@huggingface/tasks 0.12.1 → 0.12.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +120 -57
- package/dist/index.js +120 -57
- package/dist/src/model-libraries-snippets.d.ts +1 -0
- package/dist/src/model-libraries-snippets.d.ts.map +1 -1
- package/dist/src/model-libraries.d.ts +9 -2
- package/dist/src/model-libraries.d.ts.map +1 -1
- package/dist/src/tasks/audio-classification/data.d.ts.map +1 -1
- package/dist/src/tasks/audio-to-audio/data.d.ts.map +1 -1
- package/dist/src/tasks/automatic-speech-recognition/data.d.ts.map +1 -1
- package/dist/src/tasks/document-question-answering/data.d.ts.map +1 -1
- package/dist/src/tasks/question-answering/data.d.ts.map +1 -1
- package/dist/src/tasks/text-classification/data.d.ts.map +1 -1
- package/dist/src/tasks/text-to-speech/data.d.ts.map +1 -1
- package/dist/src/tasks/token-classification/data.d.ts.map +1 -1
- package/dist/src/tasks/translation/data.d.ts.map +1 -1
- package/dist/src/tasks/zero-shot-classification/data.d.ts.map +1 -1
- package/package.json +1 -1
- package/src/model-libraries-snippets.ts +9 -0
- package/src/model-libraries.ts +7 -0
- package/src/tasks/audio-classification/data.ts +8 -4
- package/src/tasks/audio-to-audio/data.ts +5 -1
- package/src/tasks/automatic-speech-recognition/data.ts +6 -2
- package/src/tasks/document-question-answering/data.ts +7 -3
- package/src/tasks/fill-mask/data.ts +3 -3
- package/src/tasks/image-segmentation/data.ts +1 -1
- package/src/tasks/image-to-image/data.ts +1 -1
- package/src/tasks/image-to-text/data.ts +1 -1
- package/src/tasks/question-answering/data.ts +5 -1
- package/src/tasks/sentence-similarity/data.ts +3 -3
- package/src/tasks/summarization/data.ts +2 -2
- package/src/tasks/text-classification/data.ts +18 -6
- package/src/tasks/text-generation/data.ts +3 -3
- package/src/tasks/text-to-image/data.ts +1 -1
- package/src/tasks/text-to-speech/data.ts +7 -3
- package/src/tasks/token-classification/data.ts +11 -3
- package/src/tasks/translation/data.ts +9 -8
- package/src/tasks/video-classification/data.ts +3 -3
- package/src/tasks/visual-question-answering/data.ts +2 -2
- package/src/tasks/zero-shot-classification/data.ts +8 -4
- package/src/tasks/zero-shot-image-classification/data.ts +2 -2
package/dist/index.js
CHANGED
|
@@ -1391,7 +1391,11 @@ var taskData = {
|
|
|
1391
1391
|
datasets: [
|
|
1392
1392
|
{
|
|
1393
1393
|
description: "A benchmark of 10 different audio tasks.",
|
|
1394
|
-
id: "superb"
|
|
1394
|
+
id: "s3prl/superb"
|
|
1395
|
+
},
|
|
1396
|
+
{
|
|
1397
|
+
description: "A dataset of YouTube clips and their sound categories.",
|
|
1398
|
+
id: "agkphysics/AudioSet"
|
|
1395
1399
|
}
|
|
1396
1400
|
],
|
|
1397
1401
|
demo: {
|
|
@@ -1437,11 +1441,11 @@ var taskData = {
|
|
|
1437
1441
|
],
|
|
1438
1442
|
models: [
|
|
1439
1443
|
{
|
|
1440
|
-
description: "An easy-to-use model for
|
|
1444
|
+
description: "An easy-to-use model for command recognition.",
|
|
1441
1445
|
id: "speechbrain/google_speech_command_xvector"
|
|
1442
1446
|
},
|
|
1443
1447
|
{
|
|
1444
|
-
description: "An
|
|
1448
|
+
description: "An emotion recognition model.",
|
|
1445
1449
|
id: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
|
1446
1450
|
},
|
|
1447
1451
|
{
|
|
@@ -1456,7 +1460,7 @@ var taskData = {
|
|
|
1456
1460
|
}
|
|
1457
1461
|
],
|
|
1458
1462
|
summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
|
|
1459
|
-
widgetModels: ["
|
|
1463
|
+
widgetModels: ["MIT/ast-finetuned-audioset-10-10-0.4593"],
|
|
1460
1464
|
youtubeId: "KWwzcmG98Ds"
|
|
1461
1465
|
};
|
|
1462
1466
|
var data_default = taskData;
|
|
@@ -1504,7 +1508,11 @@ var taskData2 = {
