@huggingface/tasks 0.11.1 → 0.11.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -1
- package/dist/index.cjs +221 -4
- package/dist/index.js +221 -4
- package/dist/src/dataset-libraries.d.ts +18 -0
- package/dist/src/dataset-libraries.d.ts.map +1 -1
- package/dist/src/model-libraries-snippets.d.ts +2 -0
- package/dist/src/model-libraries-snippets.d.ts.map +1 -1
- package/dist/src/model-libraries.d.ts +24 -2
- package/dist/src/model-libraries.d.ts.map +1 -1
- package/dist/src/tasks/image-to-3d/data.d.ts +4 -0
- package/dist/src/tasks/image-to-3d/data.d.ts.map +1 -0
- package/dist/src/tasks/index.d.ts.map +1 -1
- package/dist/src/tasks/text-to-3d/data.d.ts +4 -0
- package/dist/src/tasks/text-to-3d/data.d.ts.map +1 -0
- package/package.json +1 -1
- package/src/dataset-libraries.ts +18 -0
- package/src/model-libraries-snippets.ts +53 -0
- package/src/model-libraries.ts +22 -0
- package/src/tasks/image-to-3d/about.md +62 -0
- package/src/tasks/image-to-3d/data.ts +75 -0
- package/src/tasks/index.ts +6 -4
- package/src/tasks/text-to-3d/about.md +62 -0
- package/src/tasks/text-to-3d/data.ts +56 -0
package/README.md
CHANGED
|
@@ -4,7 +4,7 @@ This package contains the definition files (written in Typescript) for the huggi
|
|
|
4
4
|
|
|
5
5
|
- **pipeline types** (a.k.a. **task types**) - used to determine which widget to display on the model page, and which inference API to run.
|
|
6
6
|
- **default widget inputs** - when they aren't provided in the model card.
|
|
7
|
-
- definitions and UI elements for **model
|
|
7
|
+
- definitions and UI elements for **model and dataset libraries**.
|
|
8
8
|
|
|
9
9
|
Please add any missing ones to these definitions by opening a PR. Thanks 🔥
|
|
10
10
|
|
package/dist/index.cjs
CHANGED
|
@@ -4034,6 +4034,135 @@ var taskData36 = {
|
|
|
4034
4034
|
};
|
|
4035
4035
|
var data_default36 = taskData36;
|
|
4036
4036
|
|
|
4037
|
+
// src/tasks/image-to-3d/data.ts
|
|
4038
|
+
var taskData37 = {
|
|
4039
|
+
datasets: [
|
|
4040
|
+
{
|
|
4041
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
4042
|
+
id: "allenai/objaverse-xl"
|
|
4043
|
+
},
|
|
4044
|
+
{
|
|
4045
|
+
description: "A dataset of isolated object images for evaluating image-to-3D models.",
|
|
4046
|
+
id: "dylanebert/iso3d"
|
|
4047
|
+
}
|
|
4048
|
+
],
|
|
4049
|
+
demo: {
|
|
4050
|
+
inputs: [
|
|
4051
|
+
{
|
|
4052
|
+
filename: "image-to-3d-image-input.png",
|
|
4053
|
+
type: "img"
|
|
4054
|
+
}
|
|
4055
|
+
],
|
|
4056
|
+
outputs: [
|
|
4057
|
+
{
|
|
4058
|
+
label: "Result",
|
|
4059
|
+
content: "image-to-3d-3d-output-filename.glb",
|
|
4060
|
+
type: "text"
|
|
4061
|
+
}
|
|
4062
|
+
]
|
|
4063
|
+
},
|
|
4064
|
+
metrics: [],
|
|
4065
|
+
models: [
|
|
4066
|
+
{
|
|
4067
|
+
description: "Fast image-to-3D mesh model by Tencent.",
|
|
4068
|
+
id: "TencentARC/InstantMesh"
|
|
4069
|
+
},
|
|
4070
|
+
{
|
|
4071
|
+
description: "Fast image-to-3D mesh model by StabilityAI",
|
|
4072
|
+
id: "stabilityai/TripoSR"
|
|
4073
|
+
},
|
|
4074
|
+
{
|
|
4075
|
+
description: "A scaled up image-to-3D mesh model derived from TripoSR.",
|
|
4076
|
+
id: "hwjiang/Real3D"
|
|
4077
|
+
},
|
|
4078
|
+
{
|
|
4079
|
+
description: "Generative 3D gaussian splatting model.",
|
|
4080
|
+
id: "ashawkey/LGM"
|
|
4081
|
+
}
|
|
4082
|
+
],
|
|
4083
|
+
spaces: [
|
|
4084
|
+
{
|
|
4085
|
+
description: "Leaderboard to evaluate image-to-3D models.",
|
|
4086
|
+
id: "dylanebert/3d-arena"
|
|
4087
|
+
},
|
|
4088
|
+
{
|
|
4089
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4090
|
+
id: "TencentARC/InstantMesh"
|
|
4091
|
+
},
|
|
4092
|
+
{
|
|
4093
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4094
|
+
id: "stabilityai/TripoSR"
|
|
4095
|
+
},
|
|
4096
|
+
{
|
|
4097
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4098
|
+
id: "hwjiang/Real3D"
|
|
4099
|
+
},
|
|
4100
|
+
{
|
|
4101
|
+
description: "Image-to-3D demo with splat outputs.",
|
|
4102
|
+
id: "dylanebert/LGM-mini"
|
|
4103
|
+
}
|
|
4104
|
+
],
|
|
4105
|
+
summary: "Image-to-3D models take in image input and produce 3D output.",
|
|
4106
|
+
widgetModels: [],
|
|
4107
|
+
youtubeId: ""
|
|
4108
|
+
};
|
|
4109
|
+
var data_default37 = taskData37;
|
|
4110
|
+
|
|
4111
|
+
// src/tasks/text-to-3d/data.ts
|
|
4112
|
+
var taskData38 = {
|
|
4113
|
+
datasets: [
|
|
4114
|
+
{
|
|
4115
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
4116
|
+
id: "allenai/objaverse-xl"
|
|
4117
|
+
},
|
|
4118
|
+
{
|
|
4119
|
+
description: "Descriptive captions for 3D objects in Objaverse.",
|
|
4120
|
+
id: "tiange/Cap3D"
|
|
4121
|
+
}
|
|
4122
|
+
],
|
|
4123
|
+
demo: {
|
|
4124
|
+
inputs: [
|
|
4125
|
+
{
|
|
4126
|
+
label: "Prompt",
|
|
4127
|
+
content: "a cat statue",
|
|
4128
|
+
type: "text"
|
|
4129
|
+
}
|
|
4130
|
+
],
|
|
4131
|
+
outputs: [
|
|
4132
|
+
{
|
|
4133
|
+
label: "Result",
|
|
4134
|
+
content: "text-to-3d-3d-output-filename.glb",
|
|
4135
|
+
type: "text"
|
|
4136
|
+
}
|
|
4137
|
+
]
|
|
4138
|
+
},
|
|
4139
|
+
metrics: [],
|
|
4140
|
+
models: [
|
|
4141
|
+
{
|
|
4142
|
+
description: "Text-to-3D mesh model by OpenAI",
|
|
4143
|
+
id: "openai/shap-e"
|
|
4144
|
+
},
|
|
4145
|
+
{
|
|
4146
|
+
description: "Generative 3D gaussian splatting model.",
|
|
4147
|
+
id: "ashawkey/LGM"
|
|
4148
|
+
}
|
|
4149
|
+
],
|
|
4150
|
+
spaces: [
|
|
4151
|
+
{
|
|
4152
|
+
description: "Text-to-3D demo with mesh outputs.",
|
|
4153
|
+
id: "hysts/Shap-E"
|
|
4154
|
+
},
|
|
4155
|
+
{
|
|
4156
|
+
description: "Text/image-to-3D demo with splat outputs.",
|
|
4157
|
+
id: "ashawkey/LGM"
|
|
4158
|
+
}
|
|
4159
|
+
],
|
|
4160
|
+
summary: "Text-to-3D models take in text input and produce 3D output.",
|
|
4161
|
+
widgetModels: [],
|
|
4162
|
+
youtubeId: ""
|
|
4163
|
+
};
|
|
4164
|
+
var data_default38 = taskData38;
|
|
4165
|
+
|
|
4037
4166
|
// src/tasks/index.ts
|
|
4038
4167
|
var TASKS_MODEL_LIBRARIES = {
|
|
4039
4168
|
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
|
|
@@ -4091,8 +4220,8 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
4091
4220
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
4092
4221
|
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4093
4222
|
"zero-shot-object-detection": ["transformers", "transformers.js"],
|
|
4094
|
-
"text-to-3d": [],
|
|
4095
|
-
"image-to-3d": []
