@huggingface/tasks 0.3.0 → 0.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -24,7 +24,7 @@ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
24
24
  keras: ["image-classification"],
25
25
  nemo: ["automatic-speech-recognition"],
26
26
  open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
27
- paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
27
+ paddlenlp: ["fill-mask", "summarization", "zero-shot-classification"],
28
28
  peft: ["text-generation"],
29
29
  "pyannote-audio": ["automatic-speech-recognition"],
30
30
  "sentence-transformers": ["feature-extraction", "sentence-similarity"],
@@ -895,20 +895,9 @@ var PIPELINE_DATA = {
895
895
  modality: "nlp",
896
896
  color: "indigo"
897
897
  },
898
- conversational: {
899
- name: "Conversational",
900
- subtasks: [
901
- {
902
- type: "dialogue-generation",
903
- name: "Dialogue Generation"
904
- }
905
- ],
906
- modality: "nlp",
907
- color: "green"
908
- },
909
898
  "feature-extraction": {
910
899
  name: "Feature Extraction",
911
- modality: "multimodal",
900
+ modality: "nlp",
912
901
  color: "red"
913
902
  },
914
903
  "text-generation": {
@@ -918,6 +907,14 @@ var PIPELINE_DATA = {
918
907
  type: "dialogue-modeling",
919
908
  name: "Dialogue Modeling"
920
909
  },
910
+ {
911
+ type: "dialogue-generation",
912
+ name: "Dialogue Generation"
913
+ },
914
+ {
915
+ type: "conversational",
916
+ name: "Conversational"
917
+ },
921
918
  {
922
919
  type: "language-modeling",
923
920
  name: "Language Modeling"
@@ -1089,7 +1086,7 @@ var PIPELINE_DATA = {
1089
1086
  },
1090
1087
  "text-to-image": {
1091
1088
  name: "Text-to-Image",
1092
- modality: "multimodal",
1089
+ modality: "cv",
1093
1090
  color: "yellow"
1094
1091
  },
1095
1092
  "image-to-text": {
@@ -1100,7 +1097,7 @@ var PIPELINE_DATA = {
1100
1097
  name: "Image Captioning"
1101
1098
  }
1102
1099
  ],
1103
- modality: "multimodal",
1100
+ modality: "cv",
1104
1101
  color: "red"
1105
1102
  },
1106
1103
  "image-to-image": {
@@ -1124,7 +1121,7 @@ var PIPELINE_DATA = {
1124
1121
  },
1125
1122
  "image-to-video": {
1126
1123
  name: "Image-to-Video",
1127
- modality: "multimodal",
1124
+ modality: "cv",
1128
1125
  color: "indigo"
1129
1126
  },
1130
1127
  "unconditional-image-generation": {
@@ -1259,9 +1256,15 @@ var PIPELINE_DATA = {
1259
1256
  },
1260
1257
  "text-to-video": {
1261
1258
  name: "Text-to-Video",
1262
- modality: "multimodal",
1259
+ modality: "cv",
1263
1260
  color: "green"
1264
1261
  },
1262
+ "image-text-to-text": {
1263
+ name: "Image + Text to Text (VLLMs)",
1264
+ modality: "multimodal",
1265
+ color: "red",
1266
+ hideInDatasets: true
1267
+ },
1265
1268
  "visual-question-answering": {
1266
1269
  name: "Visual Question Answering",
1267
1270
  subtasks: [
@@ -1292,7 +1295,7 @@ var PIPELINE_DATA = {
1292
1295
  },
1293
1296
  "graph-ml": {
1294
1297
  name: "Graph Machine Learning",
1295
- modality: "multimodal",
1298
+ modality: "other",
1296
1299
  color: "green"
1297
1300
  },
1298
1301
  "mask-generation": {
@@ -1307,14 +1310,19 @@ var PIPELINE_DATA = {
1307
1310
  },
1308
1311
  "text-to-3d": {
1309
1312
  name: "Text-to-3D",
1310
- modality: "multimodal",
1313
+ modality: "cv",
1311
1314
  color: "yellow"
1312
1315
  },
1313
1316
  "image-to-3d": {
1314
1317
  name: "Image-to-3D",
1315
- modality: "multimodal",
1318
+ modality: "cv",
1316
1319
  color: "green"
1317
1320
  },
1321
+ "image-feature-extraction": {
1322
+ name: "Image Feature Extraction",
1323
+ modality: "cv",
1324
+ color: "indigo"
1325
+ },
1318
1326
  other: {
1319
1327
  name: "Other",
1320
1328
  modality: "other",
@@ -1540,68 +1548,8 @@ var taskData3 = {
1540
1548
  };
1541
1549
  var data_default3 = taskData3;
1542
1550
 