|
|
|
1504
1508
|
},
|
|
1505
1509
|
{
|
|
1506
1510
|
description: "A speech enhancement model.",
|
|
1507
|
-
id: "
|
|
1511
|
+
id: "ResembleAI/resemble-enhance"
|
|
1512
|
+
},
|
|
1513
|
+
{
|
|
1514
|
+
description: "A model that can change the voice in a speech recording.",
|
|
1515
|
+
id: "microsoft/speecht5_vc"
|
|
1508
1516
|
}
|
|
1509
1517
|
],
|
|
1510
1518
|
spaces: [
|
|
@@ -1531,8 +1539,8 @@ var taskData3 = {
|
|
|
1531
1539
|
id: "mozilla-foundation/common_voice_17_0"
|
|
1532
1540
|
},
|
|
1533
1541
|
{
|
|
1534
|
-
description: "
|
|
1535
|
-
id: "
|
|
1542
|
+
description: "A dataset with 44.6k hours of English speaker data and 6k hours of other language speakers.",
|
|
1543
|
+
id: "parler-tts/mls_eng"
|
|
1536
1544
|
},
|
|
1537
1545
|
{
|
|
1538
1546
|
description: "A multi-lingual audio dataset with 370K hours of audio.",
|
|
@@ -1577,6 +1585,10 @@ var taskData3 = {
|
|
|
1577
1585
|
{
|
|
1578
1586
|
description: "An end-to-end model that performs ASR and Speech Translation by MetaAI.",
|
|
1579
1587
|
id: "facebook/seamless-m4t-v2-large"
|
|
1588
|
+
},
|
|
1589
|
+
{
|
|
1590
|
+
description: "Powerful speaker diarization model.",
|
|
1591
|
+
id: "pyannote/speaker-diarization-3.1"
|
|
1580
1592
|
}
|
|
1581
1593
|
],
|
|
1582
1594
|
spaces: [
|
|
@@ -1643,11 +1655,15 @@ var taskData4 = {
|
|
|
1643
1655
|
],
|
|
1644
1656
|
models: [
|
|
1645
1657
|
{
|
|
1646
|
-
description: "A
|
|
1658
|
+
description: "A robust document question answering model.",
|
|
1647
1659
|
id: "impira/layoutlm-document-qa"
|
|
1648
1660
|
},
|
|
1649
1661
|
{
|
|
1650
|
-
description: "A
|
|
1662
|
+
description: "A document question answering model specialized in invoices.",
|
|
1663
|
+
id: "impira/layoutlm-invoices"
|
|
1664
|
+
},
|
|
1665
|
+
{
|
|
1666
|
+
description: "A special model for OCR-free document question answering.",
|
|
1651
1667
|
id: "microsoft/udop-large"
|
|
1652
1668
|
},
|
|
1653
1669
|
{
|
|
@@ -1670,7 +1686,7 @@ var taskData4 = {
|
|
|
1670
1686
|
}
|
|
1671
1687
|
],
|
|
1672
1688
|
summary: "Document Question Answering (also known as Document Visual Question Answering) is the task of answering questions on document images. Document question answering models take a (document, question) pair as input and return an answer in natural language. Models usually rely on multi-modal features, combining text, position of words (bounding-boxes) and image.",
|
|
1673
|
-
widgetModels: ["impira/layoutlm-
|
|
1689
|
+
widgetModels: ["impira/layoutlm-invoices"],
|
|
1674
1690
|
youtubeId: ""
|
|
1675
1691
|
};
|
|
1676
1692
|
var data_default4 = taskData4;
|
|
@@ -1790,12 +1806,12 @@ var taskData6 = {
|
|
|
1790
1806
|
],
|
|
1791
1807
|
models: [
|
|
1792
1808
|
{
|
|
1793
|
-
description: "
|
|
1794
|
-
id: "
|
|
1809
|
+
description: "The famous BERT model.",
|
|
1810
|
+
id: "google-bert/bert-base-uncased"
|
|
1795
1811
|
},
|
|
1796
1812
|
{
|
|
1797
1813
|
description: "A multilingual model trained on 100 languages.",
|
|
1798
|
-
id: "xlm-roberta-base"
|
|
1814
|
+
id: "FacebookAI/xlm-roberta-base"
|
|
1799
1815
|
}
|
|
1800
1816
|
],
|
|
1801
1817
|
spaces: [],
|
|
@@ -2038,7 +2054,7 @@ var taskData9 = {
|
|
|
2038
2054
|
}
|
|
2039
2055
|
],
|
|
2040
2056
|
summary: "Image-to-image is the task of transforming an input image through a variety of possible manipulations and enhancements, such as super-resolution, image inpainting, colorization, and more.",
|
|
2041
|
-
widgetModels: ["
|
|
2057
|
+
widgetModels: ["stabilityai/stable-diffusion-2-inpainting"],
|
|
2042
2058
|
youtubeId: ""
|
|
2043
2059
|
};
|
|
2044
2060
|