|
|
4223
|
+
"text-to-3d": ["diffusers"],
|
|
4224
|
+
"image-to-3d": ["diffusers"]
|
|
4096
4225
|
};
|
|
4097
4226
|
function getData(type, partialTaskData = data_default16) {
|
|
4098
4227
|
return {
|
|
@@ -4150,8 +4279,8 @@ var TASKS_DATA = {
|
|
|
4150
4279
|
"zero-shot-classification": getData("zero-shot-classification", data_default34),
|
|
4151
4280
|
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default35),
|
|
4152
4281
|
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default36),
|
|
4153
|
-
"text-to-3d": getData("text-to-3d",
|
|
4154
|
-
"image-to-3d": getData("image-to-3d",
|
|
4282
|
+
"text-to-3d": getData("text-to-3d", data_default38),
|
|
4283
|
+
"image-to-3d": getData("image-to-3d", data_default37)
|
|
4155
4284
|
};
|
|
4156
4285
|
|
|
4157
4286
|
// src/model-libraries-snippets.ts
|
|
@@ -4222,6 +4351,49 @@ var bm25s = (model) => [
|
|
|
4222
4351
|
|
|
4223
4352
|
retriever = BM25HF.load_from_hub("${model.id}")`
|
|
4224
4353
|
];
|
|
4354
|
+
var depth_anything_v2 = (model) => {
|
|
4355
|
+
let encoder;
|
|
4356
|
+
let features;
|
|
4357
|
+
let out_channels;
|
|
4358
|
+
encoder = "<ENCODER>";
|
|
4359
|
+
features = "<NUMBER_OF_FEATURES>";
|
|
4360
|
+
out_channels = "<OUT_CHANNELS>";
|
|
4361
|
+
if (model.id === "depth-anything/Depth-Anything-V2-Small") {
|
|
4362
|
+
encoder = "vits";
|
|
4363
|
+
features = "64";
|
|
4364
|
+
out_channels = "[48, 96, 192, 384]";
|
|
4365
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Base") {
|
|
4366
|
+
encoder = "vitb";
|
|
4367
|
+
features = "128";
|
|
4368
|
+
out_channels = "[96, 192, 384, 768]";
|
|
4369
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Large") {
|
|
4370
|
+
encoder = "vitl";
|
|
4371
|
+
features = "256";
|
|
4372
|
+
out_channels = "[256, 512, 1024, 1024";
|
|
4373
|
+
}
|
|
4374
|
+
return [
|
|
4375
|
+
`
|
|
4376
|
+
# Install from https://github.com/DepthAnything/Depth-Anything-V2
|
|
4377
|
+
|
|
4378
|
+
# Load the model and infer depth from an image
|
|
4379
|
+
import cv2
|
|
4380
|
+
import torch
|
|
4381
|
+
|
|
4382
|
+
from depth_anything_v2.dpt import DepthAnythingV2
|
|
4383
|
+
|
|
4384
|
+
# instantiate the model
|
|
4385
|
+
model = DepthAnythingV2(encoder="${encoder}", features=${features}, out_channels=${out_channels})
|
|
4386
|
+
|
|
4387
|
+
# load the weights
|
|
4388
|
+
filepath = hf_hub_download(repo_id="${model.id}", filename="depth_anything_v2_${encoder}.pth", repo_type="model")
|
|
4389
|
+
state_dict = torch.load(filepath, map_location="cpu")
|
|
4390
|
+
model.load_state_dict(state_dict).eval()
|
|
4391
|
+
|
|
4392
|
+
raw_img = cv2.imread("your/image/path")
|
|
4393
|
+
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
|
|
4394
|
+
`
|
|
4395
|
+
];
|
|
4396
|
+
};
|
|
4225
4397
|
var diffusers_default = (model) => [
|
|
4226
4398
|
`from diffusers import DiffusionPipeline
|
|
4227
4399
|
|
|
@@ -4347,6 +4519,11 @@ from huggingface_hub import from_pretrained_keras
|
|
|
4347
4519
|
model = from_pretrained_keras("${model.id}")
|
|
4348
4520
|
`
|
|
4349
4521
|
];
|
|
4522
|
+
var mamba_ssm = (model) => [
|
|
4523
|
+
`from mamba_ssm import MambaLMHeadModel
|
|
4524
|
+
|
|
4525
|
+
model = MambaLMHeadModel.from_pretrained("${model.id}")`
|
|
4526
|
+
];
|
|
4350
4527
|
var mars5_tts = (model) => [
|
|
4351
4528
|
`# Install from https://github.com/Camb-ai/MARS5-TTS
|
|
4352
4529
|
|
|
@@ -4911,6 +5088,14 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4911
5088
|
filter: false,
|
|
4912
5089
|
countDownloads: `path:"adapter_config.json"`
|
|
4913
5090
|
},
|
|
5091
|
+
"depth-anything-v2": {
|
|
5092
|
+
prettyLabel: "DepthAnythingV2",
|
|
5093
|
+
repoName: "Depth Anything V2",
|
|
5094
|
+
repoUrl: "https://github.com/DepthAnything/Depth-Anything-V2",
|
|
5095
|
+
snippets: depth_anything_v2,
|
|
5096
|
+
filter: false,
|
|
5097
|
+
countDownloads: `path_extension:"pth"`
|
|
5098
|
+
},
|
|
4914
5099
|
diffusers: {
|
|
4915
5100
|
prettyLabel: "Diffusers",
|
|
4916
5101
|
repoName: "\u{1F917}/diffusers",
|
|
@@ -5053,11 +5238,25 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
5053
5238
|
repoName: "k2",
|
|
5054
5239
|
repoUrl: "https://github.com/k2-fsa/k2"
|
|
5055
5240
|
},
|
|
5241
|
+
liveportrait: {
|
|
5242
|
+
prettyLabel: "LivePortrait",
|
|
5243
|
+
repoName: "LivePortrait",
|
|
5244
|
+
repoUrl: "https://github.com/KwaiVGI/LivePortrait",
|
|
5245
|
+
filter: false,
|
|
5246
|
+
countDownloads: `path:"liveportrait/landmark.onnx"`
|
|
5247
|
+
},
|
|
5056
5248
|
mindspore: {
|
|
5057
5249
|
prettyLabel: "MindSpore",
|
|
5058
5250
|
repoName: "mindspore",
|
|
5059
5251
|
repoUrl: "https://github.com/mindspore-ai/mindspore"
|
|
5060
5252
|
},
|
|
5253
|
+
"mamba-ssm": {
|
|
5254
|
+
prettyLabel: "MambaSSM",
|
|
5255
|
+
repoName: "MambaSSM",
|
|
5256
|
+
repoUrl: "https://github.com/state-spaces/mamba",
|
|
5257
|
+
filter: false,
|
|
5258
|
+
snippets: mamba_ssm
|
|
5259
|
+
},
|
|
5061
5260
|
"mars5-tts": {
|
|
5062
5261
|
prettyLabel: "MARS5-TTS",
|
|
5063
5262
|
repoName: "MARS5-TTS",
|
|
@@ -6409,6 +6608,24 @@ var DATASET_LIBRARIES_UI_ELEMENTS = {
|
|
|
6409
6608
|
repoName: "dask",
|
|
6410
6609
|
repoUrl: "https://github.com/dask/dask",
|
|
6411
6610
|
docsUrl: "https://huggingface.co/docs/hub/datasets-dask"
|
|
6611
|
+
},
|
|
6612
|
+
distilabel: {
|
|
6613
|
+
prettyLabel: "Distilabel",
|
|
6614
|
+
repoName: "distilabel",
|
|
6615
|
+
repoUrl: "https://github.com/argilla-io/distilabel",
|
|
6616
|
+
docsUrl: "https://distilabel.argilla.io"
|
|
6617
|
+
},
|
|
6618
|
+
fiftyone: {
|
|
6619
|
+
prettyLabel: "FiftyOne",
|
|
6620
|
+
repoName: "fiftyone",
|
|
6621
|
+
repoUrl: "https://github.com/voxel51/fiftyone",
|
|
6622
|
+
docsUrl: "https://docs.voxel51.com"
|
|
6623
|
+
},
|
|
6624
|
+
argilla: {
|
|
6625
|
+
prettyLabel: "Argilla",
|
|
6626
|
+
repoName: "argilla",
|
|
6627
|
+
repoUrl: "https://github.com/argilla-io/argilla",
|
|
6628
|
+
docsUrl: "https://argilla-io.github.io/argilla"
|
|
6412
6629
|
}
|
|
6413
6630
|
};
|
|
6414
6631
|
// Annotate the CommonJS export names for ESM import in node:
|
package/dist/index.js
CHANGED
|
@@ -3996,6 +3996,135 @@ var taskData36 = {
|
|
|
3996
3996
|
};
|
|
3997
3997
|
var data_default36 = taskData36;
|
|
3998
3998
|
|
|
3999
|
+
// src/tasks/image-to-3d/data.ts
|
|
4000
