@huggingface/tasks 0.2.1 → 0.2.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/{index.mjs → index.cjs} +280 -133
- package/dist/index.d.ts +4 -3
- package/dist/index.js +245 -168
- package/package.json +13 -8
- package/src/library-to-tasks.ts +1 -1
- package/src/library-ui-elements.ts +11 -11
- package/src/model-data.ts +1 -1
- package/src/model-libraries.ts +1 -1
- package/src/pipelines.ts +1 -1
- package/src/tasks/audio-classification/about.md +1 -1
- package/src/tasks/audio-classification/inference.ts +51 -0
- package/src/tasks/audio-classification/spec/input.json +34 -0
- package/src/tasks/audio-classification/spec/output.json +21 -0
- package/src/tasks/audio-to-audio/about.md +1 -1
- package/src/tasks/automatic-speech-recognition/about.md +4 -2
- package/src/tasks/automatic-speech-recognition/inference.ts +154 -0
- package/src/tasks/automatic-speech-recognition/spec/input.json +34 -0
- package/src/tasks/automatic-speech-recognition/spec/output.json +36 -0
- package/src/tasks/common-definitions.json +109 -0
- package/src/tasks/depth-estimation/data.ts +8 -4
- package/src/tasks/depth-estimation/inference.ts +35 -0
- package/src/tasks/depth-estimation/spec/input.json +30 -0
- package/src/tasks/depth-estimation/spec/output.json +10 -0
- package/src/tasks/document-question-answering/inference.ts +102 -0
- package/src/tasks/document-question-answering/spec/input.json +85 -0
- package/src/tasks/document-question-answering/spec/output.json +36 -0
- package/src/tasks/feature-extraction/inference.ts +22 -0
- package/src/tasks/feature-extraction/spec/input.json +26 -0
- package/src/tasks/feature-extraction/spec/output.json +7 -0
- package/src/tasks/fill-mask/inference.ts +61 -0
- package/src/tasks/fill-mask/spec/input.json +38 -0
- package/src/tasks/fill-mask/spec/output.json +29 -0
- package/src/tasks/image-classification/inference.ts +51 -0
- package/src/tasks/image-classification/spec/input.json +34 -0
- package/src/tasks/image-classification/spec/output.json +10 -0
- package/src/tasks/image-segmentation/inference.ts +65 -0
- package/src/tasks/image-segmentation/spec/input.json +54 -0
- package/src/tasks/image-segmentation/spec/output.json +25 -0
- package/src/tasks/image-to-image/inference.ts +67 -0
- package/src/tasks/image-to-image/spec/input.json +52 -0
- package/src/tasks/image-to-image/spec/output.json +12 -0
- package/src/tasks/image-to-text/inference.ts +138 -0
- package/src/tasks/image-to-text/spec/input.json +34 -0
- package/src/tasks/image-to-text/spec/output.json +17 -0
- package/src/tasks/index.ts +5 -2
- package/src/tasks/mask-generation/about.md +65 -0
- package/src/tasks/mask-generation/data.ts +42 -5
- package/src/tasks/object-detection/inference.ts +62 -0
- package/src/tasks/object-detection/spec/input.json +30 -0
- package/src/tasks/object-detection/spec/output.json +46 -0
- package/src/tasks/placeholder/data.ts +3 -0
- package/src/tasks/placeholder/spec/input.json +35 -0
- package/src/tasks/placeholder/spec/output.json +17 -0
- package/src/tasks/question-answering/inference.ts +99 -0
- package/src/tasks/question-answering/spec/input.json +67 -0
- package/src/tasks/question-answering/spec/output.json +29 -0
- package/src/tasks/sentence-similarity/about.md +2 -2
- package/src/tasks/sentence-similarity/inference.ts +32 -0
- package/src/tasks/sentence-similarity/spec/input.json +40 -0
- package/src/tasks/sentence-similarity/spec/output.json +12 -0
- package/src/tasks/summarization/data.ts +1 -0
- package/src/tasks/summarization/inference.ts +58 -0
- package/src/tasks/summarization/spec/input.json +7 -0
- package/src/tasks/summarization/spec/output.json +7 -0
- package/src/tasks/table-question-answering/inference.ts +61 -0
- package/src/tasks/table-question-answering/spec/input.json +39 -0
- package/src/tasks/table-question-answering/spec/output.json +40 -0
- package/src/tasks/tabular-classification/about.md +1 -1
- package/src/tasks/tabular-regression/about.md +1 -1
- package/src/tasks/text-classification/about.md +1 -0
- package/src/tasks/text-classification/inference.ts +51 -0
- package/src/tasks/text-classification/spec/input.json +35 -0
- package/src/tasks/text-classification/spec/output.json +10 -0
- package/src/tasks/text-generation/about.md +24 -13
- package/src/tasks/text-generation/data.ts +22 -38
- package/src/tasks/text-generation/inference.ts +85 -0
- package/src/tasks/text-generation/spec/input.json +74 -0
- package/src/tasks/text-generation/spec/output.json +17 -0
- package/src/tasks/text-to-audio/inference.ts +138 -0
- package/src/tasks/text-to-audio/spec/input.json +31 -0
- package/src/tasks/text-to-audio/spec/output.json +20 -0
- package/src/tasks/text-to-image/about.md +11 -2
- package/src/tasks/text-to-image/data.ts +6 -2
- package/src/tasks/text-to-image/inference.ts +73 -0
- package/src/tasks/text-to-image/spec/input.json +57 -0
