@huggingface/tasks 0.11.2 → 0.11.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.cjs CHANGED
@@ -1617,7 +1617,10 @@ var data_default3 = taskData3;
1617
1617
  var taskData4 = {
1618
1618
  datasets: [
1619
1619
  {
1620
- // TODO write proper description
1620
+ description: "Largest document understanding dataset.",
1621
+ id: "HuggingFaceM4/Docmatix"
1622
+ },
1623
+ {
1621
1624
  description: "Dataset from the 2020 DocVQA challenge. The documents are taken from the UCSF Industry Documents Library.",
1622
1625
  id: "eliolio/docvqa"
1623
1626
  }
@@ -1658,8 +1661,8 @@ var taskData4 = {
1658
1661
  id: "impira/layoutlm-document-qa"
1659
1662
  },
1660
1663
  {
1661
- description: "A special model for OCR-free Document QA task. Donut model fine-tuned on DocVQA.",
1662
- id: "naver-clova-ix/donut-base-finetuned-docvqa"
1664
+ description: "A special model for OCR-free Document QA task.",
1665
+ id: "microsoft/udop-large"
1663
1666
  },
1664
1667
  {
1665
1668
  description: "A powerful model for document question answering.",
@@ -1939,6 +1942,10 @@ var taskData8 = {
1939
1942
  {
1940
1943
  description: "A robust image feature extraction models.",
1941
1944
  id: "facebook/dino-vitb16"
1945
+ },
1946
+ {
1947
+ description: "Strong image-text-to-text model made for information retrieval from documents.",
1948
+ id: "vidore/colpali"
1942
1949
  }
1943
1950
  ],
1944
1951
  spaces: [],
@@ -2165,8 +2172,8 @@ var taskData11 = {
2165
2172
  metrics: [],
2166
2173
  models: [
2167
2174
  {
2168
- description: "Cutting-edge vision language model that can also localize texts in images.",
2169
- id: "liuhaotian/llava-v1.6-34b"
2175
+ description: "Cutting-edge vision language model that can take multiple image inputs.",
2176
+ id: "facebook/chameleon-7b"
2170
2177
  },
2171
2178
  {
2172
2179
  description: "Cutting-edge conversational vision language model that can take multiple image inputs.",
@@ -2179,6 +2186,10 @@ var taskData11 = {
2179
2186
  {
2180
2187
  description: "Strong image-text-to-text model made to understand documents.",
2181
2188
  id: "mPLUG/DocOwl1.5"
2189
+ },
2190
+ {
2191
+ description: "Strong image-text-to-text model.",
2192
+ id: "llava-hf/llava-v1.6-mistral-7b-hf"
2182
2193
  }
2183
2194
  ],
2184
2195
  spaces: [
@@ -4034,6 +4045,135 @@ var taskData36 = {
4034
4045
  };
4035
4046
  var data_default36 = taskData36;
4036
4047
 
4048
+ // src/tasks/image-to-3d/data.ts
4049
+ var taskData37 = {
4050
+ datasets: [
4051
+ {
4052
+ description: "A large dataset of over 10 million 3D objects.",
4053
+ id: "allenai/objaverse-xl"
4054
+ },
4055
+ {
4056
+ description: "A dataset of isolated object images for evaluating image-to-3D models.",
4057
+ id: "dylanebert/iso3d"
4058
+ }
4059
+ ],
4060
+ demo: {
4061
+ inputs: [
4062
+ {
4063
+ filename: "image-to-3d-image-input.png",
4064
+ type: "img"
4065
+ }
4066
+ ],
4067
+ outputs: [
4068
+ {
4069
+ label: "Result",
4070
+ content: "image-to-3d-3d-output-filename.glb",
4071
+ type: "text"
4072
+ }
4073
+ ]
4074
+ },
4075
+ metrics: [],
4076
+ models: [
4077
+ {
4078
+ description: "Fast image-to-3D mesh model by Tencent.",
4079
+ id: "TencentARC/InstantMesh"
4080
+ },
4081
+ {
4082
+ description: "Fast image-to-3D mesh model by StabilityAI",
4083
+ id: "stabilityai/TripoSR"
4084
+ },
4085
+ {
4086
+ description: "A scaled up image-to-3D mesh model derived from TripoSR.",
4087
+ id: "hwjiang/Real3D"
4088
+ },
4089
+ {
4090
+ description: "Generative 3D gaussian splatting model.",
4091
+ id: "ashawkey/LGM"
4092
+ }
4093
+ ],
4094
+ spaces: [
4095
+ {
4096
+ description: "Leaderboard to evaluate image-to-3D models.",
4097
+ id: "dylanebert/3d-arena"
4098
+ },
4099
+ {
4100
+ description: "Image-to-3D demo with mesh outputs.",
4101
+ id: "TencentARC/InstantMesh"
4102
+ },
4103
+ {
4104
+ description: "Image-to-3D demo with mesh outputs.",
4105
+ id: "stabilityai/TripoSR"
4106
+ },
4107
+ {
4108
+ description: "Image-to-3D demo with mesh outputs.",
4109
+ id: "hwjiang/Real3D"
4110
+ },
4111
+ {
4112
+ description: "Image-to-3D demo with splat outputs.",
4113
+ id: "dylanebert/LGM-mini"
4114
+ }
4115
+ ],
4116
+ summary: "Image-to-3D models take in image input and produce 3D output.",
4117
+ widgetModels: [],
4118
+ youtubeId: ""
4119
+ };
4120
+ var data_default37 = taskData37;
4121
+
4122
+ // src/tasks/text-to-3d/data.ts
4123
+ var taskData38 = {
4124
+ datasets: [
4125
+ {
4126
+ description: "A large dataset of over 10 million 3D objects.",
4127
+ id: "allenai/objaverse-xl"
4128
+ },
4129
+ {
4130
+ description: "Descriptive captions for 3D objects in Objaverse.",
4131
+ id: "tiange/Cap3D"
4132
+ }
4133
+ ],
4134
+ demo: {
4135
+ inputs: [
4136
+ {
4137
+ label: "Prompt",
4138
+ content: "a cat statue",
4139
+ type: "text"
4140
+ }
4141
+ ],
4142
+ outputs: [
4143
+ {
4144
+ label: "Result",
4145
+ content: "text-to-3d-3d-output-filename.glb",
4146
+ type: "text"
4147
+ }
4148
+ ]
4149
+ },
4150
+ metrics: [],
4151
+ models: [
4152
+ {
4153
+ description: "Text-to-3D mesh model by OpenAI",
4154
+ id: "openai/shap-e"
4155
+ },
4156
+ {
4157
+ description: "Generative 3D gaussian splatting model.",
4158
+ id: "ashawkey/LGM"
4159
+ }
4160
+ ],
4161
+ spaces: [
4162
+ {
4163
+ description: "Text-to-3D demo with mesh outputs.",
4164
+ id: "hysts/Shap-E"
4165
+ },
4166
+ {
4167
+ description: "Text/image-to-3D demo with splat outputs.",