1543
- // src/tasks/conversational/data.ts
1544
- var taskData4 = {
1545
- datasets: [
1546
- {
1547
- description: "A dataset of 7k conversations explicitly designed to exhibit multiple conversation modes: displaying personality, having empathy, and demonstrating knowledge.",
1548
- id: "blended_skill_talk"
1549
- },
1550
- {
1551
- description: "ConvAI is a dataset of human-to-bot conversations labeled for quality. This data can be used to train a metric for evaluating dialogue systems",
1552
- id: "conv_ai_2"
1553
- },
1554
- {
1555
- description: "EmpatheticDialogues, is a dataset of 25k conversations grounded in emotional situations",
1556
- id: "empathetic_dialogues"
1557
- }
1558
- ],
1559
- demo: {
1560
- inputs: [
1561
- {
1562
- label: "Input",
1563
- content: "Hey my name is Julien! How are you?",
1564
- type: "text"
1565
- }
1566
- ],
1567
- outputs: [
1568
- {
1569
- label: "Answer",
1570
- content: "Hi Julien! My name is Julia! I am well.",
1571
- type: "text"
1572
- }
1573
- ]
1574
- },
1575
- metrics: [
1576
- {
1577
- description: "BLEU score is calculated by counting the number of shared single or subsequent tokens between the generated sequence and the reference. Subsequent n tokens are called \u201Cn-grams\u201D. Unigram refers to a single token while bi-gram refers to token pairs and n-grams refer to n subsequent tokens. The score ranges from 0 to 1, where 1 means the translation perfectly matched and 0 did not match at all",
1578
- id: "bleu"
1579
- }
1580
- ],
1581
- models: [
1582
- {
1583
- description: "A faster and smaller model than the famous BERT model.",
1584
- id: "facebook/blenderbot-400M-distill"
1585
- },
1586
- {
1587
- description: "DialoGPT is a large-scale pretrained dialogue response generation model for multiturn conversations.",
1588
- id: "microsoft/DialoGPT-large"
1589
- }
1590
- ],
1591
- spaces: [
1592
- {
1593
- description: "A chatbot based on Blender model.",
1594
- id: "EXFINITE/BlenderBot-UI"
1595
- }
1596
- ],
1597
- summary: "Conversational response modelling is the task of generating conversational text that is relevant, coherent and knowledgable given a prompt. These models have applications in chatbots, and as a part of voice assistants",
1598
- widgetModels: ["facebook/blenderbot-400M-distill"],
1599
- youtubeId: ""
1600
- };
1601
- var data_default4 = taskData4;
1602
-
1603
1551
  // src/tasks/document-question-answering/data.ts
1604
- var taskData5 = {
1552
+ var taskData4 = {
1605
1553
  datasets: [
1606
1554
  {
1607
1555
  // TODO write proper description
@@ -1671,10 +1619,10 @@ var taskData5 = {
1671
1619
  widgetModels: ["impira/layoutlm-document-qa"],
1672
1620
  youtubeId: ""
1673
1621
  };
1674
- var data_default5 = taskData5;
1622
+ var data_default4 = taskData4;
1675
1623
 
1676
1624
  // src/tasks/feature-extraction/data.ts
1677
- var taskData6 = {
1625
+ var taskData5 = {
1678
1626
  datasets: [
1679
1627
  {
1680
1628
  description: "Wikipedia dataset containing cleaned articles of all languages. Can be used to train `feature-extraction` models.",
@@ -1717,10 +1665,10 @@ var taskData6 = {
1717
1665
  summary: "Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original dataset.",
1718
1666
  widgetModels: ["facebook/bart-base"]
1719
1667
  };
1720
- var data_default6 = taskData6;
1668
+ var data_default5 = taskData5;
1721
1669
 