var data_default9 = taskData9;
|
|
@@ -2118,7 +2134,7 @@ var taskData10 = {
|
|
|
2118
2134
|
}
|
|
2119
2135
|
],
|
|
2120
2136
|
summary: "Image to text models output a text from a given image. Image captioning or optical character recognition can be considered as the most common applications of image to text.",
|
|
2121
|
-
widgetModels: ["Salesforce/blip-image-captioning-
|
|
2137
|
+
widgetModels: ["Salesforce/blip-image-captioning-large"],
|
|
2122
2138
|
youtubeId: ""
|
|
2123
2139
|
};
|
|
2124
2140
|
var data_default10 = taskData10;
|
|
@@ -2304,7 +2320,7 @@ var taskData12 = {
|
|
|
2304
2320
|
}
|
|
2305
2321
|
],
|
|
2306
2322
|
summary: "Image Segmentation divides an image into segments where each pixel in the image is mapped to an object. This task has multiple variants such as instance segmentation, panoptic segmentation and semantic segmentation.",
|
|
2307
|
-
widgetModels: ["
|
|
2323
|
+
widgetModels: ["nvidia/segformer-b0-finetuned-ade-512-512"],
|
|
2308
2324
|
youtubeId: "dKE8SIt9C-w"
|
|
2309
2325
|
};
|
|
2310
2326
|
var data_default12 = taskData12;
|
|
@@ -2644,7 +2660,11 @@ var taskData18 = {
|
|
|
2644
2660
|
id: "deepset/roberta-base-squad2"
|
|
2645
2661
|
},
|
|
2646
2662
|
{
|
|
2647
|
-
description: "
|
|
2663
|
+
description: "Small yet robust model that can answer questions.",
|
|
2664
|
+
id: "distilbert/distilbert-base-cased-distilled-squad"
|
|
2665
|
+
},
|
|
2666
|
+
{
|
|
2667
|
+
description: "A special model that can answer questions from tables.",
|
|
2648
2668
|
id: "google/tapas-base-finetuned-wtq"
|
|
2649
2669
|
}
|
|
2650
2670
|
],
|
|
@@ -2727,8 +2747,8 @@ var taskData19 = {
|
|
|
2727
2747
|
id: "sentence-transformers/all-mpnet-base-v2"
|
|
2728
2748
|
},
|
|
2729
2749
|
{
|
|
2730
|
-
description: "A multilingual
|
|
2731
|
-
id: "
|
|
2750
|
+
description: "A multilingual robust sentence similarity model..",
|
|
2751
|
+
id: "BAAI/bge-m3"
|
|
2732
2752
|
}
|
|
2733
2753
|
],
|
|
2734
2754
|
spaces: [
|
|
@@ -2750,7 +2770,7 @@ var taskData19 = {
|
|
|
2750
2770
|
}
|
|
2751
2771
|
],
|
|
2752
2772
|
summary: "Sentence Similarity is the task of determining how similar two texts are. Sentence similarity models convert input texts into vectors (embeddings) that capture semantic information and calculate how close (similar) they are between them. This task is particularly useful for information retrieval and clustering/grouping.",
|
|
2753
|
-
widgetModels: ["
|
|
2773
|
+
widgetModels: ["BAAI/bge-small-en-v1.5"],
|
|
2754
2774
|
youtubeId: "VCZq5AkbNEU"
|
|
2755
2775
|
};
|
|
2756
2776
|
var data_default19 = taskData19;
|
|
@@ -2797,7 +2817,7 @@ var taskData20 = {
|
|
|
2797
2817
|
},
|
|
2798
2818
|
{
|
|
2799
2819
|
description: "A summarization model trained on medical articles.",
|
|
2800
|
-
id: "
|
|
2820
|
+
id: "Falconsai/medical_summarization"
|
|
2801
2821
|
}
|
|
2802
2822
|
],
|
|
2803
2823
|
spaces: [
|
|
@@ -2819,7 +2839,7 @@ var taskData20 = {
|
|
|
2819
2839
|
}
|
|
2820
2840
|
],
|
|
2821
2841
|
summary: "Summarization is the task of producing a shorter version of a document while preserving its important information. Some models can extract text from the original input, while other models can generate entirely new text.",
|
|
2822
|
-
widgetModels: ["
|
|
2842
|
+
widgetModels: ["facebook/bart-large-cnn"],
|
|
2823
2843
|
youtubeId: "yHnr5Dk2zCI"
|
|
2824
2844
|
};
|
|
2825
2845
|
var data_default20 = taskData20;
|
|
@@ -3090,7 +3110,7 @@ var taskData24 = {
|
|
|
3090
3110
|
}
|
|
3091
3111
|
],
|
|
3092
3112
|
summary: "Generates images from input text. These models can be used to generate and modify images based on text prompts.",