4168
+ id: "ashawkey/LGM"
4169
+ }
4170
+ ],
4171
+ summary: "Text-to-3D models take in text input and produce 3D output.",
4172
+ widgetModels: [],
4173
+ youtubeId: ""
4174
+ };
4175
+ var data_default38 = taskData38;
4176
+
4037
4177
  // src/tasks/index.ts
4038
4178
  var TASKS_MODEL_LIBRARIES = {
4039
4179
  "audio-classification": ["speechbrain", "transformers", "transformers.js"],
@@ -4091,8 +4231,8 @@ var TASKS_MODEL_LIBRARIES = {
4091
4231
  "zero-shot-classification": ["transformers", "transformers.js"],
4092
4232
  "zero-shot-image-classification": ["transformers", "transformers.js"],
4093
4233
  "zero-shot-object-detection": ["transformers", "transformers.js"],
4094
- "text-to-3d": [],
4095
- "image-to-3d": []
4234
+ "text-to-3d": ["diffusers"],
4235
+ "image-to-3d": ["diffusers"]
4096
4236
  };
4097
4237
  function getData(type, partialTaskData = data_default16) {
4098
4238
  return {
@@ -4150,8 +4290,8 @@ var TASKS_DATA = {
4150
4290
  "zero-shot-classification": getData("zero-shot-classification", data_default34),
4151
4291
  "zero-shot-image-classification": getData("zero-shot-image-classification", data_default35),
4152
4292
  "zero-shot-object-detection": getData("zero-shot-object-detection", data_default36),
4153
- "text-to-3d": getData("text-to-3d", data_default16),
4154
- "image-to-3d": getData("image-to-3d", data_default16)
4293
+ "text-to-3d": getData("text-to-3d", data_default38),
4294
+ "image-to-3d": getData("image-to-3d", data_default37)
4155
4295
  };
4156
4296
 
4157
4297
  // src/model-libraries-snippets.ts
@@ -4390,6 +4530,11 @@ from huggingface_hub import from_pretrained_keras
4390
4530
  model = from_pretrained_keras("${model.id}")
4391
4531
  `
4392
4532
  ];
4533
+ var mamba_ssm = (model) => [
4534
+ `from mamba_ssm import MambaLMHeadModel
4535
+
4536
+ model = MambaLMHeadModel.from_pretrained("${model.id}")`
4537
+ ];
4393
4538
  var mars5_tts = (model) => [
4394
4539
  `# Install from https://github.com/Camb-ai/MARS5-TTS
4395
4540
 
@@ -5104,11 +5249,25 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
5104
5249
  repoName: "k2",
5105
5250
  repoUrl: "https://github.com/k2-fsa/k2"
5106
5251
  },
5252
+ liveportrait: {
5253
+ prettyLabel: "LivePortrait",
5254
+ repoName: "LivePortrait",
5255
+ repoUrl: "https://github.com/KwaiVGI/LivePortrait",
5256
+ filter: false,
5257
+ countDownloads: `path:"liveportrait/landmark.onnx"`
5258
+ },
5107
5259
  mindspore: {
5108
5260
  prettyLabel: "MindSpore",
5109
5261
  repoName: "mindspore",
5110
5262
  repoUrl: "https://github.com/mindspore-ai/mindspore"
5111
5263
  },
5264
+ "mamba-ssm": {
5265
+ prettyLabel: "MambaSSM",
5266
+ repoName: "MambaSSM",
5267
+ repoUrl: "https://github.com/state-spaces/mamba",
5268
+ filter: false,
5269
+ snippets: mamba_ssm
5270
+ },
5112
5271
  "mars5-tts": {
5113
5272
  prettyLabel: "MARS5-TTS",
5114
5273
  repoName: "MARS5-TTS",
@@ -6478,6 +6637,12 @@ var DATASET_LIBRARIES_UI_ELEMENTS = {
6478
6637
  repoName: "argilla",
6479
6638
  repoUrl: "https://github.com/argilla-io/argilla",
6480
6639
  docsUrl: "https://argilla-io.github.io/argilla"
6640
+ },
6641
+ polars: {
6642
+ prettyLabel: "Polars",
6643
+ repoName: "polars",
6644
+ repoUrl: "https://github.com/pola-rs/polars",
6645
+ docsUrl: "https://docs.pola.rs/"
6481
6646
  }
6482
6647
  };
6483
6648
  // Annotate the CommonJS export names for ESM import in node:
package/dist/index.js CHANGED
@@ -1579,7 +1579,10 @@ var data_default3 = taskData3;
1579
1579
  var taskData4 = {
1580
1580
  datasets: [
1581
1581
  {
1582
- // TODO write proper description
1582
+ description: "Largest document understanding dataset.",
1583
+ id: "HuggingFaceM4/Docmatix"
1584
+ },
1585
+ {
1583
1586
  description: "Dataset from the 2020 DocVQA challenge. The documents are taken from the UCSF Industry Documents Library.",
1584
1587
  id: "eliolio/docvqa"
1585
1588
  }
@@ -1620,8 +1623,8 @@ var taskData4 = {
1620
1623
  id: "impira/layoutlm-document-qa"
1621
1624
  },
1622
1625
  {
1623
- description: "A special model for OCR-free Document QA task. Donut model fine-tuned on DocVQA.",
1624
- id: "naver-clova-ix/donut-base-finetuned-docvqa"
1626
+ description: "A special model for OCR-free Document QA task.",
1627
+ id: "microsoft/udop-large"
1625
1628
  },
1626
1629
  {
1627
1630
  description: "A powerful model for document question answering.",
@@ -1901,6 +1904,10 @@ var taskData8 = {
1901
1904
  {
1902
1905
  description: "A robust image feature extraction models.",
1903
1906
  id: "facebook/dino-vitb16"
1907
+ },
1908
+ {
1909
+ description: "Strong image-text-to-text model made for information retrieval from documents.",
1910
+ id: "vidore/colpali"
1904
1911
  }
1905
1912
  ],
1906
1913
  spaces: [],
@@ -2127,8 +2134,8 @@ var taskData11 = {
2127
2134
  metrics: [],
2128
2135
  models: [
2129
2136
  {
2130
- description: "Cutting-edge vision language model that can also localize texts in images.",
2131
- id: "liuhaotian/llava-v1.6-34b"
2137
+ description: "Cutting-edge vision language model that can take multiple image inputs.",
2138
+ id: "facebook/chameleon-7b"
2132
2139
  },
2133
2140
  {
2134
2141
  description: "Cutting-edge conversational vision language model that can take multiple image inputs.",
@@ -2141,6 +2148,10 @@ var taskData11 = {
2141
2148
  {
2142
2149
  description: "Strong image-text-to-text model made to understand documents.",
