@huggingface/tasks 0.2.0 → 0.2.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/{index.mjs → index.cjs} +295 -134
- package/dist/index.d.ts +8 -6
- package/dist/index.js +260 -169
- package/package.json +13 -8
- package/src/library-to-tasks.ts +1 -1
- package/src/library-ui-elements.ts +24 -10
- package/src/model-data.ts +1 -1
- package/src/model-libraries.ts +3 -2
- package/src/pipelines.ts +1 -1
- package/src/tasks/audio-classification/about.md +1 -1
- package/src/tasks/audio-classification/inference.ts +51 -0
- package/src/tasks/audio-classification/spec/input.json +34 -0
- package/src/tasks/audio-classification/spec/output.json +21 -0
- package/src/tasks/audio-to-audio/about.md +1 -1
- package/src/tasks/automatic-speech-recognition/about.md +4 -2
- package/src/tasks/automatic-speech-recognition/inference.ts +154 -0
- package/src/tasks/automatic-speech-recognition/spec/input.json +34 -0
- package/src/tasks/automatic-speech-recognition/spec/output.json +36 -0
- package/src/tasks/common-definitions.json +109 -0
- package/src/tasks/depth-estimation/data.ts +8 -4
- package/src/tasks/depth-estimation/inference.ts +35 -0
- package/src/tasks/depth-estimation/spec/input.json +30 -0
- package/src/tasks/depth-estimation/spec/output.json +10 -0
- package/src/tasks/document-question-answering/inference.ts +102 -0
- package/src/tasks/document-question-answering/spec/input.json +85 -0
- package/src/tasks/document-question-answering/spec/output.json +36 -0
- package/src/tasks/feature-extraction/inference.ts +22 -0
- package/src/tasks/feature-extraction/spec/input.json +26 -0
- package/src/tasks/feature-extraction/spec/output.json +7 -0
- package/src/tasks/fill-mask/inference.ts +61 -0
- package/src/tasks/fill-mask/spec/input.json +38 -0
- package/src/tasks/fill-mask/spec/output.json +29 -0
- package/src/tasks/image-classification/inference.ts +51 -0
- package/src/tasks/image-classification/spec/input.json +34 -0
- package/src/tasks/image-classification/spec/output.json +10 -0
- package/src/tasks/image-segmentation/inference.ts +65 -0
- package/src/tasks/image-segmentation/spec/input.json +54 -0
- package/src/tasks/image-segmentation/spec/output.json +25 -0
- package/src/tasks/image-to-image/inference.ts +67 -0
- package/src/tasks/image-to-image/spec/input.json +52 -0
- package/src/tasks/image-to-image/spec/output.json +12 -0
- package/src/tasks/image-to-text/inference.ts +138 -0
- package/src/tasks/image-to-text/spec/input.json +34 -0
- package/src/tasks/image-to-text/spec/output.json +17 -0
- package/src/tasks/index.ts +5 -2
- package/src/tasks/mask-generation/about.md +65 -0
- package/src/tasks/mask-generation/data.ts +55 -0
- package/src/tasks/object-detection/inference.ts +62 -0
- package/src/tasks/object-detection/spec/input.json +30 -0
- package/src/tasks/object-detection/spec/output.json +46 -0
- package/src/tasks/placeholder/data.ts +3 -0
- package/src/tasks/placeholder/spec/input.json +35 -0
- package/src/tasks/placeholder/spec/output.json +17 -0
- package/src/tasks/question-answering/inference.ts +99 -0
- package/src/tasks/question-answering/spec/input.json +67 -0
- package/src/tasks/question-answering/spec/output.json +29 -0
- package/src/tasks/sentence-similarity/about.md +2 -2
- package/src/tasks/sentence-similarity/inference.ts +32 -0
- package/src/tasks/sentence-similarity/spec/input.json +40 -0
- package/src/tasks/sentence-similarity/spec/output.json +12 -0
- package/src/tasks/summarization/data.ts +1 -0
- package/src/tasks/summarization/inference.ts +58 -0
- package/src/tasks/summarization/spec/input.json +7 -0
- package/src/tasks/summarization/spec/output.json +7 -0
- package/src/tasks/table-question-answering/inference.ts +61 -0
- package/src/tasks/table-question-answering/spec/input.json +39 -0
- package/src/tasks/table-question-answering/spec/output.json +40 -0
- package/src/tasks/tabular-classification/about.md +1 -1
- package/src/tasks/tabular-regression/about.md +1 -1
- package/src/tasks/text-classification/about.md +1 -0
- package/src/tasks/text-classification/inference.ts +51 -0
- package/src/tasks/text-classification/spec/input.json +35 -0
- package/src/tasks/text-classification/spec/output.json +10 -0
- package/src/tasks/text-generation/about.md +24 -13
- package/src/tasks/text-generation/data.ts +22 -38
- package/src/tasks/text-generation/inference.ts +85 -0
- package/src/tasks/text-generation/spec/input.json +74 -0
- package/src/tasks/text-generation/spec/output.json +17 -0
- package/src/tasks/text-to-audio/inference.ts +138 -0
- package/src/tasks/text-to-audio/spec/input.json +31 -0
- package/src/tasks/text-to-audio/spec/output.json +20 -0
- package/src/tasks/text-to-image/about.md +11 -2
- package/src/tasks/text-to-image/data.ts +6 -2
- package/src/tasks/text-to-image/inference.ts +73 -0
- package/src/tasks/text-to-image/spec/input.json +57 -0
- package/src/tasks/text-to-image/spec/output.json +15 -0
- package/src/tasks/text-to-speech/about.md +4 -2
- package/src/tasks/text-to-speech/data.ts +1 -0
- package/src/tasks/text-to-speech/inference.ts +146 -0
- package/src/tasks/text-to-speech/spec/input.json +7 -0
- package/src/tasks/text-to-speech/spec/output.json +7 -0
