = {
|
|
|
1723
1665
|
summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
|
|
1724
1666
|
widgetModels: ["facebook/bart-base"]
|
|
1725
1667
|
};
|
|
1726
|
-
var
|
|
1668
|
+
var data_default5 = taskData5;
|
|
1727
1669
|
|
|
1728
1670
|
// src/tasks/fill-mask/data.ts
|
|
1729
|
-
var
|
|
1671
|
+
var taskData6 = {
|
|
1730
1672
|
datasets: [
|
|
1731
1673
|
{
|
|
1732
1674
|
description: "A common dataset that is used to train models for many languages.",
|
|
@@ -1798,10 +1740,10 @@ var taskData7 = {
|
|
|
1798
1740
|
widgetModels: ["distilroberta-base"],
|
|
1799
1741
|
youtubeId: "mqElG5QJWUg"
|
|
1800
1742
|
};
|
|
1801
|
-
var
|
|
1743
|
+
var data_default6 = taskData6;
|
|
1802
1744
|
|
|
1803
1745
|
// src/tasks/image-classification/data.ts
|
|
1804
|
-
var
|
|
1746
|
+
var taskData7 = {
|
|
1805
1747
|
datasets: [
|
|
1806
1748
|
{
|
|
1807
1749
|
// TODO write proper description
|
|
@@ -1884,10 +1826,10 @@ var taskData8 = {
|
|
|
1884
1826
|
widgetModels: ["google/vit-base-patch16-224"],
|
|
1885
1827
|
youtubeId: "tjAIM7BOYhw"
|
|
1886
1828
|
};
|
|
1887
|
-
var
|
|
1829
|
+
var data_default7 = taskData7;
|
|
1888
1830
|
|
|
1889
1831
|
// src/tasks/image-to-image/data.ts
|
|
1890
|
-
var
|
|
1832
|
+
var taskData8 = {
|
|
1891
1833
|
datasets: [
|
|
1892
1834
|
{
|
|
1893
1835
|
description: "Synthetic dataset, for image relighting",
|
|
@@ -1979,10 +1921,10 @@ var taskData9 = {
|
|
|
1979
1921
|
widgetModels: ["lllyasviel/sd-controlnet-canny"],
|
|
1980
1922
|
youtubeId: ""
|
|
1981
1923
|
};
|
|
1982
|
-
var
|
|
1924
|
+
var data_default8 = taskData8;
|
|
1983
1925
|
|
|
1984
1926
|
// src/tasks/image-to-text/data.ts
|
|
1985
|
-
var
|
|
1927
|
+
var taskData9 = {
|
|
1986
1928
|
datasets: [
|
|
1987
1929
|
{
|
|
1988
1930
|
// TODO write proper description
|
|
@@ -2059,10 +2001,10 @@ var taskData10 = {
|
|
|
2059
2001
|
widgetModels: ["Salesforce/blip-image-captioning-base"],
|
|
2060
2002
|
youtubeId: ""
|
|
2061
2003
|
};
|
|
2062
|
-
var
|
|
2004
|
+
var data_default9 = taskData9;
|
|
2063
2005
|
|
|
2064
2006
|
// src/tasks/image-segmentation/data.ts
|
|
2065
|
-
var
|
|
2007
|
+
var taskData10 = {
|
|
2066
2008
|
datasets: [
|
|
2067
2009
|
{
|
|
2068
2010
|
description: "Scene segmentation dataset.",
|
|
@@ -2154,10 +2096,10 @@ var taskData11 = {
|
|
|
2154
2096
|
widgetModels: ["facebook/detr-resnet-50-panoptic"],
|
|
2155
2097
|
youtubeId: "dKE8SIt9C-w"
|
|
2156
2098
|
};
|
|
2157
|
-
var
|
|
2099
|
+
var data_default10 = taskData10;
|
|
2158
2100
|
|
|
2159
2101
|
// src/tasks/mask-generation/data.ts
|
|
2160
|
-
var
|
|
2102
|
+
var taskData11 = {
|
|
2161
2103
|
datasets: [],
|
|
2162
2104
|
demo: {
|
|
2163
2105
|
inputs: [
|
|
@@ -2206,10 +2148,10 @@ var taskData12 = {
|
|
|
2206
2148
|
widgetModels: [],
|
|
2207
2149
|
youtubeId: ""
|
|
2208
2150
|
};
|
|
2209
|
-
var
|
|
2151
|
+
var data_default11 = taskData11;
|
|
2210
2152
|
|
|
2211
2153
|
// src/tasks/object-detection/data.ts
|
|
2212
|
-
var
|
|
2154
|
+
var taskData12 = {
|
|
2213
2155
|
datasets: [
|
|
2214
2156
|
{
|
|
2215
2157
|
// TODO write proper description
|
|
@@ -2281,10 +2223,10 @@ var taskData13 = {
|
|
|
2281
2223
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2282
2224
|
youtubeId: "WdAeKSOpxhw"
|
|
2283
2225
|
};
|
|
2284
|
-
var
|
|
2226
|
+
var data_default12 = taskData12;
|
|
2285
2227
|
|
|
2286
2228
|
// src/tasks/depth-estimation/data.ts
|
|
2287
|
-
var
|
|
2229
|
+
var taskData13 = {
|
|
2288
2230
|
datasets: [