1722
1670
  // src/tasks/fill-mask/data.ts
1723
- var taskData7 = {
1671
+ var taskData6 = {
1724
1672
  datasets: [
1725
1673
  {
1726
1674
  description: "A common dataset that is used to train models for many languages.",
@@ -1792,10 +1740,10 @@ var taskData7 = {
1792
1740
  widgetModels: ["distilroberta-base"],
1793
1741
  youtubeId: "mqElG5QJWUg"
1794
1742
  };
1795
- var data_default7 = taskData7;
1743
+ var data_default6 = taskData6;
1796
1744
 
1797
1745
  // src/tasks/image-classification/data.ts
1798
- var taskData8 = {
1746
+ var taskData7 = {
1799
1747
  datasets: [
1800
1748
  {
1801
1749
  // TODO write proper description
@@ -1878,10 +1826,10 @@ var taskData8 = {
1878
1826
  widgetModels: ["google/vit-base-patch16-224"],
1879
1827
  youtubeId: "tjAIM7BOYhw"
1880
1828
  };
1881
- var data_default8 = taskData8;
1829
+ var data_default7 = taskData7;
1882
1830
 
1883
1831
  // src/tasks/image-to-image/data.ts
1884
- var taskData9 = {
1832
+ var taskData8 = {
1885
1833
  datasets: [
1886
1834
  {
1887
1835
  description: "Synthetic dataset, for image relighting",
@@ -1973,10 +1921,10 @@ var taskData9 = {
1973
1921
  widgetModels: ["lllyasviel/sd-controlnet-canny"],
1974
1922
  youtubeId: ""
1975
1923
  };
1976
- var data_default9 = taskData9;
1924
+ var data_default8 = taskData8;
1977
1925
 
1978
1926
  // src/tasks/image-to-text/data.ts
1979
- var taskData10 = {
1927
+ var taskData9 = {
1980
1928
  datasets: [
1981
1929
  {
1982
1930
  // TODO write proper description
@@ -2053,10 +2001,10 @@ var taskData10 = {
2053
2001
  widgetModels: ["Salesforce/blip-image-captioning-base"],
2054
2002
  youtubeId: ""
2055
2003
  };
2056
- var data_default10 = taskData10;
2004
+ var data_default9 = taskData9;
2057
2005
 
2058
2006
  // src/tasks/image-segmentation/data.ts
2059
- var taskData11 = {
2007
+ var taskData10 = {
2060
2008
  datasets: [
2061
2009
  {
2062
2010
  description: "Scene segmentation dataset.",
@@ -2148,10 +2096,10 @@ var taskData11 = {
2148
2096
  widgetModels: ["facebook/detr-resnet-50-panoptic"],
2149
2097
  youtubeId: "dKE8SIt9C-w"
2150
2098
  };
2151
- var data_default11 = taskData11;
2099
+ var data_default10 = taskData10;
2152
2100
 
2153
2101
  // src/tasks/mask-generation/data.ts
2154
- var taskData12 = {
2102
+ var taskData11 = {
2155
2103
  datasets: [],
2156
2104
  demo: {
2157
2105
  inputs: [
@@ -2200,10 +2148,10 @@ var taskData12 = {
2200
2148
  widgetModels: [],
2201
2149
  youtubeId: ""
2202
2150
  };
2203
- var data_default12 = taskData12;
2151
+ var data_default11 = taskData11;
2204
2152
 
2205
2153
  // src/tasks/object-detection/data.ts
2206
- var taskData13 = {
2154
+ var taskData12 = {
2207
2155
  datasets: [
2208
2156
  {
2209
2157
  // TODO write proper description
@@ -2275,10 +2223,10 @@ var taskData13 = {
2275
2223
  widgetModels: ["facebook/detr-resnet-50"],
2276
2224
  youtubeId: "WdAeKSOpxhw"
2277
2225
  };
2278
- var data_default13 = taskData13;
2226
+ var data_default12 = taskData12;
2279
2227
 
2280
2228
  // src/tasks/depth-estimation/data.ts
2281
- var taskData14 = {
2229
+ var taskData13 = {
2282
2230
  datasets: [
2283
2231
  {
2284
2232
  description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
@@ -2332,10 +2280,10 @@ var taskData14 = {
2332
2280
  widgetModels: [""],
2333
2281
  youtubeId: ""
2334
2282
  };
2335
- var data_default14 = taskData14;
2283
+ var data_default13 = taskData13;
2336
2284
 
