@huggingface/tasks 0.3.1 → 0.3.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -24,7 +24,7 @@ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
24
24
  keras: ["image-classification"],
25
25
  nemo: ["automatic-speech-recognition"],
26
26
  open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
27
- paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
27
+ paddlenlp: ["fill-mask", "summarization", "zero-shot-classification"],
28
28
  peft: ["text-generation"],
29
29
  "pyannote-audio": ["automatic-speech-recognition"],
30
30
  "sentence-transformers": ["feature-extraction", "sentence-similarity"],
@@ -895,17 +895,6 @@ var PIPELINE_DATA = {
895
895
  modality: "nlp",
896
896
  color: "indigo"
897
897
  },
898
- conversational: {
899
- name: "Conversational",
900
- subtasks: [
901
- {
902
- type: "dialogue-generation",
903
- name: "Dialogue Generation"
904
- }
905
- ],
906
- modality: "nlp",
907
- color: "green"
908
- },
909
898
  "feature-extraction": {
910
899
  name: "Feature Extraction",
911
900
  modality: "nlp",
@@ -918,6 +907,14 @@ var PIPELINE_DATA = {
918
907
  type: "dialogue-modeling",
919
908
  name: "Dialogue Modeling"
920
909
  },
910
+ {
911
+ type: "dialogue-generation",
912
+ name: "Dialogue Generation"
913
+ },
914
+ {
915
+ type: "conversational",
916
+ name: "Conversational"
917
+ },
921
918
  {
922
919
  type: "language-modeling",
923
920
  name: "Language Modeling"
@@ -1263,7 +1260,7 @@ var PIPELINE_DATA = {
1263
1260
  color: "green"
1264
1261
  },
1265
1262
  "image-text-to-text": {
1266
- name: "Image + Text to Image (VLLMs)",
1263
+ name: "Image + Text to Text (VLLMs)",
1267
1264
  modality: "multimodal",
1268
1265
  color: "red",
1269
1266
  hideInDatasets: true
@@ -1321,6 +1318,11 @@ var PIPELINE_DATA = {
1321
1318
  modality: "cv",
1322
1319
  color: "green"
1323
1320
  },
1321
+ "image-feature-extraction": {
1322
+ name: "Image Feature Extraction",
1323
+ modality: "cv",
1324
+ color: "indigo"
1325
+ },
1324
1326
  other: {
1325
1327
  name: "Other",
1326
1328
  modality: "other",
@@ -1546,68 +1548,8 @@ var taskData3 = {
1546
1548
  };
1547
1549
  var data_default3 = taskData3;
1548
1550
 