|
|
3093
|
-
widgetModels: ["
|
|
3113
|
+
widgetModels: ["black-forest-labs/FLUX.1-dev"],
|
|
3094
3114
|
youtubeId: ""
|
|
3095
3115
|
};
|
|
3096
3116
|
var data_default24 = taskData24;
|
|
@@ -3105,7 +3125,7 @@ var taskData25 = {
|
|
|
3105
3125
|
},
|
|
3106
3126
|
{
|
|
3107
3127
|
description: "Multi-speaker English dataset.",
|
|
3108
|
-
id: "
|
|
3128
|
+
id: "mythicinfinity/libritts_r"
|
|
3109
3129
|
}
|
|
3110
3130
|
],
|
|
3111
3131
|
demo: {
|
|
@@ -3132,11 +3152,15 @@ var taskData25 = {
|
|
|
3132
3152
|
models: [
|
|
3133
3153
|
{
|
|
3134
3154
|
description: "A powerful TTS model.",
|
|
3135
|
-
id: "
|
|
3155
|
+
id: "parler-tts/parler-tts-large-v1"
|
|
3136
3156
|
},
|
|
3137
3157
|
{
|
|
3138
3158
|
description: "A massively multi-lingual TTS model.",
|
|
3139
|
-
id: "
|
|
3159
|
+
id: "coqui/XTTS-v2"
|
|
3160
|
+
},
|
|
3161
|
+
{
|
|
3162
|
+
description: "Robust TTS model.",
|
|
3163
|
+
id: "metavoiceio/metavoice-1B-v0.1"
|
|
3140
3164
|
},
|
|
3141
3165
|
{
|
|
3142
3166
|
description: "A prompt based, powerful TTS model.",
|
|
@@ -3168,11 +3192,11 @@ var taskData26 = {
|
|
|
3168
3192
|
datasets: [
|
|
3169
3193
|
{
|
|
3170
3194
|
description: "A widely used dataset useful to benchmark named entity recognition models.",
|
|
3171
|
-
id: "conll2003"
|
|
3195
|
+
id: "eriktks/conll2003"
|
|
3172
3196
|
},
|
|
3173
3197
|
{
|
|
3174
3198
|
description: "A multilingual dataset of Wikipedia articles annotated for named entity recognition in over 150 different languages.",
|
|
3175
|
-
id: "wikiann"
|
|
3199
|
+
id: "unimelb-nlp/wikiann"
|
|
3176
3200
|
}
|
|
3177
3201
|
],
|
|
3178
3202
|
demo: {
|
|
@@ -3225,6 +3249,14 @@ var taskData26 = {
|
|
|
3225
3249
|
description: "A robust performance model to identify people, locations, organizations and names of miscellaneous entities.",
|
|
3226
3250
|
id: "dslim/bert-base-NER"
|
|
3227
3251
|
},
|
|
3252
|
+
{
|
|
3253
|
+
description: "A strong model to identify people, locations, organizations and names in multiple languages.",
|
|
3254
|
+
id: "FacebookAI/xlm-roberta-large-finetuned-conll03-english"
|
|
3255
|
+
},
|
|
3256
|
+
{
|
|
3257
|
+
description: "A token classification model specialized on medical entity recognition.",
|
|
3258
|
+
id: "blaze999/Medical-NER"
|
|
3259
|
+
},
|
|
3228
3260
|
{
|
|
3229
3261
|
description: "Flair models are typically the state of the art in named entity recognition tasks.",
|
|
3230
3262
|
id: "flair/ner-english"
|
|
@@ -3237,7 +3269,7 @@ var taskData26 = {
|
|
|
3237
3269
|
}
|
|
3238
3270
|
],
|
|
3239
3271
|
summary: "Token classification is a natural language understanding task in which a label is assigned to some tokens in a text. Some popular token classification subtasks are Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. NER models could be trained to identify specific entities in a text, such as dates, individuals and places; and PoS tagging would identify, for example, which words in a text are verbs, nouns, and punctuation marks.",
|
|
3240
|
-
widgetModels: ["
|
|
3272
|
+
widgetModels: ["FacebookAI/xlm-roberta-large-finetuned-conll03-english"],
|
|
3241
3273
|
youtubeId: "wVHdVlPScxA"
|
|
3242
3274
|
};
|
|
3243
3275
|
var data_default26 = taskData26;
|
|
@@ -3248,11 +3280,11 @@ var taskData27 = {
|
|
|
3248
3280
|
datasets: [
|
|
3249
3281
|
{
|
|
3250
3282
|
description: "A dataset of copyright-free books translated into 16 different languages.",
|
|
3251
|
-
id: "opus_books"
|
|
3283
|
+
id: "Helsinki-NLP/opus_books"
|
|
3252
3284
|
},
|
|
3253
3285
|
{
|
|
3254
3286
|