|
|
2289
2231
|
{
|
|
2290
2232
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2338,10 +2280,10 @@ var taskData14 = {
|
|
|
2338
2280
|
widgetModels: [""],
|
|
2339
2281
|
youtubeId: ""
|
|
2340
2282
|
};
|
|
2341
|
-
var
|
|
2283
|
+
var data_default13 = taskData13;
|
|
2342
2284
|
|
|
2343
2285
|
// src/tasks/placeholder/data.ts
|
|
2344
|
-
var
|
|
2286
|
+
var taskData14 = {
|
|
2345
2287
|
datasets: [],
|
|
2346
2288
|
demo: {
|
|
2347
2289
|
inputs: [],
|
|
@@ -2358,10 +2300,10 @@ var taskData15 = {
|
|
|
2358
2300
|
/// (eg, text2text-generation is the canonical ID of translation)
|
|
2359
2301
|
canonicalId: void 0
|
|
2360
2302
|
};
|
|
2361
|
-
var
|
|
2303
|
+
var data_default14 = taskData14;
|
|
2362
2304
|
|
|
2363
2305
|
// src/tasks/reinforcement-learning/data.ts
|
|
2364
|
-
var
|
|
2306
|
+
var taskData15 = {
|
|
2365
2307
|
datasets: [
|
|
2366
2308
|
{
|
|
2367
2309
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -2427,10 +2369,10 @@ var taskData16 = {
|
|
|
2427
2369
|
widgetModels: [],
|
|
2428
2370
|
youtubeId: "q0BiUn5LiBc"
|
|
2429
2371
|
};
|
|
2430
|
-
var
|
|
2372
|
+
var data_default15 = taskData15;
|
|
2431
2373
|
|
|
2432
2374
|
// src/tasks/question-answering/data.ts
|
|
2433
|
-
var
|
|
2375
|
+
var taskData16 = {
|
|
2434
2376
|
datasets: [
|
|
2435
2377
|
{
|
|
2436
2378
|
// TODO write proper description
|
|
@@ -2494,10 +2436,10 @@ var taskData17 = {
|
|
|
2494
2436
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
2495
2437
|
youtubeId: "ajPx5LwJD-I"
|
|
2496
2438
|
};
|
|
2497
|
-
var
|
|
2439
|
+
var data_default16 = taskData16;
|
|
2498
2440
|
|
|
2499
2441
|
// src/tasks/sentence-similarity/data.ts
|
|
2500
|
-
var
|
|
2442
|
+
var taskData17 = {
|
|
2501
2443
|
datasets: [
|
|
2502
2444
|
{
|
|
2503
2445
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -2589,10 +2531,10 @@ var taskData18 = {
|
|
|
2589
2531
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
2590
2532
|
youtubeId: "VCZq5AkbNEU"
|
|
2591
2533
|
};
|
|
2592
|
-
var
|
|
2534
|
+
var data_default17 = taskData17;
|
|
2593
2535
|
|
|
2594
2536
|
// src/tasks/summarization/data.ts
|
|
2595
|
-
var
|
|
2537
|
+
var taskData18 = {
|
|
2596
2538
|
canonicalId: "text2text-generation",
|
|
2597
2539
|
datasets: [
|
|
2598
2540
|
{
|
|
@@ -2658,10 +2600,10 @@ var taskData19 = {
|
|
|
2658
2600
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
2659
2601
|
youtubeId: "yHnr5Dk2zCI"
|
|
2660
2602
|
};
|
|
2661
|
-
var
|
|
2603
|
+
var data_default18 = taskData18;
|
|
2662
2604
|
|
|
2663
2605
|
// src/tasks/table-question-answering/data.ts
|
|
2664
|
-
var
|
|
2606
|
+
var taskData19 = {
|
|
2665
2607
|
datasets: [
|
|
2666
2608
|
{
|
|
2667
2609
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -2712,10 +2654,10 @@ var taskData20 = {
|
|
|
2712
2654
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
2713
2655
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
2714
2656
|
};
|
|
2715
|
-
var
|
|
2657
|
+
var data_default19 = taskData19;
|
|
2716
2658
|
|
|
2717
2659
|
// src/tasks/tabular-classification/data.ts
|
|
2718
|
-
var
|
|
2660
|
+
var taskData20 = {
|
|
2719
2661
|
datasets: [
|
|
2720
2662
|
{
|
|
2721
2663
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2779,10 +2721,10 @@ var taskData21 = {
|
|
|
2779
2721
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
2780
2722
|
youtubeId: ""
|
|
2781
2723
|
};
|
|
2782
|
-
var
|
|
2724
|
+
var data_default20 = taskData20;
|
|
2783
2725
|
|
|