1549
- // src/tasks/conversational/data.ts
1550
- var taskData4 = {
1551
- datasets: [
1552
- {
1553
- description: "A dataset of 7k conversations explicitly designed to exhibit multiple conversation modes: displaying personality, having empathy, and demonstrating knowledge.",
1554
- id: "blended_skill_talk"
1555
- },
1556
- {
1557
- description: "ConvAI is a dataset of human-to-bot conversations labeled for quality. This data can be used to train a metric for evaluating dialogue systems",
1558
- id: "conv_ai_2"
1559
- },
1560
- {
1561
- description: "EmpatheticDialogues, is a dataset of 25k conversations grounded in emotional situations",
1562
- id: "empathetic_dialogues"
1563
- }
1564
- ],
1565
- demo: {
1566
- inputs: [
1567
- {
1568
- label: "Input",
1569
- content: "Hey my name is Julien! How are you?",
1570
- type: "text"
1571
- }
1572
- ],
1573
- outputs: [
1574
- {
1575
- label: "Answer",
1576
- content: "Hi Julien! My name is Julia! I am well.",
1577
- type: "text"
1578
- }
1579
- ]
1580
- },
1581
- metrics: [
1582
- {
1583
- description: "BLEU score is calculated by counting the number of shared single or subsequent tokens between the generated sequence and the reference. Subsequent n tokens are called \u201Cn-grams\u201D. Unigram refers to a single token while bi-gram refers to token pairs and n-grams refer to n subsequent tokens. The score ranges from 0 to 1, where 1 means the translation perfectly matched and 0 did not match at all",
1584
- id: "bleu"
1585
- }
1586
- ],
1587
- models: [
1588
- {
1589
- description: "A faster and smaller model than the famous BERT model.",
1590
- id: "facebook/blenderbot-400M-distill"
1591
- },
1592
- {
1593
- description: "DialoGPT is a large-scale pretrained dialogue response generation model for multiturn conversations.",
1594
- id: "microsoft/DialoGPT-large"
1595
- }
1596
- ],
1597
- spaces: [
1598
- {
1599
- description: "A chatbot based on Blender model.",
1600
- id: "EXFINITE/BlenderBot-UI"
1601
- }
1602
- ],
1603
- summary: "Conversational response modelling is the task of generating conversational text that is relevant, coherent and knowledgable given a prompt. These models have applications in chatbots, and as a part of voice assistants",
1604
- widgetModels: ["facebook/blenderbot-400M-distill"],
1605
- youtubeId: ""
1606
- };
1607
- var data_default4 = taskData4;
1608
-
1609
1551
  // src/tasks/document-question-answering/data.ts
1610
- var taskData5 = {
1552
+ var taskData4 = {
1611
1553
  datasets: [
1612
1554
  {
1613
1555
  // TODO write proper description
@@ -1677,10 +1619,10 @@ var taskData5 = {
1677
1619
  widgetModels: ["impira/layoutlm-document-qa"],
1678
1620
  youtubeId: ""
1679
1621
  };
1680
- var data_default5 = taskData5;
1622
+ var data_default4 = taskData4;
1681
1623
 
1682
1624
  // src/tasks/feature-extraction/data.ts
1683
- var taskData6 = {
1625
+ var taskData5 = {
1684
1626
  datasets: [
1685
1627
  {
1686
1628
  description: "Wikipedia dataset containing cleaned articles of all languages. Can be used to train `feature-extraction` models.",
@@ -1723,10 +1665,10 @@ var taskData6 = {
1723
1665
  summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
1724
1666
  widgetModels: ["facebook/bart-base"]
1725
1667
  };
1726
- var data_default6 = taskData6;
1668
+ var data_default5 = taskData5;
1727
1669
 
1728
1670
  // src/tasks/fill-mask/data.ts
1729
- var taskData7 = {
1671
+ var taskData6 = {
1730
1672
  datasets: [
1731
1673
  {
1732
1674
  description: "A common dataset that is used to train models for many languages.",
@@ -1798,10 +1740,10 @@ var taskData7 = {
1798
1740
  widgetModels: ["distilroberta-base"],
1799
1741
  youtubeId: "mqElG5QJWUg"
1800
1742
  };
1801
- var data_default7 = taskData7;
1743
+ var data_default6 = taskData6;
1802
1744
 
1803
1745
  // src/tasks/image-classification/data.ts
1804
- var taskData8 = {
1746
+ var taskData7 = {
1805
1747
  datasets: [
1806
1748
  {
1807
1749
  // TODO write proper description
@@ -1884,10 +1826,10 @@ var taskData8 = {
1884
1826
  widgetModels: ["google/vit-base-patch16-224"],
1885
1827
  youtubeId: "tjAIM7BOYhw"
1886
1828
  };
1887
- var data_default8 = taskData8;
1829
+ var data_default7 = taskData7;
1888
1830
 
1889
1831
  // src/tasks/image-to-image/data.ts
1890
- var taskData9 = {
1832
+ var taskData8 = {
1891
1833
  datasets: [
1892
1834
  {
1893
1835
  description: "Synthetic dataset, for image relighting",
@@ -1979,10 +1921,10 @@ var taskData9 = {
1979
1921
  widgetModels: ["lllyasviel/sd-controlnet-canny"],
1980
1922
  youtubeId: ""
1981
1923
  };
1982
- var data_default9 = taskData9;
1924
+ var data_default8 = taskData8;
1983
1925
 