- package/src/tasks/text2text-generation/inference.ts +53 -0
- package/src/tasks/text2text-generation/spec/input.json +55 -0
- package/src/tasks/text2text-generation/spec/output.json +17 -0
- package/src/tasks/token-classification/inference.ts +82 -0
- package/src/tasks/token-classification/spec/input.json +65 -0
- package/src/tasks/token-classification/spec/output.json +33 -0
- package/src/tasks/translation/data.ts +1 -0
- package/src/tasks/translation/inference.ts +58 -0
- package/src/tasks/translation/spec/input.json +7 -0
- package/src/tasks/translation/spec/output.json +7 -0
- package/src/tasks/video-classification/inference.ts +59 -0
- package/src/tasks/video-classification/spec/input.json +42 -0
- package/src/tasks/video-classification/spec/output.json +10 -0
- package/src/tasks/visual-question-answering/inference.ts +63 -0
- package/src/tasks/visual-question-answering/spec/input.json +41 -0
- package/src/tasks/visual-question-answering/spec/output.json +21 -0
- package/src/tasks/zero-shot-classification/inference.ts +67 -0
- package/src/tasks/zero-shot-classification/spec/input.json +50 -0
- package/src/tasks/zero-shot-classification/spec/output.json +10 -0
- package/src/tasks/zero-shot-image-classification/data.ts +8 -5
- package/src/tasks/zero-shot-image-classification/inference.ts +61 -0
- package/src/tasks/zero-shot-image-classification/spec/input.json +45 -0
- package/src/tasks/zero-shot-image-classification/spec/output.json +10 -0
- package/src/tasks/zero-shot-object-detection/about.md +45 -0
- package/src/tasks/zero-shot-object-detection/data.ts +62 -0
- package/src/tasks/zero-shot-object-detection/inference.ts +66 -0
- package/src/tasks/zero-shot-object-detection/spec/input.json +40 -0
- package/src/tasks/zero-shot-object-detection/spec/output.json +47 -0
- package/tsconfig.json +3 -3
package/dist/index.js
CHANGED
|
@@ -1,42 +1,8 @@
|
|
|
1
|
-
"use strict";
|
|
2
1
|
var __defProp = Object.defineProperty;
|
|
3
|
-
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
|
|
4
|
-
var __getOwnPropNames = Object.getOwnPropertyNames;
|
|
5
|
-
var __hasOwnProp = Object.prototype.hasOwnProperty;
|
|
6
2
|
var __export = (target, all) => {
|
|
7
3
|
for (var name in all)
|
|
8
4
|
__defProp(target, name, { get: all[name], enumerable: true });
|
|
9
5
|
};
|
|
10
|
-
var __copyProps = (to, from, except, desc) => {
|
|
11
|
-
if (from && typeof from === "object" || typeof from === "function") {
|
|
12
|
-
for (let key of __getOwnPropNames(from))
|
|
13
|
-
if (!__hasOwnProp.call(to, key) && key !== except)
|
|
14
|
-
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
|
|
15
|
-
}
|
|
16
|
-
return to;
|
|
17
|
-
};
|
|
18
|
-
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
|
|
19
|
-
|
|
20
|
-
// src/index.ts
|
|
21
|
-
var src_exports = {};
|
|
22
|
-
__export(src_exports, {
|
|
23
|
-
ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
24
|
-
InferenceDisplayability: () => InferenceDisplayability,
|
|
25
|
-
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
26
|
-
MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
|
|
27
|
-
MODALITIES: () => MODALITIES,
|
|
28
|
-
MODALITY_LABELS: () => MODALITY_LABELS,
|
|
29
|
-
MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
|
|
30
|
-
ModelLibrary: () => ModelLibrary,
|
|
31
|
-
PIPELINE_DATA: () => PIPELINE_DATA,
|
|
32
|
-
PIPELINE_TYPES: () => PIPELINE_TYPES,
|
|
33
|
-
PIPELINE_TYPES_SET: () => PIPELINE_TYPES_SET,
|
|
34
|
-
SUBTASK_TYPES: () => SUBTASK_TYPES,
|
|
35
|
-
TASKS_DATA: () => TASKS_DATA,
|
|
36
|
-
TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
|
|
37
|
-
snippets: () => snippets_exports
|
|
38
|
-
});
|
|
39
|
-
module.exports = __toCommonJS(src_exports);
|
|
40
6
|
|
|
41
7
|
// src/library-to-tasks.ts
|
|
42
8
|
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
@@ -83,11 +49,11 @@ function nameWithoutNamespace(modelId) {
|
|
|
83
49
|
const splitted = modelId.split("/");
|
|
84
50
|
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
85
51
|
}
|
|
86
|
-
var
|
|
87
|
-
`from
|
|
52
|
+
var adapters = (model) => [
|
|
53
|
+
`from adapters import AutoAdapterModel
|
|
88
54
|
|
|
89
|
-
model =
|
|
90
|
-
model.load_adapter("${model.id}",
|
|
55
|
+
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
56
|
+
model.load_adapter("${model.id}", set_active=True)`
|
|
91
57
|
];
|
|
92
58
|
var allennlpUnknown = (model) => [
|
|
93
59
|
`import allennlp_models
|
|
@@ -527,6 +493,13 @@ transcriptions = asr_model.transcribe(["file.wav"])`
|
|
|
527
493
|
}
|
|
528
494
|
};
|
|
529
495
|
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
496
|
+
var sentis = () => [
|
|
497
|
+
`string modelName = "[Your model name here].sentis";
|
|
498
|
+
Model model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName);
|
|
499
|
+
IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
|
|
500
|
+
// Please see provided C# file for more details
|
|
501
|
+
`
|
|
502
|
+
];
|
|
530
503
|
var mlx = (model) => [
|
|
531
504
|
`pip install huggingface_hub hf_transfer
|
|
532
505
|
|
|
@@ -547,11 +520,11 @@ model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
