@huggingface/tasks 0.3.0 → 0.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +141 -186
- package/dist/index.d.ts +40 -21
- package/dist/index.js +140 -186
- package/package.json +1 -1
- package/src/default-widget-inputs.ts +2 -2
- package/src/index.ts +3 -0
- package/src/library-to-tasks.ts +1 -1
- package/src/model-data.ts +2 -0
- package/src/pipelines.ts +29 -19
- package/src/snippets/curl.ts +0 -1
- package/src/snippets/inputs.ts +0 -8
- package/src/snippets/js.ts +0 -1
- package/src/snippets/python.ts +0 -1
- package/src/tasks/index.ts +6 -4
- package/src/tokenizer-data.ts +24 -0
- package/src/tasks/conversational/about.md +0 -50
- package/src/tasks/conversational/data.ts +0 -66
package/dist/index.js
CHANGED
|
@@ -24,7 +24,7 @@ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
|
24
24
|
keras: ["image-classification"],
|
|
25
25
|
nemo: ["automatic-speech-recognition"],
|
|
26
26
|
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
27
|
-
paddlenlp: ["
|
|
27
|
+
paddlenlp: ["fill-mask", "summarization", "zero-shot-classification"],
|
|
28
28
|
peft: ["text-generation"],
|
|
29
29
|
"pyannote-audio": ["automatic-speech-recognition"],
|
|
30
30
|
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
@@ -895,20 +895,9 @@ var PIPELINE_DATA = {
|
|
|
895
895
|
modality: "nlp",
|
|
896
896
|
color: "indigo"
|
|
897
897
|
},
|
|
898
|
-
conversational: {
|
|
899
|
-
name: "Conversational",
|
|
900
|
-
subtasks: [
|
|
901
|
-
{
|
|
902
|
-
type: "dialogue-generation",
|
|
903
|
-
name: "Dialogue Generation"
|
|
904
|
-
}
|
|
905
|
-
],
|
|
906
|
-
modality: "nlp",
|
|
907
|
-
color: "green"
|
|
908
|
-
},
|
|
909
898
|
"feature-extraction": {
|
|
910
899
|
name: "Feature Extraction",
|
|
911
|
-
modality: "
|
|
900
|
+
modality: "nlp",
|
|
912
901
|
color: "red"
|
|
913
902
|
},
|
|
914
903
|
"text-generation": {
|
|
@@ -918,6 +907,14 @@ var PIPELINE_DATA = {
|
|
|
918
907
|
type: "dialogue-modeling",
|
|
919
908
|
name: "Dialogue Modeling"
|
|
920
909
|
},
|
|
910
|
+
{
|
|
911
|
+
type: "dialogue-generation",
|
|
912
|
+
name: "Dialogue Generation"
|
|
913
|
+
},
|
|
914
|
+
{
|
|
915
|
+
type: "conversational",
|
|
916
|
+
name: "Conversational"
|
|
917
|
+
},
|
|
921
918
|
{
|
|
922
919
|
type: "language-modeling",
|
|
923
920
|
name: "Language Modeling"
|
|
@@ -1089,7 +1086,7 @@ var PIPELINE_DATA = {
|
|
|
1089
1086
|
},
|
|
1090
1087
|
"text-to-image": {
|
|
1091
1088
|
name: "Text-to-Image",
|
|
1092
|
-
modality: "
|
|
1089
|
+
modality: "cv",
|
|
1093
1090
|
color: "yellow"
|
|
1094
1091
|
},
|
|
1095
1092
|
"image-to-text": {
|
|
@@ -1100,7 +1097,7 @@ var PIPELINE_DATA = {
|
|
|
1100
1097
|
name: "Image Captioning"
|
|
1101
1098
|
}
|
|
1102
1099
|
],
|
|
1103
|
-
modality: "
|
|
1100
|
+
modality: "cv",
|
|
1104
1101
|
color: "red"
|
|
1105
1102
|
},
|
|
1106
1103
|
"image-to-image": {
|
|
@@ -1124,7 +1121,7 @@ var PIPELINE_DATA = {
|
|
|
1124
1121
|
},
|
|
1125
1122
|
"image-to-video": {
|
|
1126
1123
|
name: "Image-to-Video",
|
|
1127
|
-
modality: "
|
|
1124
|
+
modality: "cv",
|
|
1128
1125
|
color: "indigo"
|
|
1129
1126
|
},
|
|
1130
1127
|
"unconditional-image-generation": {
|
|
@@ -1259,9 +1256,15 @@ var PIPELINE_DATA = {
|
|
|
1259
1256
|
},
|
|
1260
1257
|
"text-to-video": {
|
|
1261
1258
|
name: "Text-to-Video",
|
|
1262
|
-
modality: "
|
|
1259
|
+
modality: "cv",
|
|
1263
1260
|
color: "green"
|
|
1264
1261
|
},
|
|
1262
|
+
"image-text-to-text": {
|
|
1263
|
+
name: "Image + Text to Text (VLLMs)",
|
|
1264
|
+
modality: "multimodal",
|
|
1265
|
+
color: "red",
|
|
1266
|
+
hideInDatasets: true
|
|
1267
|
+
},
|
|
1265
1268
|
"visual-question-answering": {
|
|
1266
1269
|
name: "Visual Question Answering",
|
|
1267
1270
|
subtasks: [
|
|
@@ -1292,7 +1295,7 @@ var PIPELINE_DATA = {
|
|
|
1292
1295
|
},
|
|
1293
1296
|
"graph-ml": {
|
|
1294
1297
|
name: "Graph Machine Learning",
|
|
1295
|
-
modality: "
|
|
1298
|
+
modality: "other",
|
|