2143
2150
  id: "mPLUG/DocOwl1.5"
2151
+ },
2152
+ {
2153
+ description: "Strong image-text-to-text model.",
2154
+ id: "llava-hf/llava-v1.6-mistral-7b-hf"
2144
2155
  }
2145
2156
  ],
2146
2157
  spaces: [
@@ -3996,6 +4007,135 @@ var taskData36 = {
3996
4007
  };
3997
4008
  var data_default36 = taskData36;
3998
4009
 
4010
+ // src/tasks/image-to-3d/data.ts
4011
+ var taskData37 = {
4012
+ datasets: [
4013
+ {
4014
+ description: "A large dataset of over 10 million 3D objects.",
4015
+ id: "allenai/objaverse-xl"
4016
+ },
4017
+ {
4018
+ description: "A dataset of isolated object images for evaluating image-to-3D models.",
4019
+ id: "dylanebert/iso3d"
4020
+ }
4021
+ ],
4022
+ demo: {
4023
+ inputs: [
4024
+ {
4025
+ filename: "image-to-3d-image-input.png",
4026
+ type: "img"
4027
+ }
4028
+ ],
4029
+ outputs: [
4030
+ {
4031
+ label: "Result",
4032
+ content: "image-to-3d-3d-output-filename.glb",
4033
+ type: "text"
4034
+ }
4035
+ ]
4036
+ },
4037
+ metrics: [],
4038
+ models: [
4039
+ {
4040
+ description: "Fast image-to-3D mesh model by Tencent.",
4041
+ id: "TencentARC/InstantMesh"
4042
+ },
4043
+ {
4044
+ description: "Fast image-to-3D mesh model by StabilityAI",
4045
+ id: "stabilityai/TripoSR"
4046
+ },
4047
+ {
4048
+ description: "A scaled up image-to-3D mesh model derived from TripoSR.",
4049
+ id: "hwjiang/Real3D"
4050
+ },
4051
+ {
4052
+ description: "Generative 3D gaussian splatting model.",
4053
+ id: "ashawkey/LGM"
4054
+ }
4055
+ ],
4056
+ spaces: [
4057
+ {
4058
+ description: "Leaderboard to evaluate image-to-3D models.",
4059
+ id: "dylanebert/3d-arena"
4060
+ },
4061
+ {
4062
+ description: "Image-to-3D demo with mesh outputs.",
4063
+ id: "TencentARC/InstantMesh"
4064
+ },
4065
+ {
4066
+ description: "Image-to-3D demo with mesh outputs.",
4067
+ id: "stabilityai/TripoSR"
4068
+ },
4069
+ {
4070
+ description: "Image-to-3D demo with mesh outputs.",
4071
+ id: "hwjiang/Real3D"
4072
+ },
4073
+ {
4074
+ description: "Image-to-3D demo with splat outputs.",
4075
+ id: "dylanebert/LGM-mini"
4076
+ }
4077
+ ],
4078
+ summary: "Image-to-3D models take in image input and produce 3D output.",
4079
+ widgetModels: [],
4080
+ youtubeId: ""
4081
+ };
4082
+ var data_default37 = taskData37;
4083
+
4084
+ // src/tasks/text-to-3d/data.ts
4085
+ var taskData38 = {
4086
+ datasets: [
4087
+ {
4088
+ description: "A large dataset of over 10 million 3D objects.",
4089
+ id: "allenai/objaverse-xl"
4090
+ },
4091
+ {
4092
+ description: "Descriptive captions for 3D objects in Objaverse.",
4093
+ id: "tiange/Cap3D"
4094
+ }
4095
+ ],
4096
+ demo: {
4097
+ inputs: [
4098
+ {
4099
+ label: "Prompt",
4100
+ content: "a cat statue",
4101
+ type: "text"
4102
+ }
4103
+ ],
4104
+ outputs: [
4105
+ {
4106
+ label: "Result",
4107
+ content: "text-to-3d-3d-output-filename.glb",
4108
+ type: "text"
4109
+ }
4110
+ ]
4111
+ },
4112
+ metrics: [],
4113
+ models: [
4114
+ {
4115
+ description: "Text-to-3D mesh model by OpenAI",
4116
+ id: "openai/shap-e"
4117
+ },
4118
+ {
4119
+ description: "Generative 3D gaussian splatting model.",
4120
+ id: "ashawkey/LGM"
4121
+ }
4122
+ ],
4123
+ spaces: [
4124
+ {
4125
+ description: "Text-to-3D demo with mesh outputs.",
4126
+ id: "hysts/Shap-E"
4127
+ },
4128
+ {
4129
+ description: "Text/image-to-3D demo with splat outputs.",
4130
+ id: "ashawkey/LGM"
4131
+ }
4132
+ ],
4133
+ summary: "Text-to-3D models take in text input and produce 3D output.",
4134
+ widgetModels: [],
4135
+ youtubeId: ""
4136
+ };
4137
+ var data_default38 = taskData38;
4138
+
3999
4139
  // src/tasks/index.ts
4000
4140
  var TASKS_MODEL_LIBRARIES = {
4001
4141
  "audio-classification": ["speechbrain", "transformers", "transformers.js"],
@@ -4053,8 +4193,8 @@ var TASKS_MODEL_LIBRARIES = {
4053
4193
  "zero-shot-classification": ["transformers", "transformers.js"],
4054
4194
  "zero-shot-image-classification": ["transformers", "transformers.js"],
4055
4195
  "zero-shot-object-detection": ["transformers", "transformers.js"],
4056
- "text-to-3d": [],
4057
- "image-to-3d": []
4196
+ "text-to-3d": ["diffusers"],
4197
+ "image-to-3d": ["diffusers"]
4058
4198
  };
4059
4199
  function getData(type, partialTaskData = data_default16) {
4060
4200
  return {
@@ -4112,8 +4252,8 @@ var TASKS_DATA = {
4112
4252
  "zero-shot-classification": getData("zero-shot-classification", data_default34),
4113
4253
  "zero-shot-image-classification": getData("zero-shot-image-classification", data_default35),
4114
4254
  "zero-shot-object-detection": getData("zero-shot-object-detection", data_default36),
4115
- "text-to-3d": getData("text-to-3d", data_default16),
4116
- "image-to-3d": getData("image-to-3d", data_default16)
4255
+ "text-to-3d": getData("text-to-3d", data_default38),
4256
+ "image-to-3d": getData("image-to-3d", data_default37)
4117
4257
  };
4118
4258
 
4119
4259
  // src/model-libraries-snippets.ts
@@ -4352,6 +4492,11 @@ from huggingface_hub import from_pretrained_keras
4352
4492
  model = from_pretrained_keras("${model.id}")
4353
4493
  `
4354
4494
  ];
4495
+ var mamba_ssm = (model) => [
4496
+ `from mamba_ssm import MambaLMHeadModel
4497
+
4498
+ model = MambaLMHeadModel.from_pretrained("${model.id}")`
4499
+ ];
4355
4500
  var mars5_tts = (model) => [
4356
4501
  `# Install from https://github.com/Camb-ai/MARS5-TTS
4357
4502
 
@@ -5066,11 +5211,25 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
