@huggingface/tasks 0.12.1 → 0.12.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. package/dist/index.cjs +120 -57
  2. package/dist/index.js +120 -57
  3. package/dist/src/model-libraries-snippets.d.ts +1 -0
  4. package/dist/src/model-libraries-snippets.d.ts.map +1 -1
  5. package/dist/src/model-libraries.d.ts +9 -2
  6. package/dist/src/model-libraries.d.ts.map +1 -1
  7. package/dist/src/tasks/audio-classification/data.d.ts.map +1 -1
  8. package/dist/src/tasks/audio-to-audio/data.d.ts.map +1 -1
  9. package/dist/src/tasks/automatic-speech-recognition/data.d.ts.map +1 -1
  10. package/dist/src/tasks/document-question-answering/data.d.ts.map +1 -1
  11. package/dist/src/tasks/question-answering/data.d.ts.map +1 -1
  12. package/dist/src/tasks/text-classification/data.d.ts.map +1 -1
  13. package/dist/src/tasks/text-to-speech/data.d.ts.map +1 -1
  14. package/dist/src/tasks/token-classification/data.d.ts.map +1 -1
  15. package/dist/src/tasks/translation/data.d.ts.map +1 -1
  16. package/dist/src/tasks/zero-shot-classification/data.d.ts.map +1 -1
  17. package/package.json +1 -1
  18. package/src/model-libraries-snippets.ts +9 -0
  19. package/src/model-libraries.ts +7 -0
  20. package/src/tasks/audio-classification/data.ts +8 -4
  21. package/src/tasks/audio-to-audio/data.ts +5 -1
  22. package/src/tasks/automatic-speech-recognition/data.ts +6 -2
  23. package/src/tasks/document-question-answering/data.ts +7 -3
  24. package/src/tasks/fill-mask/data.ts +3 -3
  25. package/src/tasks/image-segmentation/data.ts +1 -1
  26. package/src/tasks/image-to-image/data.ts +1 -1
  27. package/src/tasks/image-to-text/data.ts +1 -1
  28. package/src/tasks/question-answering/data.ts +5 -1
  29. package/src/tasks/sentence-similarity/data.ts +3 -3
  30. package/src/tasks/summarization/data.ts +2 -2
  31. package/src/tasks/text-classification/data.ts +18 -6
  32. package/src/tasks/text-generation/data.ts +3 -3
  33. package/src/tasks/text-to-image/data.ts +1 -1
  34. package/src/tasks/text-to-speech/data.ts +7 -3
  35. package/src/tasks/token-classification/data.ts +11 -3
  36. package/src/tasks/translation/data.ts +9 -8
  37. package/src/tasks/video-classification/data.ts +3 -3
  38. package/src/tasks/visual-question-answering/data.ts +2 -2
  39. package/src/tasks/zero-shot-classification/data.ts +8 -4
  40. package/src/tasks/zero-shot-image-classification/data.ts +2 -2
package/dist/index.js CHANGED
@@ -1391,7 +1391,11 @@ var taskData = {
1391
1391
  datasets: [
1392
1392
  {
1393
1393
  description: "A benchmark of 10 different audio tasks.",
1394
- id: "superb"
1394
+ id: "s3prl/superb"
1395
+ },
1396
+ {
1397
+ description: "A dataset of YouTube clips and their sound categories.",
1398
+ id: "agkphysics/AudioSet"
1395
1399
  }
1396
1400
  ],
1397
1401
  demo: {
@@ -1437,11 +1441,11 @@ var taskData = {
1437
1441
  ],
1438
1442
  models: [
1439
1443
  {
1440
- description: "An easy-to-use model for Command Recognition.",
1444
+ description: "An easy-to-use model for command recognition.",
1441
1445
  id: "speechbrain/google_speech_command_xvector"
1442
1446
  },
1443
1447
  {
1444
- description: "An Emotion Recognition model.",
1448
+ description: "An emotion recognition model.",
1445
1449
  id: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
1446
1450
  },
1447
1451
  {
@@ -1456,7 +1460,7 @@ var taskData = {
1456
1460
  }
1457
1461
  ],
1458
1462
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
1459
- widgetModels: ["facebook/mms-lid-126"],
1463
+ widgetModels: ["MIT/ast-finetuned-audioset-10-10-0.4593"],
1460
1464
  youtubeId: "KWwzcmG98Ds"
1461
1465
  };
1462
1466
  var data_default = taskData;
@@ -1504,7 +1508,11 @@ var taskData2 = {
1504
1508
  },
1505
1509
  {
1506
1510
  description: "A speech enhancement model.",
1507
- id: "speechbrain/metricgan-plus-voicebank"
1511
+ id: "ResembleAI/resemble-enhance"
1512
+ },
1513
+ {
1514
+ description: "A model that can change the voice in a speech recording.",
1515
+ id: "microsoft/speecht5_vc"
1508
1516
  }
1509
1517
  ],
1510
1518
  spaces: [
@@ -1531,8 +1539,8 @@ var taskData3 = {
1531
1539
  id: "mozilla-foundation/common_voice_17_0"