2337
2285
  // src/tasks/placeholder/data.ts
2338
- var taskData15 = {
2286
+ var taskData14 = {
2339
2287
  datasets: [],
2340
2288
  demo: {
2341
2289
  inputs: [],
@@ -2352,10 +2300,10 @@ var taskData15 = {
2352
2300
  /// (eg, text2text-generation is the canonical ID of translation)
2353
2301
  canonicalId: void 0
2354
2302
  };
2355
- var data_default15 = taskData15;
2303
+ var data_default14 = taskData14;
2356
2304
 
2357
2305
  // src/tasks/reinforcement-learning/data.ts
2358
- var taskData16 = {
2306
+ var taskData15 = {
2359
2307
  datasets: [
2360
2308
  {
2361
2309
  description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
@@ -2421,10 +2369,10 @@ var taskData16 = {
2421
2369
  widgetModels: [],
2422
2370
  youtubeId: "q0BiUn5LiBc"
2423
2371
  };
2424
- var data_default16 = taskData16;
2372
+ var data_default15 = taskData15;
2425
2373
 
2426
2374
  // src/tasks/question-answering/data.ts
2427
- var taskData17 = {
2375
+ var taskData16 = {
2428
2376
  datasets: [
2429
2377
  {
2430
2378
  // TODO write proper description
@@ -2488,10 +2436,10 @@ var taskData17 = {
2488
2436
  widgetModels: ["deepset/roberta-base-squad2"],
2489
2437
  youtubeId: "ajPx5LwJD-I"
2490
2438
  };
2491
- var data_default17 = taskData17;
2439
+ var data_default16 = taskData16;
2492
2440
 
2493
2441
  // src/tasks/sentence-similarity/data.ts
2494
- var taskData18 = {
2442
+ var taskData17 = {
2495
2443
  datasets: [
2496
2444
  {
2497
2445
  description: "Bing queries with relevant passages from various web sources.",
@@ -2583,10 +2531,10 @@ var taskData18 = {
2583
2531
  widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
2584
2532
  youtubeId: "VCZq5AkbNEU"
2585
2533
  };
2586
- var data_default18 = taskData18;
2534
+ var data_default17 = taskData17;
2587
2535
 
2588
2536
  // src/tasks/summarization/data.ts
2589
- var taskData19 = {
2537
+ var taskData18 = {
2590
2538
  canonicalId: "text2text-generation",
2591
2539
  datasets: [
2592
2540
  {
@@ -2652,10 +2600,10 @@ var taskData19 = {
2652
2600
  widgetModels: ["sshleifer/distilbart-cnn-12-6"],
2653
2601
  youtubeId: "yHnr5Dk2zCI"
2654
2602
  };
2655
- var data_default19 = taskData19;
2603
+ var data_default18 = taskData18;
2656
2604
 
2657
2605
  // src/tasks/table-question-answering/data.ts
2658
- var taskData20 = {
2606
+ var taskData19 = {
2659
2607
  datasets: [
2660
2608
  {
2661
2609
  description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
@@ -2706,10 +2654,10 @@ var taskData20 = {
2706
2654
  summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
2707
2655
  widgetModels: ["google/tapas-base-finetuned-wtq"]
2708
2656
  };
2709
- var data_default20 = taskData20;
2657
+ var data_default19 = taskData19;
2710
2658
 
2711
2659
  // src/tasks/tabular-classification/data.ts
2712
- var taskData21 = {
2660
+ var taskData20 = {
2713
2661
  datasets: [
2714
2662
  {
2715
2663
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2773,10 +2721,10 @@ var taskData21 = {
2773
2721
  widgetModels: ["scikit-learn/tabular-playground"],
2774
2722
  youtubeId: ""
2775
2723
  };
2776
- var data_default21 = taskData21;
2724
+ var data_default20 = taskData20;
2777
2725
 
2778
2726
  // src/tasks/tabular-regression/data.ts
2779
- var taskData22 = {
2727
+ var taskData21 = {
2780
2728
  datasets: [
2781
2729
  {
2782
2730
  description: "A comprehensive curation of datasets covering all benchmarks.",
@@ -2828,10 +2776,10 @@ var taskData22 = {
2828
2776
  widgetModels: ["scikit-learn/Fish-Weight"],
2829
2777
  youtubeId: ""
2830
2778
  };
2831
- var data_default22 = taskData22;
2779
+ var data_default21 = taskData21;
2832
2780
 