5066
5211
  repoName: "k2",
5067
5212
  repoUrl: "https://github.com/k2-fsa/k2"
5068
5213
  },
5214
+ liveportrait: {
5215
+ prettyLabel: "LivePortrait",
5216
+ repoName: "LivePortrait",
5217
+ repoUrl: "https://github.com/KwaiVGI/LivePortrait",
5218
+ filter: false,
5219
+ countDownloads: `path:"liveportrait/landmark.onnx"`
5220
+ },
5069
5221
  mindspore: {
5070
5222
  prettyLabel: "MindSpore",
5071
5223
  repoName: "mindspore",
5072
5224
  repoUrl: "https://github.com/mindspore-ai/mindspore"
5073
5225
  },
5226
+ "mamba-ssm": {
5227
+ prettyLabel: "MambaSSM",
5228
+ repoName: "MambaSSM",
5229
+ repoUrl: "https://github.com/state-spaces/mamba",
5230
+ filter: false,
5231
+ snippets: mamba_ssm
5232
+ },
5074
5233
  "mars5-tts": {
5075
5234
  prettyLabel: "MARS5-TTS",
5076
5235
  repoName: "MARS5-TTS",
@@ -6440,6 +6599,12 @@ var DATASET_LIBRARIES_UI_ELEMENTS = {
6440
6599
  repoName: "argilla",
6441
6600
  repoUrl: "https://github.com/argilla-io/argilla",
6442
6601
  docsUrl: "https://argilla-io.github.io/argilla"
6602
+ },
6603
+ polars: {
6604
+ prettyLabel: "Polars",
6605
+ repoName: "polars",
6606
+ repoUrl: "https://github.com/pola-rs/polars",
6607
+ docsUrl: "https://docs.pola.rs/"
6443
6608
  }
6444
6609
  };
6445
6610
  export {
@@ -70,6 +70,12 @@ export declare const DATASET_LIBRARIES_UI_ELEMENTS: {
70
70
  repoUrl: string;
71
71
  docsUrl: string;
72
72
  };
73
+ polars: {
74
+ prettyLabel: string;
75
+ repoName: string;
76
+ repoUrl: string;
77
+ docsUrl: string;
78
+ };
73
79
  };
74
80
  export type DatasetLibraryKey = keyof typeof DATASET_LIBRARIES_UI_ELEMENTS;
75
81
  //# sourceMappingURL=dataset-libraries.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"dataset-libraries.d.ts","sourceRoot":"","sources":["../../src/dataset-libraries.ts"],"names":[],"mappings":"AAAA;;GAEG;AACH,MAAM,WAAW,uBAAuB;IACvC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;CACjB;AAED,eAAO,MAAM,6BAA6B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAiDS,CAAC;AAGpD,MAAM,MAAM,iBAAiB,GAAG,MAAM,OAAO,6BAA6B,CAAC"}
1
+ {"version":3,"file":"dataset-libraries.d.ts","sourceRoot":"","sources":["../../src/dataset-libraries.ts"],"names":[],"mappings":"AAAA;;GAEG;AACH,MAAM,WAAW,uBAAuB;IACvC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;CACjB;AAED,eAAO,MAAM,6BAA6B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAuDS,CAAC;AAGpD,MAAM,MAAM,iBAAiB,GAAG,MAAM,OAAO,6BAA6B,CAAC"}
@@ -17,6 +17,7 @@ export declare const gliner: (model: ModelData) => string[];
17
17
  export declare const keras: (model: ModelData) => string[];
18
18
  export declare const keras_nlp: (model: ModelData) => string[];
19
19
  export declare const tf_keras: (model: ModelData) => string[];
20
+ export declare const mamba_ssm: (model: ModelData) => string[];
20
21
  export declare const mars5_tts: (model: ModelData) => string[];
21
22
  export declare const mesh_anything: () => string[];
22
23
  export declare const open_clip: (model: ModelData) => string[];
@@ -1 +1 @@
1
- {"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
1
+ {"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
@@ -287,11 +287,25 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
287
287
  repoName: string;
288
288
  repoUrl: string;
289
289
  };
290
+ liveportrait: {
291
+ prettyLabel: string;
292
+ repoName: string;
293
+ repoUrl: string;
294
+ filter: false;
295
+ countDownloads: string;
296
+ };
290
297
  mindspore: {
291
298
  prettyLabel: string;
292
299
  repoName: string;
293
300
  repoUrl: string;
294
301
  };
302
+ "mamba-ssm": {
303
+ prettyLabel: string;
304
+ repoName: string;
305
+ repoUrl: string;
306
+ filter: false;
307
+ snippets: (model: ModelData) => string[];
308
+ };
295
309
  "mars5-tts": {
296
310
  prettyLabel: string;
297
311
  repoName: string;
@@ -557,6 +571,6 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
557
571
  };
558
572
  };
559
573
  export type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
560
- export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "mindspore" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
561
- export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "mindspore" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
574
+ export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
575
+ export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
562
576
  //# sourceMappingURL=model-libraries.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAwfI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,k5BAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,k5BAQ1B,CAAC"}
1
+ {"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAsgBI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,i7BAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,i7BAQ1B,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAyEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/document-question-answering/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA4Ef,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-feature-extraction/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cA8Cf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-feature-extraction/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAkDf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-text-to-text/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAqFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-text-to-text/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAyFf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -0,0 +1,4 @@
