@huggingface/tasks 0.0.5 → 0.0.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.d.ts +9 -1
- package/dist/index.js +36 -0
- package/dist/index.mjs +29 -0
- package/package.json +1 -1
- package/src/index.ts +5 -1
- package/src/modelLibraries.ts +4 -0
- package/src/pipelines.ts +7 -0
- package/src/tags.ts +15 -0
package/dist/index.d.ts
CHANGED
|
@@ -40,6 +40,7 @@ declare enum ModelLibrary {
|
|
|
40
40
|
"mindspore" = "MindSpore"
|
|
41
41
|
}
|
|
42
42
|
type ModelLibraryKey = keyof typeof ModelLibrary;
|
|
43
|
+
declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: string[];
|
|
43
44
|
|
|
44
45
|
declare const MODALITIES: readonly ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
|
|
45
46
|
type Modality = (typeof MODALITIES)[number];
|
|
@@ -410,6 +411,8 @@ declare const PIPELINE_DATA: {
|
|
|
410
411
|
};
|
|
411
412
|
type PipelineType = keyof typeof PIPELINE_DATA;
|
|
412
413
|
declare const PIPELINE_TYPES: ("other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml")[];
|
|
414
|
+
declare const SUBTASK_TYPES: string[];
|
|
415
|
+
declare const PIPELINE_TYPES_SET: Set<"other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml">;
|
|
413
416
|
|
|
414
417
|
interface ExampleRepo {
|
|
415
418
|
description: string;
|
|
@@ -464,4 +467,9 @@ interface TaskData {
|
|
|
464
467
|
|
|
465
468
|
declare const TASKS_DATA: Record<PipelineType, TaskData | undefined>;
|
|
466
469
|
|
|
467
|
-
|
|
470
|
+
declare const TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
471
|
+
declare const OTHER_TAGS_SUGGESTIONS: string[];
|
|
472
|
+
declare const TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
473
|
+
declare const TAG_CUSTOM_CODE = "custom_code";
|
|
474
|
+
|
|
475
|
+
export { ALL_DISPLAY_MODEL_LIBRARY_KEYS, ExampleRepo, MODALITIES, MODALITY_LABELS, Modality, ModelLibrary, ModelLibraryKey, OTHER_TAGS_SUGGESTIONS, PIPELINE_DATA, PIPELINE_TYPES, PIPELINE_TYPES_SET, PipelineData, PipelineType, SUBTASK_TYPES, TAG_CUSTOM_CODE, TAG_NFAA_CONTENT, TAG_TEXT_GENERATION_INFERENCE, TASKS_DATA, TaskData, TaskDemo, TaskDemoEntry };
|
package/dist/index.js
CHANGED
|
@@ -20,11 +20,18 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
|
|
|
20
20
|
// src/index.ts
|
|
21
21
|
var src_exports = {};
|
|
22
22
|
__export(src_exports, {
|
|
23
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
23
24
|
MODALITIES: () => MODALITIES,
|
|
24
25
|
MODALITY_LABELS: () => MODALITY_LABELS,
|
|
25
26
|
ModelLibrary: () => ModelLibrary,
|
|
27
|
+
OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
|
|
26
28
|
PIPELINE_DATA: () => PIPELINE_DATA,
|
|
27
29
|
PIPELINE_TYPES: () => PIPELINE_TYPES,
|
|
30
|
+
PIPELINE_TYPES_SET: () => PIPELINE_TYPES_SET,
|
|
31
|
+
SUBTASK_TYPES: () => SUBTASK_TYPES,
|
|
32
|
+
TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
|
|
33
|
+
TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
|
|
34
|
+
TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
|
|
28
35
|
TASKS_DATA: () => TASKS_DATA
|
|
29
36
|
});
|
|
30
37
|
module.exports = __toCommonJS(src_exports);
|
|
@@ -586,6 +593,8 @@ var PIPELINE_DATA = {
|
|
|
586
593
|
}
|
|
587
594
|
};
|
|
588
595
|
var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
596
|
+
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
597
|
+
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
589
598
|
|
|
590
599
|
// src/audio-classification/data.ts
|
|
591
600
|
var taskData = {
|
|
@@ -3144,12 +3153,39 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
|
3144
3153
|
ModelLibrary2["mindspore"] = "MindSpore";
|
|
3145
3154
|
return ModelLibrary2;
|
|
3146
3155
|
})(ModelLibrary || {});
|
|
3156
|
+
var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
3157
|
+
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
3158
|
+
);
|
|
3159
|
+
|
|
3160
|
+
// src/tags.ts
|
|
3161
|
+
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
3162
|
+
var OTHER_TAGS_SUGGESTIONS = [
|
|
3163
|
+
"chemistry",
|
|
3164
|
+
"biology",
|
|
3165
|
+
"finance",
|
|
3166
|
+
"legal",
|
|
3167
|
+
"music",
|
|
3168
|
+
"art",
|
|
3169
|
+
"code",
|
|
3170
|
+
"climate",
|
|
3171
|
+
"medical",
|
|
3172
|
+
TAG_NFAA_CONTENT
|
|
3173
|
+
];
|
|
3174
|
+