2833
2781
  // src/tasks/text-to-image/data.ts
2834
- var taskData23 = {
2782
+ var taskData22 = {
2835
2783
  datasets: [
2836
2784
  {
2837
2785
  description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
@@ -2923,10 +2871,10 @@ var taskData23 = {
2923
2871
  widgetModels: ["CompVis/stable-diffusion-v1-4"],
2924
2872
  youtubeId: ""
2925
2873
  };
2926
- var data_default23 = taskData23;
2874
+ var data_default22 = taskData22;
2927
2875
 
2928
2876
  // src/tasks/text-to-speech/data.ts
2929
- var taskData24 = {
2877
+ var taskData23 = {
2930
2878
  canonicalId: "text-to-audio",
2931
2879
  datasets: [
2932
2880
  {
@@ -2991,10 +2939,10 @@ var taskData24 = {
2991
2939
  widgetModels: ["suno/bark"],
2992
2940
  youtubeId: "NW62DpzJ274"
2993
2941
  };
2994
- var data_default24 = taskData24;
2942
+ var data_default23 = taskData23;
2995
2943
 
2996
2944
  // src/tasks/token-classification/data.ts
2997
- var taskData25 = {
2945
+ var taskData24 = {
2998
2946
  datasets: [
2999
2947
  {
3000
2948
  description: "A widely used dataset useful to benchmark named entity recognition models.",
@@ -3070,10 +3018,10 @@ var taskData25 = {
3070
3018
  widgetModels: ["dslim/bert-base-NER"],
3071
3019
  youtubeId: "wVHdVlPScxA"
3072
3020
  };
3073
- var data_default25 = taskData25;
3021
+ var data_default24 = taskData24;
3074
3022
 
3075
3023
  // src/tasks/translation/data.ts
3076
- var taskData26 = {
3024
+ var taskData25 = {
3077
3025
  canonicalId: "text2text-generation",
3078
3026
  datasets: [
3079
3027
  {
@@ -3135,10 +3083,10 @@ var taskData26 = {
3135
3083
  widgetModels: ["t5-small"],
3136
3084
  youtubeId: "1JvfrvZgi6c"
3137
3085
  };
3138
- var data_default26 = taskData26;
3086
+ var data_default25 = taskData25;
3139
3087
 
3140
3088
  // src/tasks/text-classification/data.ts
3141
- var taskData27 = {
3089
+ var taskData26 = {
3142
3090
  datasets: [
3143
3091
  {
3144
3092
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3223,10 +3171,10 @@ var taskData27 = {
3223
3171
  widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
3224
3172
  youtubeId: "leNG9fN9FQU"
3225
3173
  };
3226
- var data_default27 = taskData27;
3174
+ var data_default26 = taskData26;
3227
3175
 
3228
3176
  // src/tasks/text-generation/data.ts
3229
- var taskData28 = {
3177
+ var taskData27 = {
3230
3178
  datasets: [
3231
3179
  {
3232
3180
  description: "A large multilingual dataset of text crawled from the web.",
@@ -3327,10 +3275,10 @@ var taskData28 = {
3327
3275
  widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
3328
3276
  youtubeId: "Vpjb1lu0MDk"
3329
3277
  };
3330
- var data_default28 = taskData28;
3278
+ var data_default27 = taskData27;
3331
3279
 
3332
3280
  // src/tasks/text-to-video/data.ts
3333
- var taskData29 = {
3281
+ var taskData28 = {
3334
3282
  datasets: [
3335
3283
  {
3336
3284
  description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
@@ -3422,10 +3370,10 @@ var taskData29 = {
3422
3370
  widgetModels: [],
3423
3371
  youtubeId: void 0
3424
3372
  };
3425
- var data_default29 = taskData29;
3373
+ var data_default28 = taskData28;
3426
3374
 
3427
3375
  // src/tasks/unconditional-image-generation/data.ts
3428
- var taskData30 = {
3376
+ var taskData29 = {
3429
3377
  datasets: [
3430
3378
  {
3431
3379
  description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
@@ -3487,10 +3435,10 @@ var taskData30 = {
3487
3435
  // TODO: Add related video
3488
3436
  youtubeId: ""
3489
3437
  };
3490
- var data_default30 = taskData30;
3438
+ var data_default29 = taskData29;
3491
3439
 