description: "An example of translation between programming languages. This dataset consists of functions in Java and C#.",
|
|
3255
|
-
id: "code_x_glue_cc_code_to_code_trans"
|
|
3287
|
+
id: "google/code_x_glue_cc_code_to_code_trans"
|
|
3256
3288
|
}
|
|
3257
3289
|
],
|
|
3258
3290
|
demo: {
|
|
@@ -3283,12 +3315,12 @@ var taskData27 = {
|
|
|
3283
3315
|
],
|
|
3284
3316
|
models: [
|
|
3285
3317
|
{
|
|
3286
|
-
description: "
|
|
3287
|
-
id: "
|
|
3318
|
+
description: "Very powerful model that can translate many languages between each other, especially low-resource languages.",
|
|
3319
|
+
id: "facebook/nllb-200-1.3B"
|
|
3288
3320
|
},
|
|
3289
3321
|
{
|
|
3290
3322
|
description: "A general-purpose Transformer that can be used to translate from English to German, French, or Romanian.",
|
|
3291
|
-
id: "t5-base"
|
|
3323
|
+
id: "google-t5/t5-base"
|
|
3292
3324
|
}
|
|
3293
3325
|
],
|
|
3294
3326
|
spaces: [
|
|
@@ -3297,12 +3329,12 @@ var taskData27 = {
|
|
|
3297
3329
|
id: "Iker/Translate-100-languages"
|
|
3298
3330
|
},
|
|
3299
3331
|
{
|
|
3300
|
-
description: "An application that can translate between
|
|
3301
|
-
id: "
|
|
3332
|
+
description: "An application that can translate between many languages.",
|
|
3333
|
+
id: "Geonmo/nllb-translation-demo"
|
|
3302
3334
|
}
|
|
3303
3335
|
],
|
|
3304
3336
|
summary: "Translation is the task of converting text from one language to another.",
|
|
3305
|
-
widgetModels: ["
|
|
3337
|
+
widgetModels: ["facebook/mbart-large-50-many-to-many-mmt"],
|
|
3306
3338
|
youtubeId: "1JvfrvZgi6c"
|
|
3307
3339
|
};
|
|
3308
3340
|
var data_default27 = taskData27;
|
|
@@ -3312,11 +3344,11 @@ var taskData28 = {
|
|
|
3312
3344
|
datasets: [
|
|
3313
3345
|
{
|
|
3314
3346
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
3315
|
-
id: "glue"
|
|
3347
|
+
id: "nyu-mll/glue"
|
|
3316
3348
|
},
|
|
3317
3349
|
{
|
|
3318
3350
|
description: "A text classification dataset used to benchmark natural language inference models",
|
|
3319
|
-
id: "snli"
|
|
3351
|
+
id: "stanfordnlp/snli"
|
|
3320
3352
|
}
|
|
3321
3353
|
],
|
|
3322
3354
|
demo: {
|
|
@@ -3368,11 +3400,23 @@ var taskData28 = {
|
|
|
3368
3400
|
models: [
|
|
3369
3401
|
{
|
|
3370
3402
|
description: "A robust model trained for sentiment analysis.",
|
|
3371
|
-
id: "distilbert-base-uncased-finetuned-sst-2-english"
|
|
3403
|
+
id: "distilbert/distilbert-base-uncased-finetuned-sst-2-english"
|
|
3404
|
+
},
|
|
3405
|
+
{
|
|
3406
|
+
description: "A sentiment analysis model specialized in financial sentiment.",
|
|
3407
|
+
id: "ProsusAI/finbert"
|
|
3408
|
+
},
|
|
3409
|
+
{
|
|
3410
|
+
description: "A sentiment analysis model specialized in analyzing tweets.",
|
|
3411
|
+
id: "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
3412
|
+
},
|
|
3413
|
+
{
|
|
3414
|
+
description: "A model that can classify languages.",
|
|
3415
|
+
id: "papluca/xlm-roberta-base-language-detection"
|
|
3372
3416
|
},
|
|
3373
3417
|
{
|
|
3374
|
-
description: "
|
|
3375
|
-
id: "
|
|
3418
|
+
description: "A model that can classify text generation attacks.",
|
|
3419
|
+
id: "meta-llama/Prompt-Guard-86M"
|
|
3376
3420
|
}
|
|
3377
3421
|
],
|
|
3378
3422
|
spaces: [
|
|
@@ -3390,7 +3434,7 @@ var taskData28 = {
|
|
|
3390
3434
|
}
|
|
3391
3435
|
],
|
|
3392
3436
|
summary: "Text Classification is the task of assigning a label or class to a given text. Some use cases are sentiment analysis, natural language inference, and assessing grammatical correctness.",
|
|
3393
|
-
widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3437
|
+
widgetModels: ["distilbert/distilbert-base-uncased-finetuned-sst-2-english"],