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
3175
|
+
var TAG_CUSTOM_CODE = "custom_code";
|
|
3147
3176
|
// Annotate the CommonJS export names for ESM import in node:
|
|
3148
3177
|
0 && (module.exports = {
|
|
3178
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
3149
3179
|
MODALITIES,
|
|
3150
3180
|
MODALITY_LABELS,
|
|
3151
3181
|
ModelLibrary,
|
|
3182
|
+
OTHER_TAGS_SUGGESTIONS,
|
|
3152
3183
|
PIPELINE_DATA,
|
|
3153
3184
|
PIPELINE_TYPES,
|
|
3185
|
+
PIPELINE_TYPES_SET,
|
|
3186
|
+
SUBTASK_TYPES,
|
|
3187
|
+
TAG_CUSTOM_CODE,
|
|
3188
|
+
TAG_NFAA_CONTENT,
|
|
3189
|
+
TAG_TEXT_GENERATION_INFERENCE,
|
|
3154
3190
|
TASKS_DATA
|
|
3155
3191
|
});
|
package/dist/index.mjs
CHANGED
|
@@ -555,6 +555,8 @@ var PIPELINE_DATA = {
|
|
|
555
555
|
}
|
|
556
556
|
};
|
|
557
557
|
var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
558
|
+
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
559
|
+
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
558
560
|
|
|
559
561
|
// src/audio-classification/data.ts
|
|
560
562
|
var taskData = {
|
|
@@ -3113,11 +3115,38 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
|
3113
3115
|
ModelLibrary2["mindspore"] = "MindSpore";
|
|
3114
3116
|
return ModelLibrary2;
|
|
3115
3117
|
})(ModelLibrary || {});
|
|
3118
|
+
var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
3119
|
+
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
3120
|
+
);
|
|
3121
|
+
|
|
3122
|
+
// src/tags.ts
|
|
3123
|
+
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
3124
|
+
var OTHER_TAGS_SUGGESTIONS = [
|
|
3125
|
+
"chemistry",
|
|
3126
|
+
"biology",
|
|
3127
|
+
"finance",
|
|
3128
|
+
"legal",
|
|
3129
|
+
"music",
|
|
3130
|
+
"art",
|
|
3131
|
+
"code",
|
|
3132
|
+
"climate",
|
|
3133
|
+
"medical",
|
|
3134
|
+
TAG_NFAA_CONTENT
|
|
3135
|
+
];
|
|
3136
|
+
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
3137
|
+
var TAG_CUSTOM_CODE = "custom_code";
|
|
3116
3138
|
export {
|
|
3139
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
3117
3140
|
MODALITIES,
|
|
3118
3141
|
MODALITY_LABELS,
|
|
3119
3142
|
ModelLibrary,
|
|
3143
|
+
OTHER_TAGS_SUGGESTIONS,
|
|
3120
3144
|
PIPELINE_DATA,
|
|
3121
3145
|
PIPELINE_TYPES,
|
|
3146
|
+
PIPELINE_TYPES_SET,
|
|
3147
|
+
SUBTASK_TYPES,
|
|
3148
|
+
TAG_CUSTOM_CODE,
|
|
3149
|
+
TAG_NFAA_CONTENT,
|
|
3150
|
+
TAG_TEXT_GENERATION_INFERENCE,
|
|
3122
3151
|
TASKS_DATA
|
|
3123
3152
|
};
|
package/package.json
CHANGED
package/src/index.ts
CHANGED
|
@@ -8,6 +8,10 @@ export {
|
|
|
8
8
|
type Modality,
|
|
9
9
|
MODALITIES,
|
|
10
10
|
MODALITY_LABELS,
|
|
11
|
+
SUBTASK_TYPES,
|
|
12
|
+
PIPELINE_TYPES_SET,
|
|
11
13
|
} from "./pipelines";
|
|
12
|
-
export { ModelLibrary } from "./modelLibraries";
|
|
14
|
+
export { ModelLibrary, ALL_DISPLAY_MODEL_LIBRARY_KEYS } from "./modelLibraries";
|
|
13
15
|
export type { ModelLibraryKey } from "./modelLibraries";
|
|
16
|
+
|
|
17
|
+
export { TAG_NFAA_CONTENT, OTHER_TAGS_SUGGESTIONS, TAG_TEXT_GENERATION_INFERENCE, TAG_CUSTOM_CODE } from "./tags";
|
package/src/modelLibraries.ts
CHANGED
package/src/pipelines.ts
CHANGED
|
@@ -616,4 +616,11 @@ export const PIPELINE_DATA = {
|
|
|
616
616
|
} satisfies Record<string, PipelineData>;
|
|
617
617
|
|
|
618
618
|
export type PipelineType = keyof typeof PIPELINE_DATA;
|
|
619
|
+
|
|
619
620
|
export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
|
|
621
|
+
|
|
622
|
+
export const SUBTASK_TYPES = Object.values(PIPELINE_DATA)
|
|
623
|
+
.flatMap((data) => ("subtasks" in data ? data.subtasks : []))
|
|
624
|
+
.map((s) => s.type);
|
|
625
|
+
|
|
626
|
+
export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
package/src/tags.ts
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
export const TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
2
|
+
export const OTHER_TAGS_SUGGESTIONS = [
|
|
3
|
+
"chemistry",
|
|
4
|
+
"biology",
|
|
5
|
+
"finance",
|
|
6
|
+
"legal",
|
|
7
|
+
"music",
|
|
8
|
+
"art",
|
|
9
|
+
"code",
|
|
10
|
+
"climate",
|
|
11
|
+
"medical",
|
|
12
|
+
TAG_NFAA_CONTENT,
|
|
13
|
+
];
|
|
14
|
+
export const TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
15
|
+
export const TAG_CUSTOM_CODE = "custom_code";
|