1532
1540
  },
1533
1541
  {
1534
- description: "An English dataset with 1,000 hours of data.",
1535
- id: "librispeech_asr"
1542
+ description: "A dataset with 44.6k hours of English speaker data and 6k hours of other language speakers.",
1543
+ id: "parler-tts/mls_eng"
1536
1544
  },
1537
1545
  {
1538
1546
  description: "A multi-lingual audio dataset with 370K hours of audio.",
@@ -1577,6 +1585,10 @@ var taskData3 = {
1577
1585
  {
1578
1586
  description: "An end-to-end model that performs ASR and Speech Translation by MetaAI.",
1579
1587
  id: "facebook/seamless-m4t-v2-large"
1588
+ },
1589
+ {
1590
+ description: "Powerful speaker diarization model.",
1591
+ id: "pyannote/speaker-diarization-3.1"
1580
1592
  }
1581
1593
  ],
1582
1594
  spaces: [
@@ -1643,11 +1655,15 @@ var taskData4 = {
1643
1655
  ],
1644
1656
  models: [
1645
1657
  {
1646
- description: "A LayoutLM model for the document QA task, fine-tuned on DocVQA and SQuAD2.0.",
1658
+ description: "A robust document question answering model.",
1647
1659
  id: "impira/layoutlm-document-qa"
1648
1660
  },
1649
1661
  {
1650
- description: "A special model for OCR-free Document QA task.",
1662
+ description: "A document question answering model specialized in invoices.",
1663
+ id: "impira/layoutlm-invoices"
1664
+ },
1665
+ {
1666
+ description: "A special model for OCR-free document question answering.",
1651
1667
  id: "microsoft/udop-large"
1652
1668
  },
1653
1669
  {
@@ -1670,7 +1686,7 @@ var taskData4 = {
1670
1686
  }
1671
1687
  ],
1672
1688
  summary: "Document Question Answering (also known as Document Visual Question Answering) is the task of answering questions on document images. Document question answering models take a (document, question) pair as input and return an answer in natural language. Models usually rely on multi-modal features, combining text, position of words (bounding-boxes) and image.",
1673
- widgetModels: ["impira/layoutlm-document-qa"],
1689
+ widgetModels: ["impira/layoutlm-invoices"],
1674
1690
  youtubeId: ""
1675
1691
  };
1676
1692
  var data_default4 = taskData4;
@@ -1790,12 +1806,12 @@ var taskData6 = {
1790
1806
  ],
1791
1807
  models: [
1792
1808
  {
1793
- description: "A faster and smaller model than the famous BERT model.",
1794
- id: "distilbert-base-uncased"
1809
+ description: "The famous BERT model.",
1810
+ id: "google-bert/bert-base-uncased"
1795
1811
  },
1796
1812
  {
1797
1813
  description: "A multilingual model trained on 100 languages.",
1798
- id: "xlm-roberta-base"
1814
+ id: "FacebookAI/xlm-roberta-base"
1799
1815
  }
1800
1816
  ],
1801
1817
  spaces: [],
@@ -2038,7 +2054,7 @@ var taskData9 = {
2038
2054
  }
2039
2055
  ],
2040
2056
  summary: "Image-to-image is the task of transforming an input image through a variety of possible manipulations and enhancements, such as super-resolution, image inpainting, colorization, and more.",
2041
- widgetModels: ["lllyasviel/sd-controlnet-canny"],
2057
+ widgetModels: ["stabilityai/stable-diffusion-2-inpainting"],
2042
2058
  youtubeId: ""
2043
2059
  };
2044
2060
  var data_default9 = taskData9;
@@ -2118,7 +2134,7 @@ var taskData10 = {
2118
2134
  }
2119
2135
  ],
2120
2136
  summary: "Image to text models output a text from a given image. Image captioning or optical character recognition can be considered as the most common applications of image to text.",
2121
- widgetModels: ["Salesforce/blip-image-captioning-base"],
2137
+ widgetModels: ["Salesforce/blip-image-captioning-large"],
2122
2138
  youtubeId: ""
2123
2139
  };
2124
2140
  var data_default10 = taskData10;
@@ -2304,7 +2320,7 @@ var taskData12 = {
2304
2320
  }
2305
2321
  ],
2306
2322
  summary: "Image Segmentation divides an image into segments where each pixel in the image is mapped to an object. This task has multiple variants such as instance segmentation, panoptic segmentation and semantic segmentation.",
2307
- widgetModels: ["facebook/detr-resnet-50-panoptic"],
2323
+ widgetModels: ["nvidia/segformer-b0-finetuned-ade-512-512"],
2308
2324
  youtubeId: "dKE8SIt9C-w"
2309
2325
  };
2310
2326
  var data_default12 = taskData12;