2784
2726
|
// src/tasks/tabular-regression/data.ts
|
|
2785
|
-
var
|
|
2727
|
+
var taskData21 = {
|
|
2786
2728
|
datasets: [
|
|
2787
2729
|
{
|
|
2788
2730
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2834,10 +2776,10 @@ var taskData22 = {
|
|
|
2834
2776
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
2835
2777
|
youtubeId: ""
|
|
2836
2778
|
};
|
|
2837
|
-
var
|
|
2779
|
+
var data_default21 = taskData21;
|
|
2838
2780
|
|
|
2839
2781
|
// src/tasks/text-to-image/data.ts
|
|
2840
|
-
var
|
|
2782
|
+
var taskData22 = {
|
|
2841
2783
|
datasets: [
|
|
2842
2784
|
{
|
|
2843
2785
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -2929,10 +2871,10 @@ var taskData23 = {
|
|
|
2929
2871
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
2930
2872
|
youtubeId: ""
|
|
2931
2873
|
};
|
|
2932
|
-
var
|
|
2874
|
+
var data_default22 = taskData22;
|
|
2933
2875
|
|
|
2934
2876
|
// src/tasks/text-to-speech/data.ts
|
|
2935
|
-
var
|
|
2877
|
+
var taskData23 = {
|
|
2936
2878
|
canonicalId: "text-to-audio",
|
|
2937
2879
|
datasets: [
|
|
2938
2880
|
{
|
|
@@ -2997,10 +2939,10 @@ var taskData24 = {
|
|
|
2997
2939
|
widgetModels: ["suno/bark"],
|
|
2998
2940
|
youtubeId: "NW62DpzJ274"
|
|
2999
2941
|
};
|
|
3000
|
-
var
|
|
2942
|
+
var data_default23 = taskData23;
|
|
3001
2943
|
|
|
3002
2944
|
// src/tasks/token-classification/data.ts
|
|
3003
|
-
var
|
|
2945
|
+
var taskData24 = {
|
|
3004
2946
|
datasets: [
|
|
3005
2947
|
{
|
|
3006
2948
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3076,10 +3018,10 @@ var taskData25 = {
|
|
|
3076
3018
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3077
3019
|
youtubeId: "wVHdVlPScxA"
|
|
3078
3020
|
};
|
|
3079
|
-
var
|
|
3021
|
+
var data_default24 = taskData24;
|
|
3080
3022
|
|
|
3081
3023
|
// src/tasks/translation/data.ts
|
|
3082
|
-
var
|
|
3024
|
+
var taskData25 = {
|
|
3083
3025
|
canonicalId: "text2text-generation",
|
|
3084
3026
|
datasets: [
|
|
3085
3027
|
{
|
|
@@ -3141,10 +3083,10 @@ var taskData26 = {
|
|
|
3141
3083
|
widgetModels: ["t5-small"],
|
|
3142
3084
|
youtubeId: "1JvfrvZgi6c"
|
|
3143
3085
|
};
|
|
3144
|
-
var
|
|
3086
|
+
var data_default25 = taskData25;
|
|
3145
3087
|
|
|
3146
3088
|
// src/tasks/text-classification/data.ts
|
|
3147
|
-
var
|
|
3089
|
+
var taskData26 = {
|
|
3148
3090
|
datasets: [
|
|
3149
3091
|
{
|
|
3150
3092
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3229,10 +3171,10 @@ var taskData27 = {
|
|
|
3229
3171
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3230
3172
|
youtubeId: "leNG9fN9FQU"
|
|
3231
3173
|
};
|
|
3232
|
-
var
|
|
3174
|
+
var data_default26 = taskData26;
|
|
3233
3175
|
|
|
3234
3176
|
// src/tasks/text-generation/data.ts
|
|
3235
|
-
var
|
|
3177
|
+
var taskData27 = {
|
|
3236
3178
|
datasets: [
|
|
3237
3179
|
{
|
|
3238
3180
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3333,10 +3275,10 @@ var taskData28 = {
|
|
|
3333
3275
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
3334
3276
|
youtubeId: "Vpjb1lu0MDk"
|
|
3335
3277
|
};
|
|
3336
|
-
var
|
|
3278
|
+
var data_default27 = taskData27;
|
|
3337
3279
|
|
|
3338
3280
|
// src/tasks/text-to-video/data.ts
|
|
3339
|
-
var
|
|
3281
|
+
var taskData28 = {
|
|
3340
3282
|
datasets: [
|
|
3341
3283
|
{
|
|
3342
3284
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -3428,10 +3370,10 @@ var taskData29 = {
|
|
|
3428
3370
|
widgetModels: [],
|
|
3429
3371
|
youtubeId: void 0
|
|
3430
3372
|
};
|
|
3431
|
-
var
|
|