|
547
520
|
];
|
|
548
521
|
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
549
522
|
"adapter-transformers": {
|
|
550
|
-
btnLabel: "
|
|
551
|
-
repoName: "
|
|
552
|
-
repoUrl: "https://github.com/Adapter-Hub/
|
|
553
|
-
docsUrl: "https://huggingface.co/docs/hub/
|
|
554
|
-
snippets:
|
|
523
|
+
btnLabel: "Adapters",
|
|
524
|
+
repoName: "adapters",
|
|
525
|
+
repoUrl: "https://github.com/Adapter-Hub/adapters",
|
|
526
|
+
docsUrl: "https://huggingface.co/docs/hub/adapters",
|
|
527
|
+
snippets: adapters
|
|
555
528
|
},
|
|
556
529
|
allennlp: {
|
|
557
530
|
btnLabel: "AllenNLP",
|
|
@@ -749,10 +722,16 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
749
722
|
"ml-agents": {
|
|
750
723
|
btnLabel: "ml-agents",
|
|
751
724
|
repoName: "ml-agents",
|
|
752
|
-
repoUrl: "https://github.com/
|
|
725
|
+
repoUrl: "https://github.com/Unity-Technologies/ml-agents",
|
|
753
726
|
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
754
727
|
snippets: mlAgents
|
|
755
728
|
},
|
|
729
|
+
"unity-sentis": {
|
|
730
|
+
btnLabel: "unity-sentis",
|
|
731
|
+
repoName: "unity-sentis",
|
|
732
|
+
repoUrl: "https://github.com/Unity-Technologies/sentis-samples",
|
|
733
|
+
snippets: sentis
|
|
734
|
+
},
|
|
756
735
|
pythae: {
|
|
757
736
|
btnLabel: "pythae",
|
|
758
737
|
repoName: "pythae",
|
|
@@ -2867,8 +2846,60 @@ var taskData11 = {
|
|
|
2867
2846
|
};
|
|
2868
2847
|
var data_default11 = taskData11;
|
|
2869
2848
|
|
|
2870
|
-
// src/tasks/
|
|
2849
|
+
// src/tasks/mask-generation/data.ts
|
|
2871
2850
|
var taskData12 = {
|
|
2851
|
+
datasets: [],
|
|
2852
|
+
demo: {
|
|
2853
|
+
inputs: [
|
|
2854
|
+
{
|
|
2855
|
+
filename: "mask-generation-input.png",
|
|
2856
|
+
type: "img"
|
|
2857
|
+
}
|
|
2858
|
+
],
|
|
2859
|
+
outputs: [
|
|
2860
|
+
{
|
|
2861
|
+
filename: "mask-generation-output.png",
|
|
2862
|
+
type: "img"
|
|
2863
|
+
}
|
|
2864
|
+
]
|
|
2865
|
+
},
|
|
2866
|
+
metrics: [],
|
|
2867
|
+
models: [
|
|
2868
|
+
{
|
|
2869
|
+
description: "Small yet powerful mask generation model.",
|
|
2870
|
+
id: "Zigeng/SlimSAM-uniform-50"
|
|
2871
|
+
},
|
|
2872
|
+
{
|
|
2873
|
+
description: "Very strong mask generation model.",
|
|
2874
|
+
id: "facebook/sam-vit-huge"
|
|
2875
|
+
}
|
|
2876
|
+
],
|
|
2877
|
+
spaces: [
|
|
2878
|
+
{
|
|
2879
|
+
description: "An application that combines a mask generation model with an image embedding model for open-vocabulary image segmentation.",
|
|
2880
|
+
id: "SkalskiP/SAM_and_MetaCLIP"
|
|
2881
|
+
},
|
|
2882
|
+
{
|
|
2883
|
+
description: "An application that compares the performance of a large and a small mask generation model.",
|
|
2884
|
+
id: "merve/slimsam"
|
|
2885
|
+
},
|
|
2886
|
+
{
|
|
2887
|
+
description: "An application based on an improved mask generation model.",
|
|
2888
|
+
id: "linfanluntan/Grounded-SAM"
|
|
2889
|
+
},
|
|
2890
|
+
{
|
|
2891
|
+
description: "An application to remove objects from videos using mask generation models.",
|
|
2892
|
+
id: "SkalskiP/SAM_and_ProPainter"
|
|
2893
|
+
}
|
|
2894
|
+
],
|
|
2895
|
+
summary: "Mask generation is the task of generating masks that identify a specific object or region of interest in a given image. Masks are often used in segmentation tasks, where they provide a precise way to isolate the object of interest for further processing or analysis.",
|
|
2896
|
+
widgetModels: [],
|
|
2897
|
+
youtubeId: ""
|
|
2898
|
+
};
|
|
2899
|
+
var data_default12 = taskData12;
|
|
2900
|
+
|
|
2901
|
+
// src/tasks/object-detection/data.ts
|
|
2902
|
+
var taskData13 = {
|
|
2872
2903
|
datasets: [
|
|
2873
2904
|
{
|
|
2874
2905
|
// TODO write proper description
|
|
@@ -2940,10 +2971,10 @@ var taskData12 = {
|
|
|
2940
2971
|
widgetModels: ["facebook/detr-resnet-50"],
|
|
2941
2972
|
youtubeId: "WdAeKSOpxhw"
|
|
2942
2973
|
};
|
|
2943
|
-
var
|
|
2974
|
+
var data_default13 = taskData13;
|
|
2944
2975
|
|
|
2945
2976
|
// src/tasks/depth-estimation/data.ts
|
|
2946
|
-
var
|
|
2977
|
+
var taskData14 = {
|
|
2947
2978
|
datasets: [
|
|
2948
2979
|
{
|
|
2949
2980
|
description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data",
|
|
@@ -2971,8 +3002,8 @@ var taskData13 = {
|
|
|
2971
3002
|
id: "Intel/dpt-large"
|
|
2972
3003
|
},
|
|
2973
3004
|
{
|
|
2974
|
-
description: "Strong Depth Estimation model trained on
|
|
2975
|
-
id: "
|
|
3005
|
+
description: "Strong Depth Estimation model trained on a big compilation of datasets.",
|
|
3006
|
+
id: "LiheYoung/depth-anything-large-hf"
|
|
2976
3007
|
},
|
|
2977
3008
|
{
|
|
2978
3009
|
description: "A strong monocular depth estimation model.",
|
|
@@ -2985,18 +3016,22 @@ var taskData13 = {
|
|
|
2985
3016
|
id: "radames/dpt-depth-estimation-3d-voxels"
|
|
2986
3017
|
},
|
|
2987
3018
|
{
|
|
2988
|
-
description: "An application
|
|
2989
|
-
id: "
|
|
3019
|
+
description: "An application to compare the outputs of different depth estimation models.",
|
|
3020
|
+
id: "LiheYoung/Depth-Anything"
|
|
3021
|
+
},
|
|
3022
|
+
{
|
|
3023
|
+
description: "An application to try state-of-the-art depth estimation.",
|
|
3024
|
+
id: "merve/compare_depth_models"