3492
3440
  // src/tasks/video-classification/data.ts
3493
- var taskData31 = {
3441
+ var taskData30 = {
3494
3442
  datasets: [
3495
3443
  {
3496
3444
  // TODO write proper description
@@ -3569,10 +3517,10 @@ var taskData31 = {
3569
3517
  widgetModels: [],
3570
3518
  youtubeId: ""
3571
3519
  };
3572
- var data_default31 = taskData31;
3520
+ var data_default30 = taskData30;
3573
3521
 
3574
3522
  // src/tasks/visual-question-answering/data.ts
3575
- var taskData32 = {
3523
+ var taskData31 = {
3576
3524
  datasets: [
3577
3525
  {
3578
3526
  description: "A widely used dataset containing questions (with answers) about images.",
@@ -3662,10 +3610,10 @@ var taskData32 = {
3662
3610
  widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
3663
3611
  youtubeId: ""
3664
3612
  };
3665
- var data_default32 = taskData32;
3613
+ var data_default31 = taskData31;
3666
3614
 
3667
3615
  // src/tasks/zero-shot-classification/data.ts
3668
- var taskData33 = {
3616
+ var taskData32 = {
3669
3617
  datasets: [
3670
3618
  {
3671
3619
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
@@ -3724,10 +3672,10 @@ var taskData33 = {
3724
3672
  summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
3725
3673
  widgetModels: ["facebook/bart-large-mnli"]
3726
3674
  };
3727
- var data_default33 = taskData33;
3675
+ var data_default32 = taskData32;
3728
3676
 
3729
3677
  // src/tasks/zero-shot-image-classification/data.ts
3730
- var taskData34 = {
3678
+ var taskData33 = {
3731
3679
  datasets: [
3732
3680
  {
3733
3681
  // TODO write proper description
@@ -3801,10 +3749,10 @@ var taskData34 = {
3801
3749
  widgetModels: ["openai/clip-vit-large-patch14-336"],
3802
3750
  youtubeId: ""
3803
3751
  };
3804
- var data_default34 = taskData34;
3752
+ var data_default33 = taskData33;
3805
3753
 
3806
3754
  // src/tasks/zero-shot-object-detection/data.ts
3807
- var taskData35 = {
3755
+ var taskData34 = {
3808
3756
  datasets: [],
3809
3757
  demo: {
3810
3758
  inputs: [
@@ -3859,21 +3807,22 @@ var taskData35 = {
3859
3807
  widgetModels: [],
3860
3808
  youtubeId: ""
3861
3809
  };
3862
- var data_default35 = taskData35;
3810
+ var data_default34 = taskData34;
3863
3811
 