- package/src/tasks/text-to-image/spec/output.json +15 -0
- package/src/tasks/text-to-speech/about.md +4 -2
- package/src/tasks/text-to-speech/data.ts +1 -0
- package/src/tasks/text-to-speech/inference.ts +146 -0
- package/src/tasks/text-to-speech/spec/input.json +7 -0
- package/src/tasks/text-to-speech/spec/output.json +7 -0
- package/src/tasks/text2text-generation/inference.ts +53 -0
- package/src/tasks/text2text-generation/spec/input.json +55 -0
- package/src/tasks/text2text-generation/spec/output.json +17 -0
- package/src/tasks/token-classification/inference.ts +82 -0
- package/src/tasks/token-classification/spec/input.json +65 -0
- package/src/tasks/token-classification/spec/output.json +33 -0
- package/src/tasks/translation/data.ts +1 -0
- package/src/tasks/translation/inference.ts +58 -0
- package/src/tasks/translation/spec/input.json +7 -0
- package/src/tasks/translation/spec/output.json +7 -0
- package/src/tasks/video-classification/inference.ts +59 -0
- package/src/tasks/video-classification/spec/input.json +42 -0
- package/src/tasks/video-classification/spec/output.json +10 -0
- package/src/tasks/visual-question-answering/inference.ts +63 -0
- package/src/tasks/visual-question-answering/spec/input.json +41 -0
- package/src/tasks/visual-question-answering/spec/output.json +21 -0
- package/src/tasks/zero-shot-classification/inference.ts +67 -0
- package/src/tasks/zero-shot-classification/spec/input.json +50 -0
- package/src/tasks/zero-shot-classification/spec/output.json +10 -0
- package/src/tasks/zero-shot-image-classification/data.ts +8 -5
- package/src/tasks/zero-shot-image-classification/inference.ts +61 -0
- package/src/tasks/zero-shot-image-classification/spec/input.json +45 -0
- package/src/tasks/zero-shot-image-classification/spec/output.json +10 -0
- package/src/tasks/zero-shot-object-detection/about.md +6 -0
- package/src/tasks/zero-shot-object-detection/data.ts +6 -1
- package/src/tasks/zero-shot-object-detection/inference.ts +66 -0
- package/src/tasks/zero-shot-object-detection/spec/input.json +40 -0
- package/src/tasks/zero-shot-object-detection/spec/output.json +47 -0
- package/tsconfig.json +3 -3
package/dist/index.js
CHANGED
|
@@ -1,42 +1,8 @@
|
|
|
1
|
-
"use strict";
|
|
2
1
|
var __defProp = Object.defineProperty;
|
|
3
|
-
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
|
|
4
|
-
var __getOwnPropNames = Object.getOwnPropertyNames;
|
|
5
|
-
var __hasOwnProp = Object.prototype.hasOwnProperty;
|
|
6
2
|
var __export = (target, all) => {
|
|
7
3
|
for (var name in all)
|
|
8
4
|
__defProp(target, name, { get: all[name], enumerable: true });
|
|
9
5
|
};
|
|
10
|
-
var __copyProps = (to, from, except, desc) => {
|
|
11
|
-
if (from && typeof from === "object" || typeof from === "function") {
|
|
12
|
-
for (let key of __getOwnPropNames(from))
|
|
13
|
-
if (!__hasOwnProp.call(to, key) && key !== except)
|
|
14
|
-
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
|
|
15
|
-
}
|
|
16
|
-
return to;
|
|
17
|
-
};
|
|
18
|
-
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
|
|
19
|
-
|
|
20
|
-
// src/index.ts
|
|
21
|
-
var src_exports = {};
|
|
22
|
-
__export(src_exports, {
|
|
23
|
-
ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
24
|
-
InferenceDisplayability: () => InferenceDisplayability,
|
|
25
|
-
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
26
|
-
MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
|
|
27
|
-
MODALITIES: () => MODALITIES,
|
|
28
|
-
MODALITY_LABELS: () => MODALITY_LABELS,
|
|
29
|
-
MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
|
|
30
|
-
ModelLibrary: () => ModelLibrary,
|
|
31
|
-
PIPELINE_DATA: () => PIPELINE_DATA,
|
|
32
|
-
PIPELINE_TYPES: () => PIPELINE_TYPES,
|
|
33
|
-
PIPELINE_TYPES_SET: () => PIPELINE_TYPES_SET,
|
|
34
|
-
SUBTASK_TYPES: () => SUBTASK_TYPES,
|
|
35
|
-
TASKS_DATA: () => TASKS_DATA,
|
|
36
|
-
TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
|
|
37
|
-
snippets: () => snippets_exports
|
|
38
|
-
});
|
|
39
|
-
module.exports = __toCommonJS(src_exports);
|
|
40
6
|
|
|
41
7
|
// src/library-to-tasks.ts
|
|
42
8
|
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
@@ -83,11 +49,11 @@ function nameWithoutNamespace(modelId) {
|
|
|
83
49
|
const splitted = modelId.split("/");
|
|
84
50
|
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
85
51
|
}
|
|
86
|
-
var
|
|
87
|
-
`from
|
|
52
|
+
var adapters = (model) => [
|
|
53
|
+
`from adapters import AutoAdapterModel
|
|
88
54
|
|
|
89
|
-
model =
|
|
90
|
-
model.load_adapter("${model.id}",
|
|
55
|
+
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
56
|
+
model.load_adapter("${model.id}", set_active=True)`
|
|
91
57
|
];
|
|
92
58
|
var allennlpUnknown = (model) => [
|
|
93
59
|
`import allennlp_models
|
|
@@ -527,7 +493,7 @@ transcriptions = asr_model.transcribe(["file.wav"])`