3373
|
+
var data_default28 = taskData28;
|
|
3432
3374
|
|
|
3433
3375
|
// src/tasks/unconditional-image-generation/data.ts
|
|
3434
|
-
var
|
|
3376
|
+
var taskData29 = {
|
|
3435
3377
|
datasets: [
|
|
3436
3378
|
{
|
|
3437
3379
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -3493,10 +3435,10 @@ var taskData30 = {
|
|
|
3493
3435
|
// TODO: Add related video
|
|
3494
3436
|
youtubeId: ""
|
|
3495
3437
|
};
|
|
3496
|
-
var
|
|
3438
|
+
var data_default29 = taskData29;
|
|
3497
3439
|
|
|
3498
3440
|
// src/tasks/video-classification/data.ts
|
|
3499
|
-
var
|
|
3441
|
+
var taskData30 = {
|
|
3500
3442
|
datasets: [
|
|
3501
3443
|
{
|
|
3502
3444
|
// TODO write proper description
|
|
@@ -3575,10 +3517,10 @@ var taskData31 = {
|
|
|
3575
3517
|
widgetModels: [],
|
|
3576
3518
|
youtubeId: ""
|
|
3577
3519
|
};
|
|
3578
|
-
var
|
|
3520
|
+
var data_default30 = taskData30;
|
|
3579
3521
|
|
|
3580
3522
|
// src/tasks/visual-question-answering/data.ts
|
|
3581
|
-
var
|
|
3523
|
+
var taskData31 = {
|
|
3582
3524
|
datasets: [
|
|
3583
3525
|
{
|
|
3584
3526
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -3668,10 +3610,10 @@ var taskData32 = {
|
|
|
3668
3610
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
3669
3611
|
youtubeId: ""
|
|
3670
3612
|
};
|
|
3671
|
-
var
|
|
3613
|
+
var data_default31 = taskData31;
|
|
3672
3614
|
|
|
3673
3615
|
// src/tasks/zero-shot-classification/data.ts
|
|
3674
|
-
var
|
|
3616
|
+
var taskData32 = {
|
|
3675
3617
|
datasets: [
|
|
3676
3618
|
{
|
|
3677
3619
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3730,10 +3672,10 @@ var taskData33 = {
|
|
|
3730
3672
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
3731
3673
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
3732
3674
|
};
|
|
3733
|
-
var
|
|
3675
|
+
var data_default32 = taskData32;
|
|
3734
3676
|
|
|
3735
3677
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
3736
|
-
var
|
|
3678
|
+
var taskData33 = {
|
|
3737
3679
|
datasets: [
|
|
3738
3680
|
{
|
|
3739
3681
|
// TODO write proper description
|
|
@@ -3807,10 +3749,10 @@ var taskData34 = {
|
|
|
3807
3749
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
3808
3750
|
youtubeId: ""
|
|
3809
3751
|
};
|
|
3810
|
-
var
|
|
3752
|
+
var data_default33 = taskData33;
|
|
3811
3753
|
|
|
3812
3754
|
// src/tasks/zero-shot-object-detection/data.ts
|
|
3813
|
-
var
|
|
3755
|
+
var taskData34 = {
|
|
3814
3756
|
datasets: [],
|
|
3815
3757
|
demo: {
|
|
3816
3758
|
inputs: [
|
|
@@ -3865,20 +3807,20 @@ var taskData35 = {
|
|
|
3865
3807
|
widgetModels: [],
|
|
3866
3808
|
youtubeId: ""
|
|
3867
3809
|
};
|
|
3868
|
-
var
|
|
3810
|
+
var data_default34 = taskData34;
|
|
3869
3811
|
|
|
3870
3812
|
// src/tasks/index.ts
|
|
3871
3813
|
var TASKS_MODEL_LIBRARIES = {
|
|
3872
3814
|
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
|
|
3873
3815
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
3874
3816
|
"automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
|
|
3875
|
-
conversational: ["transformers"],
|
|
3876
3817
|
"depth-estimation": ["transformers", "transformers.js"],
|
|
3877
3818
|
"document-question-answering": ["transformers", "transformers.js"],
|
|
3878
3819
|
"feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
|
|
3879
3820
|
"fill-mask": ["transformers", "transformers.js"],
|
|
3880
3821
|
"graph-ml": ["transformers"],
|
|
3881
3822
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
3823
|
+