@@ -2644,7 +2660,11 @@ var taskData18 = {
2644
2660
  id: "deepset/roberta-base-squad2"
2645
2661
  },
2646
2662
  {
2647
- description: "A special model that can answer questions from tables!",
2663
+ description: "Small yet robust model that can answer questions.",
2664
+ id: "distilbert/distilbert-base-cased-distilled-squad"
2665
+ },
2666
+ {
2667
+ description: "A special model that can answer questions from tables.",
2648
2668
  id: "google/tapas-base-finetuned-wtq"
2649
2669
  }
2650
2670
  ],
@@ -2727,8 +2747,8 @@ var taskData19 = {
2727
2747
  id: "sentence-transformers/all-mpnet-base-v2"
2728
2748
  },
2729
2749
  {
2730
- description: "A multilingual model trained for FAQ retrieval.",
2731
- id: "clips/mfaq"
2750
+ description: "A multilingual robust sentence similarity model..",
2751
+ id: "BAAI/bge-m3"
2732
2752
  }
2733
2753
  ],
2734
2754
  spaces: [
@@ -2750,7 +2770,7 @@ var taskData19 = {
2750
2770
  }
2751
2771
  ],
2752
2772
  summary: "Sentence Similarity is the task of determining how similar two texts are. Sentence similarity models convert input texts into vectors (embeddings) that capture semantic information and calculate how close (similar) they are between them. This task is particularly useful for information retrieval and clustering/grouping.",
2753
- widgetModels: ["sentence-transformers/all-MiniLM-L6-v2"],
2773
+ widgetModels: ["BAAI/bge-small-en-v1.5"],
2754
2774
  youtubeId: "VCZq5AkbNEU"
2755
2775
  };
2756
2776
  var data_default19 = taskData19;
@@ -2797,7 +2817,7 @@ var taskData20 = {
2797
2817
  },
2798
2818
  {
2799
2819
  description: "A summarization model trained on medical articles.",
2800
- id: "google/bigbird-pegasus-large-pubmed"
2820
+ id: "Falconsai/medical_summarization"
2801
2821
  }
2802
2822
  ],
2803
2823
  spaces: [
@@ -2819,7 +2839,7 @@ var taskData20 = {
2819
2839
  }
2820
2840
  ],
2821
2841
  summary: "Summarization is the task of producing a shorter version of a document while preserving its important information. Some models can extract text from the original input, while other models can generate entirely new text.",
2822
- widgetModels: ["sshleifer/distilbart-cnn-12-6"],
2842
+ widgetModels: ["facebook/bart-large-cnn"],
2823
2843
  youtubeId: "yHnr5Dk2zCI"
2824
2844
  };
2825
2845
  var data_default20 = taskData20;
@@ -3090,7 +3110,7 @@ var taskData24 = {
3090
3110
  }
3091
3111
  ],
3092
3112
  summary: "Generates images from input text. These models can be used to generate and modify images based on text prompts.",
3093
- widgetModels: ["CompVis/stable-diffusion-v1-4"],
3113
+ widgetModels: ["black-forest-labs/FLUX.1-dev"],
3094
3114
  youtubeId: ""
3095
3115
  };
3096
3116
  var data_default24 = taskData24;
@@ -3105,7 +3125,7 @@ var taskData25 = {
3105
3125
  },
3106
3126
  {
3107
3127
  description: "Multi-speaker English dataset.",
3108
- id: "LibriTTS"
3128
+ id: "mythicinfinity/libritts_r"
3109
3129
  }
3110
3130
  ],
3111
3131
  demo: {
@@ -3132,11 +3152,15 @@ var taskData25 = {
3132
3152
  models: [
3133
3153
  {
3134
3154
  description: "A powerful TTS model.",
3135
- id: "suno/bark"
3155
+ id: "parler-tts/parler-tts-large-v1"
3136
3156
  },
3137
3157
  {
3138
3158
  description: "A massively multi-lingual TTS model.",
3139
- id: "facebook/mms-tts"
3159
+ id: "coqui/XTTS-v2"
3160
+ },
3161
+ {
3162
+ description: "Robust TTS model.",
3163
+ id: "metavoiceio/metavoice-1B-v0.1"
3140
3164
  },
3141
3165
  {
3142
3166
  description: "A prompt based, powerful TTS model.",
@@ -3168,11 +3192,11 @@ var taskData26 = {
3168
3192
  datasets: [
3169
3193
  {
3170
3194
  description: "A widely used dataset useful to benchmark named entity recognition models.",
3171
- id: "conll2003"
3195
+ id: "eriktks/conll2003"
3172
3196
  },
3173
3197
  {
3174
3198
  description: "A multilingual dataset of Wikipedia articles annotated for named entity recognition in over 150 different languages.",
3175
- id: "wikiann"
3199
+ id: "unimelb-nlp/wikiann"
3176
3200
  }
3177
3201
  ],
3178
3202
  demo: {
@@ -3225,6 +3249,14 @@ var taskData26 = {
3225
3249
  description: "A robust performance model to identify people, locations, organizations and names of miscellaneous entities.",