|
|
|
527
493
|
}
|
|
528
494
|
};
|
|
529
495
|
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
530
|
-
var sentis = (
|
|
496
|
+
var sentis = () => [
|
|
531
497
|
`string modelName = "[Your model name here].sentis";
|
|
532
498
|
Model model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName);
|
|
533
499
|
IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
|
|
@@ -554,11 +520,11 @@ model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
|
554
520
|
];
|
|
555
521
|
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
556
522
|
"adapter-transformers": {
|
|
557
|
-
btnLabel: "
|
|
558
|
-
repoName: "
|
|
559
|
-
repoUrl: "https://github.com/Adapter-Hub/
|
|
560
|
-
docsUrl: "https://huggingface.co/docs/hub/
|
|
561
|
-
snippets:
|
|
523
|
+
btnLabel: "Adapters",
|
|
524
|
+
repoName: "adapters",
|
|
525
|
+
repoUrl: "https://github.com/Adapter-Hub/adapters",
|
|
526
|
+
docsUrl: "https://huggingface.co/docs/hub/adapters",
|
|
527
|
+
snippets: adapters
|
|
562
528
|
},
|
|
563
529
|
allennlp: {
|
|
564
530
|
btnLabel: "AllenNLP",
|
|
@@ -2880,8 +2846,60 @@ var taskData11 = {
|
|
|
2880
2846
|
};
|
|
2881
2847
|
var data_default11 = taskData11;
|
|
2882
2848
|
|
|
2883
|
-
// src/tasks/
|
|
2849
|
+
// src/tasks/mask-generation/data.ts
|
|
2884
2850
|
var taskData12 = {
|
|
2851
|
+
datasets: [],
|
|
2852
|
+
demo: {
|
|
2853
|
+
inputs: [
|
|
2854
|
+
{
|
|
2855
|
+
filename: "mask-generation-input.png",
|
|
2856
|
+
type: "img"
|
|
2857
|
+
}
|
|
2858
|
+
],
|
|
2859
|
+
outputs: [
|
|
2860
|
+
{
|
|
2861
|
+
filename: "mask-generation-output.png",
|
|
2862
|
+
type: "img"
|
|
2863
|
+
}
|
|
2864
|
+
]
|
|
2865
|
+
},
|
|
2866
|
+
metrics: [],
|
|
2867
|
+
models: [
|
|
2868
|
+
{
|
|
2869
|
+
description: "Small yet powerful mask generation model.",
|
|
2870
|
+
id: "Zigeng/SlimSAM-uniform-50"
|
|
2871
|
+
},
|
|
2872
|
+
{
|
|
2873
|
+
description: "Very strong mask generation model.",
|
|
2874
|
+
id: "facebook/sam-vit-huge"
|
|
2875
|
+
}
|
|
2876
|
+
],
|
|
2877
|
+
spaces: [
|
|
2878
|
+
{
|
|
2879
|
+
description: "An application that combines a mask generation model with an image embedding model for open-vocabulary image segmentation.",
|
|
2880
|
+
id: "SkalskiP/SAM_and_MetaCLIP"
|
|
2881
|
+
},
|
|
2882
|
+
{
|
|
2883
|
+
description: "An application that compares the performance of a large and a small mask generation model.",
|
|
2884
|
+
id: "merve/slimsam"
|
|
2885
|
+
},
|
|
2886
|
+
{
|
|
2887
|
+
description: "An application based on an improved mask generation model.",
|
|
2888
|
+
id: "linfanluntan/Grounded-SAM"
|
|
2889
|
+
},
|
|
2890
|
+
{
|
|
2891
|
+
description: "An application to remove objects from videos using mask generation models.",
|
|
2892
|
+
id: "SkalskiP/SAM_and_ProPainter"
|
|
2893
|
+
}
|
|
2894
|
+
],
|
|
2895
|
+
summary: "Mask generation is the task of generating masks that identify a specific object or region of interest in a given image. Masks are often used in segmentation tasks, where they provide a precise way to isolate the object of interest for further processing or analysis.",
|
|
2896
|
+
widgetModels: [],
|
|
2897
|
+
youtubeId: ""
|
|
2898
|
+
};
|
|
2899
|
+
var data_default12 = taskData12;
|
|
2900
|
+
|
|
2901
|
+
// src/tasks/object-detection/data.ts
|
|
2902
|
+
var taskData13 = {
|
|
2885
2903
|
datasets: [
|
|
2886
2904
|
{
|
|
2887
2905
|
// TODO write proper description
|
|
@@ -2953,10 +2971,10 @@ var taskData12 = {
|
|
|
2953
2971
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2954
2972
|
youtubeId: "WdAeKSOpxhw"
|
|
2955
2973
|
};
|
|
2956
|
-
var
|
|
2974
|
+
var data_default13 = taskData13;
|
|
2957
2975
|
|
|
2958
2976
|
// src/tasks/depth-estimation/data.ts
|
|
2959
|
-
var
|
|
2977
|
+
var taskData14 = {
|
|
2960
2978
|
datasets: [
|
|
2961
2979
|
{
|
|
2962
2980
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2984,8 +3002,8 @@ var taskData13 = {
|
|
|
2984
3002
|
id: "Intel/dpt-large"
|
|
2985
3003
|
},
|
|
2986
3004
|
{
|
|
2987
|
-
description: "Strong Depth Estimation model trained on
|
|
2988
|
-
id: "
|
|
3005
|
+
description: "Strong Depth Estimation model trained on a big compilation of datasets.",
|
|
3006
|
+
id: "LiheYoung/depth-anything-large-hf"
|
|
2989
3007
|
},
|
|
2990
3008
|
{
|
|
2991
3009
|
description: "A strong monocular depth estimation model.",
|
|
@@ -2998,18 +3016,22 @@ var taskData13 = {
|
|
|
2998
3016
|
id: "radames/dpt-depth-estimation-3d-voxels"
|
|
2999
3017
|
},
|
|
3000
3018
|
{
|
|
3001
|
-
description: "An application
|
|
3002
|
-
id: "
|
|
3019
|
+
description: "An application to compare the outputs of different depth estimation models.",
|
|
3020
|
+
id: "LiheYoung/Depth-Anything"
|
|
3021
|
+
},
|
|
3022
|
+
{
|
|
3023
|
+
description: "An application to try state-of-the-art depth estimation.",