3864
3812
  // src/tasks/index.ts
3865
3813
  var TASKS_MODEL_LIBRARIES = {
3866
3814
  "audio-classification": ["speechbrain", "transformers", "transformers.js"],
3867
3815
  "audio-to-audio": ["asteroid", "speechbrain"],
3868
3816
  "automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
3869
- conversational: ["transformers"],
3870
3817
  "depth-estimation": ["transformers", "transformers.js"],
3871
3818
  "document-question-answering": ["transformers", "transformers.js"],
3872
3819
  "feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
3873
3820
  "fill-mask": ["transformers", "transformers.js"],
3874
3821
  "graph-ml": ["transformers"],
3875
3822
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
3823
+ "image-feature-extraction": ["timm", "transformers"],
3876
3824
  "image-segmentation": ["transformers", "transformers.js"],
3825
+ "image-text-to-text": ["transformers"],
3877
3826
  "image-to-image": ["diffusers", "transformers", "transformers.js"],
3878
3827
  "image-to-text": ["transformers", "transformers.js"],
3879
3828
  "image-to-video": ["diffusers"],
@@ -3920,7 +3869,7 @@ var TASKS_MODEL_LIBRARIES = {
3920
3869
  "text-to-3d": [],
3921
3870
  "image-to-3d": []
3922
3871
  };
3923
- function getData(type, partialTaskData = data_default15) {
3872
+ function getData(type, partialTaskData = data_default14) {
3924
3873
  return {
3925
3874
  ...partialTaskData,
3926
3875
  id: type,
@@ -3932,51 +3881,52 @@ var TASKS_DATA = {
3932
3881
  "audio-classification": getData("audio-classification", data_default),
3933
3882
  "audio-to-audio": getData("audio-to-audio", data_default2),
3934
3883
  "automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
3935
- conversational: getData("conversational", data_default4),
3936
- "depth-estimation": getData("depth-estimation", data_default14),
3937
- "document-question-answering": getData("document-question-answering", data_default5),
3938
- "feature-extraction": getData("feature-extraction", data_default6),
3939
- "fill-mask": getData("fill-mask", data_default7),
3884
+ "depth-estimation": getData("depth-estimation", data_default13),
3885
+ "document-question-answering": getData("document-question-answering", data_default4),
3886
+ "feature-extraction": getData("feature-extraction", data_default5),
3887
+ "fill-mask": getData("fill-mask", data_default6),
3940
3888
  "graph-ml": void 0,
3941
- "image-classification": getData("image-classification", data_default8),
3942
- "image-segmentation": getData("image-segmentation", data_default11),
3943
- "image-to-image": getData("image-to-image", data_default9),
3944
- "image-to-text": getData("image-to-text", data_default10),
3889
+ "image-classification": getData("image-classification", data_default7),
3890
+ "image-segmentation": getData("image-segmentation", data_default10),
3891
+ "image-text-to-text": void 0,
3892
+ "image-to-image": getData("image-to-image", data_default8),
3893
+ "image-to-text": getData("image-to-text", data_default9),
3945
3894
  "image-to-video": void 0,
3946
- "mask-generation": getData("mask-generation", data_default12),
3895
+ "mask-generation": getData("mask-generation", data_default11),
3947
3896
  "multiple-choice": void 0,
3948
- "object-detection": getData("object-detection", data_default13),
3949
- "video-classification": getData("video-classification", data_default31),
3897
+ "object-detection": getData("object-detection", data_default12),
3898
+ "video-classification": getData("video-classification", data_default30),
3950
3899
  other: void 0,
3951
- "question-answering": getData("question-answering", data_default17),
3952
- "reinforcement-learning": getData("reinforcement-learning", data_default16),
3900
+ "question-answering": getData("question-answering", data_default16),
3901
+ "reinforcement-learning": getData("reinforcement-learning", data_default15),
3953
3902
  robotics: void 0,
3954
- "sentence-similarity": getData("sentence-similarity", data_default18),
3955
- summarization: getData("summarization", data_default19),
3956
- "table-question-answering": getData("table-question-answering", data_default20),
3903
+ "sentence-similarity": getData("sentence-similarity", data_default17),
3904
+ summarization: getData("summarization", data_default18),
3905
+ "table-question-answering": getData("table-question-answering", data_default19),
3957
3906
  "table-to-text": void 0,
3958
- "tabular-classification": getData("tabular-classification", data_default21),
3959
- "tabular-regression": getData("tabular-regression", data_default22),
3907
+ "tabular-classification": getData("tabular-classification", data_default20),
3908
+ "tabular-regression": getData("tabular-regression", data_default21),
3960
3909
  "tabular-to-text": void 0,
3961
- "text-classification": getData("text-classification", data_default27),
3962
- "text-generation": getData("text-generation", data_default28),
3910
+ "text-classification": getData("text-classification", data_default26),
3911
+ "text-generation": getData("text-generation", data_default27),
3963
3912
  "text-retrieval": void 0,
3964
- "text-to-image": getData("text-to-image", data_default23),
3965
- "text-to-speech": getData("text-to-speech", data_default24),
3913
+ "text-to-image": getData("text-to-image", data_default22),
3914
+ "text-to-speech": getData("text-to-speech", data_default23),
3966
3915
  "text-to-audio": void 0,
3967
- "text-to-video": getData("text-to-video", data_default29),
3916
+ "text-to-video": getData("text-to-video", data_default28),
3968
3917
  "text2text-generation": void 0,
3969
3918
  "time-series-forecasting": void 0,
3970
- "token-classification": getData("token-classification", data_default25),
3971
- translation: getData("translation", data_default26),
3972
- "unconditional-image-generation": getData("unconditional-image-generation", data_default30),
3973
- "visual-question-answering": getData("visual-question-answering", data_default32),
3919
+ "token-classification": getData("token-classification", data_default24),
3920
+ translation: getData("translation", data_default25),
3921
+ "unconditional-image-generation": getData("unconditional-image-generation", data_default29),
3922
+ "visual-question-answering": getData("visual-question-answering", data_default31),
3974
3923
  "voice-activity-detection": void 0,
3975
- "zero-shot-classification": getData("zero-shot-classification", data_default33),
3976
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
3977
- "zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
3978
- "text-to-3d": getData("text-to-3d", data_default15),
3979
- "image-to-3d": getData("image-to-3d", data_default15)
3924
+ "zero-shot-classification": getData("zero-shot-classification", data_default32),
3925
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
3926
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default34),
3927
+ "text-to-3d": getData("text-to-3d", data_default14),
3928
+ "image-to-3d": getData("image-to-3d", data_default14),
3929
+ "image-feature-extraction": getData("image-feature-extraction", data_default14)
3980
3930
  };
3981
3931
 