1296
1299
|
color: "green"
|
|
1297
1300
|
},
|
|
1298
1301
|
"mask-generation": {
|
|
@@ -1307,14 +1310,19 @@ var PIPELINE_DATA = {
|
|
|
1307
1310
|
},
|
|
1308
1311
|
"text-to-3d": {
|
|
1309
1312
|
name: "Text-to-3D",
|
|
1310
|
-
modality: "
|
|
1313
|
+
modality: "cv",
|
|
1311
1314
|
color: "yellow"
|
|
1312
1315
|
},
|
|
1313
1316
|
"image-to-3d": {
|
|
1314
1317
|
name: "Image-to-3D",
|
|
1315
|
-
modality: "
|
|
1318
|
+
modality: "cv",
|
|
1316
1319
|
color: "green"
|
|
1317
1320
|
},
|
|
1321
|
+
"image-feature-extraction": {
|
|
1322
|
+
name: "Image Feature Extraction",
|
|
1323
|
+
modality: "cv",
|
|
1324
|
+
color: "indigo"
|
|
1325
|
+
},
|
|
1318
1326
|
other: {
|
|
1319
1327
|
name: "Other",
|
|
1320
1328
|
modality: "other",
|
|
@@ -1540,68 +1548,8 @@ var taskData3 = {
|
|
|
1540
1548
|
};
|
|
1541
1549
|
var data_default3 = taskData3;
|
|
1542
1550
|
|
|
1543
|
-
// src/tasks/conversational/data.ts
|
|
1544
|
-
var taskData4 = {
|
|
1545
|
-
datasets: [
|
|
1546
|
-
{
|
|
1547
|
-
description: "A dataset of 7k conversations explicitly designed to exhibit multiple conversation modes: displaying personality, having empathy, and demonstrating knowledge.",
|
|
1548
|
-
id: "blended_skill_talk"
|
|
1549
|
-
},
|
|
1550
|
-
{
|
|
1551
|
-
description: "ConvAI is a dataset of human-to-bot conversations labeled for quality. This data can be used to train a metric for evaluating dialogue systems",
|
|
1552
|
-
id: "conv_ai_2"
|
|
1553
|
-
},
|
|
1554
|
-
{
|
|
1555
|
-
description: "EmpatheticDialogues, is a dataset of 25k conversations grounded in emotional situations",
|
|
1556
|
-
id: "empathetic_dialogues"
|
|
1557
|
-
}
|
|
1558
|
-
],
|
|
1559
|
-
demo: {
|
|
1560
|
-
inputs: [
|
|
1561
|
-
{
|
|
1562
|
-
label: "Input",
|
|
1563
|
-
content: "Hey my name is Julien! How are you?",
|
|
1564
|
-
type: "text"
|
|
1565
|
-
}
|
|
1566
|
-
],
|
|
1567
|
-
outputs: [
|
|
1568
|
-
{
|
|
1569
|
-
label: "Answer",
|
|
1570
|
-
content: "Hi Julien! My name is Julia! I am well.",
|
|
1571
|
-
type: "text"
|
|
1572
|
-
}
|
|
1573
|
-
]
|
|
1574
|
-
},
|
|
1575
|
-
metrics: [
|
|
1576
|
-
{
|
|
1577
|
-
description: "BLEU score is calculated by counting the number of shared single or subsequent tokens between the generated sequence and the reference. Subsequent n tokens are called \u201Cn-grams\u201D. Unigram refers to a single token while bi-gram refers to token pairs and n-grams refer to n subsequent tokens. The score ranges from 0 to 1, where 1 means the translation perfectly matched and 0 did not match at all",
|
|
1578
|
-
id: "bleu"
|
|
1579
|
-
}
|
|
1580
|
-
],
|
|
1581
|
-
models: [
|
|
1582
|
-
{
|
|
1583
|
-
description: "A faster and smaller model than the famous BERT model.",
|
|
1584
|
-
id: "facebook/blenderbot-400M-distill"
|
|
1585
|
-
},
|
|
1586
|
-
{
|
|
1587
|
-
description: "DialoGPT is a large-scale pretrained dialogue response generation model for multiturn conversations.",
|
|
1588
|
-
id: "microsoft/DialoGPT-large"
|
|
1589
|
-
}
|
|
1590
|
-
],
|
|
1591
|
-
spaces: [
|
|
1592
|
-
{
|
|
1593
|
-
description: "A chatbot based on Blender model.",
|
|
1594
|
-
id: "EXFINITE/BlenderBot-UI"
|
|
1595
|
-
}
|
|
1596
|
-
],
|
|
1597
|
-
summary: "Conversational response modelling is the task of generating conversational text that is relevant, coherent and knowledgable given a prompt. These models have applications in chatbots, and as a part of voice assistants",
|
|
1598
|
-
widgetModels: ["facebook/blenderbot-400M-distill"],
|
|
1599
|
-
youtubeId: ""
|
|
1600
|
-
};
|
|
1601
|
-
var data_default4 = taskData4;
|
|
1602
|
-
|
|
1603
1551
|
// src/tasks/document-question-answering/data.ts
|
|
1604
|
-
var
|
|
1552
|
+
var taskData4 = {
|
|
1605
1553
|
datasets: [
|
|
1606
1554
|
{
|
|
1607
1555
|
// TODO write proper description
|
|
@@ -1671,10 +1619,10 @@ var taskData5 = {
|
|
|
1671
1619
|
widgetModels: ["impira/layoutlm-document-qa"],
|
|
1672