1984
1926
  // src/tasks/image-to-text/data.ts
1985
- var taskData10 = {
1927
+ var taskData9 = {
1986
1928
  datasets: [
1987
1929
  {
1988
1930
  // TODO write proper description
@@ -2059,10 +2001,10 @@ var taskData10 = {
2059
2001
  widgetModels: ["Salesforce/blip-image-captioning-base"],
2060
2002
  youtubeId: ""
2061
2003
  };
2062
- var data_default10 = taskData10;
2004
+ var data_default9 = taskData9;
2063
2005
 
2064
2006
  // src/tasks/image-segmentation/data.ts
2065
- var taskData11 = {
2007
+ var taskData10 = {
2066
2008
  datasets: [
2067
2009
  {
2068
2010
  description: "Scene segmentation dataset.",
@@ -2154,10 +2096,10 @@ var taskData11 = {
2154
2096
  widgetModels: ["facebook/detr-resnet-50-panoptic"],
2155
2097
  youtubeId: "dKE8SIt9C-w"
2156
2098
  };
2157
- var data_default11 = taskData11;
2099
+ var data_default10 = taskData10;
2158
2100
 
2159
2101
  // src/tasks/mask-generation/data.ts
2160
- var taskData12 = {
2102
+ var taskData11 = {
2161
2103
  datasets: [],
2162
2104
  demo: {
2163
2105
  inputs: [
@@ -2206,10 +2148,10 @@ var taskData12 = {
2206
2148
  widgetModels: [],
2207
2149
  youtubeId: ""
2208
2150
  };
2209
- var data_default12 = taskData12;
2151
+ var data_default11 = taskData11;
2210
2152
 
2211
2153
  // src/tasks/object-detection/data.ts
2212
- var taskData13 = {
2154
+ var taskData12 = {
2213
2155
  datasets: [
2214
2156
  {
2215
2157
  // TODO write proper description
@@ -2281,10 +2223,10 @@ var taskData13 = {
2281
2223
  widgetModels: ["facebook/detr-resnet-50"],
2282
2224
  youtubeId: "WdAeKSOpxhw"
2283
2225
  };
2284
- var data_default13 = taskData13;
2226
+ var data_default12 = taskData12;
2285
2227
 
2286
2228
  // src/tasks/depth-estimation/data.ts
2287
- var taskData14 = {
2229
+ var taskData13 = {
2288
2230
  datasets: [
2289
2231
  {
2290
2232
  description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
@@ -2338,10 +2280,10 @@ var taskData14 = {
2338
2280
  widgetModels: [""],
2339
2281
  youtubeId: ""
2340
2282
  };
2341
- var data_default14 = taskData14;
2283
+ var data_default13 = taskData13;
2342
2284
 
2343
2285
  // src/tasks/placeholder/data.ts
2344
- var taskData15 = {
2286
+ var taskData14 = {
2345
2287
  datasets: [],
2346
2288
  demo: {
2347
2289
  inputs: [],
@@ -2358,10 +2300,10 @@ var taskData15 = {
2358
2300
  /// (eg, text2text-generation is the canonical ID of translation)
2359
2301
  canonicalId: void 0
2360
2302
  };
2361
- var data_default15 = taskData15;
2303
+ var data_default14 = taskData14;
2362
2304
 
2363
2305
  // src/tasks/reinforcement-learning/data.ts
2364
- var taskData16 = {
2306
+ var taskData15 = {
2365
2307
  datasets: [
2366
2308
  {
2367
2309
  description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
@@ -2427,10 +2369,10 @@ var taskData16 = {
2427
2369
  widgetModels: [],
2428
2370
  youtubeId: "q0BiUn5LiBc"
2429
2371
  };
2430
- var data_default16 = taskData16;
2372
+ var data_default15 = taskData15;
2431
2373
 
2432
2374
  // src/tasks/question-answering/data.ts
2433
- var taskData17 = {
2375
+ var taskData16 = {
2434
2376
  datasets: [
2435
2377
  {
2436
2378
  // TODO write proper description
@@ -2494,10 +2436,10 @@ var taskData17 = {
2494
2436
  widgetModels: ["deepset/roberta-base-squad2"],
2495
2437
  youtubeId: "ajPx5LwJD-I"
2496
2438
  };
2497
- var data_default17 = taskData17;
2439
+ var data_default16 = taskData16;
2498
2440
 