3982
3932
  // src/model-libraries-snippets.ts
@@ -4782,6 +4732,18 @@ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4782
4732
  return InferenceDisplayability2;
4783
4733
  })(InferenceDisplayability || {});
4784
4734
 
4735
+ // src/tokenizer-data.ts
4736
+ var SPECIAL_TOKENS_ATTRIBUTES = [
4737
+ "bos_token",
4738
+ "eos_token",
4739
+ "unk_token",
4740
+ "sep_token",
4741
+ "pad_token",
4742
+ "cls_token",
4743
+ "mask_token"
4744
+ // additional_special_tokens (TODO)
4745
+ ];
4746
+
4785
4747
  // src/snippets/index.ts
4786
4748
  var snippets_exports = {};
4787
4749
  __export(snippets_exports, {
@@ -4799,11 +4761,6 @@ __export(inputs_exports, {
4799
4761
  var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4800
4762
  var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4801
4763
  var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4802
- var inputsConversational = () => `{
4803
- "past_user_inputs": ["Which movie is the best ?"],
4804
- "generated_responses": ["It is Die Hard for sure."],
4805
- "text": "Can you explain why ?"
4806
- }`;
4807
4764
  var inputsTableQuestionAnswering = () => `{
4808
4765
  "query": "How many stars does the transformers repository have?",
4809
4766
  "table": {
@@ -4855,7 +4812,6 @@ var modelInputSnippets = {
4855
4812
  "audio-to-audio": inputsAudioToAudio,
4856
4813
  "audio-classification": inputsAudioClassification,
4857
4814
  "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4858
- conversational: inputsConversational,
4859
4815
  "document-question-answering": inputsVisualQuestionAnswering,
4860
4816
  "feature-extraction": inputsFeatureExtraction,
4861
4817
  "fill-mask": inputsFillMask,
@@ -4935,7 +4891,6 @@ var curlSnippets = {
4935
4891
  "zero-shot-classification": snippetZeroShotClassification,
4936
4892
  translation: snippetBasic,
4937
4893
  summarization: snippetBasic,
4938
- conversational: snippetBasic,
4939
4894
  "feature-extraction": snippetBasic,
4940
4895
  "text-generation": snippetBasic,
4941
4896
  "text2text-generation": snippetBasic,
@@ -5070,7 +5025,6 @@ var pythonSnippets = {
5070
5025
  "zero-shot-classification": snippetZeroShotClassification2,
5071
5026
  translation: snippetBasic2,
5072
5027
  summarization: snippetBasic2,
5073
- conversational: snippetBasic2,
5074
5028
  "feature-extraction": snippetBasic2,
5075
5029
  "text-generation": snippetBasic2,
5076
5030
  "text2text-generation": snippetBasic2,
@@ -5220,7 +5174,6 @@ var jsSnippets = {
5220
5174
  "zero-shot-classification": snippetZeroShotClassification3,
5221
5175
  translation: snippetBasic3,
5222
5176
  summarization: snippetBasic3,
5223
- conversational: snippetBasic3,
5224
5177
  "feature-extraction": snippetBasic3,
5225
5178
  "text-generation": snippetBasic3,
5226
5179
  "text2text-generation": snippetBasic3,
@@ -5255,6 +5208,7 @@ export {
5255
5208
  PIPELINE_DATA,
5256
5209
  PIPELINE_TYPES,
5257
5210
  PIPELINE_TYPES_SET,
5211
+ SPECIAL_TOKENS_ATTRIBUTES,
5258
5212
  SUBTASK_TYPES,
5259
5213
  TASKS_DATA,
5260
5214
  TASKS_MODEL_LIBRARIES,