"image-feature-extraction": ["timm", "transformers"],
|
|
3882
3824
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
3883
3825
|
"image-text-to-text": ["transformers"],
|
|
3884
3826
|
"image-to-image": ["diffusers", "transformers", "transformers.js"],
|
|
@@ -3927,7 +3869,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3927
3869
|
"text-to-3d": [],
|
|
3928
3870
|
"image-to-3d": []
|
|
3929
3871
|
};
|
|
3930
|
-
function getData(type, partialTaskData =
|
|
3872
|
+
function getData(type, partialTaskData = data_default14) {
|
|
3931
3873
|
return {
|
|
3932
3874
|
...partialTaskData,
|
|
3933
3875
|
id: type,
|
|
@@ -3939,52 +3881,52 @@ var TASKS_DATA = {
|
|
|
3939
3881
|
"audio-classification": getData("audio-classification", data_default),
|
|
3940
3882
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
3941
3883
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
3942
|
-
|
|
3943
|
-
"
|
|
3944
|
-
"
|
|
3945
|
-
"
|
|
3946
|
-
"fill-mask": getData("fill-mask", data_default7),
|
|
3884
|
+
"depth-estimation": getData("depth-estimation", data_default13),
|
|
3885
|
+
"document-question-answering": getData("document-question-answering", data_default4),
|
|
3886
|
+
"feature-extraction": getData("feature-extraction", data_default5),
|
|
3887
|
+
"fill-mask": getData("fill-mask", data_default6),
|
|
3947
3888
|
"graph-ml": void 0,
|
|
3948
|
-
"image-classification": getData("image-classification",
|
|
3949
|
-
"image-segmentation": getData("image-segmentation",
|
|
3889
|
+
"image-classification": getData("image-classification", data_default7),
|
|
3890
|
+
"image-segmentation": getData("image-segmentation", data_default10),
|
|
3950
3891
|
"image-text-to-text": void 0,
|
|
3951
|
-
"image-to-image": getData("image-to-image",
|
|
3952
|
-
"image-to-text": getData("image-to-text",
|
|
3892
|
+
"image-to-image": getData("image-to-image", data_default8),
|
|
3893
|
+
"image-to-text": getData("image-to-text", data_default9),
|
|
3953
3894
|
"image-to-video": void 0,
|
|
3954
|
-
"mask-generation": getData("mask-generation",
|
|
3895
|
+
"mask-generation": getData("mask-generation", data_default11),
|
|
3955
3896
|
"multiple-choice": void 0,
|
|
3956
|
-
"object-detection": getData("object-detection",
|
|
3957
|
-
"video-classification": getData("video-classification",
|
|
3897
|
+
"object-detection": getData("object-detection", data_default12),
|
|
3898
|
+
"video-classification": getData("video-classification", data_default30),
|
|
3958
3899
|
other: void 0,
|
|
3959
|
-
"question-answering": getData("question-answering",
|
|
3960
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
3900
|
+
"question-answering": getData("question-answering", data_default16),
|
|
3901
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default15),
|
|
3961
3902
|
robotics: void 0,
|
|
3962
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
3963
|
-
summarization: getData("summarization",
|
|
3964
|
-
"table-question-answering": getData("table-question-answering",
|
|
3903
|
+
"sentence-similarity": getData("sentence-similarity", data_default17),
|
|
3904
|
+
summarization: getData("summarization", data_default18),
|
|
3905
|
+
"table-question-answering": getData("table-question-answering", data_default19),
|
|
3965
3906
|
"table-to-text": void 0,
|
|
3966
|
-
"tabular-classification": getData("tabular-classification",
|
|
3967
|
-
"tabular-regression": getData("tabular-regression",
|
|
3907
|
+
"tabular-classification": getData("tabular-classification", data_default20),