|
|
2990
3025
|
}
|
|
2991
3026
|
],
|
|
2992
3027
|
summary: "Depth estimation is the task of predicting depth of the objects present in an image.",
|
|
2993
3028
|
widgetModels: [""],
|
|
2994
3029
|
youtubeId: ""
|
|
2995
3030
|
};
|
|
2996
|
-
var
|
|
3031
|
+
var data_default14 = taskData14;
|
|
2997
3032
|
|
|
2998
3033
|
// src/tasks/placeholder/data.ts
|
|
2999
|
-
var
|
|
3034
|
+
var taskData15 = {
|
|
3000
3035
|
datasets: [],
|
|
3001
3036
|
demo: {
|
|
3002
3037
|
inputs: [],
|
|
@@ -3008,12 +3043,15 @@ var taskData14 = {
|
|
|
3008
3043
|
spaces: [],
|
|
3009
3044
|
summary: "",
|
|
3010
3045
|
widgetModels: [],
|
|
3011
|
-
youtubeId: void 0
|
|
3046
|
+
youtubeId: void 0,
|
|
3047
|
+
/// If this is a subtask, link to the most general task ID
|
|
3048
|
+
/// (eg, text2text-generation is the canonical ID of translation)
|
|
3049
|
+
canonicalId: void 0
|
|
3012
3050
|
};
|
|
3013
|
-
var
|
|
3051
|
+
var data_default15 = taskData15;
|
|
3014
3052
|
|
|
3015
3053
|
// src/tasks/reinforcement-learning/data.ts
|
|
3016
|
-
var
|
|
3054
|
+
var taskData16 = {
|
|
3017
3055
|
datasets: [
|
|
3018
3056
|
{
|
|
3019
3057
|
description: "A curation of widely used datasets for Data Driven Deep Reinforcement Learning (D4RL)",
|
|
@@ -3079,10 +3117,10 @@ var taskData15 = {
|
|
|
3079
3117
|
widgetModels: [],
|
|
3080
3118
|
youtubeId: "q0BiUn5LiBc"
|
|
3081
3119
|
};
|
|
3082
|
-
var
|
|
3120
|
+
var data_default16 = taskData16;
|
|
3083
3121
|
|
|
3084
3122
|
// src/tasks/question-answering/data.ts
|
|
3085
|
-
var
|
|
3123
|
+
var taskData17 = {
|
|
3086
3124
|
datasets: [
|
|
3087
3125
|
{
|
|
3088
3126
|
// TODO write proper description
|
|
@@ -3146,10 +3184,10 @@ var taskData16 = {
|
|
|
3146
3184
|
widgetModels: ["deepset/roberta-base-squad2"],
|
|
3147
3185
|
youtubeId: "ajPx5LwJD-I"
|
|
3148
3186
|
};
|
|
3149
|
-
var
|
|
3187
|
+
var data_default17 = taskData17;
|
|
3150
3188
|
|
|
3151
3189
|
// src/tasks/sentence-similarity/data.ts
|
|
3152
|
-
var
|
|
3190
|
+
var taskData18 = {
|
|
3153
3191
|
datasets: [
|
|
3154
3192
|
{
|
|
3155
3193
|
description: "Bing queries with relevant passages from various web sources.",
|
|
@@ -3241,10 +3279,11 @@ var taskData17 = {
|
|
|
3241
3279
|
widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
|
|
3242
3280
|
youtubeId: "VCZq5AkbNEU"
|
|
3243
3281
|
};
|
|
3244
|
-
var
|
|
3282
|
+
var data_default18 = taskData18;
|
|
3245
3283
|
|
|
3246
3284
|
// src/tasks/summarization/data.ts
|
|
3247
|
-
var
|
|
3285
|
+
var taskData19 = {
|
|
3286
|
+
canonicalId: "text2text-generation",
|
|
3248
3287
|
datasets: [
|
|
3249
3288
|
{
|
|
3250
3289
|
description: "News articles in five different languages along with their summaries. Widely used for benchmarking multilingual summarization models.",
|
|
@@ -3309,10 +3348,10 @@ var taskData18 = {
|
|
|
3309
3348
|
widgetModels: ["sshleifer/distilbart-cnn-12-6"],
|
|
3310
3349
|
youtubeId: "yHnr5Dk2zCI"
|
|
3311
3350
|
};
|
|
3312
|
-
var
|
|
3351
|
+
var data_default19 = taskData19;
|
|
3313
3352
|
|
|
3314
3353
|
// src/tasks/table-question-answering/data.ts
|
|
3315
|
-
var
|
|
3354
|
+
var taskData20 = {
|
|
3316
3355
|
datasets: [
|
|
3317
3356
|
{
|
|
3318
3357
|
description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.",
|
|
@@ -3363,10 +3402,10 @@ var taskData19 = {
|
|
|
3363
3402
|
summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.",
|
|
3364
3403
|
widgetModels: ["google/tapas-base-finetuned-wtq"]
|
|
3365
3404
|
};
|
|
3366
|
-
var
|
|
3405
|
+
var data_default20 = taskData20;
|
|
3367
3406
|
|
|
3368
3407
|
// src/tasks/tabular-classification/data.ts
|
|
3369
|
-
var
|
|
3408
|
+
var taskData21 = {
|
|
3370
3409
|
datasets: [
|
|
3371
3410
|
{
|
|
3372
3411
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -3430,10 +3469,10 @@ var taskData20 = {
|
|
|
3430
3469
|
widgetModels: ["scikit-learn/tabular-playground"],
|
|
3431
3470
|
youtubeId: ""
|
|
3432
3471
|
};
|
|
3433
|
-
var
|
|
3472
|
+
var data_default21 = taskData21;
|
|
3434
3473
|
|
|
3435
3474
|
// src/tasks/tabular-regression/data.ts
|
|
3436
|
-
var
|
|
3475
|
+
var taskData22 = {
|
|
3437
3476
|
datasets: [
|
|
3438
3477
|
{
|
|
3439
3478
|
description: "A comprehensive curation of datasets covering all benchmarks.",
|
|
@@ -3485,10 +3524,10 @@ var taskData21 = {
|
|
|
3485
3524
|
widgetModels: ["scikit-learn/Fish-Weight"],
|
|
3486
3525
|
youtubeId: ""
|
|
3487
3526
|
};
|
|
3488
|
-
var
|
|
3527
|
+
var data_default22 = taskData22;
|
|
3489
3528
|
|
|
3490
3529
|
// src/tasks/text-to-image/data.ts
|
|
3491
|
-
var
|
|
3530
|
+
var taskData23 = {
|
|
3492
3531
|
datasets: [
|
|
3493
3532
|
{
|
|
3494
3533
|
description: "RedCaps is a large-scale dataset of 12M image-text pairs collected from Reddit.",
|
|
@@ -3564,22 +3603,27 @@ var taskData22 = {
|
|
|
3564
3603
|
id: "latent-consistency/lcm-lora-for-sdxl"
|
|
3565
3604
|
},
|
|
3566
3605
|
{
|
|
3567
|
-
description: "A
|
|
3568
|
-
id: "
|
|
3606
|
+
description: "A gallery to explore various text-to-image models.",
|
|
3607
|
+
id: "multimodalart/LoraTheExplorer"
|
|
3569
3608
|
},
|
|
3570
3609
|
{
|
|
3571
3610
|