1620
|
youtubeId: ""
|
|
1673
1621
|
};
|
|
1674
|
-
var
|
|
1622
|
+
var data_default4 = taskData4;
|
|
1675
1623
|
|
|
1676
1624
|
// src/tasks/feature-extraction/data.ts
|
|
1677
|
-
var
|
|
1625
|
+
var taskData5 = {
|
|
1678
1626
|
datasets: [
|
|
1679
1627
|
{
|
|
1680
1628
|
description: "Wikipedia dataset containing cleaned articles of all languages. Can be used to train `feature-extraction` models.",
|
|
@@ -1717,10 +1665,10 @@ var taskData6 = {
|
|
|
1717
1665
|
summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
|
|
1718
1666
|
widgetModels: ["facebook/bart-base"]
|
|
1719
1667
|
};
|
|
1720
|
-
var
|
|
1668
|
+
var data_default5 = taskData5;
|
|
1721
1669
|
|
|
1722
1670
|
// src/tasks/fill-mask/data.ts
|
|
1723
|
-
var
|
|
1671
|
+
var taskData6 = {
|
|
1724
1672
|
datasets: [
|
|
1725
1673
|
{
|
|
1726
1674
|
description: "A common dataset that is used to train models for many languages.",
|
|
@@ -1792,10 +1740,10 @@ var taskData7 = {
|
|
|
1792
1740
|
widgetModels: ["distilroberta-base"],
|
|
1793
1741
|
youtubeId: "mqElG5QJWUg"
|
|
1794
1742
|
};
|
|
1795
|
-
var
|
|
1743
|
+
var data_default6 = taskData6;
|
|
1796
1744
|
|
|
1797
1745
|
// src/tasks/image-classification/data.ts
|
|
1798
|
-
var
|
|
1746
|
+
var taskData7 = {
|
|
1799
1747
|
datasets: [
|
|
1800
1748
|
{
|
|
1801
1749
|
// TODO write proper description
|
|
@@ -1878,10 +1826,10 @@ var taskData8 = {
|
|
|
1878
1826
|
widgetModels: ["google/vit-base-patch16-224"],
|
|
1879
1827
|
youtubeId: "tjAIM7BOYhw"
|
|
1880
1828
|
};
|
|
1881
|
-
var
|
|
1829
|
+
var data_default7 = taskData7;
|
|
1882
1830
|
|
|
1883
1831
|
// src/tasks/image-to-image/data.ts
|
|
1884
|
-
var
|
|
1832
|
+
var taskData8 = {
|
|
1885
1833
|
datasets: [
|
|
1886
1834
|
{
|
|
1887
1835
|
description: "Synthetic dataset, for image relighting",
|
|
@@ -1973,10 +1921,10 @@ var taskData9 = {
|
|
|
1973
1921
|
widgetModels: ["lllyasviel/sd-controlnet-canny"],
|
|
1974
1922
|
youtubeId: ""
|
|
1975
1923
|
};
|
|
1976
|
-
var
|
|
1924
|
+
var data_default8 = taskData8;
|
|
1977
1925
|
|
|
1978
1926
|
// src/tasks/image-to-text/data.ts
|
|
1979
|
-
var
|
|
1927
|
+
var taskData9 = {
|
|
1980
1928
|
datasets: [
|
|
1981
1929
|
{
|
|
1982
1930
|
// TODO write proper description
|
|
@@ -2053,10 +2001,10 @@ var taskData10 = {
|
|
|
2053
2001
|
widgetModels: ["Salesforce/blip-image-captioning-base"],
|
|
2054
2002
|
youtubeId: ""
|
|
2055
2003
|
};
|
|
2056
|
-
var
|
|
2004
|
+
var data_default9 = taskData9;
|
|
2057
2005
|
|
|
2058
2006
|
// src/tasks/image-segmentation/data.ts
|
|
2059
|
-
var
|
|
2007
|
+
var taskData10 = {
|
|
2060
2008
|
datasets: [
|
|
2061
2009
|
{
|
|
2062
2010
|
description: "Scene segmentation dataset.",
|
|
@@ -2148,10 +2096,10 @@ var taskData11 = {
|
|
|
2148
2096
|
widgetModels: ["facebook/detr-resnet-50-panoptic"],
|
|
2149
2097
|
youtubeId: "dKE8SIt9C-w"
|
|
2150
2098
|
};
|
|
2151
|
-
var
|
|
2099
|
+
var data_default10 = taskData10;
|
|
2152
2100
|
|
|
2153
2101
|
// src/tasks/mask-generation/data.ts
|
|
2154
|
-
var
|
|
2102
|
+
var taskData11 = {
|
|
2155
2103
|
datasets: [],
|
|
2156
2104
|
demo: {
|
|
2157
2105
|
inputs: [
|
|
@@ -2200,10 +2148,10 @@ var taskData12 = {
|
|
|
2200
2148
|
widgetModels: [],
|
|
2201
2149
|
youtubeId: ""
|
|
2202
2150
|
};
|
|
2203
|
-
var
|
|
2151
|
+
var data_default11 = taskData11;
|
|
2204
2152
|
|
|
2205
2153
|
// src/tasks/object-detection/data.ts
|
|
2206
|
-
var
|
|
2154
|
+
var taskData12 = {
|
|
2207
2155
|
datasets: [
|
|
2208
2156
|
{
|
|
2209
2157
|
// TODO write proper description
|
|
@@ -2275,10 +2223,10 @@ var taskData13 = {
|
|
|
2275
2223
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2276
2224
|
youtubeId: "WdAeKSOpxhw"
|
|
2277
2225
|
};
|
|
2278
|
-
var
|
|
2226
|
+
var data_default12 = taskData12;
|
|
2279
2227
|
|
|
2280
2228
|
// src/tasks/depth-estimation/data.ts
|
|
2281
|
-
var
|
|
2229
|
+
var taskData13 = {
|
|
2282
2230
|