|
|
3908
|
+
"tabular-regression": getData("tabular-regression", data_default21),
|
|
3968
3909
|
"tabular-to-text": void 0,
|
|
3969
|
-
"text-classification": getData("text-classification",
|
|
3970
|
-
"text-generation": getData("text-generation",
|
|
3910
|
+
"text-classification": getData("text-classification", data_default26),
|
|
3911
|
+
"text-generation": getData("text-generation", data_default27),
|
|
3971
3912
|
"text-retrieval": void 0,
|
|
3972
|
-
"text-to-image": getData("text-to-image",
|
|
3973
|
-
"text-to-speech": getData("text-to-speech",
|
|
3913
|
+
"text-to-image": getData("text-to-image", data_default22),
|
|
3914
|
+
"text-to-speech": getData("text-to-speech", data_default23),
|
|
3974
3915
|
"text-to-audio": void 0,
|
|
3975
|
-
"text-to-video": getData("text-to-video",
|
|
3916
|
+
"text-to-video": getData("text-to-video", data_default28),
|
|
3976
3917
|
"text2text-generation": void 0,
|
|
3977
3918
|
"time-series-forecasting": void 0,
|
|
3978
|
-
"token-classification": getData("token-classification",
|
|
3979
|
-
translation: getData("translation",
|
|
3980
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
3981
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
3919
|
+
"token-classification": getData("token-classification", data_default24),
|
|
3920
|
+
translation: getData("translation", data_default25),
|
|
3921
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default29),
|
|
3922
|
+
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3982
3923
|
"voice-activity-detection": void 0,
|
|
3983
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
3984
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
3985
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
3986
|
-
"text-to-3d": getData("text-to-3d",
|
|
3987
|
-
"image-to-3d": getData("image-to-3d",
|
|
3924
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3925
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
3926
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
|
|
3927
|
+
"text-to-3d": getData("text-to-3d", data_default14),
|
|
3928
|
+
"image-to-3d": getData("image-to-3d", data_default14),
|
|
3929
|
+
"image-feature-extraction": getData("image-feature-extraction", data_default14)
|
|
3988
3930
|
};
|
|
3989
3931
|
|
|
3990
3932
|
// src/model-libraries-snippets.ts
|
|
@@ -4790,6 +4732,18 @@ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
|
4790
4732
|
return InferenceDisplayability2;
|
|
4791
4733
|
})(InferenceDisplayability || {});
|
|
4792
4734
|
|
|
4735
|
+
// src/tokenizer-data.ts
|
|
4736
|
+
var SPECIAL_TOKENS_ATTRIBUTES = [
|
|
4737
|
+
"bos_token",
|
|
4738
|
+
"eos_token",
|
|
4739
|
+
"unk_token",
|
|
4740
|
+
"sep_token",
|
|
4741
|
+
"pad_token",
|
|
4742
|
+
"cls_token",
|
|
4743
|
+
"mask_token"
|
|
4744
|
+
// additional_special_tokens (TODO)
|
|
4745
|
+
];
|
|
4746
|
+
|
|
4793
4747
|
// src/snippets/index.ts
|
|
4794
4748
|
var snippets_exports = {};
|
|
4795
4749
|
__export(snippets_exports, {
|
|
@@ -4807,11 +4761,6 @@ __export(inputs_exports, {
|
|
|
4807
4761
|
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4808
4762
|
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4809
4763
|
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4810
|
-
var inputsConversational = () => `{
|
|
4811
|
-
"past_user_inputs": ["Which movie is the best ?"],
|
|
4812
|
-
"generated_responses": ["It is Die Hard for sure."],
|
|
4813
|
-
"text": "Can you explain why ?"