1
+ import type { TaskDataCustom } from "..";
2
+ declare const taskData: TaskDataCustom;
3
+ export default taskData;
4
+ //# sourceMappingURL=data.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-to-3d/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAsEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../../src/tasks/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,YAAY,EAAE,MAAM,cAAc,CAAC;AAwCjD,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,0CAA0C,CAAC;AAC9D,YAAY,EACX,mBAAmB,EACnB,0BAA0B,EAC1B,oBAAoB,EACpB,4BAA4B,EAC5B,2BAA2B,EAC3B,0BAA0B,EAC1B,gCAAgC,EAChC,+BAA+B,GAC/B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,yCAAyC,CAAC;AAC7D,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,uBAAuB,CAAC;AAC3C,YAAY,EACX,wBAAwB,EACxB,yBAAyB,EACzB,gCAAgC,EAChC,6BAA6B,GAC7B,MAAM,kCAAkC,CAAC;AAC1C,mBAAmB,4BAA4B,CAAC;AAChD,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,iCAAiC,CAAC;AACrD,mBAAmB,2BAA2B,CAAC;AAC/C,mBAAmB,sCAAsC,CAAC;AAC1D,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,YAAY,EAAE,qBAAqB,EAAE,iBAAiB,EAAE,kBAAkB,EAAE,MAAM,4BAA4B,CAAC;AAC/G,mBAAmB,kCAAkC,CAAC;AACtD,YAAY,EACX,6BAA6B,EAC7B,qCAAqC,EACrC,gBAAgB,EAChB,iBAAiB,GACjB,MAAM,yBAAyB,CAAC;AACjC,YAAY,EACX,6BAA6B,EAC7B,uBAAuB,EACvB,wBAAwB,EACxB,+BAA+B,EAC/B,4BAA4B,GAC5B,MAAM,iCAAiC,CAAC;AACzC,YAAY,EACX,gCAAgC,EAChC,gCAAgC,EAChC,mBAAmB,EACnB,oBAAoB,EACpB,2BAA2B,EAC3B,qCAAqC,EACrC,kCAAkC,EAClC,yBAAyB,EACzB,uCAAuC,EACvC,0BAA0B,GAC1B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,uCAAuC,CAAC;AAC3D,mBAAmB,sCAAsC,CAAC;AAC1D,mBAAmB,4CAA4C,CAAC;AAChE,YAAY,EACX,WAAW,EACX,4BAA4B,EAC5B,gCAAgC,EAChC,6BAA6B,EAC7B,oCAAoC,GACpC,MAAM,wCAAwC,CAAC;AAEhD,OAAO,KAAK,EAAE,eAAe,EAAE,MAAM,oBAAoB,CAAC;AAE1D;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,MAAM,CAAC,YAAY,EAAE,eAAe,EAAE,CA0DzE,CAAC;AAoBF,eAAO,MAAM,UAAU,EAAE,MAAM,CAAC,YAAY,EAAE,QAAQ,GAAG,SAAS,CAkDxD,CAAC;AAEX,MAAM,WAAW,WAAW;IAC3B,WAAW,EAAE,MAAM,CAAC;IACpB,EAAE,EAAE,MAAM,CAAC;CACX;AAED,MAAM,MAAM,aAAa,GACtB;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,IAAI,EAAE,KAAK,CAAC;QACX,KAAK,EAAE,MAAM,CAAC;QACd,KAAK,EAAE,MAAM,CAAC;KACd,CAAC,CAAC;IACH,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,KAAK,CAAC;CACX,GACD;IACA,KAAK,EAAE,MAAM,EAAE,EAAE,CAAC;IAClB,IAAI,EAAE,SAAS,CAAC;CACf,GACD;IACA,OAAO,EAAE,MAAM,CAAC;IAChB,KAAK,EAAE,MAAM,CAAC;IACd,IAAI,EAAE,MAAM,CAAC;CACZ,GACD;IACA,IAAI,EAAE,MAAM,CAAC;IACb,MAAM,EAAE,KAAK,CAAC;QACb,GAAG,EAAE,MAAM,CAAC;QACZ,KAAK,EAAE,MAAM,CAAC;QACd,IAAI,EAAE,MAAM,CAAC;KACb,CAAC,CAAC;IACH,IAAI,EAAE,kBAAkB,CAAC;CACxB,CAAC;AAEL,MAAM,WAAW,QAAQ;IACxB,MAAM,EAAE,aAAa,EAAE,CAAC;IACxB,OAAO,EAAE,aAAa,EAAE,CAAC;CACzB;AAED,MAAM,WAAW,QAAQ;IACxB,QAAQ,EAAE,WAAW,EAAE,CAAC;IACxB,IAAI,EAAE,QAAQ,CAAC;IACf,EAAE,EAAE,YAAY,CAAC;IACjB,WAAW,CAAC,EAAE,YAAY,CAAC;IAC3B,aAAa,CAAC,EAAE,OAAO,CAAC;IACxB,KAAK,EAAE,MAAM,CAAC;IACd,SAAS,EAAE,eAAe,EAAE,CAAC;IAC7B,OAAO,EAAE,WAAW,EAAE,CAAC;IACvB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,EAAE,CAAC;IACvB,SAAS,CAAC,EAAE,MAAM,CAAC;CACnB;AAED,MAAM,MAAM,cAAc,GAAG,IAAI,CAAC,QAAQ,EAAE,IAAI,GAAG,OAAO,GAAG,WAAW,CAAC,CAAC"}
1
+ {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../../src/tasks/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,YAAY,EAAE,MAAM,cAAc,CAAC;AA0CjD,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,0CAA0C,CAAC;AAC9D,YAAY,EACX,mBAAmB,EACnB,0BAA0B,EAC1B,oBAAoB,EACpB,4BAA4B,EAC5B,2BAA2B,EAC3B,0BAA0B,EAC1B,gCAAgC,EAChC,+BAA+B,GAC/B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,yCAAyC,CAAC;AAC7D,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,uBAAuB,CAAC;AAC3C,YAAY,EACX,wBAAwB,EACxB,yBAAyB,EACzB,gCAAgC,EAChC,6BAA6B,GAC7B,MAAM,kCAAkC,CAAC;AAC1C,mBAAmB,4BAA4B,CAAC;AAChD,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,iCAAiC,CAAC;AACrD,mBAAmB,2BAA2B,CAAC;AAC/C,mBAAmB,sCAAsC,CAAC;AAC1D,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,YAAY,EAAE,qBAAqB,EAAE,iBAAiB,EAAE,kBAAkB,EAAE,MAAM,4BAA4B,CAAC;AAC/G,mBAAmB,kCAAkC,CAAC;AACtD,YAAY,EACX,6BAA6B,EAC7B,qCAAqC,EACrC,gBAAgB,EAChB,iBAAiB,GACjB,MAAM,yBAAyB,CAAC;AACjC,YAAY,EACX,6BAA6B,EAC7B,uBAAuB,EACvB,wBAAwB,EACxB,+BAA+B,EAC/B,4BAA4B,GAC5B,MAAM,iCAAiC,CAAC;AACzC,YAAY,EACX,gCAAgC,EAChC,gCAAgC,EAChC,mBAAmB,EACnB,oBAAoB,EACpB,2BAA2B,EAC3B,qCAAqC,EACrC,kCAAkC,EAClC,yBAAyB,EACzB,uCAAuC,EACvC,0BAA0B,GAC1B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,uCAAuC,CAAC;AAC3D,mBAAmB,sCAAsC,CAAC;AAC1D,mBAAmB,4CAA4C,CAAC;AAChE,YAAY,EACX,WAAW,EACX,4BAA4B,EAC5B,gCAAgC,EAChC,6BAA6B,EAC7B,oCAAoC,GACpC,MAAM,wCAAwC,CAAC;AAEhD,OAAO,KAAK,EAAE,eAAe,EAAE,MAAM,oBAAoB,CAAC;AAE1D;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,MAAM,CAAC,YAAY,EAAE,eAAe,EAAE,CA0DzE,CAAC;AAoBF,eAAO,MAAM,UAAU,EAAE,MAAM,CAAC,YAAY,EAAE,QAAQ,GAAG,SAAS,CAkDxD,CAAC;AAEX,MAAM,WAAW,WAAW;IAC3B,WAAW,EAAE,MAAM,CAAC;IACpB,EAAE,EAAE,MAAM,CAAC;CACX;AAED,MAAM,MAAM,aAAa,GACtB;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,IAAI,EAAE,KAAK,CAAC;QACX,KAAK,EAAE,MAAM,CAAC;QACd,KAAK,EAAE,MAAM,CAAC;KACd,CAAC,CAAC;IACH,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,KAAK,CAAC;CACX,GACD;IACA,KAAK,EAAE,MAAM,EAAE,EAAE,CAAC;IAClB,IAAI,EAAE,SAAS,CAAC;CACf,GACD;IACA,OAAO,EAAE,MAAM,CAAC;IAChB,KAAK,EAAE,MAAM,CAAC;IACd,IAAI,EAAE,MAAM,CAAC;CACZ,GACD;IACA,IAAI,EAAE,MAAM,CAAC;IACb,MAAM,EAAE,KAAK,CAAC;QACb,GAAG,EAAE,MAAM,CAAC;QACZ,KAAK,EAAE,MAAM,CAAC;QACd,IAAI,EAAE,MAAM,CAAC;KACb,CAAC,CAAC;IACH,IAAI,EAAE,kBAAkB,CAAC;CACxB,CAAC;AAEL,MAAM,WAAW,QAAQ;IACxB,MAAM,EAAE,aAAa,EAAE,CAAC;IACxB,OAAO,EAAE,aAAa,EAAE,CAAC;CACzB;AAED,MAAM,WAAW,QAAQ;IACxB,QAAQ,EAAE,WAAW,EAAE,CAAC;IACxB,IAAI,EAAE,QAAQ,CAAC;IACf,EAAE,EAAE,YAAY,CAAC;IACjB,WAAW,CAAC,EAAE,YAAY,CAAC;IAC3B,aAAa,CAAC,EAAE,OAAO,CAAC;IACxB,KAAK,EAAE,MAAM,CAAC;IACd,SAAS,EAAE,eAAe,EAAE,CAAC;IAC7B,OAAO,EAAE,WAAW,EAAE,CAAC;IACvB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,EAAE,CAAC;IACvB,SAAS,CAAC,EAAE,MAAM,CAAC;CACnB;AAED,MAAM,MAAM,cAAc,GAAG,IAAI,CAAC,QAAQ,EAAE,IAAI,GAAG,OAAO,GAAG,WAAW,CAAC,CAAC"}