datasets: [
|
|
2283
2231
|
{
|
|
2284
2232
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2332,10 +2280,10 @@ var taskData14 = {
|
|
|
2332
2280
|
widgetModels: [""],
|
|
2333
2281
|
youtubeId: ""
|
|
2334
2282
|
};
|
|
2335
|
-
var
|
|
2283
|
+
var data_default13 = taskData13;
|
|
2336
2284
|
|
|
2337
2285
|
// src/tasks/placeholder/data.ts
|
|
2338
|
-
var
|
|
2286
|
+
var taskData14 = {
|
|
2339
2287
|
datasets: [],
|
|
2340
2288
|
demo: {
|
|
2341
2289
|
inputs: [],
|
|
@@ -2352,10 +2300,10 @@ var taskData15 = {
|
|
|
2352
2300
|
/// (eg, text2text-generation is the canonical ID of translation)
|
|
2353
2301
|
canonicalId: void 0
|
|
2354
2302
|
};
|
|
2355
|
-
var
|
|
2303
|
+
var data_default14 = taskData14;
|
|
2356
2304
|
|
|
2357
2305
|
// src/tasks/reinforcement-learning/data.ts
|
|
2358
|
-
var
|
|
2306
|
+
var taskData15 = {
|
|
2359
2307
|
datasets: [
|
|
2360
2308
|
{
|
|
2361
2309
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -2421,10 +2369,10 @@ var taskData16 = {
|
|
|
2421
2369
|
widgetModels: [],
|
|
2422
2370
|
youtubeId: "q0BiUn5LiBc"
|
|
2423
2371
|
};
|
|
2424
|
-
var
|
|
2372
|
+
var data_default15 = taskData15;
|
|
2425
2373
|
|
|
2426
2374
|
// src/tasks/question-answering/data.ts
|
|
2427
|
-
var
|
|
2375
|
+
var taskData16 = {
|
|
2428
2376
|
datasets: [
|
|
2429
2377
|
{
|
|
2430
2378
|
// TODO write proper description
|
|
@@ -2488,10 +2436,10 @@ var taskData17 = {
|
|
|
2488
2436
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
2489
2437
|
youtubeId: "ajPx5LwJD-I"
|
|
2490
2438
|
};
|
|
2491
|
-
var
|
|
2439
|
+
var data_default16 = taskData16;
|
|
2492
2440
|
|
|
2493
2441
|
// src/tasks/sentence-similarity/data.ts
|
|
2494
|
-
var
|
|
2442
|
+
var taskData17 = {
|
|
2495
2443
|
datasets: [
|
|
2496
2444
|
{
|
|
2497
2445
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -2583,10 +2531,10 @@ var taskData18 = {
|
|
|
2583
2531
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
2584
2532
|
youtubeId: "VCZq5AkbNEU"
|
|
2585
2533
|
};
|
|
2586
|
-
var
|
|
2534
|
+
var data_default17 = taskData17;
|
|
2587
2535
|
|
|
2588
2536
|
// src/tasks/summarization/data.ts
|
|
2589
|
-
var
|
|
2537
|
+
var taskData18 = {
|
|
2590
2538
|
canonicalId: "text2text-generation",
|
|
2591
2539
|
datasets: [
|
|
2592
2540
|
{
|
|
@@ -2652,10 +2600,10 @@ var taskData19 = {
|
|
|
2652
2600
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
2653
2601
|
youtubeId: "yHnr5Dk2zCI"
|
|
2654
2602
|
};
|
|
2655
|
-
var
|
|
2603
|
+
var data_default18 = taskData18;
|
|
2656
2604
|
|
|
2657
2605
|
// src/tasks/table-question-answering/data.ts
|
|
2658
|
-
var
|
|
2606
|
+
var taskData19 = {
|
|
2659
2607
|
datasets: [
|
|
2660
2608
|
{
|
|
2661
2609
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -2706,10 +2654,10 @@ var taskData20 = {
|
|
|
2706
2654
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
2707
2655
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
2708
2656
|
};
|
|
2709
|
-
var
|
|
2657
|
+
var data_default19 = taskData19;
|
|
2710
2658
|
|
|
2711
2659
|
// src/tasks/tabular-classification/data.ts
|
|
2712
|
-
var
|
|
2660
|
+
var taskData20 = {
|
|
2713
2661
|
datasets: [
|
|
2714
2662
|
{
|
|
2715
2663
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2773,10 +2721,10 @@ var taskData21 = {
|
|
|
2773
2721
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
2774
2722
|
youtubeId: ""
|
|
2775
2723
|
};
|
|
2776
|
-
var
|
|
2724
|
+
var data_default20 = taskData20;
|
|
2777
2725
|
|
|
2778
2726
|
// src/tasks/tabular-regression/data.ts
|
|
2779
|
-
var
|
|
2727
|
+
var taskData21 = {
|
|
2780
2728
|
datasets: [
|
|
2781
2729
|
{
|
|
2782
2730
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -2828,10 +2776,10 @@ var taskData22 = {
|
|
|
2828
2776
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
2829
2777
|
youtubeId: ""
|
|
2830
2778
|
};
|
|
2831
|
-
var
|
|
2779
|
+
var data_default21 = taskData21;
|
|
2832