3226
3250
  id: "dslim/bert-base-NER"
3227
3251
  },
3252
+ {
3253
+ description: "A strong model to identify people, locations, organizations and names in multiple languages.",
3254
+ id: "FacebookAI/xlm-roberta-large-finetuned-conll03-english"
3255
+ },
3256
+ {
3257
+ description: "A token classification model specialized on medical entity recognition.",
3258
+ id: "blaze999/Medical-NER"
3259
+ },
3228
3260
  {
3229
3261
  description: "Flair models are typically the state of the art in named entity recognition tasks.",
3230
3262
  id: "flair/ner-english"
@@ -3237,7 +3269,7 @@ var taskData26 = {
3237
3269
  }
3238
3270
  ],
3239
3271
  summary: "Token classification is a natural language understanding task in which a label is assigned to some tokens in a text. Some popular token classification subtasks are Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. NER models could be trained to identify specific entities in a text, such as dates, individuals and places; and PoS tagging would identify, for example, which words in a text are verbs, nouns, and punctuation marks.",
3240
- widgetModels: ["dslim/bert-base-NER"],
3272
+ widgetModels: ["FacebookAI/xlm-roberta-large-finetuned-conll03-english"],
3241
3273
  youtubeId: "wVHdVlPScxA"
3242
3274
  };
3243
3275
  var data_default26 = taskData26;
@@ -3248,11 +3280,11 @@ var taskData27 = {
3248
3280
  datasets: [
3249
3281
  {
3250
3282
  description: "A dataset of copyright-free books translated into 16 different languages.",
3251
- id: "opus_books"
3283
+ id: "Helsinki-NLP/opus_books"
3252
3284
  },
3253
3285
  {
3254
3286
  description: "An example of translation between programming languages. This dataset consists of functions in Java and C#.",
3255
- id: "code_x_glue_cc_code_to_code_trans"
3287
+ id: "google/code_x_glue_cc_code_to_code_trans"
3256
3288
  }
3257
3289
  ],
3258
3290
  demo: {
@@ -3283,12 +3315,12 @@ var taskData27 = {
3283
3315
  ],
3284
3316
  models: [
3285
3317
  {
3286
- description: "A model that translates from English to French.",
3287
- id: "Helsinki-NLP/opus-mt-en-fr"
3318
+ description: "Very powerful model that can translate many languages between each other, especially low-resource languages.",
3319
+ id: "facebook/nllb-200-1.3B"
3288
3320
  },
3289
3321
  {
3290
3322
  description: "A general-purpose Transformer that can be used to translate from English to German, French, or Romanian.",
3291
- id: "t5-base"
3323
+ id: "google-t5/t5-base"
3292
3324
  }
3293
3325
  ],
3294
3326
  spaces: [
@@ -3297,12 +3329,12 @@ var taskData27 = {
3297
3329
  id: "Iker/Translate-100-languages"
3298
3330
  },
3299
3331
  {
3300
- description: "An application that can translate between English, Spanish and Hindi.",
3301
- id: "EuroPython2022/Translate-with-Bloom"
3332
+ description: "An application that can translate between many languages.",
3333
+ id: "Geonmo/nllb-translation-demo"
3302
3334
  }
3303
3335
  ],
3304
3336
  summary: "Translation is the task of converting text from one language to another.",
3305
- widgetModels: ["t5-small"],
3337
+ widgetModels: ["facebook/mbart-large-50-many-to-many-mmt"],
3306
3338
  youtubeId: "1JvfrvZgi6c"
3307
3339
  };
3308
3340
  var data_default27 = taskData27;
@@ -3312,11 +3344,11 @@ var taskData28 = {
3312
3344
  datasets: [
3313
3345
  {
3314
3346
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
3315
- id: "glue"
3347
+ id: "nyu-mll/glue"
3316
3348
  },
3317
3349
  {
3318
3350
  description: "A text classification dataset used to benchmark natural language inference models",
3319
- id: "snli"
3351
+ id: "stanfordnlp/snli"
3320
3352
  }
3321
3353
  ],
3322
3354
  demo: {
@@ -3368,11 +3400,23 @@ var taskData28 = {
3368
3400
  models: [
3369
3401
  {
3370
3402
  description: "A robust model trained for sentiment analysis.",
3371
- id: "distilbert-base-uncased-finetuned-sst-2-english"
3403
+ id: "distilbert/distilbert-base-uncased-finetuned-sst-2-english"
3404
+ },
3405
+ {
3406
+ description: "A sentiment analysis model specialized in financial sentiment.",
3407
+ id: "ProsusAI/finbert"
3408
+ },
3409
+ {
3410
+ description: "A sentiment analysis model specialized in analyzing tweets.",