@@ -0,0 +1,4 @@
1
+ import type { TaskDataCustom } from "..";
2
+ declare const taskData: TaskDataCustom;
3
+ export default taskData;
4
+ //# sourceMappingURL=data.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-3d/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAmDf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@huggingface/tasks",
3
3
  "packageManager": "pnpm@8.10.5",
4
- "version": "0.11.2",
4
+ "version": "0.11.4",
5
5
  "description": "List of ML tasks for huggingface.co/tasks",
6
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
7
  "publishConfig": {
@@ -71,6 +71,12 @@ export const DATASET_LIBRARIES_UI_ELEMENTS = {
71
71
  repoUrl: "https://github.com/argilla-io/argilla",
72
72
  docsUrl: "https://argilla-io.github.io/argilla",
73
73
  },
74
+ polars: {
75
+ prettyLabel: "Polars",
76
+ repoName: "polars",
77
+ repoUrl: "https://github.com/pola-rs/polars",
78
+ docsUrl: "https://docs.pola.rs/",
79
+ },
74
80
  } satisfies Record<string, DatasetLibraryUiElement>;
75
81
 
76
82
  /// List of the dataset libraries supported by the Hub
@@ -270,6 +270,12 @@ model = from_pretrained_keras("${model.id}")
270
270
  `,
271
271
  ];
272
272
 
273
+ export const mamba_ssm = (model: ModelData): string[] => [
274
+ `from mamba_ssm import MambaLMHeadModel
275
+
276
+ model = MambaLMHeadModel.from_pretrained("${model.id}")`,
277
+ ];
278
+
273
279
  export const mars5_tts = (model: ModelData): string[] => [
274
280
  `# Install from https://github.com/Camb-ai/MARS5-TTS
275
281
 
@@ -293,11 +293,25 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = {
293
293
  repoName: "k2",
294
294
  repoUrl: "https://github.com/k2-fsa/k2",
295
295
  },
296
+ liveportrait: {
297
+ prettyLabel: "LivePortrait",
298
+ repoName: "LivePortrait",
299
+ repoUrl: "https://github.com/KwaiVGI/LivePortrait",
300
+ filter: false,
301
+ countDownloads: `path:"liveportrait/landmark.onnx"`,
302
+ },
296
303
  mindspore: {
297
304
  prettyLabel: "MindSpore",
298
305
  repoName: "mindspore",
299
306
  repoUrl: "https://github.com/mindspore-ai/mindspore",
300
307
  },
308
+ "mamba-ssm": {
309
+ prettyLabel: "MambaSSM",
310
+ repoName: "MambaSSM",
311
+ repoUrl: "https://github.com/state-spaces/mamba",
312
+ filter: false,
313
+ snippets: snippets.mamba_ssm,
314
+ },
301
315
  "mars5-tts": {
302
316
  prettyLabel: "MARS5-TTS",
303
317
  repoName: "MARS5-TTS",
@@ -3,7 +3,10 @@ import type { TaskDataCustom } from "..";
3
3
  const taskData: TaskDataCustom = {
4
4
  datasets: [
5
5
  {
6
- // TODO write proper description
6
+ description: "Largest document understanding dataset.",
7
+ id: "HuggingFaceM4/Docmatix",
8
+ },
9
+ {
7
10
  description:
8
11
  "Dataset from the 2020 DocVQA challenge. The documents are taken from the UCSF Industry Documents Library.",
9
12
  id: "eliolio/docvqa",
@@ -47,8 +50,8 @@ const taskData: TaskDataCustom = {
47
50
  id: "impira/layoutlm-document-qa",
48
51
  },
49
52
  {
50
- description: "A special model for OCR-free Document QA task. Donut model fine-tuned on DocVQA.",
51
- id: "naver-clova-ix/donut-base-finetuned-docvqa",
53
+ description: "A special model for OCR-free Document QA task.",
54
+ id: "microsoft/udop-large",
52
55
  },
53
56
  {
54
57
  description: "A powerful model for document question answering.",
@@ -42,6 +42,10 @@ const taskData: TaskDataCustom = {
42
42
  description: "A robust image feature extraction models.",
43
43
  id: "facebook/dino-vitb16",
44
44
  },
45
+ {
46
+ description: "Strong image-text-to-text model made for information retrieval from documents.",
47
+ id: "vidore/colpali",
48
+ },
45
49
  ],
46
50
  spaces: [],
47
51
  summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.",
@@ -43,8 +43,8 @@ const taskData: TaskDataCustom = {
43
43
  metrics: [],
44
44
  models: [
45
45
  {
46
- description: "Cutting-edge vision language model that can also localize texts in images.",
47
- id: "liuhaotian/llava-v1.6-34b",
46
+ description: "Cutting-edge vision language model that can take multiple image inputs.",
47
+ id: "facebook/chameleon-7b",
48
48
  },
49
49
  {
50
50
  description: "Cutting-edge conversational vision language model that can take multiple image inputs.",
@@ -58,6 +58,10 @@ const taskData: TaskDataCustom = {
58
58
  description: "Strong image-text-to-text model made to understand documents.",
59
59
  id: "mPLUG/DocOwl1.5",
60
60
  },
61
+ {
62
+ description: "Strong image-text-to-text model.",
63
+ id: "llava-hf/llava-v1.6-mistral-7b-hf",
64
+ },
61
65
  ],
62
66
  spaces: [
63
67
  {
@@ -0,0 +1,62 @@
1
+ ## Use Cases
2
+
3
+ Image-to-3D models can be used in a wide variety of applications that require 3D, such as games, animation, design, architecture, engineering, marketing, and more.