|
|
3394
3438
|
youtubeId: "leNG9fN9FQU"
|
|
3395
3439
|
};
|
|
3396
3440
|
var data_default28 = taskData28;
|
|
@@ -3489,8 +3533,8 @@ var taskData29 = {
|
|
|
3489
3533
|
id: "HuggingFaceH4/zephyr-chat"
|
|
3490
3534
|
},
|
|
3491
3535
|
{
|
|
3492
|
-
description: "
|
|
3493
|
-
id: "
|
|
3536
|
+
description: "A leaderboard that ranks text generation models based on blind votes from people.",
|
|
3537
|
+
id: "lmsys/chatbot-arena-leaderboard"
|
|
3494
3538
|
},
|
|
3495
3539
|
{
|
|
3496
3540
|
description: "An chatbot to converse with a very powerful text generation model.",
|
|
@@ -3498,7 +3542,7 @@ var taskData29 = {
|
|
|
3498
3542
|
}
|
|
3499
3543
|
],
|
|
3500
3544
|
summary: "Generating text is the task of generating new text given another text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
3501
|
-
widgetModels: ["
|
|
3545
|
+
widgetModels: ["mistralai/Mistral-Nemo-Instruct-2407"],
|
|
3502
3546
|
youtubeId: "e9gNEAlsOvU"
|
|
3503
3547
|
};
|
|
3504
3548
|
var data_default29 = taskData29;
|
|
@@ -3720,12 +3764,12 @@ var taskData32 = {
|
|
|
3720
3764
|
models: [
|
|
3721
3765
|
{
|
|
3722
3766
|
// TO DO: write description
|
|
3723
|
-
description: "Strong Video Classification model trained on the
|
|
3724
|
-
id: "
|
|
3767
|
+
description: "Strong Video Classification model trained on the Kinetics 400 dataset.",
|
|
3768
|
+
id: "google/vivit-b-16x2-kinetics400"
|
|
3725
3769
|
},
|
|
3726
3770
|
{
|
|
3727
3771
|
// TO DO: write description
|
|
3728
|
-
description: "Strong Video Classification model trained on the
|
|
3772
|
+
description: "Strong Video Classification model trained on the Kinetics 400 dataset.",
|
|
3729
3773
|
id: "microsoft/xclip-base-patch32"
|
|
3730
3774
|
}
|
|
3731
3775
|
],
|
|
@@ -3754,7 +3798,7 @@ var taskData33 = {
|
|
|
3754
3798
|
},
|
|
3755
3799
|
{
|
|
3756
3800
|
description: "A dataset to benchmark visual reasoning based on text in images.",
|
|
3757
|
-
id: "textvqa"
|
|
3801
|
+
id: "facebook/textvqa"
|
|
3758
3802
|
}
|
|
3759
3803
|
],
|
|
3760
3804
|
demo: {
|
|
@@ -3807,7 +3851,7 @@ var taskData33 = {
|
|
|
3807
3851
|
},
|
|
3808
3852
|
{
|
|
3809
3853
|
description: "A visual question answering model trained for mathematical reasoning and chart derendering from images.",
|
|
3810
|
-
id: "google/matcha-base
|
|
3854
|
+
id: "google/matcha-base"
|
|
3811
3855
|
},
|
|
3812
3856
|
{
|
|
3813
3857
|
description: "A strong visual question answering that answers questions from book covers.",
|
|
@@ -3843,15 +3887,15 @@ var taskData34 = {
|
|
|
3843
3887
|
datasets: [
|
|
3844
3888
|
{
|
|
3845
3889
|
description: "A widely used dataset used to benchmark multiple variants of text classification.",
|
|
3846
|
-
id: "glue"
|
|
3890
|
+
id: "nyu-mll/glue"
|
|
3847
3891
|
},
|
|
3848
3892
|
{
|
|
3849
3893
|
description: "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information.",
|
|
3850
|
-
id: "
|
|
3894
|
+
id: "nyu-mll/multi_nli"
|
|
3851
3895
|
},
|
|
3852
3896
|
{
|
|
3853
3897
|
description: "FEVER is a publicly available dataset for fact extraction and verification against textual sources.",
|
|
3854
|
-
id: "
|
|
3898
|
+
id: "fever/fever"
|
|
3855
3899
|
}
|
|
3856
3900
|
],
|
|
3857
3901
|
demo: {
|
|
@@ -3890,8 +3934,12 @@ var taskData34 = {
|
|
|
3890
3934
|
metrics: [],
|
|
3891
3935
|
models: [
|
|
3892
3936
|
{
|
|
3893
|
-
description: "Powerful zero-shot text classification model",
|
|
3937
|
+
description: "Powerful zero-shot text classification model.",
|
|
3894
3938
|
id: "facebook/bart-large-mnli"
|
|
3939
|
+
},
|
|
3940
|
+
{
|
|
3941
|
+