2780
|
|
|
2833
2781
|
// src/tasks/text-to-image/data.ts
|
|
2834
|
-
var
|
|
2782
|
+
var taskData22 = {
|
|
2835
2783
|
datasets: [
|
|
2836
2784
|
{
|
|
2837
2785
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -2923,10 +2871,10 @@ var taskData23 = {
|
|
|
2923
2871
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
2924
2872
|
youtubeId: ""
|
|
2925
2873
|
};
|
|
2926
|
-
var
|
|
2874
|
+
var data_default22 = taskData22;
|
|
2927
2875
|
|
|
2928
2876
|
// src/tasks/text-to-speech/data.ts
|
|
2929
|
-
var
|
|
2877
|
+
var taskData23 = {
|
|
2930
2878
|
canonicalId: "text-to-audio",
|
|
2931
2879
|
datasets: [
|
|
2932
2880
|
{
|
|
@@ -2991,10 +2939,10 @@ var taskData24 = {
|
|
|
2991
2939
|
widgetModels: ["suno/bark"],
|
|
2992
2940
|
youtubeId: "NW62DpzJ274"
|
|
2993
2941
|
};
|
|
2994
|
-
var
|
|
2942
|
+
var data_default23 = taskData23;
|
|
2995
2943
|
|
|
2996
2944
|
// src/tasks/token-classification/data.ts
|
|
2997
|
-
var
|
|
2945
|
+
var taskData24 = {
|
|
2998
2946
|
datasets: [
|
|
2999
2947
|
{
|
|
3000
2948
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3070,10 +3018,10 @@ var taskData25 = {
|
|
|
3070
3018
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3071
3019
|
youtubeId: "wVHdVlPScxA"
|
|
3072
3020
|
};
|
|
3073
|
-
var
|
|
3021
|
+
var data_default24 = taskData24;
|
|
3074
3022
|
|
|
3075
3023
|
// src/tasks/translation/data.ts
|
|
3076
|
-
var
|
|
3024
|
+
var taskData25 = {
|
|
3077
3025
|
canonicalId: "text2text-generation",
|
|
3078
3026
|
datasets: [
|
|
3079
3027
|
{
|
|
@@ -3135,10 +3083,10 @@ var taskData26 = {
|
|
|
3135
3083
|
widgetModels: ["t5-small"],
|
|
3136
3084
|
youtubeId: "1JvfrvZgi6c"
|
|
3137
3085
|
};
|
|
3138
|
-
var
|
|
3086
|
+
var data_default25 = taskData25;
|
|
3139
3087
|
|
|
3140
3088
|
// src/tasks/text-classification/data.ts
|
|
3141
|
-
var
|
|
3089
|
+
var taskData26 = {
|
|
3142
3090
|
datasets: [
|
|
3143
3091
|
{
|
|
3144
3092
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3223,10 +3171,10 @@ var taskData27 = {
|
|
|
3223
3171
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3224
3172
|
youtubeId: "leNG9fN9FQU"
|
|
3225
3173
|
};
|
|
3226
|
-
var
|
|
3174
|
+
var data_default26 = taskData26;
|
|
3227
3175
|
|
|
3228
3176
|
// src/tasks/text-generation/data.ts
|
|
3229
|
-
var
|
|
3177
|
+
var taskData27 = {
|
|
3230
3178
|
datasets: [
|
|
3231
3179
|
{
|
|
3232
3180
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3327,10 +3275,10 @@ var taskData28 = {
|
|
|
3327
3275
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
3328
3276
|
youtubeId: "Vpjb1lu0MDk"
|
|
3329
3277
|
};
|
|
3330
|
-
var
|
|
3278
|
+
var data_default27 = taskData27;
|
|
3331
3279
|
|
|
3332
3280
|
// src/tasks/text-to-video/data.ts
|
|
3333
|
-
var
|
|
3281
|
+
var taskData28 = {
|
|
3334
3282
|
datasets: [
|
|
3335
3283
|
{
|
|
3336
3284
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -3422,10 +3370,10 @@ var taskData29 = {
|
|
|
3422
3370
|
widgetModels: [],
|
|
3423
3371
|
youtubeId: void 0
|
|
3424
3372
|
};
|
|
3425
|
-
var
|
|
3373
|
+
var data_default28 = taskData28;
|
|
3426
3374
|
|
|
3427
3375
|
// src/tasks/unconditional-image-generation/data.ts
|
|
3428
|
-
var
|
|
3376
|
+
var taskData29 = {
|
|
3429
3377
|
datasets: [
|
|
3430
3378
|
{
|
|
3431
3379
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -3487,10 +3435,10 @@ var taskData30 = {
|
|
|
3487
3435
|
// TODO: Add related video
|
|
3488
3436
|
youtubeId: ""
|
|
3489
3437
|
};
|
|
3490
|
-
var
|
|
3438
|
+
var data_default29 = taskData29;
|
|
3491
3439
|
|
|
3492
3440
|
// src/tasks/video-classification/data.ts
|
|
3493
|
-
var
|
|
3441
|
+
var taskData30 = {
|
|
3494
3442
|
datasets: [
|
|
3495
3443
|
{
|
|
3496
3444
|
// TODO write proper description
|
|
@@ -3569,10 +3517,10 @@ var taskData31 = {
|
|
|
3569
3517
|
widgetModels: [],
|
|
3570
3518
|
youtubeId: ""
|
|
3571
3519
|
};
|
|
3572
|
-
var
|
|
3520
|
+
var data_default30 = taskData30;