|
|
3024
|
+
id: "merve/compare_depth_models"
|
|
3003
3025
|
}
|
|
3004
3026
|
],
|
|
3005
3027
|
summary: "Depth estimation is the task of predicting depth of the objects present in an image.",
|
|
3006
3028
|
widgetModels: [""],
|
|
3007
3029
|
youtubeId: ""
|
|
3008
3030
|
};
|
|
3009
|
-
var
|
|
3031
|
+
var data_default14 = taskData14;
|
|
3010
3032
|
|
|
3011
3033
|
// src/tasks/placeholder/data.ts
|
|
3012
|
-
var
|
|
3034
|
+
var taskData15 = {
|
|
3013
3035
|
datasets: [],
|
|
3014
3036
|
demo: {
|
|
3015
3037
|
inputs: [],
|
|
@@ -3021,12 +3043,15 @@ var taskData14 = {
|
|
|
3021
3043
|
spaces: [],
|
|
3022
3044
|
summary: "",
|
|
3023
3045
|
widgetModels: [],
|
|
3024
|
-
youtubeId: void 0
|
|
3046
|
+
youtubeId: void 0,
|
|
3047
|
+
/// If this is a subtask, link to the most general task ID
|
|
3048
|
+
/// (eg, text2text-generation is the canonical ID of translation)
|
|
3049
|
+
canonicalId: void 0
|
|
3025
3050
|
};
|
|
3026
|
-
var
|
|
3051
|
+
var data_default15 = taskData15;
|
|
3027
3052
|
|
|
3028
3053
|
// src/tasks/reinforcement-learning/data.ts
|
|
3029
|
-
var
|
|
3054
|
+
var taskData16 = {
|
|
3030
3055
|
datasets: [
|
|
3031
3056
|
{
|
|
3032
3057
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -3092,10 +3117,10 @@ var taskData15 = {
|
|
|
3092
3117
|
widgetModels: [],
|
|
3093
3118
|
youtubeId: "q0BiUn5LiBc"
|
|
3094
3119
|
};
|
|
3095
|
-
var
|
|
3120
|
+
var data_default16 = taskData16;
|
|
3096
3121
|
|
|
3097
3122
|
// src/tasks/question-answering/data.ts
|
|
3098
|
-
var
|
|
3123
|
+
var taskData17 = {
|
|
3099
3124
|
datasets: [
|
|
3100
3125
|
{
|
|
3101
3126
|
// TODO write proper description
|
|
@@ -3159,10 +3184,10 @@ var taskData16 = {
|
|
|
3159
3184
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
3160
3185
|
youtubeId: "ajPx5LwJD-I"
|
|
3161
3186
|
};
|
|
3162
|
-
var
|
|
3187
|
+
var data_default17 = taskData17;
|
|
3163
3188
|
|
|
3164
3189
|
// src/tasks/sentence-similarity/data.ts
|
|
3165
|
-
var
|
|
3190
|
+
var taskData18 = {
|
|
3166
3191
|
datasets: [
|
|
3167
3192
|
{
|
|
3168
3193
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -3254,10 +3279,11 @@ var taskData17 = {
|
|
|
3254
3279
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
3255
3280
|
youtubeId: "VCZq5AkbNEU"
|
|
3256
3281
|
};
|
|
3257
|
-
var
|
|
3282
|
+
var data_default18 = taskData18;
|
|
3258
3283
|
|
|
3259
3284
|
// src/tasks/summarization/data.ts
|
|
3260
|
-
var
|
|
3285
|
+
var taskData19 = {
|
|
3286
|
+
canonicalId: "text2text-generation",
|
|
3261
3287
|
datasets: [
|
|
3262
3288
|
{
|
|
3263
3289
|
description: "News articles in five different languages along with their summaries. Widely used for benchmarking multilingual summarization models.",
|
|
@@ -3322,10 +3348,10 @@ var taskData18 = {
|
|
|
3322
3348
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
3323
3349
|
youtubeId: "yHnr5Dk2zCI"
|
|
3324
3350
|
};
|
|
3325
|
-
var
|
|
3351
|
+
var data_default19 = taskData19;
|
|
3326
3352
|
|
|
3327
3353
|
// src/tasks/table-question-answering/data.ts
|
|
3328
|
-
var
|
|
3354
|
+
var taskData20 = {
|
|
3329
3355
|
datasets: [
|
|
3330
3356
|
{
|
|
3331
3357
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -3376,10 +3402,10 @@ var taskData19 = {
|
|
|
3376
3402
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
3377
3403
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
3378
3404
|
};
|
|
3379
|
-
var
|
|
3405
|
+
var data_default20 = taskData20;
|
|
3380
3406
|
|
|
3381
3407
|
// src/tasks/tabular-classification/data.ts
|
|
3382
|
-
var
|
|
3408
|
+
var taskData21 = {
|
|
3383
3409
|
datasets: [
|
|
3384
3410
|
{
|
|
3385
3411
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -3443,10 +3469,10 @@ var taskData20 = {
|
|
|
3443
3469
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
3444
3470
|
youtubeId: ""
|
|
3445
3471
|
};
|
|
3446
|
-
var
|
|
3472
|
+
var data_default21 = taskData21;
|
|
3447
3473
|
|
|
3448
3474
|
// src/tasks/tabular-regression/data.ts
|
|
3449
|
-
var
|
|
3475
|
+
var taskData22 = {
|
|
3450
3476
|
datasets: [
|
|
3451
3477
|
{
|
|
3452
3478
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -3498,10 +3524,10 @@ var taskData21 = {
|
|
|
3498
3524
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
3499
3525
|
youtubeId: ""
|
|
3500
3526
|
};
|
|
3501
|
-
var
|
|
3527
|
+
var data_default22 = taskData22;
|
|
3502
3528
|
|
|
3503
3529
|
// src/tasks/text-to-image/data.ts
|
|
3504
|
-
var
|
|
3530
|
+
var taskData23 = {
|
|
3505
3531
|
datasets: [
|
|
3506
3532
|
{
|
|
3507
3533
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -3577,22 +3603,27 @@ var taskData22 = {
|
|
|
3577
3603
|
id: "latent-consistency/lcm-lora-for-sdxl"
|
|
3578
3604
|
},
|
|
3579
3605
|
{
|
|
3580
|
-
description: "A
|
|
3581
|
-
id: "
|
|
3606
|
+