3411
+ id: "cardiffnlp/twitter-roberta-base-sentiment-latest"
3412
+ },
3413
+ {
3414
+ description: "A model that can classify languages.",
3415
+ id: "papluca/xlm-roberta-base-language-detection"
3372
3416
  },
3373
3417
  {
3374
- description: "Multi-genre natural language inference model.",
3375
- id: "roberta-large-mnli"
3418
+ description: "A model that can classify text generation attacks.",
3419
+ id: "meta-llama/Prompt-Guard-86M"
3376
3420
  }
3377
3421
  ],
3378
3422
  spaces: [
@@ -3390,7 +3434,7 @@ var taskData28 = {
3390
3434
  }
3391
3435
  ],
3392
3436
  summary: "Text Classification is the task of assigning a label or class to a given text. Some use cases are sentiment analysis, natural language inference, and assessing grammatical correctness.",
3393
- widgetModels: ["distilbert-base-uncased-finetuned-sst-2-english"],
3437
+ widgetModels: ["distilbert/distilbert-base-uncased-finetuned-sst-2-english"],
3394
3438
  youtubeId: "leNG9fN9FQU"
3395
3439
  };
3396
3440
  var data_default28 = taskData28;
@@ -3489,8 +3533,8 @@ var taskData29 = {
3489
3533
  id: "HuggingFaceH4/zephyr-chat"
3490
3534
  },
3491
3535
  {
3492
- description: "An text generation application that combines OpenAI and Hugging Face models.",
3493
- id: "microsoft/HuggingGPT"
3536
+ description: "A leaderboard that ranks text generation models based on blind votes from people.",
3537
+ id: "lmsys/chatbot-arena-leaderboard"
3494
3538
  },
3495
3539
  {
3496
3540
  description: "An chatbot to converse with a very powerful text generation model.",
@@ -3498,7 +3542,7 @@ var taskData29 = {
3498
3542
  }
3499
3543
  ],
3500
3544
  summary: "Generating text is the task of generating new text given another text. These models can, for example, fill in incomplete text or paraphrase.",
3501
- widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
3545
+ widgetModels: ["mistralai/Mistral-Nemo-Instruct-2407"],
3502
3546
  youtubeId: "e9gNEAlsOvU"
3503
3547
  };
3504
3548
  var data_default29 = taskData29;
@@ -3720,12 +3764,12 @@ var taskData32 = {
3720
3764
  models: [
3721
3765
  {
3722
3766
  // TO DO: write description
3723
- description: "Strong Video Classification model trained on the Kinects 400 dataset.",
3724
- id: "MCG-NJU/videomae-base-finetuned-kinetics"
3767
+ description: "Strong Video Classification model trained on the Kinetics 400 dataset.",
3768
+ id: "google/vivit-b-16x2-kinetics400"
3725
3769
  },
3726
3770
  {
3727
3771
  // TO DO: write description
3728
- description: "Strong Video Classification model trained on the Kinects 400 dataset.",
3772
+ description: "Strong Video Classification model trained on the Kinetics 400 dataset.",
3729
3773
  id: "microsoft/xclip-base-patch32"
3730
3774
  }
3731
3775
  ],
@@ -3754,7 +3798,7 @@ var taskData33 = {
3754
3798
  },
3755
3799
  {
3756
3800
  description: "A dataset to benchmark visual reasoning based on text in images.",
3757
- id: "textvqa"
3801
+ id: "facebook/textvqa"
3758
3802
  }
3759
3803
  ],
3760
3804
  demo: {
@@ -3807,7 +3851,7 @@ var taskData33 = {
3807
3851
  },
3808
3852
  {
3809
3853
  description: "A visual question answering model trained for mathematical reasoning and chart derendering from images.",
3810
- id: "google/matcha-base "
3854
+ id: "google/matcha-base"
3811
3855
  },
3812
3856
  {
3813
3857
  description: "A strong visual question answering that answers questions from book covers.",
@@ -3843,15 +3887,15 @@ var taskData34 = {
3843
3887
  datasets: [
3844
3888
  {
3845
3889
  description: "A widely used dataset used to benchmark multiple variants of text classification.",
3846
- id: "glue"
3890
+ id: "nyu-mll/glue"
3847
3891
  },
3848
3892
  {
3849
3893
  description: "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information.",
3850
- id: "MultiNLI"
3894
+ id: "nyu-mll/multi_nli"
3851
3895
  },
3852
3896
  {
3853
3897
  description: "FEVER is a publicly available dataset for fact extraction and verification against textual sources.",
3854
- id: "FEVER"
3898
+ id: "fever/fever"
3855
3899
  }
3856
3900
  ],
3857
3901
  demo: {
@@ -3890,8 +3934,12 @@ var taskData34 = {
3890