|
|
3573
3521
|
|
|
3574
3522
|
// src/tasks/visual-question-answering/data.ts
|
|
3575
|
-
var
|
|
3523
|
+
var taskData31 = {
|
|
3576
3524
|
datasets: [
|
|
3577
3525
|
{
|
|
3578
3526
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -3662,10 +3610,10 @@ var taskData32 = {
|
|
|
3662
3610
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
3663
3611
|
youtubeId: ""
|
|
3664
3612
|
};
|
|
3665
|
-
var
|
|
3613
|
+
var data_default31 = taskData31;
|
|
3666
3614
|
|
|
3667
3615
|
// src/tasks/zero-shot-classification/data.ts
|
|
3668
|
-
var
|
|
3616
|
+
var taskData32 = {
|
|
3669
3617
|
datasets: [
|
|
3670
3618
|
{
|
|
3671
3619
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3724,10 +3672,10 @@ var taskData33 = {
|
|
|
3724
3672
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
3725
3673
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
3726
3674
|
};
|
|
3727
|
-
var
|
|
3675
|
+
var data_default32 = taskData32;
|
|
3728
3676
|
|
|
3729
3677
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
3730
|
-
var
|
|
3678
|
+
var taskData33 = {
|
|
3731
3679
|
datasets: [
|
|
3732
3680
|
{
|
|
3733
3681
|
// TODO write proper description
|
|
@@ -3801,10 +3749,10 @@ var taskData34 = {
|
|
|
3801
3749
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
3802
3750
|
youtubeId: ""
|
|
3803
3751
|
};
|
|
3804
|
-
var
|
|
3752
|
+
var data_default33 = taskData33;
|
|
3805
3753
|
|
|
3806
3754
|
// src/tasks/zero-shot-object-detection/data.ts
|
|
3807
|
-
var
|
|
3755
|
+
var taskData34 = {
|
|
3808
3756
|
datasets: [],
|
|
3809
3757
|
demo: {
|
|
3810
3758
|
inputs: [
|
|
@@ -3859,21 +3807,22 @@ var taskData35 = {
|
|
|
3859
3807
|
widgetModels: [],
|
|
3860
3808
|
youtubeId: ""
|
|
3861
3809
|
};
|
|
3862
|
-
var
|
|
3810
|
+
var data_default34 = taskData34;
|
|
3863
3811
|
|
|
3864
3812
|
// src/tasks/index.ts
|
|
3865
3813
|
var TASKS_MODEL_LIBRARIES = {
|
|
3866
3814
|
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
|
|
3867
3815
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
3868
3816
|
"automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
|
|
3869
|
-
conversational: ["transformers"],
|
|
3870
3817
|
"depth-estimation": ["transformers", "transformers.js"],
|
|
3871
3818
|
"document-question-answering": ["transformers", "transformers.js"],
|
|
3872
3819
|
"feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
|
|
3873
3820
|
"fill-mask": ["transformers", "transformers.js"],
|
|
3874
3821
|
"graph-ml": ["transformers"],
|
|
3875
3822
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
3823
|
+
"image-feature-extraction": ["timm", "transformers"],
|
|
3876
3824
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
3825
|
+
"image-text-to-text": ["transformers"],
|
|
3877
3826
|
"image-to-image": ["diffusers", "transformers", "transformers.js"],
|
|
3878
3827
|
"image-to-text": ["transformers", "transformers.js"],
|
|
3879
3828
|
"image-to-video": ["diffusers"],
|
|
@@ -3920,7 +3869,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3920
3869
|
"text-to-3d": [],
|
|
3921
3870
|
"image-to-3d": []
|
|
3922
3871
|
};
|
|
3923
|
-
function getData(type, partialTaskData =
|
|
3872
|
+
function getData(type, partialTaskData = data_default14) {
|
|
3924
3873
|
return {
|
|
3925
3874
|
...partialTaskData,
|
|
3926
3875
|
id: type,
|
|
@@ -3932,51 +3881,52 @@ var TASKS_DATA = {
|
|
|
3932
3881
|
"audio-classification": getData("audio-classification", data_default),
|
|
3933
3882
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
3934
3883
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
3935
|
-
|
|
3936
|
-
"
|
|
3937
|
-
"
|
|
3938
|
-
"
|
|
3939
|
-
"fill-mask": getData("fill-mask", data_default7),
|
|
3884
|
+
"depth-estimation": getData("depth-estimation", data_default13),
|
|
3885
|
+
"document-question-answering": getData("document-question-answering", data_default4),
|
|
3886
|
+
"feature-extraction": getData("feature-extraction", data_default5),