description: "A gallery to explore various text-to-image models.",
|
|
3607
|
+
id: "multimodalart/LoraTheExplorer"
|
|
3582
3608
|
},
|
|
3583
3609
|
{
|
|
3584
3610
|
description: "An application for `text-to-image`, `image-to-image` and image inpainting.",
|
|
3585
3611
|
id: "ArtGAN/Stable-Diffusion-ControlNet-WebUI"
|
|
3612
|
+
},
|
|
3613
|
+
{
|
|
3614
|
+
description: "An application to generate realistic images given photos of a person and a prompt.",
|
|
3615
|
+
id: "InstantX/InstantID"
|
|
3586
3616
|
}
|
|
3587
3617
|
],
|
|
3588
3618
|
summary: "Generates images from input text. These models can be used to generate and modify images based on text prompts.",
|
|
3589
3619
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
3590
3620
|
youtubeId: ""
|
|
3591
3621
|
};
|
|
3592
|
-
var
|
|
3622
|
+
var data_default23 = taskData23;
|
|
3593
3623
|
|
|
3594
3624
|
// src/tasks/text-to-speech/data.ts
|
|
3595
|
-
var
|
|
3625
|
+
var taskData24 = {
|
|
3626
|
+
canonicalId: "text-to-audio",
|
|
3596
3627
|
datasets: [
|
|
3597
3628
|
{
|
|
3598
3629
|
description: "Thousands of short audio clips of a single speaker.",
|
|
@@ -3656,10 +3687,10 @@ var taskData23 = {
|
|
|
3656
3687
|
widgetModels: ["suno/bark"],
|
|
3657
3688
|
youtubeId: "NW62DpzJ274"
|
|
3658
3689
|
};
|
|
3659
|
-
var
|
|
3690
|
+
var data_default24 = taskData24;
|
|
3660
3691
|
|
|
3661
3692
|
// src/tasks/token-classification/data.ts
|
|
3662
|
-
var
|
|
3693
|
+
var taskData25 = {
|
|
3663
3694
|
datasets: [
|
|
3664
3695
|
{
|
|
3665
3696
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3735,10 +3766,11 @@ var taskData24 = {
|
|
|
3735
3766
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3736
3767
|
youtubeId: "wVHdVlPScxA"
|
|
3737
3768
|
};
|
|
3738
|
-
var
|
|
3769
|
+
var data_default25 = taskData25;
|
|
3739
3770
|
|
|
3740
3771
|
// src/tasks/translation/data.ts
|
|
3741
|
-
var
|
|
3772
|
+
var taskData26 = {
|
|
3773
|
+
canonicalId: "text2text-generation",
|
|
3742
3774
|
datasets: [
|
|
3743
3775
|
{
|
|
3744
3776
|
description: "A dataset of copyright-free books translated into 16 different languages.",
|
|
@@ -3799,10 +3831,10 @@ var taskData25 = {
|
|
|
3799
3831
|
widgetModels: ["t5-small"],
|
|
3800
3832
|
youtubeId: "1JvfrvZgi6c"
|
|
3801
3833
|
};
|
|
3802
|
-
var
|
|
3834
|
+
var data_default26 = taskData26;
|
|
3803
3835
|
|
|
3804
3836
|
// src/tasks/text-classification/data.ts
|
|
3805
|
-
var
|
|
3837
|
+
var taskData27 = {
|
|
3806
3838
|
datasets: [
|
|
3807
3839
|
{
|
|
3808
3840
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3887,10 +3919,10 @@ var taskData26 = {
|
|
|
3887
3919
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3888
3920
|
youtubeId: "leNG9fN9FQU"
|
|
3889
3921
|
};
|
|
3890
|
-
var
|
|
3922
|
+
var data_default27 = taskData27;
|
|
3891
3923
|
|
|
3892
3924
|
// src/tasks/text-generation/data.ts
|
|
3893
|
-
var
|
|
3925
|
+
var taskData28 = {
|
|
3894
3926
|
datasets: [
|
|
3895
3927
|
{
|
|
3896
3928
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3901,12 +3933,12 @@ var taskData27 = {
|
|
|
3901
3933
|
id: "the_pile"
|
|
3902
3934
|
},
|
|
3903
3935
|
{
|
|
3904
|
-
description: "
|
|
3905
|
-
id: "
|
|
3936
|
+
description: "Truly open-source, curated and cleaned dialogue dataset.",
|
|
3937
|
+
id: "HuggingFaceH4/ultrachat_200k"
|
|
3906
3938
|
},
|
|
3907
3939
|
{
|
|
3908
|
-
description: "
|
|
3909
|
-
id: "
|
|
3940
|
+
description: "An instruction dataset with preference ratings on responses.",
|
|
3941
|
+
id: "openbmb/UltraFeedback"
|
|
3910
3942
|
}
|
|
3911
3943
|
],
|
|
3912
3944
|
demo: {
|
|
@@ -3945,72 +3977,56 @@ var taskData27 = {
|
|
|
3945
3977
|
id: "bigcode/starcoder"
|
|
3946
3978
|
},
|
|
3947
3979
|
{
|
|
3948
|
-
description: "A
|
|
3949
|
-
id: "
|
|
3980
|
+
description: "A very powerful text generation model.",
|
|
3981
|
+
id: "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
3950
3982
|
},
|
|
3951
3983
|
{
|
|
3952
|
-
description: "
|
|
3953
|
-
id: "
|
|
3984
|
+
description: "Small yet powerful text generation model.",
|
|
3985
|
+
id: "microsoft/phi-2"
|
|
3954
3986
|
},
|
|
3955
3987
|
{
|
|
3956
|
-
description: "A
|
|
3957
|
-
id: "
|
|
3988
|
+
description: "A very powerful model that can chat, do mathematical reasoning and write code.",
|
|
3989
|
+
id: "openchat/openchat-3.5-0106"
|
|
3958
3990
|
},
|
|
3959
3991
|
{
|
|
3960
|
-
description: "
|
|
3961
|
-
id: "
|
|
3992
|
+
description: "Very strong yet small assistant model.",
|
|
3993
|
+
id: "HuggingFaceH4/zephyr-7b-beta"
|
|
3962
3994
|
},
|
|
3963
3995
|
{
|
|
3964
|
-
description: "
|
|
3965
|
-
id: "EleutherAI/pythia-12b"
|
|
3966
|
-
},
|
|
3967
|
-
{
|
|
3968
|
-
description: "A large text-to-text model trained to follow instructions.",
|
|
3969
|
-
id: "google/flan-ul2"
|
|
3970
|
-
},
|
|
3971
|