2499
2441
  // src/tasks/sentence-similarity/data.ts
2500
- var taskData18 = {
2442
+ var taskData17 = {
2501
2443
  datasets: [
2502
2444
  {
2503
2445
  description: "Bing queries with relevant passages from various web sources.",
@@ -2589,10 +2531,10 @@ var taskData18 = {
2589
2531
  widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
2590
2532
  youtubeId: "VCZq5AkbNEU"
2591
2533
  };
2592
- var data_default18 = taskData18;
2534
+ var data_default17 = taskData17;
2593
2535
 
2594
2536
  // src/tasks/summarization/data.ts
2595
- var taskData19 = {
2537
+ var taskData18 = {
2596
2538
  canonicalId: "text2text-generation",
2597
2539
  datasets: [
2598
2540
  {
@@ -2658,10 +2600,10 @@ var taskData19 = {
2658
2600
  widgetModels: ["sshleifer/distilbart-cnn-12-6"],
2659
2601
  youtubeId: "yHnr5Dk2zCI"
2660
2602
  };
2661
- var data_default19 = taskData19;
2603
+ var data_default18 = taskData18;
2662
2604
 
2663
2605
  // src/tasks/table-question-answering/data.ts
2664
- var taskData20 = {
2606
+ var taskData19 = {
2665
2607
  datasets: [
2666
2608
  {
2667
2609
  description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
@@ -2712,10 +2654,10 @@ var taskData20 = {
2712
2654
  summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
2713
2655
  widgetModels: ["google/tapas-base-finetuned-wtq"]
2714
2656
  };
2715
- var data_default20 = taskData20;
2657
+ var data_default19 = taskData19;
2716
2658
 
2717
2659
  // src/tasks/tabular-classification/data.ts
2718
- var taskData21 = {
2660
+ var taskData20 = {
2719
2661
  datasets: [
2720
2662
  {
2721
2663
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2779,10 +2721,10 @@ var taskData21 = {
2779
2721
  widgetModels: ["scikit-learn/tabular-playground"],
2780
2722
  youtubeId: ""
2781
2723
  };
2782
- var data_default21 = taskData21;
2724
+ var data_default20 = taskData20;
2783
2725
 
2784
2726
  // src/tasks/tabular-regression/data.ts
2785
- var taskData22 = {
2727
+ var taskData21 = {
2786
2728
  datasets: [
2787
2729
  {
2788
2730
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2834,10 +2776,10 @@ var taskData22 = {
2834
2776
  widgetModels: ["scikit-learn/Fish-Weight"],
2835
2777
  youtubeId: ""
2836
2778
  };
2837
- var data_default22 = taskData22;
2779
+ var data_default21 = taskData21;
2838
2780
 
2839
2781
  // src/tasks/text-to-image/data.ts
2840
- var taskData23 = {
2782
+ var taskData22 = {
2841
2783
  datasets: [
2842
2784
  {
2843
2785
  description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
@@ -2929,10 +2871,10 @@ var taskData23 = {
2929
2871
  widgetModels: ["CompVis/stable-diffusion-v1-4"],
2930
2872
  youtubeId: ""
2931
2873
  };
2932
- var data_default23 = taskData23;
2874
+ var data_default22 = taskData22;
2933
2875
 
2934
2876
  // src/tasks/text-to-speech/data.ts
2935
- var taskData24 = {
2877
+ var taskData23 = {
2936
2878
  canonicalId: "text-to-audio",
2937
2879
  datasets: [
2938
2880
  {
@@ -2997,10 +2939,10 @@ var taskData24 = {
2997
2939
  widgetModels: ["suno/bark"],
2998
2940
  youtubeId: "NW62DpzJ274"
2999
2941
  };
3000
- var data_default24 = taskData24;
2942
+ var data_default23 = taskData23;
3001
2943
 