|
+
var taskData37 = {
|
|
4001
|
+
datasets: [
|
|
4002
|
+
{
|
|
4003
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
4004
|
+
id: "allenai/objaverse-xl"
|
|
4005
|
+
},
|
|
4006
|
+
{
|
|
4007
|
+
description: "A dataset of isolated object images for evaluating image-to-3D models.",
|
|
4008
|
+
id: "dylanebert/iso3d"
|
|
4009
|
+
}
|
|
4010
|
+
],
|
|
4011
|
+
demo: {
|
|
4012
|
+
inputs: [
|
|
4013
|
+
{
|
|
4014
|
+
filename: "image-to-3d-image-input.png",
|
|
4015
|
+
type: "img"
|
|
4016
|
+
}
|
|
4017
|
+
],
|
|
4018
|
+
outputs: [
|
|
4019
|
+
{
|
|
4020
|
+
label: "Result",
|
|
4021
|
+
content: "image-to-3d-3d-output-filename.glb",
|
|
4022
|
+
type: "text"
|
|
4023
|
+
}
|
|
4024
|
+
]
|
|
4025
|
+
},
|
|
4026
|
+
metrics: [],
|
|
4027
|
+
models: [
|
|
4028
|
+
{
|
|
4029
|
+
description: "Fast image-to-3D mesh model by Tencent.",
|
|
4030
|
+
id: "TencentARC/InstantMesh"
|
|
4031
|
+
},
|
|
4032
|
+
{
|
|
4033
|
+
description: "Fast image-to-3D mesh model by StabilityAI",
|
|
4034
|
+
id: "stabilityai/TripoSR"
|
|
4035
|
+
},
|
|
4036
|
+
{
|
|
4037
|
+
description: "A scaled up image-to-3D mesh model derived from TripoSR.",
|
|
4038
|
+
id: "hwjiang/Real3D"
|
|
4039
|
+
},
|
|
4040
|
+
{
|
|
4041
|
+
description: "Generative 3D gaussian splatting model.",
|
|
4042
|
+
id: "ashawkey/LGM"
|
|
4043
|
+
}
|
|
4044
|
+
],
|
|
4045
|
+
spaces: [
|
|
4046
|
+
{
|
|
4047
|
+
description: "Leaderboard to evaluate image-to-3D models.",
|
|
4048
|
+
id: "dylanebert/3d-arena"
|
|
4049
|
+
},
|
|
4050
|
+
{
|
|
4051
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4052
|
+
id: "TencentARC/InstantMesh"
|
|
4053
|
+
},
|
|
4054
|
+
{
|
|
4055
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4056
|
+
id: "stabilityai/TripoSR"
|
|
4057
|
+
},
|
|
4058
|
+
{
|
|
4059
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
4060
|
+
id: "hwjiang/Real3D"
|
|
4061
|
+
},
|
|
4062
|
+
{
|
|
4063
|
+
description: "Image-to-3D demo with splat outputs.",
|
|
4064
|
+
id: "dylanebert/LGM-mini"
|
|
4065
|
+
}
|
|
4066
|
+
],
|
|
4067
|
+
summary: "Image-to-3D models take in image input and produce 3D output.",
|
|
4068
|
+
widgetModels: [],
|
|
4069
|
+
youtubeId: ""
|
|
4070
|
+
};
|
|
4071
|
+
var data_default37 = taskData37;
|
|
4072
|
+
|
|
4073
|
+
// src/tasks/text-to-3d/data.ts
|
|
4074
|
+
var taskData38 = {
|
|
4075
|
+
datasets: [
|
|
4076
|
+
{
|
|
4077
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
4078
|
+
id: "allenai/objaverse-xl"
|
|
4079
|
+
},
|
|
4080
|
+
{
|
|
4081
|
+
description: "Descriptive captions for 3D objects in Objaverse.",
|
|
4082
|
+
id: "tiange/Cap3D"
|
|
4083
|
+
}
|
|
4084
|
+
],
|
|
4085
|
+
demo: {
|
|
4086
|
+
inputs: [
|
|
4087
|
+
{
|
|
4088
|
+
label: "Prompt",
|
|
4089
|
+
content: "a cat statue",
|
|
4090
|
+
type: "text"
|
|
4091
|
+
}
|
|
4092
|
+
],
|
|
4093
|
+
outputs: [
|
|
4094
|
+
{
|
|
4095
|
+
label: "Result",
|
|
4096
|
+
content: "text-to-3d-3d-output-filename.glb",
|
|
4097
|
+
type: "text"
|
|
4098
|
+
}
|
|
4099
|
+
]
|
|
4100
|
+
},
|
|
4101
|
+
metrics: [],
|
|
4102
|
+
models: [
|
|
4103
|
+
{
|
|
4104
|
+
description: "Text-to-3D mesh model by OpenAI",
|
|
4105
|
+
id: "openai/shap-e"
|
|
4106
|
+
},
|
|
4107
|
+
{
|
|
4108
|
+
description: "Generative 3D gaussian splatting model.",
|
|
4109
|
+
id: "ashawkey/LGM"
|
|
4110
|
+
}
|
|
4111
|
+
],
|
|
4112
|
+
spaces: [
|
|
4113
|
+
{
|
|
4114
|
+
description: "Text-to-3D demo with mesh outputs.",
|
|
4115
|
+
id: "hysts/Shap-E"
|
|
4116
|
+
},
|
|
4117
|
+
{
|
|
4118
|
+
description: "Text/image-to-3D demo with splat outputs.",
|
|
4119
|
+
id: "ashawkey/LGM"
|
|
4120
|
+
}
|
|
4121
|
+
],
|
|
4122
|
+
summary: "Text-to-3D models take in text input and produce 3D output.",
|
|
4123
|
+
widgetModels: [],
|
|
4124
|
+
youtubeId: ""
|
|
4125
|
+
};
|
|
4126
|
+
var data_default38 = taskData38;
|
|
4127
|
+
|
|
3999
4128
|
// src/tasks/index.ts
|
|
4000
4129
|
var TASKS_MODEL_LIBRARIES = {
|
|
4001
4130
|
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
|
|
@@ -4053,8 +4182,8 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
4053
4182
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
4054
4183
|
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4055
4184
|
"zero-shot-object-detection": ["transformers", "transformers.js"],
|
|
4056
|
-
"text-to-3d": [],
|
|
4057
|
-
"image-to-3d": []
|
|
4185
|
+
"text-to-3d": ["diffusers"],
|
|
4186
|
+
"image-to-3d": ["diffusers"]
|
|
4058
4187
|
};
|
|
4059
4188
|
function getData(type, partialTaskData = data_default16) {
|
|
4060
4189
|
return {
|
|
@@ -4112,8 +4241,8 @@ var TASKS_DATA = {
|
|
|
4112
4241
|
"zero-shot-classification": getData("zero-shot-classification", data_default34),
|
|
4113
4242
|
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default35),
|
|
4114
4243
|
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default36),
|
|
4115
|
-
"text-to-3d": getData("text-to-3d",
|
|
4116
|
-
"image-to-3d": getData("image-to-3d",
|
|
4244
|
+
"text-to-3d": getData("text-to-3d", data_default38),
|
|
4245
|
+
"image-to-3d": getData("image-to-3d", data_default37)
|
|
4117
4246
|
};
|
|
4118
4247
|
|
|
4119
4248
|
// src/model-libraries-snippets.ts
|
|
@@ -4184,6 +4313,49 @@ var bm25s = (model) => [
|
|
|
4184
4313
|
|
|
4185
4314
|
retriever = BM25HF.load_from_hub("${model.id}")`
|
|
4186
4315
|
];
|
|
4316
|
+
var depth_anything_v2 = (model) => {
|
|
4317
|
+
let encoder;
|
|
4318
|
+
let features;
|
|
4319
|
+
let out_channels;
|
|
4320
|
+
encoder = "<ENCODER>";
|
|
4321
|
+
features = "<NUMBER_OF_FEATURES>";
|
|
4322
|
+
out_channels = "<OUT_CHANNELS>";
|
|
4323
|
+
if (model.id === "depth-anything/Depth-Anything-V2-Small") {
|
|
4324
|
+
encoder = "vits";
|
|
4325
|
+
features = "64";
|
|
4326
|
+
out_channels = "[48, 96, 192, 384]";
|
|
4327
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Base") {
|
|
4328
|
+
encoder = "vitb";
|
|
4329
|
+
features = "128";
|
|
4330
|
+
out_channels = "[96, 192, 384, 768]";
|
|
4331
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Large") {
|
|
4332
|
+
encoder = "vitl";
|
|
4333
|
+
features = "256";
|
|
4334
|
+
out_channels = "[256, 512, 1024, 1024";
|
|
4335
|
+
}
|
|
4336
|
+
return [
|
|
4337
|
+
`
|
|
4338
|
+
# Install from https://github.com/DepthAnything/Depth-Anything-V2
|