-
{
|
|
3972
|
-
description: "A large and powerful text generation model.",
|
|
3973
|
-
id: "tiiuae/falcon-40b"
|
|
3974
|
-
},
|
|
3975
|
-
{
|
|
3976
|
-
description: "State-of-the-art open-source large language model.",
|
|
3996
|
+
description: "Very strong open-source large language model.",
|
|
3977
3997
|
id: "meta-llama/Llama-2-70b-hf"
|
|
3978
3998
|
}
|
|
3979
3999
|
],
|
|
3980
4000
|
spaces: [
|
|
3981
4001
|
{
|
|
3982
|
-
description: "A
|
|
3983
|
-
id: "
|
|
4002
|
+
description: "A leaderboard to compare different open-source text generation models based on various benchmarks.",
|
|
4003
|
+
id: "HuggingFaceH4/open_llm_leaderboard"
|
|
3984
4004
|
},
|
|
3985
4005
|
{
|
|
3986
|
-
description: "An text generation based application
|
|
3987
|
-
id: "
|
|
4006
|
+
description: "An text generation based application based on a very powerful LLaMA2 model.",
|
|
4007
|
+
id: "ysharma/Explore_llamav2_with_TGI"
|
|
3988
4008
|
},
|
|
3989
4009
|
{
|
|
3990
|
-
description: "An text generation based application
|
|
3991
|
-
id: "
|
|
4010
|
+
description: "An text generation based application to converse with Zephyr model.",
|
|
4011
|
+
id: "HuggingFaceH4/zephyr-chat"
|
|
3992
4012
|
},
|
|
3993
4013
|
{
|
|
3994
4014
|
description: "An text generation application that combines OpenAI and Hugging Face models.",
|
|
3995
4015
|
id: "microsoft/HuggingGPT"
|
|
3996
4016
|
},
|
|
3997
4017
|
{
|
|
3998
|
-
description: "An
|
|
3999
|
-
id: "
|
|
4000
|
-
},
|
|
4001
|
-
{
|
|
4002
|
-
description: "An UI that uses StableLM-tuned-alpha-7b.",
|
|
4003
|
-
id: "togethercomputer/OpenChatKit"
|
|
4018
|
+
description: "An chatbot to converse with a very powerful text generation model.",
|
|
4019
|
+
id: "mlabonne/phixtral-chat"
|
|
4004
4020
|
}
|
|
4005
4021
|
],
|
|
4006
|
-
summary: "Generating text is the task of
|
|
4022
|
+
summary: "Generating text is the task of generating new text given another text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
4007
4023
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
4008
4024
|
youtubeId: "Vpjb1lu0MDk"
|
|
4009
4025
|
};
|
|
4010
|
-
var
|
|
4026
|
+
var data_default28 = taskData28;
|
|
4011
4027
|
|
|
4012
4028
|
// src/tasks/text-to-video/data.ts
|
|
4013
|
-
var
|
|
4029
|
+
var taskData29 = {
|
|
4014
4030
|
datasets: [
|
|
4015
4031
|
{
|
|
4016
4032
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -4102,10 +4118,10 @@ var taskData28 = {
|
|
|
4102
4118
|
widgetModels: [],
|
|
4103
4119
|
youtubeId: void 0
|
|
4104
4120
|
};
|
|
4105
|
-
var
|
|
4121
|
+
var data_default29 = taskData29;
|
|
4106
4122
|
|
|
4107
4123
|
// src/tasks/unconditional-image-generation/data.ts
|
|
4108
|
-
var
|
|
4124
|
+
var taskData30 = {
|
|
4109
4125
|
datasets: [
|
|
4110
4126
|
{
|
|
4111
4127
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -4167,10 +4183,10 @@ var taskData29 = {
|
|
|
4167
4183
|
// TODO: Add related video
|
|
4168
4184
|
youtubeId: ""
|
|
4169
4185
|
};
|
|
4170
|
-
var
|
|
4186
|
+
var data_default30 = taskData30;
|
|
4171
4187
|
|
|
4172
4188
|
// src/tasks/video-classification/data.ts
|
|
4173
|
-
var
|
|
4189
|
+
var taskData31 = {
|
|
4174
4190
|
datasets: [
|
|
4175
4191
|
{
|
|
4176
4192
|
// TODO write proper description
|
|
@@ -4249,10 +4265,10 @@ var taskData30 = {
|
|
|
4249
4265
|
widgetModels: [],
|
|
4250
4266
|
youtubeId: ""
|
|
4251
4267
|
};
|
|
4252
|
-
var
|
|
4268
|
+
var data_default31 = taskData31;
|
|
4253
4269
|
|
|
4254
4270
|
// src/tasks/visual-question-answering/data.ts
|
|
4255
|
-
var
|
|
4271
|
+
var taskData32 = {
|
|
4256
4272
|
datasets: [
|
|
4257
4273
|
{
|
|
4258
4274
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -4342,10 +4358,10 @@ var taskData31 = {
|
|
|
4342
4358
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
4343
4359
|
youtubeId: ""
|
|
4344
4360
|
};
|
|
4345
|
-
var
|
|
4361
|
+
var data_default32 = taskData32;
|
|
4346
4362
|
|
|
4347
4363
|
// src/tasks/zero-shot-classification/data.ts
|
|
4348
|
-
var
|
|
4364
|
+
var taskData33 = {
|
|
4349
4365
|
datasets: [
|
|
4350
4366
|
{
|
|
4351
4367
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -4404,10 +4420,10 @@ var taskData32 = {
|
|
|
4404
4420
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
4405
4421
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
4406
4422
|
};
|
|
4407
|
-
var
|
|
4423
|
+
var data_default33 = taskData33;
|
|
4408
4424
|
|
|
4409
4425
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
4410
|
-
var
|
|
4426
|
+
var taskData34 = {
|
|
4411
4427
|
datasets: [
|
|
4412
4428
|
{
|
|
4413
4429
|
// TODO write proper description
|
|
@@ -4459,8 +4475,8 @@ var taskData33 = {
|
|
|
4459
4475
|
id: "openai/clip-vit-base-patch16"
|
|
4460
4476
|
},
|
|
4461
4477
|
{
|
|
4462
|
-
description: "
|
|
4463
|
-
id: "
|
|
4478
|
+