3934
  metrics: [],
3891
3935
  models: [
3892
3936
  {
3893
- description: "Powerful zero-shot text classification model",
3937
+ description: "Powerful zero-shot text classification model.",
3894
3938
  id: "facebook/bart-large-mnli"
3939
+ },
3940
+ {
3941
+ description: "Powerful zero-shot multilingual text classification model that can accomplish multiple tasks.",
3942
+ id: "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
3895
3943
  }
3896
3944
  ],
3897
3945
  spaces: [],
@@ -3954,7 +4002,7 @@ var taskData35 = {
3954
4002
  },
3955
4003
  {
3956
4004
  description: "Strong zero-shot image classification model.",
3957
- id: "google/siglip-base-patch16-224"
4005
+ id: "google/siglip-so400m-patch14-224"
3958
4006
  },
3959
4007
  {
3960
4008
  description: "Small yet powerful zero-shot image classification model that can run on edge devices.",
@@ -3976,7 +4024,7 @@ var taskData35 = {
3976
4024
  }
3977
4025
  ],
3978
4026
  summary: "Zero-shot image classification is the task of classifying previously unseen classes during training of a model.",
3979
- widgetModels: ["openai/clip-vit-large-patch14-336"],
4027
+ widgetModels: ["google/siglip-so400m-patch14-224"],
3980
4028
  youtubeId: ""
3981
4029
  };
3982
4030
  var data_default35 = taskData35;
@@ -5090,6 +5138,14 @@ wavs = chat.infer(texts, )
5090
5138
 
5091
5139
  torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)`
5092
5140
  ];
5141
+ var yolov10 = (model) => [
5142
+ `from ultralytics import YOLOv10
5143
+
5144
+ model = YOLOv10.from_pretrained("${model.id}")
5145
+ source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
5146
+ model.predict(source=source, save=True)
5147
+ `
5148
+ ];
5093
5149
  var birefnet = (model) => [
5094
5150
  `# Option 1: use with transformers
5095
5151
 
@@ -5776,6 +5832,13 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
5776
5832
  docsUrl: "https://github.com/jasonppy/VoiceCraft",
5777
5833
  snippets: voicecraft
5778
5834
  },
5835
+ yolov10: {
5836
+ prettyLabel: "YOLOv10",
5837
+ repoName: "yolov10",
5838
+ repoUrl: "https://github.com/THU-MIG/yolov10",
5839
+ docsUrl: "https://github.com/THU-MIG/yolov10",
5840
+ snippets: yolov10
5841
+ },
5779
5842
  whisperkit: {
5780
5843
  prettyLabel: "WhisperKit",
5781
5844
  repoName: "WhisperKit",
@@ -53,6 +53,7 @@ export declare const mlAgents: (model: ModelData) => string[];
53
53
  export declare const sentis: () => string[];
54
54
  export declare const voicecraft: (model: ModelData) => string[];
55
55
  export declare const chattts: () => string[];
56
+ export declare const yolov10: (model: ModelData) => string[];
56
57
  export declare const birefnet: (model: ModelData) => string[];
57
58
  export declare const mlx: (model: ModelData) => string[];
58
59
  export declare const mlxim: (model: ModelData) => string[];
@@ -1 +1 @@
1
- {"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAwCrD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAmBrD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAEF,eAAO,MAAM,OAAO,QAA6B,MAAM,EAQtD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAanC,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EA2B7C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAYjD,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
1
+ {"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAwCrD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EAmBrD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAgBzD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAEF,eAAO,MAAM,OAAO,QAA6B,MAAM,EAQtD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAanC,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EA2B7C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAOhD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAYjD,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
@@ -651,6 +651,13 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
651
651
  docsUrl: string;
652
652
  snippets: (model: ModelData) => string[];
653
653
  };
654
+ yolov10: {
655
+ prettyLabel: string;
656
+ repoName: string;
657
+ repoUrl: string;
658
+ docsUrl: string;
659
+ snippets: (model: ModelData) => string[];