4
+
5
+ ![Image-to-3D Thumbnail](https://huggingface.co/datasets/huggingfacejs/tasks/resolve/main/image-to-3d/image-to-3d-thumbnail.png)
6
+
7
+ ### Generating Meshes
8
+
9
+ Meshes are the standard representation of 3D in industry.
10
+
11
+ ### Generating Gaussian Splats
12
+
13
+ [Gaussian Splatting](https://huggingface.co/blog/gaussian-splatting) is a rendering technique that represents scenes as fuzzy points.
14
+
15
+ ### Inference
16
+
17
+ Inference for this task typically leverages the [Diffusers](https://huggingface.co/docs/diffusers/index) library for inference, using [Custom Pipelines](https://huggingface.co/docs/diffusers/v0.6.0/en/using-diffusers/custom_pipelines).
18
+
19
+ These are unstandardized and depend on the model. More details can be found in each model repository.
20
+
21
+ ```python
22
+ import torch
23
+ import requests
24
+ import numpy as np
25
+ from io import BytesIO
26
+ from diffusers import DiffusionPipeline
27
+ from PIL import Image
28
+
29
+ pipeline = DiffusionPipeline.from_pretrained(
30
+ "dylanebert/LGM-full",
31
+ custom_pipeline="dylanebert/LGM-full",
32
+ torch_dtype=torch.float16,
33
+ trust_remote_code=True,
34
+ ).to("cuda")
35
+
36
+ input_url = "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"
37
+ input_image = Image.open(BytesIO(requests.get(input_url).content))
38
+ input_image = np.array(input_image, dtype=np.float32) / 255.0
39
+ result = pipeline("", input_image)
40
+ result_path = "/tmp/output.ply"
41
+ pipeline.save_ply(result, result_path)
42
+ ```
43
+
44
+ In the code above, we:
45
+
46
+ 1. Import the necessary libraries
47
+ 2. Load the `LGM-full` model and custom pipeline
48
+ 3. Load and preprocess the input image
49
+ 4. Run the pipeline on the input image
50
+ 5. Save the output to a file
51
+
52
+ ### Output Formats
53
+
54
+ Meshes can be in `.obj`, `.glb`, `.stl`, or `.gltf` format. Other formats are allowed, but won't be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component.
55
+
56
+ Splats can be in `.ply` or `.splat` format. They can be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component using the [gsplat.js](https://github.com/huggingface/gsplat.js) library.
57
+
58
+ ## Useful Resources
59
+
60
+ - [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course)
61
+ - [3D Arena Leaderboard](https://huggingface.co/spaces/dylanebert/3d-arena)
62
+ - [gsplat.js](https://github.com/huggingface/gsplat.js)
@@ -0,0 +1,75 @@
1
+ import type { TaskDataCustom } from "..";
2
+
3
+ const taskData: TaskDataCustom = {
4
+ datasets: [
5
+ {
6
+ description: "A large dataset of over 10 million 3D objects.",
7
+ id: "allenai/objaverse-xl",
8
+ },
9
+ {
10
+ description: "A dataset of isolated object images for evaluating image-to-3D models.",
11
+ id: "dylanebert/iso3d",
12
+ },
13
+ ],
14
+ demo: {
15
+ inputs: [
16
+ {
17
+ filename: "image-to-3d-image-input.png",
18
+ type: "img",
19
+ },
20
+ ],
21
+ outputs: [
22
+ {
23
+ label: "Result",
24
+ content: "image-to-3d-3d-output-filename.glb",
25
+ type: "text",
26
+ },
27
+ ],
28
+ },
29
+ metrics: [],
30
+ models: [
31
+ {
32
+ description: "Fast image-to-3D mesh model by Tencent.",
33
+ id: "TencentARC/InstantMesh",
34
+ },
35
+ {
36
+ description: "Fast image-to-3D mesh model by StabilityAI",
37
+ id: "stabilityai/TripoSR",
38
+ },
39
+ {
40
+ description: "A scaled up image-to-3D mesh model derived from TripoSR.",
41
+ id: "hwjiang/Real3D",
42
+ },
43
+ {
44
+ description: "Generative 3D gaussian splatting model.",
45
+ id: "ashawkey/LGM",
46
+ },
47
+ ],
48
+ spaces: [
49
+ {
50
+ description: "Leaderboard to evaluate image-to-3D models.",
51
+ id: "dylanebert/3d-arena",
52
+ },
53
+ {
54
+ description: "Image-to-3D demo with mesh outputs.",
55
+ id: "TencentARC/InstantMesh",
56
+ },
57
+ {
58
+ description: "Image-to-3D demo with mesh outputs.",
59
+ id: "stabilityai/TripoSR",
60
+ },
61
+ {
62
+ description: "Image-to-3D demo with mesh outputs.",
63
+ id: "hwjiang/Real3D",
64
+ },
65
+ {
66
+ description: "Image-to-3D demo with splat outputs.",
67
+ id: "dylanebert/LGM-mini",
68
+ },
69
+ ],
70
+ summary: "Image-to-3D models take in image input and produce 3D output.",
71
+ widgetModels: [],
72
+ youtubeId: "",
73
+ };
74
+
75
+ export default taskData;
@@ -37,6 +37,8 @@ import visualQuestionAnswering from "./visual-question-answering/data";
37
37
  import zeroShotClassification from "./zero-shot-classification/data";
38
38
  import zeroShotImageClassification from "./zero-shot-image-classification/data";
39
39
  import zeroShotObjectDetection from "./zero-shot-object-detection/data";
40
+ import imageTo3D from "./image-to-3d/data";
41
+ import textTo3D from "./text-to-3d/data";
40
42
 
41
43
  export type * from "./audio-classification/inference";
42
44
  export type * from "./automatic-speech-recognition/inference";
@@ -169,8 +171,8 @@ export const TASKS_MODEL_LIBRARIES: Record<PipelineType, ModelLibraryKey[]> = {
169
171
  "zero-shot-classification": ["transformers", "transformers.js"],
170
172