description: "An application for `text-to-image`, `image-to-image` and image inpainting.",
|
|
3572
3611
|
id: "ArtGAN/Stable-Diffusion-ControlNet-WebUI"
|
|
3612
|
+
},
|
|
3613
|
+
{
|
|
3614
|
+
description: "An application to generate realistic images given photos of a person and a prompt.",
|
|
3615
|
+
id: "InstantX/InstantID"
|
|
3573
3616
|
}
|
|
3574
3617
|
],
|
|
3575
3618
|
summary: "Generates images from input text. These models can be used to generate and modify images based on text prompts.",
|
|
3576
3619
|
widgetModels: ["CompVis/stable-diffusion-v1-4"],
|
|
3577
3620
|
youtubeId: ""
|
|
3578
3621
|
};
|
|
3579
|
-
var
|
|
3622
|
+
var data_default23 = taskData23;
|
|
3580
3623
|
|
|
3581
3624
|
// src/tasks/text-to-speech/data.ts
|
|
3582
|
-
var
|
|
3625
|
+
var taskData24 = {
|
|
3626
|
+
canonicalId: "text-to-audio",
|
|
3583
3627
|
datasets: [
|
|
3584
3628
|
{
|
|
3585
3629
|
description: "Thousands of short audio clips of a single speaker.",
|
|
@@ -3643,10 +3687,10 @@ var taskData23 = {
|
|
|
3643
3687
|
widgetModels: ["suno/bark"],
|
|
3644
3688
|
youtubeId: "NW62DpzJ274"
|
|
3645
3689
|
};
|
|
3646
|
-
var
|
|
3690
|
+
var data_default24 = taskData24;
|
|
3647
3691
|
|
|
3648
3692
|
// src/tasks/token-classification/data.ts
|
|
3649
|
-
var
|
|
3693
|
+
var taskData25 = {
|
|
3650
3694
|
datasets: [
|
|
3651
3695
|
{
|
|
3652
3696
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
@@ -3722,10 +3766,11 @@ var taskData24 = {
|
|
|
3722
3766
|
widgetModels: ["dslim/bert-base-NER"],
|
|
3723
3767
|
youtubeId: "wVHdVlPScxA"
|
|
3724
3768
|
};
|
|
3725
|
-
var
|
|
3769
|
+
var data_default25 = taskData25;
|
|
3726
3770
|
|
|
3727
3771
|
// src/tasks/translation/data.ts
|
|
3728
|
-
var
|
|
3772
|
+
var taskData26 = {
|
|
3773
|
+
canonicalId: "text2text-generation",
|
|
3729
3774
|
datasets: [
|
|
3730
3775
|
{
|
|
3731
3776
|
description: "A dataset of copyright-free books translated into 16 different languages.",
|
|
@@ -3786,10 +3831,10 @@ var taskData25 = {
|
|
|
3786
3831
|
widgetModels: ["t5-small"],
|
|
3787
3832
|
youtubeId: "1JvfrvZgi6c"
|
|
3788
3833
|
};
|
|
3789
|
-
var
|
|
3834
|
+
var data_default26 = taskData26;
|
|
3790
3835
|
|
|
3791
3836
|
// src/tasks/text-classification/data.ts
|
|
3792
|
-
var
|
|
3837
|
+
var taskData27 = {
|
|
3793
3838
|
datasets: [
|
|
3794
3839
|
{
|
|
3795
3840
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -3874,10 +3919,10 @@ var taskData26 = {
|
|
|
3874
3919
|
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3875
3920
|
youtubeId: "leNG9fN9FQU"
|
|
3876
3921
|
};
|
|
3877
|
-
var
|
|
3922
|
+
var data_default27 = taskData27;
|
|
3878
3923
|
|
|
3879
3924
|
// src/tasks/text-generation/data.ts
|
|
3880
|
-
var
|
|
3925
|
+
var taskData28 = {
|
|
3881
3926
|
datasets: [
|
|
3882
3927
|
{
|
|
3883
3928
|
description: "A large multilingual dataset of text crawled from the web.",
|
|
@@ -3888,12 +3933,12 @@ var taskData27 = {
|
|
|
3888
3933
|
id: "the_pile"
|
|
3889
3934
|
},
|
|
3890
3935
|
{
|
|
3891
|
-
description: "
|
|
3892
|
-
id: "
|
|
3936
|
+
description: "Truly open-source, curated and cleaned dialogue dataset.",
|
|
3937
|
+
id: "HuggingFaceH4/ultrachat_200k"
|
|
3893
3938
|
},
|
|
3894
3939
|
{
|
|
3895
|
-
description: "
|
|
3896
|
-
id: "
|
|
3940
|
+
description: "An instruction dataset with preference ratings on responses.",
|
|
3941
|
+
id: "openbmb/UltraFeedback"
|
|
3897
3942
|
}
|
|
3898
3943
|
],
|
|
3899
3944
|
demo: {
|
|
@@ -3932,72 +3977,56 @@ var taskData27 = {
|
|
|
3932
3977
|
id: "bigcode/starcoder"
|
|
3933
3978
|
},
|
|
3934
3979
|
{
|
|
3935
|
-
description: "A
|
|
3936
|
-
id: "
|
|
3937
|
-
},
|
|
3938
|
-
{
|
|
3939
|
-
description: "A model trained to follow instructions curated by community, uses Pythia-12b as base model.",
|
|
3940
|
-
id: "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
|
3941
|
-
},
|
|
3942
|
-
{
|
|
3943
|
-
description: "A large language model trained to generate text in English.",
|
|
3944
|
-
id: "stabilityai/stablelm-tuned-alpha-7b"
|
|
3945
|
-
},
|
|
3946
|
-
{
|
|
3947
|
-
description: "A model trained to follow instructions, based on mosaicml/mpt-7b.",
|
|
3948
|
-
id: "mosaicml/mpt-7b-instruct"
|
|
3980
|
+
description: "A very powerful text generation model.",
|
|
3981
|
+
id: "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
3949
3982
|
},
|
|
3950
3983
|
{
|
|
3951
|
-
description: "
|
|
3952
|
-
id: "
|
|
3984
|
+
description: "Small yet powerful text generation model.",
|
|
3985
|
+
id: "microsoft/phi-2"
|
|
3953
3986
|
},
|
|
3954
3987
|
{
|
|
3955
|
-
description: "A
|
|
3956
|
-
id: "
|
|
3988
|
+
description: "A very powerful model that can chat, do mathematical reasoning and write code.",
|
|
3989
|
+
id: "openchat/openchat-3.5-0106"
|
|
3957
3990
|
},
|
|
3958
3991
|
{
|
|
3959
|
-
description: "
|
|
3960
|
-
id: "
|
|
3992
|
+
description: "Very strong yet small assistant model.",
|
|
3993
|
+
id: "HuggingFaceH4/zephyr-7b-beta"
|
|
3961
3994
|
},
|
|
3962
3995
|
{
|
|
3963
|
-
description: "
|
|
3996
|
+
description: "Very strong open-source large language model.",
|
|
3964
3997
|
id: "meta-llama/Llama-2-70b-hf"