660
+ };
654
661
  whisperkit: {
655
662
  prettyLabel: string;
656
663
  repoName: string;
@@ -661,6 +668,6 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
661
668
  };
662
669
  };
663
670
  export type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
664
- export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
665
- export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
671
+ export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "yolov10" | "whisperkit")[];
672
+ export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "birefnet" | "bm25s" | "champ" | "chat_tts" | "colpali" | "deepforest" | "depth-anything-v2" | "diffree" | "diffusers" | "diffusionkit" | "doctr" | "cartesia_pytorch" | "cartesia_mlx" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "llama-cpp-python" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "py-feat" | "pythae" | "recurrentgemma" | "relik" | "refiners" | "saelens" | "sam2" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "seed-story" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "yolov10" | "whisperkit")[];
666
673
  //# sourceMappingURL=model-libraries.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAgmBI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,4mCAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,4mCAQ1B,CAAC"}
1
+ {"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAumBI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,wnCAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,wnCAQ1B,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAwEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA4Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-to-audio/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA6Df,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/audio-to-audio/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/automatic-speech-recognition/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAyEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/automatic-speech-recognition/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA6Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA4Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAgFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAkEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAsEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAsFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAkGf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-speech/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-speech/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAqEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/token-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA+Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/token-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAuFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/translation/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAgEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/translation/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/zero-shot-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA6Df,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/zero-shot-classification/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAiEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@huggingface/tasks",
3
3
  "packageManager": "pnpm@8.10.5",
4
- "version": "0.12.1",
4
+ "version": "0.12.2",
5
5
  "description": "List of ML tasks for huggingface.co/tasks",
6
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
7
  "publishConfig": {
@@ -891,6 +891,15 @@ wavs = chat.infer(texts, )
891
891
  torchaudio.save("output1.wav", torch.from_numpy(wavs[0]), 24000)`,
892
892
  ];
893
893
 
894
+ export const yolov10 = (model: ModelData): string[] => [
895
+ `from ultralytics import YOLOv10
896
+
897
+ model = YOLOv10.from_pretrained("${model.id}")
898
+ source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
899
+ model.predict(source=source, save=True)
900
+ `,
901
+ ];
902
+
894
903
  export const birefnet = (model: ModelData): string[] => [
895
904
  `# Option 1: use with transformers
896
905