3002
2944
  // src/tasks/token-classification/data.ts
3003
- var taskData25 = {
2945
+ var taskData24 = {
3004
2946
  datasets: [
3005
2947
  {
3006
2948
  description: "A widely used dataset useful to benchmark named entity recognition models.",
@@ -3076,10 +3018,10 @@ var taskData25 = {
3076
3018
  widgetModels: ["dslim/bert-base-NER"],
3077
3019
  youtubeId: "wVHdVlPScxA"
3078
3020
  };
3079
- var data_default25 = taskData25;
3021
+ var data_default24 = taskData24;
3080
3022
 
3081
3023
  // src/tasks/translation/data.ts
3082
- var taskData26 = {
3024
+ var taskData25 = {
3083
3025
  canonicalId: "text2text-generation",
3084
3026
  datasets: [
3085
3027
  {
@@ -3141,10 +3083,10 @@ var taskData26 = {
3141
3083
  widgetModels: ["t5-small"],
3142
3084
  youtubeId: "1JvfrvZgi6c"
3143
3085
  };
3144
- var data_default26 = taskData26;
3086
+ var data_default25 = taskData25;
3145
3087
 
3146
3088
  // src/tasks/text-classification/data.ts
3147
- var taskData27 = {
3089
+ var taskData26 = {
3148
3090
  datasets: [
3149
3091
  {
3150
3092
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3229,10 +3171,10 @@ var taskData27 = {
3229
3171
  widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
3230
3172
  youtubeId: "leNG9fN9FQU"
3231
3173
  };
3232
- var data_default27 = taskData27;
3174
+ var data_default26 = taskData26;
3233
3175
 
3234
3176
  // src/tasks/text-generation/data.ts
3235
- var taskData28 = {
3177
+ var taskData27 = {
3236
3178
  datasets: [
3237
3179
  {
3238
3180
  description: "A large multilingual dataset of text crawled from the web.",
@@ -3333,10 +3275,10 @@ var taskData28 = {
3333
3275
  widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
3334
3276
  youtubeId: "Vpjb1lu0MDk"
3335
3277
  };
3336
- var data_default28 = taskData28;
3278
+ var data_default27 = taskData27;
3337
3279
 
3338
3280
  // src/tasks/text-to-video/data.ts
3339
- var taskData29 = {
3281
+ var taskData28 = {
3340
3282
  datasets: [
3341
3283
  {
3342
3284
  description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
@@ -3428,10 +3370,10 @@ var taskData29 = {
3428
3370
  widgetModels: [],
3429
3371
  youtubeId: void 0
3430
3372
  };
3431
- var data_default29 = taskData29;
3373
+ var data_default28 = taskData28;
3432
3374
 
3433
3375
  // src/tasks/unconditional-image-generation/data.ts
3434
- var taskData30 = {
3376
+ var taskData29 = {
3435
3377
  datasets: [
3436
3378
  {
3437
3379
  description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
@@ -3493,10 +3435,10 @@ var taskData30 = {
3493
3435
  // TODO: Add related video
3494
3436
  youtubeId: ""
3495
3437
  };
3496
- var data_default30 = taskData30;
3438
+ var data_default29 = taskData29;
3497
3439
 
3498
3440
  // src/tasks/video-classification/data.ts
3499
- var taskData31 = {
3441
+ var taskData30 = {
3500
3442
  datasets: [
3501
3443
  {
3502
3444
  // TODO write proper description
@@ -3575,10 +3517,10 @@ var taskData31 = {
3575
3517
  widgetModels: [],
3576
3518
  youtubeId: ""
3577
3519
  };
3578
- var data_default31 = taskData31;
3520
+ var data_default30 = taskData30;
3579
3521
 
3580
3522
  // src/tasks/visual-question-answering/data.ts
3581
- var taskData32 = {
3523
+ var taskData31 = {
3582
3524
  datasets: [
3583
3525
  {
3584
3526
  description: "A widely used dataset containing questions (with answers) about images.",
@@ -3668,10 +3610,10 @@ var taskData32 = {
3668
3610
  widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
3669
3611
  youtubeId: ""
3670
3612
  };
3671
- var data_default32 = taskData32;
3613
+ var data_default31 = taskData31;
3672
3614
 