|
|
3887
|
+
"fill-mask": getData("fill-mask", data_default6),
|
|
3940
3888
|
"graph-ml": void 0,
|
|
3941
|
-
"image-classification": getData("image-classification",
|
|
3942
|
-
"image-segmentation": getData("image-segmentation",
|
|
3943
|
-
"image-to-
|
|
3944
|
-
"image-to-
|
|
3889
|
+
"image-classification": getData("image-classification", data_default7),
|
|
3890
|
+
"image-segmentation": getData("image-segmentation", data_default10),
|
|
3891
|
+
"image-text-to-text": void 0,
|
|
3892
|
+
"image-to-image": getData("image-to-image", data_default8),
|
|
3893
|
+
"image-to-text": getData("image-to-text", data_default9),
|
|
3945
3894
|
"image-to-video": void 0,
|
|
3946
|
-
"mask-generation": getData("mask-generation",
|
|
3895
|
+
"mask-generation": getData("mask-generation", data_default11),
|
|
3947
3896
|
"multiple-choice": void 0,
|
|
3948
|
-
"object-detection": getData("object-detection",
|
|
3949
|
-
"video-classification": getData("video-classification",
|
|
3897
|
+
"object-detection": getData("object-detection", data_default12),
|
|
3898
|
+
"video-classification": getData("video-classification", data_default30),
|
|
3950
3899
|
other: void 0,
|
|
3951
|
-
"question-answering": getData("question-answering",
|
|
3952
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
3900
|
+
"question-answering": getData("question-answering", data_default16),
|
|
3901
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default15),
|
|
3953
3902
|
robotics: void 0,
|
|
3954
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
3955
|
-
summarization: getData("summarization",
|
|
3956
|
-
"table-question-answering": getData("table-question-answering",
|
|
3903
|
+
"sentence-similarity": getData("sentence-similarity", data_default17),
|
|
3904
|
+
summarization: getData("summarization", data_default18),
|
|
3905
|
+
"table-question-answering": getData("table-question-answering", data_default19),
|
|
3957
3906
|
"table-to-text": void 0,
|
|
3958
|
-
"tabular-classification": getData("tabular-classification",
|
|
3959
|
-
"tabular-regression": getData("tabular-regression",
|
|
3907
|
+
"tabular-classification": getData("tabular-classification", data_default20),
|
|
3908
|
+
"tabular-regression": getData("tabular-regression", data_default21),
|
|
3960
3909
|
"tabular-to-text": void 0,
|
|
3961
|
-
"text-classification": getData("text-classification",
|
|
3962
|
-
"text-generation": getData("text-generation",
|
|
3910
|
+
"text-classification": getData("text-classification", data_default26),
|
|
3911
|
+
"text-generation": getData("text-generation", data_default27),
|
|
3963
3912
|
"text-retrieval": void 0,
|
|
3964
|
-
"text-to-image": getData("text-to-image",
|
|
3965
|
-
"text-to-speech": getData("text-to-speech",
|
|
3913
|
+
"text-to-image": getData("text-to-image", data_default22),
|
|
3914
|
+
"text-to-speech": getData("text-to-speech", data_default23),
|
|
3966
3915
|
"text-to-audio": void 0,
|
|
3967
|
-
"text-to-video": getData("text-to-video",
|
|
3916
|
+
"text-to-video": getData("text-to-video", data_default28),
|
|
3968
3917
|
"text2text-generation": void 0,
|
|
3969
3918
|
"time-series-forecasting": void 0,
|
|
3970
|
-
"token-classification": getData("token-classification",
|
|
3971
|
-
translation: getData("translation",
|
|
3972
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
3973
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
3919
|
+
"token-classification": getData("token-classification", data_default24),
|
|
3920
|
+
translation: getData("translation", data_default25),
|
|
3921
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default29),
|
|
3922
|
+
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3974
3923
|
"voice-activity-detection": void 0,
|
|
3975
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
3976
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
3977
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