  "zero-shot-image-classification": ["transformers", "transformers.js"],
171
173
  "zero-shot-object-detection": ["transformers", "transformers.js"],
172
- "text-to-3d": [],
173
- "image-to-3d": [],
174
+ "text-to-3d": ["diffusers"],
175
+ "image-to-3d": ["diffusers"],
174
176
  };
175
177
 
176
178
  /**
@@ -239,8 +241,8 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
239
241
  "zero-shot-classification": getData("zero-shot-classification", zeroShotClassification),
240
242
  "zero-shot-image-classification": getData("zero-shot-image-classification", zeroShotImageClassification),
241
243
  "zero-shot-object-detection": getData("zero-shot-object-detection", zeroShotObjectDetection),
242
- "text-to-3d": getData("text-to-3d", placeholder),
243
- "image-to-3d": getData("image-to-3d", placeholder),
244
+ "text-to-3d": getData("text-to-3d", textTo3D),
245
+ "image-to-3d": getData("image-to-3d", imageTo3D),
244
246
  } as const;
245
247
 
246
248
  export interface ExampleRepo {
@@ -0,0 +1,62 @@
1
+ ## Use Cases
2
+
3
+ Text-to-3D models can be used in a wide variety of applications that require 3D, such as games, animation, design, architecture, engineering, marketing, and more.
4
+
5
+ ![Text-to-3D Thumbnail](https://huggingface.co/datasets/huggingfacejs/tasks/resolve/main/text-to-3d/text-to-3d-thumbnail.png)
6
+
7
+ This task is similar to the [image-to-3d](https://huggingface.co/tasks/image-to-3d) task, but takes text input instead of image input. In practice, this is often equivalent to a combination of [text-to-image](https://huggingface.co/tasks/text-to-image) and [image-to-3d](https://huggingface.co/tasks/image-to-3d). That is, the text is first converted to an image, then the image is converted to 3D.
8
+
9
+ ### Generating Meshes
10
+
11
+ Meshes are the standard representation of 3D in industry.
12
+
13
+ ### Generating Gaussian Splats
14
+
15
+ [Gaussian Splatting](https://huggingface.co/blog/gaussian-splatting) is a rendering technique that represents scenes as fuzzy points.
16
+
17
+ ### Inference
18
+
19
+ Inference for this task typically leverages the [Diffusers](https://huggingface.co/docs/diffusers/index) library for inference, using [Custom Pipelines](https://huggingface.co/docs/diffusers/v0.6.0/en/using-diffusers/custom_pipelines).
20
+
21
+ These are unstandardized and depend on the model. More details can be found in each model repository.
22
+
23
+ ```python
24
+ import torch
25
+ import requests
26
+ import numpy as np
27
+ from io import BytesIO
28
+ from diffusers import DiffusionPipeline
29
+ from PIL import Image
30
+
31
+ pipeline = DiffusionPipeline.from_pretrained(
32
+ "dylanebert/LGM-full",
33
+ custom_pipeline="dylanebert/LGM-full",
34
+ torch_dtype=torch.float16,
35
+ trust_remote_code=True,
36
+ ).to("cuda")
37
+
38
+ input_prompt = "a cat statue"
39
+ result = pipeline(input_prompt, None)
40
+ result_path = "/tmp/output.ply"
41
+ pipeline.save_ply(result, result_path)
42
+ ```
43
+
44
+ In the code above, we:
45
+
46
+ 1. Import the necessary libraries
47
+ 2. Load the `LGM-full` model and custom pipeline
48
+ 3. Define the input prompt
49
+ 4. Run the pipeline on the input prompt
50
+ 5. Save the output to a file
51
+
52
+ ### Output Formats
53
+
54
+ Meshes can be in `.obj`, `.glb`, `.stl`, or `.gltf` format. Other formats are allowed, but won't be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component.
55
+
56
+ Splats can be in `.ply` or `.splat` format. They can be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component using the [gsplat.js](https://github.com/huggingface/gsplat.js) library.
57
+
58
+ ## Useful Resources
59
+
60
+ - [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course)
61
+ - [3D Arena Leaderboard](https://huggingface.co/spaces/dylanebert/3d-arena)
62
+ - [gsplat.js](https://github.com/huggingface/gsplat.js)
@@ -0,0 +1,56 @@
1
+ import type { TaskDataCustom } from "..";
2
+
3
+ const taskData: TaskDataCustom = {
4
+ datasets: [
5
+ {
6
+ description: "A large dataset of over 10 million 3D objects.",
7
+ id: "allenai/objaverse-xl",
8
+ },
9
+ {
10
+ description: "Descriptive captions for 3D objects in Objaverse.",
11
+ id: "tiange/Cap3D",
12
+ },
13
+ ],
14
+ demo: {
15
+ inputs: [
16
+ {
17
+ label: "Prompt",
18
+ content: "a cat statue",
19
+ type: "text",
20
+ },
21
+ ],
22
+ outputs: [
23
+ {
24
+ label: "Result",
25
+ content: "text-to-3d-3d-output-filename.glb",
26
+ type: "text",
27
+ },
28
+ ],
29
+ },
30
+ metrics: [],
31
+ models: [
32
+ {
33
+ description: "Text-to-3D mesh model by OpenAI",
34
+ id: "openai/shap-e",
35
+ },
36
+ {
37
+ description: "Generative 3D gaussian splatting model.",
38
+ id: "ashawkey/LGM",
39
+ },
40
+ ],
41
+ spaces: [
42
+ {
43
+ description: "Text-to-3D demo with mesh outputs.",
44
+ id: "hysts/Shap-E",
45
+ },
46
+ {
47
+ description: "Text/image-to-3D demo with splat outputs.",
48
+ id: "ashawkey/LGM",
49
+ },
50
+ ],
51
+ summary: "Text-to-3D models take in text input and produce 3D output.",
52
+ widgetModels: [],
53
+ youtubeId: "",
54
+ };
55
+
56
+ export default taskData;