|
4339
|
+
|
|
4340
|
+
# Load the model and infer depth from an image
|
|
4341
|
+
import cv2
|
|
4342
|
+
import torch
|
|
4343
|
+
|
|
4344
|
+
from depth_anything_v2.dpt import DepthAnythingV2
|
|
4345
|
+
|
|
4346
|
+
# instantiate the model
|
|
4347
|
+
model = DepthAnythingV2(encoder="${encoder}", features=${features}, out_channels=${out_channels})
|
|
4348
|
+
|
|
4349
|
+
# load the weights
|
|
4350
|
+
filepath = hf_hub_download(repo_id="${model.id}", filename="depth_anything_v2_${encoder}.pth", repo_type="model")
|
|
4351
|
+
state_dict = torch.load(filepath, map_location="cpu")
|
|
4352
|
+
model.load_state_dict(state_dict).eval()
|
|
4353
|
+
|
|
4354
|
+
raw_img = cv2.imread("your/image/path")
|
|
4355
|
+
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
|
|
4356
|
+
`
|
|
4357
|
+
];
|
|
4358
|
+
};
|
|
4187
4359
|
var diffusers_default = (model) => [
|
|
4188
4360
|
`from diffusers import DiffusionPipeline
|
|
4189
4361
|
|
|
@@ -4309,6 +4481,11 @@ from huggingface_hub import from_pretrained_keras
|
|
|
4309
4481
|
model = from_pretrained_keras("${model.id}")
|
|
4310
4482
|
`
|
|
4311
4483
|
];
|
|
4484
|
+
var mamba_ssm = (model) => [
|
|
4485
|
+
`from mamba_ssm import MambaLMHeadModel
|
|
4486
|
+
|
|
4487
|
+
model = MambaLMHeadModel.from_pretrained("${model.id}")`
|
|
4488
|
+
];
|
|
4312
4489
|
var mars5_tts = (model) => [
|
|
4313
4490
|
`# Install from https://github.com/Camb-ai/MARS5-TTS
|
|
4314
4491
|
|
|
@@ -4873,6 +5050,14 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
4873
5050
|
filter: false,
|
|
4874
5051
|
countDownloads: `path:"adapter_config.json"`
|
|
4875
5052
|
},
|
|
5053
|
+
"depth-anything-v2": {
|
|
5054
|
+
prettyLabel: "DepthAnythingV2",
|
|
5055
|
+
repoName: "Depth Anything V2",
|
|
5056
|
+
repoUrl: "https://github.com/DepthAnything/Depth-Anything-V2",
|
|
5057
|
+
snippets: depth_anything_v2,
|
|
5058
|
+
filter: false,
|
|
5059
|
+
countDownloads: `path_extension:"pth"`
|
|
5060
|
+
},
|
|
4876
5061
|
diffusers: {
|
|
4877
5062
|
prettyLabel: "Diffusers",
|
|
4878
5063
|
repoName: "\u{1F917}/diffusers",
|
|
@@ -5015,11 +5200,25 @@ var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
5015
5200
|
repoName: "k2",
|
|
5016
5201
|
repoUrl: "https://github.com/k2-fsa/k2"
|
|
5017
5202
|
},
|
|
5203
|
+
liveportrait: {
|
|
5204
|
+
prettyLabel: "LivePortrait",
|
|
5205
|
+
repoName: "LivePortrait",
|
|
5206
|
+
repoUrl: "https://github.com/KwaiVGI/LivePortrait",
|
|
5207
|
+
filter: false,
|
|
5208
|
+
countDownloads: `path:"liveportrait/landmark.onnx"`
|
|
5209
|
+
},
|
|
5018
5210
|
mindspore: {
|
|
5019
5211
|
prettyLabel: "MindSpore",
|
|
5020
5212
|
repoName: "mindspore",
|
|
5021
5213
|
repoUrl: "https://github.com/mindspore-ai/mindspore"
|
|
5022
5214
|
},
|
|
5215
|
+
"mamba-ssm": {
|
|
5216
|
+
prettyLabel: "MambaSSM",
|
|
5217
|
+
repoName: "MambaSSM",
|
|
5218
|
+
repoUrl: "https://github.com/state-spaces/mamba",
|
|
5219
|
+
filter: false,
|
|
5220
|
+
snippets: mamba_ssm
|
|
5221
|
+
},
|
|
5023
5222
|
"mars5-tts": {
|
|
5024
5223
|
prettyLabel: "MARS5-TTS",
|
|
5025
5224
|
repoName: "MARS5-TTS",
|
|
@@ -6371,6 +6570,24 @@ var DATASET_LIBRARIES_UI_ELEMENTS = {
|
|
|
6371
6570
|
repoName: "dask",
|
|
6372
6571
|
repoUrl: "https://github.com/dask/dask",
|
|
6373
6572
|
docsUrl: "https://huggingface.co/docs/hub/datasets-dask"
|
|
6573
|
+
},
|
|
6574
|
+
distilabel: {
|
|
6575
|
+
prettyLabel: "Distilabel",
|
|
6576
|
+
repoName: "distilabel",
|
|
6577
|
+
repoUrl: "https://github.com/argilla-io/distilabel",
|
|
6578
|
+
docsUrl: "https://distilabel.argilla.io"
|
|
6579
|
+
},
|
|
6580
|
+
fiftyone: {
|
|
6581
|
+
prettyLabel: "FiftyOne",
|
|
6582
|
+
repoName: "fiftyone",
|
|
6583
|
+
repoUrl: "https://github.com/voxel51/fiftyone",
|
|
6584
|
+
docsUrl: "https://docs.voxel51.com"
|
|
6585
|
+
},
|
|
6586
|
+
argilla: {
|
|
6587
|
+
prettyLabel: "Argilla",
|
|
6588
|
+
repoName: "argilla",
|
|
6589
|
+
repoUrl: "https://github.com/argilla-io/argilla",
|
|
6590
|
+
docsUrl: "https://argilla-io.github.io/argilla"
|
|
6374
6591
|
}
|
|
6375
6592
|
};
|
|
6376
6593
|
export {
|
|
@@ -52,6 +52,24 @@ export declare const DATASET_LIBRARIES_UI_ELEMENTS: {
|
|
|
52
52
|
repoUrl: string;
|
|
53
53
|
docsUrl: string;
|
|
54
54
|
};
|
|
55
|
+
distilabel: {
|
|
56
|
+
prettyLabel: string;
|
|
57
|
+
repoName: string;
|
|
58
|
+
repoUrl: string;
|
|
59
|
+
docsUrl: string;
|
|
60
|
+
};
|
|
61
|
+
fiftyone: {
|
|
62
|
+
prettyLabel: string;
|
|
63
|
+
repoName: string;
|
|
64
|
+
repoUrl: string;
|
|
65
|
+
docsUrl: string;
|
|
66
|
+
};
|
|
67
|
+
argilla: {
|
|
68
|
+
prettyLabel: string;
|
|
69
|
+
repoName: string;
|
|
70
|
+
repoUrl: string;
|
|
71
|
+
docsUrl: string;
|
|
72
|
+
};
|
|
55
73
|
};
|
|
56
74
|
export type DatasetLibraryKey = keyof typeof DATASET_LIBRARIES_UI_ELEMENTS;
|
|
57
75
|
//# sourceMappingURL=dataset-libraries.d.ts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"dataset-libraries.d.ts","sourceRoot":"","sources":["../../src/dataset-libraries.ts"],"names":[],"mappings":"AAAA;;GAEG;AACH,MAAM,WAAW,uBAAuB;IACvC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;CACjB;AAED,eAAO,MAAM,6BAA6B
|
|
1
|
+
{"version":3,"file":"dataset-libraries.d.ts","sourceRoot":"","sources":["../../src/dataset-libraries.ts"],"names":[],"mappings":"AAAA;;GAEG;AACH,MAAM,WAAW,uBAAuB;IACvC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;CACjB;AAED,eAAO,MAAM,6BAA6B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAiDS,CAAC;AAGpD,MAAM,MAAM,iBAAiB,GAAG,MAAM,OAAO,6BAA6B,CAAC"}
|
|
@@ -5,6 +5,7 @@ export declare const asteroid: (model: ModelData) => string[];
|
|
|
5
5
|
export declare const audioseal: (model: ModelData) => string[];
|
|
6
6
|
export declare const bertopic: (model: ModelData) => string[];
|
|
7
7
|
export declare const bm25s: (model: ModelData) => string[];
|
|
8
|
+
export declare const depth_anything_v2: (model: ModelData) => string[];
|
|
8
9
|
export declare const diffusers: (model: ModelData) => string[];
|
|
9
10
|
export declare const edsnlp: (model: ModelData) => string[];
|
|
10
11
|
export declare const espnetTTS: (model: ModelData) => string[];
|
|
@@ -16,6 +17,7 @@ export declare const gliner: (model: ModelData) => string[];
|
|
|
16
17
|
export declare const keras: (model: ModelData) => string[];
|
|
17
18