description: "Strong zero-shot image classification model.",
|
|
4479
|
+
id: "google/siglip-base-patch16-224"
|
|
4464
4480
|
},
|
|
4465
4481
|
{
|
|
4466
4482
|
description: "Strong image classification model for biomedical domain.",
|
|
@@ -4469,15 +4485,77 @@ var taskData33 = {
|
|
|
4469
4485
|
],
|
|
4470
4486
|
spaces: [
|
|
4471
4487
|
{
|
|
4472
|
-
description: "An application that leverages zero
|
|
4488
|
+
description: "An application that leverages zero-shot image classification to find best captions to generate an image. ",
|
|
4473
4489
|
id: "pharma/CLIP-Interrogator"
|
|
4490
|
+
},
|
|
4491
|
+
{
|
|
4492
|
+
description: "An application to compare different zero-shot image classification models. ",
|
|
4493
|
+
id: "merve/compare_clip_siglip"
|
|
4474
4494
|
}
|
|
4475
4495
|
],
|
|
4476
|
-
summary: "Zero
|
|
4496
|
+
summary: "Zero-shot image classification is the task of classifying previously unseen classes during training of a model.",
|
|
4477
4497
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
4478
4498
|
youtubeId: ""
|
|
4479
4499
|
};
|
|
4480
|
-
var
|
|
4500
|
+
var data_default34 = taskData34;
|
|
4501
|
+
|
|
4502
|
+
// src/tasks/zero-shot-object-detection/data.ts
|
|
4503
|
+
var taskData35 = {
|
|
4504
|
+
datasets: [],
|
|
4505
|
+
demo: {
|
|
4506
|
+
inputs: [
|
|
4507
|
+
{
|
|
4508
|
+
filename: "zero-shot-object-detection-input.jpg",
|
|
4509
|
+
type: "img"
|
|
4510
|
+
},
|
|
4511
|
+
{
|
|
4512
|
+
label: "Classes",
|
|
4513
|
+
content: "cat, dog, bird",
|
|
4514
|
+
type: "text"
|
|
4515
|
+
}
|
|
4516
|
+
],
|
|
4517
|
+
outputs: [
|
|
4518
|
+
{
|
|
4519
|
+
filename: "zero-shot-object-detection-output.jpg",
|
|
4520
|
+
type: "img"
|
|
4521
|
+
}
|
|
4522
|
+
]
|
|
4523
|
+
},
|
|
4524
|
+
metrics: [
|
|
4525
|
+
{
|
|
4526
|
+
description: "The Average Precision (AP) metric is the Area Under the PR Curve (AUC-PR). It is calculated for each class separately",
|
|
4527
|
+
id: "Average Precision"
|
|
4528
|
+
},
|
|
4529
|
+
{
|
|
4530
|
+
description: "The Mean Average Precision (mAP) metric is the overall average of the AP values",
|
|
4531
|
+
id: "Mean Average Precision"
|
|
4532
|
+
},
|
|
4533
|
+
{
|
|
4534
|
+
description: "The AP\u03B1 metric is the Average Precision at the IoU threshold of a \u03B1 value, for example, AP50 and AP75",
|
|
4535
|
+
id: "AP\u03B1"
|
|
4536
|
+
}
|
|
4537
|
+
],
|
|
4538
|
+
models: [
|
|
4539
|
+
{
|
|
4540
|
+
description: "Solid zero-shot object detection model that uses CLIP as backbone.",
|
|
4541
|
+
id: "google/owlvit-base-patch32"
|
|
4542
|
+
},
|
|
4543
|
+
{
|
|
4544
|
+
description: "The improved version of the owlvit model.",
|
|
4545
|
+
id: "google/owlv2-base-patch16-ensemble"
|
|
4546
|
+
}
|
|
4547
|
+
],
|
|
4548
|
+
spaces: [
|
|
4549
|
+
{
|
|
4550
|
+
description: "A demo to try the state-of-the-art zero-shot object detection model, OWLv2.",
|
|
4551
|
+
id: "merve/owlv2"
|
|
4552
|
+
}
|
|
4553
|
+
],
|
|
4554
|
+
summary: "Zero-shot object detection is a computer vision task to detect objects and their classes in images, without any prior training or knowledge of the classes. Zero-shot object detection models receive an image as input, as well as a list of candidate classes, and output the bounding boxes and labels where the objects have been detected.",
|
|
4555
|
+
widgetModels: [],
|
|
4556
|
+
youtubeId: ""
|
|
4557
|
+
};
|
|
4558
|
+
var data_default35 = taskData35;
|
|
4481
4559
|
|
|
4482
4560
|
// src/tasks/index.ts
|
|
4483
4561
|
var TASKS_MODEL_LIBRARIES = {
|
|
@@ -4538,7 +4616,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
4538
4616
|
"text-to-3d": [],
|
|
4539
4617
|
"image-to-3d": []
|
|
4540
4618
|
};
|
|
4541
|
-
function getData(type, partialTaskData =
|
|
4619
|
+
function getData(type, partialTaskData = data_default15) {
|
|
4542
4620
|
return {
|
|
4543
4621
|
...partialTaskData,
|
|
4544
4622
|
id: type,
|
|
@@ -4551,7 +4629,7 @@ var TASKS_DATA = {
|
|
|
4551
4629
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
4552
4630
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
4553
4631
|
conversational: getData("conversational", data_default4),
|
|
4554
|
-
"depth-estimation": getData("depth-estimation",
|
|
4632
|
+
"depth-estimation": getData("depth-estimation", data_default14),
|
|
4555
4633
|
"document-question-answering": getData("document-question-answering", data_default5),
|
|
4556
4634
|
"feature-extraction": getData("feature-extraction", data_default6),
|
|
4557
4635
|
"fill-mask": getData("fill-mask", data_default7),
|
|
@@ -4561,45 +4639,45 @@ var TASKS_DATA = {
|
|
|
4561
4639
|
"image-to-image": getData("image-to-image", data_default9),
|
|
4562
4640
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4563
4641
|
"image-to-video": void 0,
|
|
4564
|
-
"mask-generation": getData("mask-generation",