3978
|
-
"text-to-3d": getData("text-to-3d",
|
|
3979
|
-
"image-to-3d": getData("image-to-3d",
|
|
3924
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3925
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
3926
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
|
|
3927
|
+
"text-to-3d": getData("text-to-3d", data_default14),
|
|
3928
|
+
"image-to-3d": getData("image-to-3d", data_default14),
|
|
3929
|
+
"image-feature-extraction": getData("image-feature-extraction", data_default14)
|
|
3980
3930
|
};
|
|
3981
3931
|
|
|
3982
3932
|
// src/model-libraries-snippets.ts
|
|
@@ -4782,6 +4732,18 @@ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
|
4782
4732
|
return InferenceDisplayability2;
|
|
4783
4733
|
})(InferenceDisplayability || {});
|
|
4784
4734
|
|
|
4735
|
+
// src/tokenizer-data.ts
|
|
4736
|
+
var SPECIAL_TOKENS_ATTRIBUTES = [
|
|
4737
|
+
"bos_token",
|
|
4738
|
+
"eos_token",
|
|
4739
|
+
"unk_token",
|
|
4740
|
+
"sep_token",
|
|
4741
|
+
"pad_token",
|
|
4742
|
+
"cls_token",
|
|
4743
|
+
"mask_token"
|
|
4744
|
+
// additional_special_tokens (TODO)
|
|
4745
|
+
];
|
|
4746
|
+
|
|
4785
4747
|
// src/snippets/index.ts
|
|
4786
4748
|
var snippets_exports = {};
|
|
4787
4749
|
__export(snippets_exports, {
|
|
@@ -4799,11 +4761,6 @@ __export(inputs_exports, {
|
|
|
4799
4761
|
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4800
4762
|
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4801
4763
|
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4802
|
-
var inputsConversational = () => `{
|
|
4803
|
-
"past_user_inputs": ["Which movie is the best ?"],
|
|
4804
|
-
"generated_responses": ["It is Die Hard for sure."],
|
|
4805
|
-
"text": "Can you explain why ?"
|
|
4806
|
-
}`;
|
|
4807
4764
|
var inputsTableQuestionAnswering = () => `{
|
|
4808
4765
|
"query": "How many stars does the transformers repository have?",
|
|
4809
4766
|
"table": {
|
|
@@ -4855,7 +4812,6 @@ var modelInputSnippets = {
|
|
|
4855
4812
|
"audio-to-audio": inputsAudioToAudio,
|
|
4856
4813
|
"audio-classification": inputsAudioClassification,
|
|
4857
4814
|
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4858
|
-
conversational: inputsConversational,
|
|
4859
4815
|
"document-question-answering": inputsVisualQuestionAnswering,
|
|
4860
4816
|
"feature-extraction": inputsFeatureExtraction,
|
|
4861
4817
|
"fill-mask": inputsFillMask,
|
|
@@ -4935,7 +4891,6 @@ var curlSnippets = {
|
|
|
4935
4891
|
"zero-shot-classification": snippetZeroShotClassification,
|
|
4936
4892
|
translation: snippetBasic,
|
|
4937
4893
|
summarization: snippetBasic,
|
|
4938
|
-
conversational: snippetBasic,
|
|
4939
4894
|
"feature-extraction": snippetBasic,
|
|
4940
4895
|
"text-generation": snippetBasic,
|
|
4941
4896
|
"text2text-generation": snippetBasic,
|
|
@@ -5070,7 +5025,6 @@ var pythonSnippets = {
|
|
|
5070
5025
|
"zero-shot-classification": snippetZeroShotClassification2,
|
|
5071
5026
|
translation: snippetBasic2,
|
|
5072
5027
|
summarization: snippetBasic2,
|
|
5073
|
-
conversational: snippetBasic2,
|
|
5074
5028
|
"feature-extraction": snippetBasic2,
|
|
5075
5029
|
"text-generation": snippetBasic2,
|
|
5076
5030
|
"text2text-generation": snippetBasic2,
|
|
@@ -5220,7 +5174,6 @@ var jsSnippets = {
|
|
|
5220
5174
|
"zero-shot-classification": snippetZeroShotClassification3,
|
|
5221
5175
|
translation: snippetBasic3,
|
|
5222
5176
|
summarization: snippetBasic3,
|
|
5223
|
-
conversational: snippetBasic3,
|
|
5224
5177
|
"feature-extraction": snippetBasic3,
|
|
5225
5178
|
"text-generation": snippetBasic3,
|
|
5226
5179
|
"text2text-generation": snippetBasic3,
|
|
@@ -5255,6 +5208,7 @@ export {
|
|
|
5255
5208
|
PIPELINE_DATA,
|
|
5256
5209
|
PIPELINE_TYPES,
|
|
5257
5210
|
PIPELINE_TYPES_SET,
|
|
5211
|
+
SPECIAL_TOKENS_ATTRIBUTES,
|
|
5258
5212
|
SUBTASK_TYPES,
|
|
5259
5213
|
TASKS_DATA,
|
|
5260
5214
|
TASKS_MODEL_LIBRARIES,
|