|
export declare const keras_nlp: (model: ModelData) => string[];
|
|
18
19
|
export declare const tf_keras: (model: ModelData) => string[];
|
|
20
|
+
export declare const mamba_ssm: (model: ModelData) => string[];
|
|
19
21
|
export declare const mars5_tts: (model: ModelData) => string[];
|
|
20
22
|
export declare const mesh_anything: () => string[];
|
|
21
23
|
export declare const open_clip: (model: ModelData) => string[];
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
|
|
1
|
+
{"version":3,"file":"model-libraries-snippets.d.ts","sourceRoot":"","sources":["../../src/model-libraries-snippets.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAY9C,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAkBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAkBlD,CAAC;AAMF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAIjD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,iBAAiB,UAAW,SAAS,KAAG,MAAM,EA6C1D,CAAC;AA+BF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAgB/C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAMlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EASlD,CAAC;AAIF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAO/C,CAAC;AAEF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAMhD,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAS9C,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAUlD,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAOjD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAIlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,aAAa,QAAO,MAAM,EAQtC,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAKlD,CAAC;AAEF,eAAO,MAAM,SAAS,UAAW,SAAS,KAAG,MAAM,EAsBlD,CAAC;AAEF,eAAO,MAAM,uBAAuB,UAAW,SAAS,KAAG,MAAM,EAehE,CAAC;AAiBF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAKvD,CAAC;AAyBF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAOtD,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAI7C,CAAC;AAsCF,eAAO,MAAM,OAAO,UAAW,SAAS,KAAG,MAAM,EAehD,CAAC;AAEF,eAAO,MAAM,kBAAkB,UAAW,SAAS,KAAG,MAAM,EAmC3D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,aAAa,UAAW,SAAS,KAAG,MAAM,EAEtD,CAAC;AAEF,eAAO,MAAM,oBAAoB,UAAW,SAAS,KAAG,MAAM,EAI7D,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAU9C,CAAC;AAEF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAIpD,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAK/C,CAAC;AAkBF,eAAO,MAAM,WAAW,UAAW,SAAS,KAAG,MAAM,EAkBpD,CAAC;AAEF,eAAO,MAAM,YAAY,UAAW,SAAS,KAAG,MAAM,EA4CrD,CAAC;AAEF,eAAO,MAAM,cAAc,UAAW,SAAS,KAAG,MAAM,EAcvD,CAAC;AAiBF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAkB7C,CAAC;AAEF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAKjD,CAAC;AAEF,eAAO,MAAM,gBAAgB,UAAW,SAAS,KAAG,MAAM,EAMzD,CAAC;AAgBF,eAAO,MAAM,QAAQ,UAAW,SAAS,KAAG,MAAM,EAEjD,CAAC;AAEF,eAAO,MAAM,MAAM,QAA6B,MAAM,EAMrD,CAAC;AAEF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAInD,CAAC;AAEF,eAAO,MAAM,OAAO,QAAO,MAAM,EAYhC,CAAC;AAEF,eAAO,MAAM,GAAG,UAAW,SAAS,KAAG,MAAM,EAK5C,CAAC;AAEF,eAAO,MAAM,KAAK,UAAW,SAAS,KAAG,MAAM,EAI9C,CAAC;AAEF,eAAO,MAAM,IAAI,UAAW,SAAS,KAAG,MAAM,EAQ7C,CAAC;AAEF,eAAO,MAAM,MAAM,UAAW,SAAS,KAAG,MAAM,EAI/C,CAAC;AA6BF,eAAO,MAAM,UAAU,UAAW,SAAS,KAAG,MAAM,EAUnD,CAAC;AAEF,eAAO,MAAM,UAAU,QAAO,MAAM,EAYnC,CAAC"}
|
|
@@ -139,6 +139,14 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
139
139
|
filter: false;
|
|
140
140
|
countDownloads: string;
|
|
141
141
|
};
|
|
142
|
+
"depth-anything-v2": {
|
|
143
|
+
prettyLabel: string;
|
|
144
|
+
repoName: string;
|
|
145
|
+
repoUrl: string;
|
|
146
|
+
snippets: (model: ModelData) => string[];
|
|
147
|
+
filter: false;
|
|
148
|
+
countDownloads: string;
|
|
149
|
+
};
|
|
142
150
|
diffusers: {
|
|
143
151
|
prettyLabel: string;
|
|
144
152
|
repoName: string;
|
|
@@ -279,11 +287,25 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
279
287
|
repoName: string;
|
|
280
288
|
repoUrl: string;
|
|
281
289
|
};
|
|
290
|
+
liveportrait: {
|
|
291
|
+
prettyLabel: string;
|
|
292
|
+
repoName: string;
|
|
293
|
+
repoUrl: string;
|
|
294
|
+
filter: false;
|
|
295
|
+
countDownloads: string;
|
|
296
|
+
};
|
|
282
297
|
mindspore: {
|
|
283
298
|
prettyLabel: string;
|
|
284
299
|
repoName: string;
|
|
285
300
|
repoUrl: string;
|
|
286
301
|
};
|
|
302
|
+
"mamba-ssm": {
|
|
303
|
+
prettyLabel: string;
|
|
304
|
+
repoName: string;
|
|
305
|
+
repoUrl: string;
|
|
306
|
+
filter: false;
|
|
307
|
+
snippets: (model: ModelData) => string[];
|
|
308
|
+
};
|
|
287
309
|
"mars5-tts": {
|
|
288
310
|
prettyLabel: string;
|
|
289
311
|
repoName: string;
|
|
@@ -549,6 +571,6 @@ export declare const MODEL_LIBRARIES_UI_ELEMENTS: {
|
|
|
549
571
|
};
|
|
550
572
|
};
|
|
551
573
|
export type ModelLibraryKey = keyof typeof MODEL_LIBRARIES_UI_ELEMENTS;
|
|
552
|
-
export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "mindspore" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
553
|
-
export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "mindspore" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
574
|
+
export declare const ALL_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
575
|
+
export declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: ("adapter-transformers" | "allennlp" | "asteroid" | "audiocraft" | "audioseal" | "bertopic" | "big_vision" | "bm25s" | "champ" | "chat_tts" | "colpali" | "depth-anything-v2" | "diffusers" | "doctr" | "edsnlp" | "elm" | "espnet" | "fairseq" | "fastai" | "fasttext" | "flair" | "gemma.cpp" | "gliner" | "glyph-byt5" | "grok" | "hallo" | "hunyuan-dit" | "keras" | "tf-keras" | "keras-nlp" | "k2" | "liveportrait" | "mindspore" | "mamba-ssm" | "mars5-tts" | "mesh-anything" | "ml-agents" | "mlx" | "mlx-image" | "mlc-llm" | "nemo" | "open_clip" | "paddlenlp" | "peft" | "pyannote-audio" | "pythae" | "recurrentgemma" | "sample-factory" | "sentence-transformers" | "setfit" | "sklearn" | "spacy" | "span-marker" | "speechbrain" | "stable-audio-tools" | "diffusion-single-file" | "stable-baselines3" | "stanza" | "tensorflowtts" | "tic-clip" | "timesfm" | "timm" | "transformers" | "transformers.js" | "unity-sentis" | "voicecraft" | "whisperkit")[];
|
|
554
576
|
//# sourceMappingURL=model-libraries.d.ts.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B
|
|
1
|
+