|
|
4642
|
+
"mask-generation": getData("mask-generation", data_default12),
|
|
4565
4643
|
"multiple-choice": void 0,
|
|
4566
|
-
"object-detection": getData("object-detection",
|
|
4567
|
-
"video-classification": getData("video-classification",
|
|
4644
|
+
"object-detection": getData("object-detection", data_default13),
|
|
4645
|
+
"video-classification": getData("video-classification", data_default31),
|
|
4568
4646
|
other: void 0,
|
|
4569
|
-
"question-answering": getData("question-answering",
|
|
4570
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
4647
|
+
"question-answering": getData("question-answering", data_default17),
|
|
4648
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default16),
|
|
4571
4649
|
robotics: void 0,
|
|
4572
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
4573
|
-
summarization: getData("summarization",
|
|
4574
|
-
"table-question-answering": getData("table-question-answering",
|
|
4650
|
+
"sentence-similarity": getData("sentence-similarity", data_default18),
|
|
4651
|
+
summarization: getData("summarization", data_default19),
|
|
4652
|
+
"table-question-answering": getData("table-question-answering", data_default20),
|
|
4575
4653
|
"table-to-text": void 0,
|
|
4576
|
-
"tabular-classification": getData("tabular-classification",
|
|
4577
|
-
"tabular-regression": getData("tabular-regression",
|
|
4654
|
+
"tabular-classification": getData("tabular-classification", data_default21),
|
|
4655
|
+
"tabular-regression": getData("tabular-regression", data_default22),
|
|
4578
4656
|
"tabular-to-text": void 0,
|
|
4579
|
-
"text-classification": getData("text-classification",
|
|
4580
|
-
"text-generation": getData("text-generation",
|
|
4657
|
+
"text-classification": getData("text-classification", data_default27),
|
|
4658
|
+
"text-generation": getData("text-generation", data_default28),
|
|
4581
4659
|
"text-retrieval": void 0,
|
|
4582
|
-
"text-to-image": getData("text-to-image",
|
|
4583
|
-
"text-to-speech": getData("text-to-speech",
|
|
4660
|
+
"text-to-image": getData("text-to-image", data_default23),
|
|
4661
|
+
"text-to-speech": getData("text-to-speech", data_default24),
|
|
4584
4662
|
"text-to-audio": void 0,
|
|
4585
|
-
"text-to-video": getData("text-to-video",
|
|
4663
|
+
"text-to-video": getData("text-to-video", data_default29),
|
|
4586
4664
|
"text2text-generation": void 0,
|
|
4587
4665
|
"time-series-forecasting": void 0,
|
|
4588
|
-
"token-classification": getData("token-classification",
|
|
4589
|
-
translation: getData("translation",
|
|
4590
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
4591
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
4666
|
+
"token-classification": getData("token-classification", data_default25),
|
|
4667
|
+
translation: getData("translation", data_default26),
|
|
4668
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default30),
|
|
4669
|
+
"visual-question-answering": getData("visual-question-answering", data_default32),
|
|
4592
4670
|
"voice-activity-detection": void 0,
|
|
4593
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
4594
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
4595
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
4596
|
-
"text-to-3d": getData("text-to-3d",
|
|
4597
|
-
"image-to-3d": getData("image-to-3d",
|
|
4671
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default33),
|
|
4672
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
|
|
4673
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
|
|
4674
|
+
"text-to-3d": getData("text-to-3d", data_default15),
|
|
4675
|
+
"image-to-3d": getData("image-to-3d", data_default15)
|
|
4598
4676
|
};
|
|
4599
4677
|
|
|
4600
4678
|
// src/model-libraries.ts
|
|
4601
4679
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
4602
|
-
ModelLibrary2["adapter-transformers"] = "
|
|
4680
|
+
ModelLibrary2["adapter-transformers"] = "Adapters";
|
|
4603
4681
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
4604
4682
|
ModelLibrary2["asteroid"] = "Asteroid";
|
|
4605
4683
|
ModelLibrary2["bertopic"] = "BERTopic";
|
|
@@ -5114,8 +5192,7 @@ function getJsInferenceSnippet(model, accessToken) {
|
|
|
5114
5192
|
function hasJsInferenceSnippet(model) {
|
|
5115
5193
|
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
5116
5194
|
}
|
|
5117
|
-
|
|
5118
|
-
0 && (module.exports = {
|
|
5195
|
+
export {
|
|
5119
5196
|
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
5120
5197
|
InferenceDisplayability,
|
|
5121
5198
|
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
@@ -5130,5 +5207,5 @@ function hasJsInferenceSnippet(model) {
|
|
|
5130
5207
|
SUBTASK_TYPES,
|
|
5131
5208
|
TASKS_DATA,
|
|
5132
5209
|
TASKS_MODEL_LIBRARIES,
|
|
5133
|
-
snippets
|
|
5134
|
-
}
|
|
5210
|
+
snippets_exports as snippets
|
|
5211
|
+
};
|