|
|
3965
3998
|
}
|
|
3966
3999
|
],
|
|
3967
4000
|
spaces: [
|
|
3968
4001
|
{
|
|
3969
|
-
description: "A
|
|
3970
|
-
id: "
|
|
4002
|
+
description: "A leaderboard to compare different open-source text generation models based on various benchmarks.",
|
|
4003
|
+
id: "HuggingFaceH4/open_llm_leaderboard"
|
|
3971
4004
|
},
|
|
3972
4005
|
{
|
|
3973
|
-
description: "An text generation based application
|
|
3974
|
-
id: "
|
|
4006
|
+
description: "An text generation based application based on a very powerful LLaMA2 model.",
|
|
4007
|
+
id: "ysharma/Explore_llamav2_with_TGI"
|
|
3975
4008
|
},
|
|
3976
4009
|
{
|
|
3977
|
-
description: "An text generation based application
|
|
3978
|
-
id: "
|
|
4010
|
+
description: "An text generation based application to converse with Zephyr model.",
|
|
4011
|
+
id: "HuggingFaceH4/zephyr-chat"
|
|
3979
4012
|
},
|
|
3980
4013
|
{
|
|
3981
4014
|
description: "An text generation application that combines OpenAI and Hugging Face models.",
|
|
3982
4015
|
id: "microsoft/HuggingGPT"
|
|
3983
4016
|
},
|
|
3984
4017
|
{
|
|
3985
|
-
description: "An
|
|
3986
|
-
id: "
|
|
3987
|
-
},
|
|
3988
|
-
{
|
|
3989
|
-
description: "An UI that uses StableLM-tuned-alpha-7b.",
|
|
3990
|
-
id: "togethercomputer/OpenChatKit"
|
|
4018
|
+
description: "An chatbot to converse with a very powerful text generation model.",
|
|
4019
|
+
id: "mlabonne/phixtral-chat"
|
|
3991
4020
|
}
|
|
3992
4021
|
],
|
|
3993
|
-
summary: "Generating text is the task of
|
|
4022
|
+
summary: "Generating text is the task of generating new text given another text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
3994
4023
|
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
3995
4024
|
youtubeId: "Vpjb1lu0MDk"
|
|
3996
4025
|
};
|
|
3997
|
-
var
|
|
4026
|
+
var data_default28 = taskData28;
|
|
3998
4027
|
|
|
3999
4028
|
// src/tasks/text-to-video/data.ts
|
|
4000
|
-
var
|
|
4029
|
+
var taskData29 = {
|
|
4001
4030
|
datasets: [
|
|
4002
4031
|
{
|
|
4003
4032
|
description: "Microsoft Research Video to Text is a large-scale dataset for open domain video captioning",
|
|
@@ -4089,10 +4118,10 @@ var taskData28 = {
|
|
|
4089
4118
|
widgetModels: [],
|
|
4090
4119
|
youtubeId: void 0
|
|
4091
4120
|
};
|
|
4092
|
-
var
|
|
4121
|
+
var data_default29 = taskData29;
|
|
4093
4122
|
|
|
4094
4123
|
// src/tasks/unconditional-image-generation/data.ts
|
|
4095
|
-
var
|
|
4124
|
+
var taskData30 = {
|
|
4096
4125
|
datasets: [
|
|
4097
4126
|
{
|
|
4098
4127
|
description: "The CIFAR-100 dataset consists of 60000 32x32 colour images in 100 classes, with 600 images per class.",
|
|
@@ -4154,10 +4183,10 @@ var taskData29 = {
|
|
|
4154
4183
|
// TODO: Add related video
|
|
4155
4184
|
youtubeId: ""
|
|
4156
4185
|
};
|
|
4157
|
-
var
|
|
4186
|
+
var data_default30 = taskData30;
|
|
4158
4187
|
|
|
4159
4188
|
// src/tasks/video-classification/data.ts
|
|
4160
|
-
var
|
|
4189
|
+
var taskData31 = {
|
|
4161
4190
|
datasets: [
|
|
4162
4191
|
{
|
|
4163
4192
|
// TODO write proper description
|
|
@@ -4236,10 +4265,10 @@ var taskData30 = {
|
|
|
4236
4265
|
widgetModels: [],
|
|
4237
4266
|
youtubeId: ""
|
|
4238
4267
|
};
|
|
4239
|
-
var
|
|
4268
|
+
var data_default31 = taskData31;
|
|
4240
4269
|
|
|
4241
4270
|
// src/tasks/visual-question-answering/data.ts
|
|
4242
|
-
var
|
|
4271
|
+
var taskData32 = {
|
|
4243
4272
|
datasets: [
|
|
4244
4273
|
{
|
|
4245
4274
|
description: "A widely used dataset containing questions (with answers) about images.",
|
|
@@ -4329,10 +4358,10 @@ var taskData31 = {
|
|
|
4329
4358
|
widgetModels: ["dandelin/vilt-b32-finetuned-vqa"],
|
|
4330
4359
|
youtubeId: ""
|
|
4331
4360
|
};
|
|
4332
|
-
var
|
|
4361
|
+
var data_default32 = taskData32;
|
|
4333
4362
|
|
|
4334
4363
|
// src/tasks/zero-shot-classification/data.ts
|
|
4335
|
-
var
|
|
4364
|
+
var taskData33 = {
|
|
4336
4365
|
datasets: [
|
|
4337
4366
|
{
|
|
4338
4367
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
@@ -4391,10 +4420,10 @@ var taskData32 = {
|
|
|
4391
4420
|
summary: "Zero-shot text classification is a task in natural language processing where a model is trained on a set of labeled examples but is then able to classify new examples from previously unseen classes.",
|
|
4392
4421
|
widgetModels: ["facebook/bart-large-mnli"]
|
|
4393
4422
|
};
|
|
4394
|
-
var
|
|
4423
|
+
var data_default33 = taskData33;
|
|
4395
4424
|
|
|
4396
4425
|
// src/tasks/zero-shot-image-classification/data.ts
|
|
4397
|
-
var
|
|
4426
|
+
var taskData34 = {
|
|
4398
4427
|
datasets: [
|
|
4399
4428
|
{
|
|
4400
4429
|
// TODO write proper description
|
|
@@ -4446,8 +4475,8 @@ var taskData33 = {
|
|
|
4446
4475
|
id: "openai/clip-vit-base-patch16"
|
|
4447
4476
|
},
|
|
4448
4477
|
{
|
|
4449
|
-
description: "
|
|
4450
|
-
id: "
|
|
4478
|
+
description: "Strong zero-shot image classification model.",
|
|
4479
|
+
id: "google/siglip-base-patch16-224"
|
|
4451
4480
|
},
|
|
4452
4481
|
{
|
|
4453
4482
|
description: "Strong image classification model for biomedical domain.",
|
|
@@ -4456,15 +4485,77 @@ var taskData33 = {
|
|
|
4456
4485
|
],
|
|
4457
4486
|
spaces: [