{"version":3,"file":"model-libraries.d.ts","sourceRoot":"","sources":["../../src/model-libraries.ts"],"names":[],"mappings":"AACA,OAAO,KAAK,EAAE,SAAS,EAAE,MAAM,cAAc,CAAC;AAC9C,OAAO,KAAK,EAAE,kBAAkB,EAAE,MAAM,6BAA6B,CAAC;AAEtE;;GAEG;AACH,MAAM,WAAW,gBAAgB;IAChC;;;;OAIG;IACH,WAAW,EAAE,MAAM,CAAC;IACpB;;OAEG;IACH,QAAQ,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,OAAO,EAAE,MAAM,CAAC;IAChB;;OAEG;IACH,OAAO,CAAC,EAAE,MAAM,CAAC;IACjB;;OAEG;IACH,QAAQ,CAAC,EAAE,CAAC,KAAK,EAAE,SAAS,KAAK,MAAM,EAAE,CAAC;IAC1C;;;;;OAKG;IACH,cAAc,CAAC,EAAE,kBAAkB,CAAC;IACpC;;;OAGG;IACH,MAAM,CAAC,EAAE,OAAO,CAAC;CACjB;AAED;;;;;;;;;;;;;GAaG;AAEH,eAAO,MAAM,2BAA2B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAsgBI,CAAC;AAE7C,MAAM,MAAM,eAAe,GAAG,MAAM,OAAO,2BAA2B,CAAC;AAEvE,eAAO,MAAM,sBAAsB,i7BAAgE,CAAC;AAEpG,eAAO,MAAM,8BAA8B,i7BAQ1B,CAAC"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/image-to-3d/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAsEf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../../src/tasks/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,YAAY,EAAE,MAAM,cAAc,CAAC;
|
|
1
|
+
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../../src/tasks/index.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,YAAY,EAAE,MAAM,cAAc,CAAC;AA0CjD,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,0CAA0C,CAAC;AAC9D,YAAY,EACX,mBAAmB,EACnB,0BAA0B,EAC1B,oBAAoB,EACpB,4BAA4B,EAC5B,2BAA2B,EAC3B,0BAA0B,EAC1B,gCAAgC,EAChC,+BAA+B,GAC/B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,yCAAyC,CAAC;AAC7D,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,uBAAuB,CAAC;AAC3C,YAAY,EACX,wBAAwB,EACxB,yBAAyB,EACzB,gCAAgC,EAChC,6BAA6B,GAC7B,MAAM,kCAAkC,CAAC;AAC1C,mBAAmB,4BAA4B,CAAC;AAChD,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,8BAA8B,CAAC;AAClD,mBAAmB,gCAAgC,CAAC;AACpD,mBAAmB,iCAAiC,CAAC;AACrD,mBAAmB,2BAA2B,CAAC;AAC/C,mBAAmB,sCAAsC,CAAC;AAC1D,YAAY,EAAE,gBAAgB,EAAE,iBAAiB,EAAE,qBAAqB,EAAE,MAAM,2BAA2B,CAAC;AAC5G,YAAY,EAAE,qBAAqB,EAAE,iBAAiB,EAAE,kBAAkB,EAAE,MAAM,4BAA4B,CAAC;AAC/G,mBAAmB,kCAAkC,CAAC;AACtD,YAAY,EACX,6BAA6B,EAC7B,qCAAqC,EACrC,gBAAgB,EAChB,iBAAiB,GACjB,MAAM,yBAAyB,CAAC;AACjC,YAAY,EACX,6BAA6B,EAC7B,uBAAuB,EACvB,wBAAwB,EACxB,+BAA+B,EAC/B,4BAA4B,GAC5B,MAAM,iCAAiC,CAAC;AACzC,YAAY,EACX,gCAAgC,EAChC,gCAAgC,EAChC,mBAAmB,EACnB,oBAAoB,EACpB,2BAA2B,EAC3B,qCAAqC,EACrC,kCAAkC,EAClC,yBAAyB,EACzB,uCAAuC,EACvC,0BAA0B,GAC1B,MAAM,6BAA6B,CAAC;AACrC,mBAAmB,kCAAkC,CAAC;AACtD,mBAAmB,uCAAuC,CAAC;AAC3D,mBAAmB,sCAAsC,CAAC;AAC1D,mBAAmB,4CAA4C,CAAC;AAChE,YAAY,EACX,WAAW,EACX,4BAA4B,EAC5B,gCAAgC,EAChC,6BAA6B,EAC7B,oCAAoC,GACpC,MAAM,wCAAwC,CAAC;AAEhD,OAAO,KAAK,EAAE,eAAe,EAAE,MAAM,oBAAoB,CAAC;AAE1D;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,MAAM,CAAC,YAAY,EAAE,eAAe,EAAE,CA0DzE,CAAC;AAoBF,eAAO,MAAM,UAAU,EAAE,MAAM,CAAC,YAAY,EAAE,QAAQ,GAAG,SAAS,CAkDxD,CAAC;AAEX,MAAM,WAAW,WAAW;IAC3B,WAAW,EAAE,MAAM,CAAC;IACpB,EAAE,EAAE,MAAM,CAAC;CACX;AAED,MAAM,MAAM,aAAa,GACtB;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,IAAI,EAAE,KAAK,CAAC;QACX,KAAK,EAAE,MAAM,CAAC;QACd,KAAK,EAAE,MAAM,CAAC;KACd,CAAC,CAAC;IACH,IAAI,EAAE,OAAO,CAAC;CACb,GACD;IACA,QAAQ,EAAE,MAAM,CAAC;IACjB,IAAI,EAAE,KAAK,CAAC;CACX,GACD;IACA,KAAK,EAAE,MAAM,EAAE,EAAE,CAAC;IAClB,IAAI,EAAE,SAAS,CAAC;CACf,GACD;IACA,OAAO,EAAE,MAAM,CAAC;IAChB,KAAK,EAAE,MAAM,CAAC;IACd,IAAI,EAAE,MAAM,CAAC;CACZ,GACD;IACA,IAAI,EAAE,MAAM,CAAC;IACb,MAAM,EAAE,KAAK,CAAC;QACb,GAAG,EAAE,MAAM,CAAC;QACZ,KAAK,EAAE,MAAM,CAAC;QACd,IAAI,EAAE,MAAM,CAAC;KACb,CAAC,CAAC;IACH,IAAI,EAAE,kBAAkB,CAAC;CACxB,CAAC;AAEL,MAAM,WAAW,QAAQ;IACxB,MAAM,EAAE,aAAa,EAAE,CAAC;IACxB,OAAO,EAAE,aAAa,EAAE,CAAC;CACzB;AAED,MAAM,WAAW,QAAQ;IACxB,QAAQ,EAAE,WAAW,EAAE,CAAC;IACxB,IAAI,EAAE,QAAQ,CAAC;IACf,EAAE,EAAE,YAAY,CAAC;IACjB,WAAW,CAAC,EAAE,YAAY,CAAC;IAC3B,aAAa,CAAC,EAAE,OAAO,CAAC;IACxB,KAAK,EAAE,MAAM,CAAC;IACd,SAAS,EAAE,eAAe,EAAE,CAAC;IAC7B,OAAO,EAAE,WAAW,EAAE,CAAC;IACvB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,MAAM,EAAE,WAAW,EAAE,CAAC;IACtB,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,EAAE,CAAC;IACvB,SAAS,CAAC,EAAE,MAAM,CAAC;CACnB;AAED,MAAM,MAAM,cAAc,GAAG,IAAI,CAAC,QAAQ,EAAE,IAAI,GAAG,OAAO,GAAG,WAAW,CAAC,CAAC"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"data.d.ts","sourceRoot":"","sources":["../../../../src/tasks/text-to-3d/data.ts"],"names":[],"mappings":"AAAA,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,IAAI,CAAC;AAEzC,QAAA,MAAM,QAAQ,EAAE,cAmDf,CAAC;AAEF,eAAe,QAAQ,CAAC"}
|
package/package.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@huggingface/tasks",
|
|
3
3
|
"packageManager": "pnpm@8.10.5",
|
|
4
|
-
"version": "0.11.
|
|
4
|
+
"version": "0.11.3",
|
|
5
5
|
"description": "List of ML tasks for huggingface.co/tasks",
|
|
6
6
|
"repository": "https://github.com/huggingface/huggingface.js.git",
|
|
7
7
|
"publishConfig": {
|
package/src/dataset-libraries.ts
CHANGED
|
@@ -53,6 +53,24 @@ export const DATASET_LIBRARIES_UI_ELEMENTS = {
|
|
|
53
53
|
repoUrl: "https://github.com/dask/dask",
|
|
54
54
|
docsUrl: "https://huggingface.co/docs/hub/datasets-dask",
|
|
55
55
|
},
|
|
56
|
+
distilabel: {
|
|
57
|
+
prettyLabel: "Distilabel",
|
|
58
|
+
repoName: "distilabel",
|
|
59
|
+
repoUrl: "https://github.com/argilla-io/distilabel",
|
|
60
|
+
docsUrl: "https://distilabel.argilla.io",
|
|
61
|
+
},
|
|
62
|
+
fiftyone: {
|
|
63
|
+
prettyLabel: "FiftyOne",
|
|
64
|
+
repoName: "fiftyone",
|
|
65
|
+
repoUrl: "https://github.com/voxel51/fiftyone",
|
|
66
|
+
docsUrl: "https://docs.voxel51.com",
|
|
67
|
+
},
|
|
68
|
+
argilla: {
|
|
69
|
+
prettyLabel: "Argilla",
|
|
70
|
+
repoName: "argilla",
|
|
71
|
+
repoUrl: "https://github.com/argilla-io/argilla",
|
|
72
|
+
docsUrl: "https://argilla-io.github.io/argilla",
|
|
73
|
+
},
|
|
56
74
|
} satisfies Record<string, DatasetLibraryUiElement>;
|
|
57
75
|
|
|
58
76
|
/// List of the dataset libraries supported by the Hub
|
|
@@ -82,6 +82,53 @@ export const bm25s = (model: ModelData): string[] => [
|
|
|
82
82
|
retriever = BM25HF.load_from_hub("${model.id}")`,
|
|
83
83
|
];
|
|
84
84
|
|
|
85
|
+
export const depth_anything_v2 = (model: ModelData): string[] => {
|
|
86
|
+
let encoder: string;
|
|
87
|
+
let features: string;
|
|
88
|
+
let out_channels: string;
|
|
89
|
+
|
|
90
|
+
encoder = "<ENCODER>";
|
|
91
|
+
features = "<NUMBER_OF_FEATURES>";
|
|
92
|
+
out_channels = "<OUT_CHANNELS>";
|
|
93
|
+
|
|
94
|
+
if (model.id === "depth-anything/Depth-Anything-V2-Small") {
|
|
95
|
+
encoder = "vits";
|
|
96
|
+
features = "64";
|
|
97
|
+