3673
3615
  // src/tasks/zero-shot-classification/data.ts
3674
- var taskData33 = {
3616
+ var taskData32 = {
3675
3617
  datasets: [
3676
3618
  {
3677
3619
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3730,10 +3672,10 @@ var taskData33 = {
3730
3672
  summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
3731
3673
  widgetModels: ["facebook/bart-large-mnli"]
3732
3674
  };
3733
- var data_default33 = taskData33;
3675
+ var data_default32 = taskData32;
3734
3676
 
3735
3677
  // src/tasks/zero-shot-image-classification/data.ts
3736
- var taskData34 = {
3678
+ var taskData33 = {
3737
3679
  datasets: [
3738
3680
  {
3739
3681
  // TODO write proper description
@@ -3807,10 +3749,10 @@ var taskData34 = {
3807
3749
  widgetModels: ["openai/clip-vit-large-patch14-336"],
3808
3750
  youtubeId: ""
3809
3751
  };
3810
- var data_default34 = taskData34;
3752
+ var data_default33 = taskData33;
3811
3753
 
3812
3754
  // src/tasks/zero-shot-object-detection/data.ts
3813
- var taskData35 = {
3755
+ var taskData34 = {
3814
3756
  datasets: [],
3815
3757
  demo: {
3816
3758
  inputs: [
@@ -3865,20 +3807,20 @@ var taskData35 = {
3865
3807
  widgetModels: [],
3866
3808
  youtubeId: ""
3867
3809
  };
3868
- var data_default35 = taskData35;
3810
+ var data_default34 = taskData34;
3869
3811
 