|
|
4458
4487
|
{
|
|
4459
|
-
description: "An application that leverages zero
|
|
4488
|
+
description: "An application that leverages zero-shot image classification to find best captions to generate an image. ",
|
|
4460
4489
|
id: "pharma/CLIP-Interrogator"
|
|
4490
|
+
},
|
|
4491
|
+
{
|
|
4492
|
+
description: "An application to compare different zero-shot image classification models. ",
|
|
4493
|
+
id: "merve/compare_clip_siglip"
|
|
4461
4494
|
}
|
|
4462
4495
|
],
|
|
4463
|
-
summary: "Zero
|
|
4496
|
+
summary: "Zero-shot image classification is the task of classifying previously unseen classes during training of a model.",
|
|
4464
4497
|
widgetModels: ["openai/clip-vit-large-patch14-336"],
|
|
4465
4498
|
youtubeId: ""
|
|
4466
4499
|
};
|
|
4467
|
-
var
|
|
4500
|
+
var data_default34 = taskData34;
|
|
4501
|
+
|
|
4502
|
+
// src/tasks/zero-shot-object-detection/data.ts
|
|
4503
|
+
var taskData35 = {
|
|
4504
|
+
datasets: [],
|
|
4505
|
+
demo: {
|
|
4506
|
+
inputs: [
|
|
4507
|
+
{
|
|
4508
|
+
filename: "zero-shot-object-detection-input.jpg",
|
|
4509
|
+
type: "img"
|
|
4510
|
+
},
|
|
4511
|
+
{
|
|
4512
|
+
label: "Classes",
|
|
4513
|
+
content: "cat, dog, bird",
|
|
4514
|
+
type: "text"
|
|
4515
|
+
}
|
|
4516
|
+
],
|
|
4517
|
+
outputs: [
|
|
4518
|
+
{
|
|
4519
|
+
filename: "zero-shot-object-detection-output.jpg",
|
|
4520
|
+
type: "img"
|
|
4521
|
+
}
|
|
4522
|
+
]
|
|
4523
|
+
},
|
|
4524
|
+
metrics: [
|
|
4525
|
+
{
|
|
4526
|
+
description: "The Average Precision (AP) metric is the Area Under the PR Curve (AUC-PR). It is calculated for each class separately",
|
|
4527
|
+
id: "Average Precision"
|
|
4528
|
+
},
|
|
4529
|
+
{
|
|
4530
|
+
description: "The Mean Average Precision (mAP) metric is the overall average of the AP values",
|
|
4531
|
+
id: "Mean Average Precision"
|
|
4532
|
+
},
|
|
4533
|
+
{
|
|
4534
|
+
description: "The AP\u03B1 metric is the Average Precision at the IoU threshold of a \u03B1 value, for example, AP50 and AP75",
|
|
4535
|
+
id: "AP\u03B1"
|
|
4536
|
+
}
|
|
4537
|
+
],
|
|
4538
|
+
models: [
|
|
4539
|
+
{
|
|
4540
|
+
description: "Solid zero-shot object detection model that uses CLIP as backbone.",
|
|
4541
|
+
id: "google/owlvit-base-patch32"
|
|
4542
|
+
},
|
|
4543
|
+
{
|
|
4544
|
+
description: "The improved version of the owlvit model.",
|
|
4545
|
+
id: "google/owlv2-base-patch16-ensemble"
|
|
4546
|
+
}
|
|
4547
|
+
],
|
|
4548
|
+
spaces: [
|
|
4549
|
+
{
|
|
4550
|
+
description: "A demo to try the state-of-the-art zero-shot object detection model, OWLv2.",
|
|
4551
|
+
id: "merve/owlv2"
|
|
4552
|
+
}
|
|
4553
|
+
],
|
|
4554
|
+
summary: "Zero-shot object detection is a computer vision task to detect objects and their classes in images, without any prior training or knowledge of the classes. Zero-shot object detection models receive an image as input, as well as a list of candidate classes, and output the bounding boxes and labels where the objects have been detected.",
|
|
4555
|
+
widgetModels: [],
|
|
4556
|
+
youtubeId: ""
|
|
4557
|
+
};
|
|
4558
|
+
var data_default35 = taskData35;
|
|
4468
4559
|
|
|
4469
4560
|
// src/tasks/index.ts
|
|
4470
4561
|
var TASKS_MODEL_LIBRARIES = {
|
|
@@ -4525,7 +4616,7 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
4525
4616
|
"text-to-3d": [],
|
|
4526
4617
|
"image-to-3d": []
|
|
4527
4618
|
};
|
|
4528
|
-
function getData(type, partialTaskData =
|
|
4619
|
+
function getData(type, partialTaskData = data_default15) {
|
|
4529
4620
|
return {
|
|
4530
4621
|
...partialTaskData,
|
|
4531
4622
|
id: type,
|
|
@@ -4538,7 +4629,7 @@ var TASKS_DATA = {
|
|
|
4538
4629
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
4539
4630
|
"automatic-speech-recognition": getData("automatic-speech-recognition", data_default3),
|
|
4540
4631
|
conversational: getData("conversational", data_default4),
|
|
4541
|
-
"depth-estimation": getData("depth-estimation",
|
|
4632
|
+
"depth-estimation": getData("depth-estimation", data_default14),
|
|
4542
4633
|
"document-question-answering": getData("document-question-answering", data_default5),
|
|
4543
4634
|
"feature-extraction": getData("feature-extraction", data_default6),
|
|
4544
4635
|
"fill-mask": getData("fill-mask", data_default7),
|
|
@@ -4548,45 +4639,45 @@ var TASKS_DATA = {
|
|
|
4548
4639
|
"image-to-image": getData("image-to-image", data_default9),
|
|
4549
4640
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4550
4641
|
"image-to-video": void 0,
|
|
4551
|
-
"mask-generation": getData("mask-generation",
|
|
4642
|
+
"mask-generation": getData("mask-generation", data_default12),
|
|
4552
4643
|
"multiple-choice": void 0,
|
|
4553
|
-
"object-detection": getData("object-detection",
|
|
4554
|
-
"video-classification": getData("video-classification",
|
|
4644
|
+
"object-detection": getData("object-detection", data_default13),
|
|
4645
|
+
"video-classification": getData("video-classification", data_default31),
|
|
4555
4646
|
other: void 0,
|
|
4556
|
-
"question-answering": getData("question-answering",
|
|
4557
|
-
"reinforcement-learning": getData("reinforcement-learning",
|
|