out_channels = "[48, 96, 192, 384]";
|
|
98
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Base") {
|
|
99
|
+
encoder = "vitb";
|
|
100
|
+
features = "128";
|
|
101
|
+
out_channels = "[96, 192, 384, 768]";
|
|
102
|
+
} else if (model.id === "depth-anything/Depth-Anything-V2-Large") {
|
|
103
|
+
encoder = "vitl";
|
|
104
|
+
features = "256";
|
|
105
|
+
out_channels = "[256, 512, 1024, 1024";
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
return [
|
|
109
|
+
`
|
|
110
|
+
# Install from https://github.com/DepthAnything/Depth-Anything-V2
|
|
111
|
+
|
|
112
|
+
# Load the model and infer depth from an image
|
|
113
|
+
import cv2
|
|
114
|
+
import torch
|
|
115
|
+
|
|
116
|
+
from depth_anything_v2.dpt import DepthAnythingV2
|
|
117
|
+
|
|
118
|
+
# instantiate the model
|
|
119
|
+
model = DepthAnythingV2(encoder="${encoder}", features=${features}, out_channels=${out_channels})
|
|
120
|
+
|
|
121
|
+
# load the weights
|
|
122
|
+
filepath = hf_hub_download(repo_id="${model.id}", filename="depth_anything_v2_${encoder}.pth", repo_type="model")
|
|
123
|
+
state_dict = torch.load(filepath, map_location="cpu")
|
|
124
|
+
model.load_state_dict(state_dict).eval()
|
|
125
|
+
|
|
126
|
+
raw_img = cv2.imread("your/image/path")
|
|
127
|
+
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
|
|
128
|
+
`,
|
|
129
|
+
];
|
|
130
|
+
};
|
|
131
|
+
|
|
85
132
|
const diffusers_default = (model: ModelData) => [
|
|
86
133
|
`from diffusers import DiffusionPipeline
|
|
87
134
|
|
|
@@ -223,6 +270,12 @@ model = from_pretrained_keras("${model.id}")
|
|
|
223
270
|
`,
|
|
224
271
|
];
|
|
225
272
|
|
|
273
|
+
export const mamba_ssm = (model: ModelData): string[] => [
|
|
274
|
+
`from mamba_ssm import MambaLMHeadModel
|
|
275
|
+
|
|
276
|
+
model = MambaLMHeadModel.from_pretrained("${model.id}")`,
|
|
277
|
+
];
|
|
278
|
+
|
|
226
279
|
export const mars5_tts = (model: ModelData): string[] => [
|
|
227
280
|
`# Install from https://github.com/Camb-ai/MARS5-TTS
|
|
228
281
|
|
package/src/model-libraries.ts
CHANGED
|
@@ -143,6 +143,14 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
143
143
|
filter: false,
|
|
144
144
|
countDownloads: `path:"adapter_config.json"`,
|
|
145
145
|
},
|
|
146
|
+
"depth-anything-v2": {
|
|
147
|
+
prettyLabel: "DepthAnythingV2",
|
|
148
|
+
repoName: "Depth Anything V2",
|
|
149
|
+
repoUrl: "https://github.com/DepthAnything/Depth-Anything-V2",
|
|
150
|
+
snippets: snippets.depth_anything_v2,
|
|
151
|
+
filter: false,
|
|
152
|
+
countDownloads: `path_extension:"pth"`,
|
|
153
|
+
},
|
|
146
154
|
diffusers: {
|
|
147
155
|
prettyLabel: "Diffusers",
|
|
148
156
|
repoName: "🤗/diffusers",
|
|
@@ -285,11 +293,25 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
|
285
293
|
repoName: "k2",
|
|
286
294
|
repoUrl: "https://github.com/k2-fsa/k2",
|
|
287
295
|
},
|
|
296
|
+
liveportrait: {
|
|
297
|
+
prettyLabel: "LivePortrait",
|
|
298
|
+
repoName: "LivePortrait",
|
|
299
|
+
repoUrl: "https://github.com/KwaiVGI/LivePortrait",
|
|
300
|
+
filter: false,
|
|
301
|
+
countDownloads: `path:"liveportrait/landmark.onnx"`,
|
|
302
|
+
},
|
|
288
303
|
mindspore: {
|
|
289
304
|
prettyLabel: "MindSpore",
|
|
290
305
|
repoName: "mindspore",
|
|
291
306
|
repoUrl: "https://github.com/mindspore-ai/mindspore",
|
|
292
307
|
},
|
|
308
|
+
"mamba-ssm": {
|
|
309
|
+
prettyLabel: "MambaSSM",
|
|
310
|
+
repoName: "MambaSSM",
|
|
311
|
+
repoUrl: "https://github.com/state-spaces/mamba",
|
|
312
|
+
filter: false,
|
|
313
|
+
snippets: snippets.mamba_ssm,
|
|
314
|
+
},
|
|
293
315
|
"mars5-tts": {
|
|
294
316
|
prettyLabel: "MARS5-TTS",
|
|
295
317
|
repoName: "MARS5-TTS",
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
## Use Cases
|
|
2
|
+
|
|
3
|
+
Image-to-3D models can be used in a wide variety of applications that require 3D, such as games, animation, design, architecture, engineering, marketing, and more.
|
|
4
|
+
|
|
5
|
+

|
|
6
|
+
|
|
7
|
+
### Generating Meshes
|
|
8
|
+
|
|
9
|
+
Meshes are the standard representation of 3D in industry.
|
|
10
|
+
|
|
11
|
+
### Generating Gaussian Splats
|
|
12
|
+
|
|
13
|
+
[Gaussian Splatting](https://huggingface.co/blog/gaussian-splatting) is a rendering technique that represents scenes as fuzzy points.
|
|
14
|
+
|
|
15
|
+
### Inference
|
|
16
|
+
|
|
17
|
+
Inference for this task typically leverages the [Diffusers](https://huggingface.co/docs/diffusers/index) library for inference, using [Custom Pipelines](https://huggingface.co/docs/diffusers/v0.6.0/en/using-diffusers/custom_pipelines).
|
|
18
|
+
|
|
19
|
+
These are unstandardized and depend on the model. More details can be found in each model repository.
|
|
20
|
+
|
|
21
|
+
```python
|
|
22
|
+
import torch
|
|
23
|
+
import requests
|
|
24
|
+
import numpy as np
|
|
25
|
+
from io import BytesIO
|
|
26
|
+
from diffusers import DiffusionPipeline
|
|
27
|
+
from PIL import Image
|
|
28
|
+
|
|
29
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
|
30
|
+
"dylanebert/LGM-full",
|
|
31
|
+
custom_pipeline="dylanebert/LGM-full",
|
|
32
|
+
torch_dtype=torch.float16,
|
|
33
|
+
trust_remote_code=True,
|
|
34
|
+
).to("cuda")
|
|
35
|
+
|
|
36
|
+
input_url = "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"
|
|
37
|
+
input_image = Image.open(BytesIO(requests.get(input_url).content))
|
|
38
|
+
input_image = np.array(input_image, dtype=np.float32) / 255.0
|
|
39
|
+
result = pipeline("", input_image)
|
|
40
|
+
result_path = "/tmp/output.ply"
|
|
41
|
+
pipeline.save_ply(result, result_path)
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
In the code above, we:
|
|
45
|
+
|
|
46
|
+
1. Import the necessary libraries
|
|
47
|
+
2. Load the `LGM-full` model and custom pipeline
|
|
48
|
+
3. Load and preprocess the input image
|
|
49
|
+
4. Run the pipeline on the input image
|
|
50
|
+
5. Save the output to a file
|
|
51
|
+
|
|
52
|
+
### Output Formats
|
|
53
|
+
|
|
54
|
+
Meshes can be in `.obj`, `.glb`, `.stl`, or `.gltf` format. Other formats are allowed, but won't be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component.
|
|
55
|
+
|
|
56
|
+
Splats can be in `.ply` or `.splat` format. They can be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component using the [gsplat.js](https://github.com/huggingface/gsplat.js) library.