3870
3812
  // src/tasks/index.ts
3871
3813
  var TASKS_MODEL_LIBRARIES = {
3872
3814
  "audio-classification": ["speechbrain", "transformers", "transformers.js"],
3873
3815
  "audio-to-audio": ["asteroid", "speechbrain"],
3874
3816
  "automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
3875
- conversational: ["transformers"],
3876
3817
  "depth-estimation": ["transformers", "transformers.js"],
3877
3818
  "document-question-answering": ["transformers", "transformers.js"],
3878
3819
  "feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
3879
3820
  "fill-mask": ["transformers", "transformers.js"],
3880
3821
  "graph-ml": ["transformers"],
3881
3822
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
3823
+ "image-feature-extraction": ["timm", "transformers"],
3882
3824
  "image-segmentation": ["transformers", "transformers.js"],
3883
3825
  "image-text-to-text": ["transformers"],
3884
3826
  "image-to-image": ["diffusers", "transformers", "transformers.js"],
@@ -3927,7 +3869,7 @@ var TASKS_MODEL_LIBRARIES = {
3927
3869
  "text-to-3d": [],
3928
3870
  "image-to-3d": []
3929
3871
  };
3930
- function getData(type, partialTaskData = data_default15) {
3872
+ function getData(type, partialTaskData = data_default14) {
3931
3873
  return {
3932
3874
  ...partialTaskData,
3933
3875
  id: type,
@@ -3939,52 +3881,52 @@ var TASKS_DATA = {
3939
3881
  "audio-classification": getData("audio-classification", data_default),
3940
3882
  "audio-to-audio": getData("audio-to-audio", data_default2),
3941
3883
  "automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
3942
- conversational: getData("conversational", data_default4),
3943
- "depth-estimation": getData("depth-estimation", data_default14),
3944
- "document-question-answering": getData("document-question-answering", data_default5),
3945
- "feature-extraction": getData("feature-extraction", data_default6),
3946
- "fill-mask": getData("fill-mask", data_default7),
3884
+ "depth-estimation": getData("depth-estimation", data_default13),
3885
+ "document-question-answering": getData("document-question-answering", data_default4),
3886
+ "feature-extraction": getData("feature-extraction", data_default5),
3887
+ "fill-mask": getData("fill-mask", data_default6),
3947
3888
  "graph-ml": void 0,
3948
- "image-classification": getData("image-classification", data_default8),
3949
- "image-segmentation": getData("image-segmentation", data_default11),
3889
+ "image-classification": getData("image-classification", data_default7),
3890
+ "image-segmentation": getData("image-segmentation", data_default10),
3950
3891
  "image-text-to-text": void 0,
3951
- "image-to-image": getData("image-to-image", data_default9),
3952
- "image-to-text": getData("image-to-text", data_default10),
3892
+ "image-to-image": getData("image-to-image", data_default8),
3893
+ "image-to-text": getData("image-to-text", data_default9),
3953
3894
  "image-to-video": void 0,
3954
- "mask-generation": getData("mask-generation", data_default12),
3895
+ "mask-generation": getData("mask-generation", data_default11),
3955
3896
  "multiple-choice": void 0,
3956
- "object-detection": getData("object-detection", data_default13),
3957
- "video-classification": getData("video-classification", data_default31),
3897
+ "object-detection": getData("object-detection", data_default12),
3898
+ "video-classification": getData("video-classification", data_default30),
3958
3899
  other: void 0,
3959
- "question-answering": getData("question-answering", data_default17),
3960
- "reinforcement-learning": getData("reinforcement-learning", data_default16),
3900
+ "question-answering": getData("question-answering", data_default16),
3901
+ "reinforcement-learning": getData("reinforcement-learning", data_default15),
3961
3902
  robotics: void 0,
3962
- "sentence-similarity": getData("sentence-similarity", data_default18),
3963
- summarization: getData("summarization", data_default19),
3964
- "table-question-answering": getData("table-question-answering", data_default20),
3903
+ "sentence-similarity": getData("sentence-similarity", data_default17),
3904
+ summarization: getData("summarization", data_default18),
3905
+ "table-question-answering": getData("table-question-answering", data_default19),
3965
3906
  "table-to-text": void 0,
3966
- "tabular-classification": getData("tabular-classification", data_default21),
3967
- "tabular-regression": getData("tabular-regression", data_default22),
3907
+ "tabular-classification": getData("tabular-classification", data_default20),
3908
+ "tabular-regression": getData("tabular-regression", data_default21),
3968
3909
  "tabular-to-text": void 0,
3969
- "text-classification": getData("text-classification", data_default27),
3970
- "text-generation": getData("text-generation", data_default28),
3910
+ "text-classification": getData("text-classification", data_default26),
3911
+ "text-generation": getData("text-generation", data_default27),
3971
3912
  "text-retrieval": void 0,
3972
- "text-to-image": getData("text-to-image", data_default23),
3973
- "text-to-speech": getData("text-to-speech", data_default24),
3913
+ "text-to-image": getData("text-to-image", data_default22),
3914
+ "text-to-speech": getData("text-to-speech", data_default23),
3974
3915
  "text-to-audio": void 0,
3975
- "text-to-video": getData("text-to-video", data_default29),
3916
+ "text-to-video": getData("text-to-video", data_default28),
3976
3917
  "text2text-generation": void 0,
3977
3918
  "time-series-forecasting": void 0,
3978
- "token-classification": getData("token-classification", data_default25),
3979
- translation: getData("translation", data_default26),
3980
- "unconditional-image-generation": getData("unconditional-image-generation", data_default30),
3981
- "visual-question-answering": getData("visual-question-answering", data_default32),
3919
+ "token-classification": getData("token-classification", data_default24),
3920
+ translation: getData("translation", data_default25),
3921
+ "unconditional-image-generation": getData("unconditional-image-generation", data_default29),
3922
+ "visual-question-answering": getData("visual-question-answering", data_default31),
3982
3923
  "voice-activity-detection": void 0,
3983
- "zero-shot-classification": getData("zero-shot-classification", data_default33),
3984
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
3985
- "zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
3986
- "text-to-3d": getData("text-to-3d", data_default15),
3987
- "image-to-3d": getData("image-to-3d", data_default15)
3924
+ "zero-shot-classification": getData("zero-shot-classification", data_default32),
3925
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
3926
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
3927
+ "text-to-3d": getData("text-to-3d", data_default14),
3928
+ "image-to-3d": getData("image-to-3d", data_default14),
3929
+ "image-feature-extraction": getData("image-feature-extraction", data_default14)
3988
3930
  };
3989
3931
 