4647
|
+
"question-answering": getData("question-answering", data_default17),
|
|
4648
|
+
"reinforcement-learning": getData("reinforcement-learning", data_default16),
|
|
4558
4649
|
robotics: void 0,
|
|
4559
|
-
"sentence-similarity": getData("sentence-similarity",
|
|
4560
|
-
summarization: getData("summarization",
|
|
4561
|
-
"table-question-answering": getData("table-question-answering",
|
|
4650
|
+
"sentence-similarity": getData("sentence-similarity", data_default18),
|
|
4651
|
+
summarization: getData("summarization", data_default19),
|
|
4652
|
+
"table-question-answering": getData("table-question-answering", data_default20),
|
|
4562
4653
|
"table-to-text": void 0,
|
|
4563
|
-
"tabular-classification": getData("tabular-classification",
|
|
4564
|
-
"tabular-regression": getData("tabular-regression",
|
|
4654
|
+
"tabular-classification": getData("tabular-classification", data_default21),
|
|
4655
|
+
"tabular-regression": getData("tabular-regression", data_default22),
|
|
4565
4656
|
"tabular-to-text": void 0,
|
|
4566
|
-
"text-classification": getData("text-classification",
|
|
4567
|
-
"text-generation": getData("text-generation",
|
|
4657
|
+
"text-classification": getData("text-classification", data_default27),
|
|
4658
|
+
"text-generation": getData("text-generation", data_default28),
|
|
4568
4659
|
"text-retrieval": void 0,
|
|
4569
|
-
"text-to-image": getData("text-to-image",
|
|
4570
|
-
"text-to-speech": getData("text-to-speech",
|
|
4660
|
+
"text-to-image": getData("text-to-image", data_default23),
|
|
4661
|
+
"text-to-speech": getData("text-to-speech", data_default24),
|
|
4571
4662
|
"text-to-audio": void 0,
|
|
4572
|
-
"text-to-video": getData("text-to-video",
|
|
4663
|
+
"text-to-video": getData("text-to-video", data_default29),
|
|
4573
4664
|
"text2text-generation": void 0,
|
|
4574
4665
|
"time-series-forecasting": void 0,
|
|
4575
|
-
"token-classification": getData("token-classification",
|
|
4576
|
-
translation: getData("translation",
|
|
4577
|
-
"unconditional-image-generation": getData("unconditional-image-generation",
|
|
4578
|
-
"visual-question-answering": getData("visual-question-answering",
|
|
4666
|
+
"token-classification": getData("token-classification", data_default25),
|
|
4667
|
+
translation: getData("translation", data_default26),
|
|
4668
|
+
"unconditional-image-generation": getData("unconditional-image-generation", data_default30),
|
|
4669
|
+
"visual-question-answering": getData("visual-question-answering", data_default32),
|
|
4579
4670
|
"voice-activity-detection": void 0,
|
|
4580
|
-
"zero-shot-classification": getData("zero-shot-classification",
|
|
4581
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification",
|
|
4582
|
-
"zero-shot-object-detection": getData("zero-shot-object-detection",
|
|
4583
|
-
"text-to-3d": getData("text-to-3d",
|
|
4584
|
-
"image-to-3d": getData("image-to-3d",
|
|
4671
|
+
"zero-shot-classification": getData("zero-shot-classification", data_default33),
|
|
4672
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default34),
|
|
4673
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default35),
|
|
4674
|
+
"text-to-3d": getData("text-to-3d", data_default15),
|
|
4675
|
+
"image-to-3d": getData("image-to-3d", data_default15)
|
|
4585
4676
|
};
|
|
4586
4677
|
|
|
4587
4678
|
// src/model-libraries.ts
|
|
4588
4679
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
4589
|
-
ModelLibrary2["adapter-transformers"] = "
|
|
4680
|
+
ModelLibrary2["adapter-transformers"] = "Adapters";
|
|
4590
4681
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
4591
4682
|
ModelLibrary2["asteroid"] = "Asteroid";
|
|
4592
4683
|
ModelLibrary2["bertopic"] = "BERTopic";
|
|
@@ -4618,9 +4709,10 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
|
4618
4709
|
ModelLibrary2["stanza"] = "Stanza";
|
|
4619
4710
|
ModelLibrary2["fasttext"] = "fastText";
|
|
4620
4711
|
ModelLibrary2["stable-baselines3"] = "Stable-Baselines3";
|
|
4621
|
-
ModelLibrary2["ml-agents"] = "ML-Agents";
|
|
4712
|
+
ModelLibrary2["ml-agents"] = "Unity ML-Agents";
|
|
4622
4713
|
ModelLibrary2["pythae"] = "Pythae";
|
|
4623
4714
|
ModelLibrary2["mindspore"] = "MindSpore";
|
|
4715
|
+
ModelLibrary2["unity-sentis"] = "Unity Sentis";
|
|
4624
4716
|
return ModelLibrary2;
|
|
4625
4717
|
})(ModelLibrary || {});
|
|
4626
4718
|
var ALL_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary);
|
|
@@ -5100,8 +5192,7 @@ function getJsInferenceSnippet(model, accessToken) {
|
|
|
5100
5192
|
function hasJsInferenceSnippet(model) {
|
|
5101
5193
|
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
5102
5194
|
}
|
|
5103
|
-
|
|
5104
|
-
0 && (module.exports = {
|
|
5195
|
+
export {
|
|
5105
5196
|
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
5106
5197
|
InferenceDisplayability,
|
|
5107
5198
|
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
@@ -5116,5 +5207,5 @@ function hasJsInferenceSnippet(model) {
|
|
|
5116
5207
|
SUBTASK_TYPES,
|
|
5117
5208
|
TASKS_DATA,
|
|
5118
5209
|
TASKS_MODEL_LIBRARIES,
|
|
5119
|
-
snippets
|
|
5120
|
-
}
|
|
5210
|
+
snippets_exports as snippets
|
|
5211
|
+
};
|