|
|
57
|
+
|
|
58
|
+
## Useful Resources
|
|
59
|
+
|
|
60
|
+
- [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course)
|
|
61
|
+
- [3D Arena Leaderboard](https://huggingface.co/spaces/dylanebert/3d-arena)
|
|
62
|
+
- [gsplat.js](https://github.com/huggingface/gsplat.js)
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
import type { TaskDataCustom } from "..";
|
|
2
|
+
|
|
3
|
+
const taskData: TaskDataCustom = {
|
|
4
|
+
datasets: [
|
|
5
|
+
{
|
|
6
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
7
|
+
id: "allenai/objaverse-xl",
|
|
8
|
+
},
|
|
9
|
+
{
|
|
10
|
+
description: "A dataset of isolated object images for evaluating image-to-3D models.",
|
|
11
|
+
id: "dylanebert/iso3d",
|
|
12
|
+
},
|
|
13
|
+
],
|
|
14
|
+
demo: {
|
|
15
|
+
inputs: [
|
|
16
|
+
{
|
|
17
|
+
filename: "image-to-3d-image-input.png",
|
|
18
|
+
type: "img",
|
|
19
|
+
},
|
|
20
|
+
],
|
|
21
|
+
outputs: [
|
|
22
|
+
{
|
|
23
|
+
label: "Result",
|
|
24
|
+
content: "image-to-3d-3d-output-filename.glb",
|
|
25
|
+
type: "text",
|
|
26
|
+
},
|
|
27
|
+
],
|
|
28
|
+
},
|
|
29
|
+
metrics: [],
|
|
30
|
+
models: [
|
|
31
|
+
{
|
|
32
|
+
description: "Fast image-to-3D mesh model by Tencent.",
|
|
33
|
+
id: "TencentARC/InstantMesh",
|
|
34
|
+
},
|
|
35
|
+
{
|
|
36
|
+
description: "Fast image-to-3D mesh model by StabilityAI",
|
|
37
|
+
id: "stabilityai/TripoSR",
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
description: "A scaled up image-to-3D mesh model derived from TripoSR.",
|
|
41
|
+
id: "hwjiang/Real3D",
|
|
42
|
+
},
|
|
43
|
+
{
|
|
44
|
+
description: "Generative 3D gaussian splatting model.",
|
|
45
|
+
id: "ashawkey/LGM",
|
|
46
|
+
},
|
|
47
|
+
],
|
|
48
|
+
spaces: [
|
|
49
|
+
{
|
|
50
|
+
description: "Leaderboard to evaluate image-to-3D models.",
|
|
51
|
+
id: "dylanebert/3d-arena",
|
|
52
|
+
},
|
|
53
|
+
{
|
|
54
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
55
|
+
id: "TencentARC/InstantMesh",
|
|
56
|
+
},
|
|
57
|
+
{
|
|
58
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
59
|
+
id: "stabilityai/TripoSR",
|
|
60
|
+
},
|
|
61
|
+
{
|
|
62
|
+
description: "Image-to-3D demo with mesh outputs.",
|
|
63
|
+
id: "hwjiang/Real3D",
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
description: "Image-to-3D demo with splat outputs.",
|
|
67
|
+
id: "dylanebert/LGM-mini",
|
|
68
|
+
},
|
|
69
|
+
],
|
|
70
|
+
summary: "Image-to-3D models take in image input and produce 3D output.",
|
|
71
|
+
widgetModels: [],
|
|
72
|
+
youtubeId: "",
|
|
73
|
+
};
|
|
74
|
+
|
|
75
|
+
export default taskData;
|
package/src/tasks/index.ts
CHANGED
|
@@ -37,6 +37,8 @@ import visualQuestionAnswering from "./visual-question-answering/data";
|
|
|
37
37
|
import zeroShotClassification from "./zero-shot-classification/data";
|
|
38
38
|
import zeroShotImageClassification from "./zero-shot-image-classification/data";
|
|
39
39
|
import zeroShotObjectDetection from "./zero-shot-object-detection/data";
|
|
40
|
+
import imageTo3D from "./image-to-3d/data";
|
|
41
|
+
import textTo3D from "./text-to-3d/data";
|
|
40
42
|
|
|
41
43
|
export type * from "./audio-classification/inference";
|
|
42
44
|
export type * from "./automatic-speech-recognition/inference";
|
|
@@ -169,8 +171,8 @@ export const TASKS_MODEL_LIBRARIES: Record<PipelineType, ModelLibraryKey[]> = {
|
|
|
169
171
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
170
172
|
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
171
173
|
"zero-shot-object-detection": ["transformers", "transformers.js"],
|
|
172
|
-
"text-to-3d": [],
|
|
173
|
-
"image-to-3d": [],
|
|
174
|
+
"text-to-3d": ["diffusers"],
|
|
175
|
+
"image-to-3d": ["diffusers"],
|
|
174
176
|
};
|
|
175
177
|
|
|
176
178
|
/**
|
|
@@ -239,8 +241,8 @@ export const TASKS_DATA: Record<PipelineType, TaskData | undefined> = {
|
|
|
239
241
|
"zero-shot-classification": getData("zero-shot-classification", zeroShotClassification),
|
|
240
242
|
"zero-shot-image-classification": getData("zero-shot-image-classification", zeroShotImageClassification),
|
|
241
243
|
"zero-shot-object-detection": getData("zero-shot-object-detection", zeroShotObjectDetection),
|
|
242
|
-
"text-to-3d": getData("text-to-3d",
|
|
243
|
-
"image-to-3d": getData("image-to-3d",
|
|
244
|
+
"text-to-3d": getData("text-to-3d", textTo3D),
|
|
245
|
+
"image-to-3d": getData("image-to-3d", imageTo3D),
|
|
244
246
|
} as const;
|
|
245
247
|
|
|
246
248
|
export interface ExampleRepo {
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
## Use Cases
|
|
2
|
+
|
|
3
|
+
Text-to-3D models can be used in a wide variety of applications that require 3D, such as games, animation, design, architecture, engineering, marketing, and more.
|
|
4
|
+
|
|
5
|
+

|
|
6
|
+
|
|
7
|
+
This task is similar to the [image-to-3d](https://huggingface.co/tasks/image-to-3d) task, but takes text input instead of image input. In practice, this is often equivalent to a combination of [text-to-image](https://huggingface.co/tasks/text-to-image) and [image-to-3d](https://huggingface.co/tasks/image-to-3d). That is, the text is first converted to an image, then the image is converted to 3D.
|
|
8
|
+
|
|
9
|
+
### Generating Meshes
|
|
10
|
+
|
|
11
|
+
Meshes are the standard representation of 3D in industry.
|
|
12
|
+
|
|
13
|
+
### Generating Gaussian Splats
|
|
14
|
+
|
|
15
|
+
[Gaussian Splatting](https://huggingface.co/blog/gaussian-splatting) is a rendering technique that represents scenes as fuzzy points.
|
|
16
|
+
|
|
17
|
+
### Inference
|
|
18
|
+
|
|
19
|
+
Inference for this task typically leverages the [Diffusers](https://huggingface.co/docs/diffusers/index) library for inference, using [Custom Pipelines](https://huggingface.co/docs/diffusers/v0.6.0/en/using-diffusers/custom_pipelines).
|
|
20
|
+
|
|
21
|
+
These are unstandardized and depend on the model. More details can be found in each model repository.
|
|
22
|
+
|
|
23
|
+
```python
|
|
24
|
+
import torch
|
|
25
|
+
import requests
|
|
26
|
+
import numpy as np
|
|
27
|
+
from io import BytesIO
|
|
28
|
+
from diffusers import DiffusionPipeline
|
|
29
|
+
from PIL import Image
|
|
30
|
+
|
|
31
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
|
32
|
+
"dylanebert/LGM-full",
|
|
33
|
+
custom_pipeline="dylanebert/LGM-full",
|
|
34
|
+
torch_dtype=torch.float16,
|
|
35
|
+
trust_remote_code=True,
|
|
36
|
+
).to("cuda")
|
|
37
|
+
|
|
38
|
+
input_prompt = "a cat statue"
|
|
39
|
+
result = pipeline(input_prompt, None)
|
|
40
|
+
result_path = "/tmp/output.ply"
|
|
41
|
+
pipeline.save_ply(result, result_path)
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
In the code above, we:
|
|
45
|
+
|
|
46
|
+
1. Import the necessary libraries
|
|
47
|
+
2. Load the `LGM-full` model and custom pipeline
|
|
48
|
+
3. Define the input prompt
|
|
49
|
+
4. Run the pipeline on the input prompt
|
|
50
|
+
5. Save the output to a file
|
|
51
|
+
|
|
52
|
+
### Output Formats
|
|
53
|
+
|
|
54
|
+
Meshes can be in `.obj`, `.glb`, `.stl`, or `.gltf` format. Other formats are allowed, but won't be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component.
|
|
55
|
+
|
|
56
|
+
Splats can be in `.ply` or `.splat` format. They can be rendered in the gradio [Model3D](https://www.gradio.app/docs/gradio/model3d) component using the [gsplat.js](https://github.com/huggingface/gsplat.js) library.
|
|
57
|
+
|
|
58
|
+
## Useful Resources
|
|
59
|
+
|
|
60
|
+
- [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course)
|
|
61
|
+
- [3D Arena Leaderboard](https://huggingface.co/spaces/dylanebert/3d-arena)
|
|
62
|
+
- [gsplat.js](https://github.com/huggingface/gsplat.js)
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
import type { TaskDataCustom } from "..";
|
|
2
|
+
|
|
3
|
+
const taskData: TaskDataCustom = {
|
|
4
|
+
datasets: [
|
|
5
|
+
{
|
|
6
|
+
description: "A large dataset of over 10 million 3D objects.",
|
|
7
|
+
id: "allenai/objaverse-xl",
|
|
8
|
+
},
|
|
9
|
+
{
|
|
10
|
+
description: "Descriptive captions for 3D objects in Objaverse.",
|
|
11
|
+
id: "tiange/Cap3D",
|
|
12
|
+
},
|
|
13
|
+
],
|
|
14
|
+
demo: {
|
|
15
|
+
inputs: [
|
|
16
|
+
{
|
|
17
|
+
label: "Prompt",
|
|
18
|
+
content: "a cat statue",
|
|
19
|
+
type: "text",
|
|
20
|
+
},
|
|
21
|
+
],
|
|
22
|
+
outputs: [
|
|
23
|
+
{
|
|
24
|
+
label: "Result",
|
|
25
|
+
content: "text-to-3d-3d-output-filename.glb",
|
|
26
|
+
type: "text",
|
|
27
|
+
},
|
|
28
|
+
],
|
|
29
|
+
},
|
|
30
|
+
metrics: [],
|
|
31
|
+
models: [
|
|
32
|
+
{
|
|
33
|
+
description: "Text-to-3D mesh model by OpenAI",
|
|
34
|
+
id: "openai/shap-e",
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
description: "Generative 3D gaussian splatting model.",
|
|
38
|
+
id: "ashawkey/LGM",
|
|
39
|
+
},
|
|
40
|
+
],
|
|
41
|
+
spaces: [
|
|
42
|
+
{
|
|
43
|
+
description: "Text-to-3D demo with mesh outputs.",
|
|
44
|
+
id: "hysts/Shap-E",
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
description: "Text/image-to-3D demo with splat outputs.",
|
|
48
|
+
id: "ashawkey/LGM",
|
|
49
|
+
},
|
|
50
|
+
],
|
|
51
|
+
summary: "Text-to-3D models take in text input and produce 3D output.",
|
|
52
|
+
widgetModels: [],
|
|
53
|
+
youtubeId: "",
|
|
54
|
+
};
|
|
55
|
+
|
|
56
|
+
export default taskData;
|