3990
3932
  // src/model-libraries-snippets.ts
@@ -4790,6 +4732,18 @@ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4790
4732
  return InferenceDisplayability2;
4791
4733
  })(InferenceDisplayability || {});
4792
4734
 
4735
+ // src/tokenizer-data.ts
4736
+ var SPECIAL_TOKENS_ATTRIBUTES = [
4737
+ "bos_token",
4738
+ "eos_token",
4739
+ "unk_token",
4740
+ "sep_token",
4741
+ "pad_token",
4742
+ "cls_token",
4743
+ "mask_token"
4744
+ // additional_special_tokens (TODO)
4745
+ ];
4746
+
4793
4747
  // src/snippets/index.ts
4794
4748
  var snippets_exports = {};
4795
4749
  __export(snippets_exports, {
@@ -4807,11 +4761,6 @@ __export(inputs_exports, {
4807
4761
  var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4808
4762
  var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4809
4763
  var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4810
- var inputsConversational = () => `{
4811
- "past_user_inputs": ["Which movie is the best ?"],
4812
- "generated_responses": ["It is Die Hard for sure."],
4813
- "text": "Can you explain why ?"
4814
- }`;
4815
4764
  var inputsTableQuestionAnswering = () => `{
4816
4765
  "query": "How many stars does the transformers repository have?",
4817
4766
  "table": {
@@ -4863,7 +4812,6 @@ var modelInputSnippets = {
4863
4812
  "audio-to-audio": inputsAudioToAudio,
4864
4813
  "audio-classification": inputsAudioClassification,
4865
4814
  "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4866
- conversational: inputsConversational,
4867
4815
  "document-question-answering": inputsVisualQuestionAnswering,
4868
4816
  "feature-extraction": inputsFeatureExtraction,
4869
4817
  "fill-mask": inputsFillMask,
@@ -4943,7 +4891,6 @@ var curlSnippets = {
4943
4891
  "zero-shot-classification": snippetZeroShotClassification,
4944
4892
  translation: snippetBasic,
4945
4893
  summarization: snippetBasic,
4946
- conversational: snippetBasic,
4947
4894
  "feature-extraction": snippetBasic,
4948
4895
  "text-generation": snippetBasic,
4949
4896
  "text2text-generation": snippetBasic,
@@ -5078,7 +5025,6 @@ var pythonSnippets = {
5078
5025
  "zero-shot-classification": snippetZeroShotClassification2,
5079
5026
  translation: snippetBasic2,
5080
5027
  summarization: snippetBasic2,
5081
- conversational: snippetBasic2,
5082
5028
  "feature-extraction": snippetBasic2,
5083
5029
  "text-generation": snippetBasic2,
5084
5030
  "text2text-generation": snippetBasic2,
@@ -5228,7 +5174,6 @@ var jsSnippets = {
5228
5174
  "zero-shot-classification": snippetZeroShotClassification3,
5229
5175
  translation: snippetBasic3,
5230
5176
  summarization: snippetBasic3,
5231
- conversational: snippetBasic3,
5232
5177
  "feature-extraction": snippetBasic3,
5233
5178
  "text-generation": snippetBasic3,
5234
5179
  "text2text-generation": snippetBasic3,
@@ -5263,6 +5208,7 @@ export {
5263
5208
  PIPELINE_DATA,
5264
5209
  PIPELINE_TYPES,
5265
5210
  PIPELINE_TYPES_SET,
5211
+ SPECIAL_TOKENS_ATTRIBUTES,
5266
5212
  SUBTASK_TYPES,
5267
5213
  TASKS_DATA,
5268
5214
  TASKS_MODEL_LIBRARIES,