description: "Powerful zero-shot multilingual text classification model that can accomplish multiple tasks.",
|
|
3942
|
+
id: "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
|
|
3895
3943
|
}
|
|
3896
3944
|
],
|
|
3897
3945
|
spaces: [],
|
|
@@ -3954,7 +4002,7 @@ var taskData35 = {
|
|
|
3954
4002
|
},
|
|
3955
4003
|
{
|
|
3956
4004
|
description: "Strong zero-shot image classification model.",
|
|
3957
|
-
id: "google/siglip-
|
|
4005
|
+
id: "google/siglip-so400m-patch14-224"
|
|
3958
4006
|
},
|
|
3959
4007
|
{
|
|
3960
4008
|
description: "Small yet powerful zero-shot image classification model that can run on edge devices.",
|
|
@@ -3976,7 +4024,7 @@ var taskData35 = {
|
|
|
3976
4024
|
}
|
|
3977
4025
|
],
|
|
3978
4026
|
summary: "Zero-shot image classification is the task of classifying previously unseen classes during training of a model.",
|
|
3979
|
-
widgetModels: ["
|
|
4027
|
+
widgetModels: ["google/siglip-so400m-patch14-224"],
|
|
3980
4028
|
youtubeId: ""
|
|
3981
4029
|
};
|
|
3982
4030
|
var data_default35 = taskData35;
|
|
@@ -5090,6 +5138,14 @@ wavs = chat.infer(texts, )
|
|
|
5090
5138
|
|
|
5091
5139
|
torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)`
|
|
5092
5140
|
];
|
|
5141
|
+
var yolov10 = (model) => [
|
|
5142
|
+
`from ultralytics import YOLOv10
|
|
5143
|
+
|
|
5144
|
+
model = YOLOv10.from_pretrained("${model.id}")
|
|
5145
|
+
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
5146
|
+
model.predict(source=source, save=True)
|
|
5147
|
+
`
|
|
5148
|
+
];
|
|
5093
5149
|
var birefnet = (model) => [
|
|
5094
5150
|
`# Option 1: use with transformers
|
|
5095
5151
|
|
|
@@ -5776,6 +5832,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
5776
5832
|
docsUrl: "https://github.com/jasonppy/VoiceCraft",
|
|
5777
5833
|
snippets: voicecraft
|
|
5778
5834
|
},
|
|
5835
|
+
yolov10: {
|
|
5836
|
+
prettyLabel: "YOLOv10",
|
|
5837
|
+
repoName: "yolov10",
|
|
5838
|
+
repoUrl: "https://github.com/THU-MIG/yolov10",
|
|
5839
|
+
docsUrl: "https://github.com/THU-MIG/yolov10",
|
|
5840
|
+
snippets: yolov10
|
|
5841
|
+
},
|
|
5779
5842
|
whisperkit: {
|
|
5780
5843
|
prettyLabel: "WhisperKit",
|
|
5781
5844
|
repoName: "WhisperKit",
|
|
@@ -53,6 +53,7 @@ export declare const mlAgents: (model: ModelData) => string[];
|
|
|
53
53
|
export declare const sentis: () => string[];
|
|
54
54
|
export declare const voicecraft: (model: ModelData) => string[];
|
|
55
55
|
export declare const chattts: () => string[];
|
|
56
|
+
export declare const yolov10: (model: ModelData) => string[];
|
|
56
57
|
export declare const birefnet: (model: ModelData) => string[];
|
|
57
58
|
export declare const mlx: (model: ModelData) => string[];
|
|
58
59
|
export declare const mlxim: (model: ModelData) => string[];
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAwCrD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAmBrD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAEF,eAAO,MAAM,OAAO,QAA6B,MAAM,EAQtD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAanC,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EA2B7C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAYjD,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
|
|
1
|
+
{"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAwCrD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAmBrD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAEF,eAAO,MAAM,OAAO,QAA6B,MAAM,EAQtD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAanC,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EA2B7C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAOhD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAYjD,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