|
|
4814
|
-
}`;
|
|
4815
4764
|
var inputsTableQuestionAnswering = () => `{
|
|
4816
4765
|
"query": "How many stars does the transformers repository have?",
|
|
4817
4766
|
"table": {
|
|
@@ -4863,7 +4812,6 @@ var modelInputSnippets = {
|
|
|
4863
4812
|
"audio-to-audio": inputsAudioToAudio,
|
|
4864
4813
|
"audio-classification": inputsAudioClassification,
|
|
4865
4814
|
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4866
|
-
conversational: inputsConversational,
|
|
4867
4815
|
"document-question-answering": inputsVisualQuestionAnswering,
|
|
4868
4816
|
"feature-extraction": inputsFeatureExtraction,
|
|
4869
4817
|
"fill-mask": inputsFillMask,
|
|
@@ -4943,7 +4891,6 @@ var curlSnippets = {
|
|
|
4943
4891
|
"zero-shot-classification": snippetZeroShotClassification,
|
|
4944
4892
|
translation: snippetBasic,
|
|
4945
4893
|
summarization: snippetBasic,
|
|
4946
|
-
conversational: snippetBasic,
|
|
4947
4894
|
"feature-extraction": snippetBasic,
|
|
4948
4895
|
"text-generation": snippetBasic,
|
|
4949
4896
|
"text2text-generation": snippetBasic,
|
|
@@ -5078,7 +5025,6 @@ var pythonSnippets = {
|
|
|
5078
5025
|
"zero-shot-classification": snippetZeroShotClassification2,
|
|
5079
5026
|
translation: snippetBasic2,
|
|
5080
5027
|
summarization: snippetBasic2,
|
|
5081
|
-
conversational: snippetBasic2,
|
|
5082
5028
|
"feature-extraction": snippetBasic2,
|
|
5083
5029
|
"text-generation": snippetBasic2,
|
|
5084
5030
|
"text2text-generation": snippetBasic2,
|
|
@@ -5228,7 +5174,6 @@ var jsSnippets = {
|
|
|
5228
5174
|
"zero-shot-classification": snippetZeroShotClassification3,
|
|
5229
5175
|
translation: snippetBasic3,
|
|
5230
5176
|
summarization: snippetBasic3,
|
|
5231
|
-
conversational: snippetBasic3,
|
|
5232
5177
|
"feature-extraction": snippetBasic3,
|
|
5233
5178
|
"text-generation": snippetBasic3,
|
|
5234
5179
|
"text2text-generation": snippetBasic3,
|
|
@@ -5263,6 +5208,7 @@ export {
|
|
|
5263
5208
|
PIPELINE_DATA,
|
|
5264
5209
|
PIPELINE_TYPES,
|
|
5265
5210
|
PIPELINE_TYPES_SET,
|
|
5211
|
+
SPECIAL_TOKENS_ATTRIBUTES,
|
|
5266
5212
|
SUBTASK_TYPES,
|
|
5267
5213
|
TASKS_DATA,
|
|
5268
5214
|
TASKS_MODEL_LIBRARIES,
|