|
|
@@ -651,6 +651,13 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
651
651
|
docsUrl: string;
|
|
652
652
|
snippets: (model: ModelData) => string[];
|
|
653
653
|
};
|
|
654
|
+
yolov10: {
|
|
655
|
+
prettyLabel: string;
|
|
656
|
+
repoName: string;
|
|
657
|
+
repoUrl: string;
|
|
658
|
+
docsUrl: string;
|
|
659
|
+
snippets: (model: ModelData) => string[];
|
|
660
|
+
};
|
|
654
661
|
whisperkit: {
|
|
655
662
|
prettyLabel: string;
|
|
656
663
|
repoName: string;
|
|
@@ -661,6 +668,6 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
661
668
|
};
|
|
662
669
|
};
|
|
663
670
|
export type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
|
|
664
|
-
export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
665
|
-
export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
671
|
+
export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "yolov10" | "whisperkit")[];
|
|
672
|
+
export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "yolov10" | "whisperkit")[];
|
|
666
673
|
//# sourceMappingURL=model-libraries.d.ts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B
|
|
1
|
+
{"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAumBI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,wnCAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,wnCAQ1B,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA4Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-to-audio/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-to-audio/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/automatic-speech-recognition/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/automatic-speech-recognition/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA6Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAgFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAsEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAkGf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-speech/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-speech/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAqEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/token-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/token-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAuFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/translation/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/translation/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/zero-shot-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/zero-shot-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
package/package.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@huggingface/tasks",
|
|
3
3
|
"packageManager": "pnpm@8.10.5",
|
|
4
|
-
"version": "0.12.
|
|
4
|
+
"version": "0.12.2",
|
|
5
5
|
"description": "List of ML tasks for huggingface.co/tasks",
|
|
6
6
|
"repository": "https://github.com/huggingface/huggingface.js.git",
|
|
7
7
|
"publishConfig": {
|
|
@@ -891,6 +891,15 @@ wavs = chat.infer(texts, )
|
|
|
891
891
|
torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)`,
|
|
892
892
|
];
|
|
893
893
|
|
|
894
|
+
export const yolov10 = (model: ModelData): string[] => [
|
|
895
|
+
`from ultralytics import YOLOv10
|
|
896
|
+
|
|
897
|
+
model = YOLOv10.from_pretrained("${model.id}")
|
|
898
|
+
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
899
|
+
model.predict(source=source, save=True)
|
|
900
|
+
`,
|
|
901
|
+
];
|
|
902
|
+
|
|
894
903
|
export const birefnet = (model: ModelData): string[] => [
|
|
895
904
|
`# Option 1: use with transformers
|
|
896
905
|
|