@huggingface/tasks 0.0.4 → 0.0.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.d.ts CHANGED
@@ -40,9 +40,19 @@ declare enum ModelLibrary {
40
40
  "mindspore" = "MindSpore"
41
41
  }
42
42
  type ModelLibraryKey = keyof typeof ModelLibrary;
43
+ declare const ALL_DISPLAY_MODEL_LIBRARY_KEYS: string[];
43
44
 
44
45
  declare const MODALITIES: readonly ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
45
46
  type Modality = (typeof MODALITIES)[number];
47
+ declare const MODALITY_LABELS: {
48
+ multimodal: string;
49
+ nlp: string;
50
+ audio: string;
51
+ cv: string;
52
+ rl: string;
53
+ tabular: string;
54
+ other: string;
55
+ };
46
56
  /**
47
57
  * Public interface for a sub task.
48
58
  *
@@ -400,6 +410,9 @@ declare const PIPELINE_DATA: {
400
410
  };
401
411
  };
402
412
  type PipelineType = keyof typeof PIPELINE_DATA;
413
+ declare const PIPELINE_TYPES: ("other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml")[];
414
+ declare const SUBTASK_TYPES: string[];
415
+ declare const PIPELINE_TYPES_SET: Set<"other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml">;
403
416
 
404
417
  interface ExampleRepo {
405
418
  description: string;
@@ -454,4 +467,9 @@ interface TaskData {
454
467
 
455
468
  declare const TASKS_DATA: Record<PipelineType, TaskData | undefined>;
456
469
 
457
- export { ExampleRepo, MODALITIES, Modality, ModelLibrary, PIPELINE_DATA, PipelineData, PipelineType, TASKS_DATA, TaskData, TaskDemo, TaskDemoEntry };
470
+ declare const TAG_NFAA_CONTENT = "not-for-all-audiences";
471
+ declare const OTHER_TAGS_SUGGESTIONS: string[];
472
+ declare const TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
473
+ declare const TAG_CUSTOM_CODE = "custom_code";
474
+
475
+ export { ALL_DISPLAY_MODEL_LIBRARY_KEYS, ExampleRepo, MODALITIES, MODALITY_LABELS, Modality, ModelLibrary, ModelLibraryKey, OTHER_TAGS_SUGGESTIONS, PIPELINE_DATA, PIPELINE_TYPES, PIPELINE_TYPES_SET, PipelineData, PipelineType, SUBTASK_TYPES, TAG_CUSTOM_CODE, TAG_NFAA_CONTENT, TAG_TEXT_GENERATION_INFERENCE, TASKS_DATA, TaskData, TaskDemo, TaskDemoEntry };
package/dist/index.js CHANGED
@@ -20,15 +20,33 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
20
20
  // src/index.ts
21
21
  var src_exports = {};
22
22
  __export(src_exports, {
23
+ ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
23
24
  MODALITIES: () => MODALITIES,
25
+ MODALITY_LABELS: () => MODALITY_LABELS,
24
26
  ModelLibrary: () => ModelLibrary,
27
+ OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
25
28
  PIPELINE_DATA: () => PIPELINE_DATA,
29
+ PIPELINE_TYPES: () => PIPELINE_TYPES,
30
+ PIPELINE_TYPES_SET: () => PIPELINE_TYPES_SET,
31
+ SUBTASK_TYPES: () => SUBTASK_TYPES,
32
+ TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
33
+ TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
34
+ TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
26
35
  TASKS_DATA: () => TASKS_DATA
27
36
  });
28
37
  module.exports = __toCommonJS(src_exports);
29
38
 
30
39
  // src/pipelines.ts
31
40
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
41
+ var MODALITY_LABELS = {
42
+ multimodal: "Multimodal",
43
+ nlp: "Natural Language Processing",
44
+ audio: "Audio",
45
+ cv: "Computer Vision",
46
+ rl: "Reinforcement Learning",
47
+ tabular: "Tabular",
48
+ other: "Other"
49
+ };
32
50
  var PIPELINE_DATA = {
33
51
  "text-classification": {
34
52
  name: "Text Classification",
@@ -574,6 +592,9 @@ var PIPELINE_DATA = {
574
592
  hideInDatasets: true
575
593
  }
576
594
  };
595
+ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
596
+ var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
597
+ var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
577
598
 
578
599
  // src/audio-classification/data.ts
579
600
  var taskData = {
@@ -3132,10 +3153,39 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3132
3153
  ModelLibrary2["mindspore"] = "MindSpore";
3133
3154
  return ModelLibrary2;
3134
3155
  })(ModelLibrary || {});
3156
+ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3157
+ (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3158
+ );
3159
+
3160
+ // src/tags.ts
3161
+ var TAG_NFAA_CONTENT = "not-for-all-audiences";
3162
+ var OTHER_TAGS_SUGGESTIONS = [
3163
+ "chemistry",
3164
+ "biology",
3165
+ "finance",
3166
+ "legal",
3167
+ "music",
3168
+ "art",
3169
+ "code",
3170
+ "climate",
3171
+ "medical",
3172
+ TAG_NFAA_CONTENT
3173
+ ];
3174
+ var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3175
+ var TAG_CUSTOM_CODE = "custom_code";
3135
3176
  // Annotate the CommonJS export names for ESM import in node:
3136
3177
  0 && (module.exports = {
3178
+ ALL_DISPLAY_MODEL_LIBRARY_KEYS,
3137
3179
  MODALITIES,
3180
+ MODALITY_LABELS,
3138
3181
  ModelLibrary,
3182
+ OTHER_TAGS_SUGGESTIONS,
3139
3183
  PIPELINE_DATA,
3184
+ PIPELINE_TYPES,
3185
+ PIPELINE_TYPES_SET,
3186
+ SUBTASK_TYPES,
3187
+ TAG_CUSTOM_CODE,
3188
+ TAG_NFAA_CONTENT,
3189
+ TAG_TEXT_GENERATION_INFERENCE,
3140
3190
  TASKS_DATA
3141
3191
  });
package/dist/index.mjs CHANGED
@@ -1,5 +1,14 @@
1
1
  // src/pipelines.ts
2
2
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
3
+ var MODALITY_LABELS = {
4
+ multimodal: "Multimodal",
5
+ nlp: "Natural Language Processing",
6
+ audio: "Audio",
7
+ cv: "Computer Vision",
8
+ rl: "Reinforcement Learning",
9
+ tabular: "Tabular",
10
+ other: "Other"
11
+ };
3
12
  var PIPELINE_DATA = {
4
13
  "text-classification": {
5
14
  name: "Text Classification",
@@ -545,6 +554,9 @@ var PIPELINE_DATA = {
545
554
  hideInDatasets: true
546
555
  }
547
556
  };
557
+ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
558
+ var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
559
+ var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
548
560
 
549
561
  // src/audio-classification/data.ts
550
562
  var taskData = {
@@ -3103,9 +3115,38 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3103
3115
  ModelLibrary2["mindspore"] = "MindSpore";
3104
3116
  return ModelLibrary2;
3105
3117
  })(ModelLibrary || {});
3118
+ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3119
+ (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3120
+ );
3121
+
3122
+ // src/tags.ts
3123
+ var TAG_NFAA_CONTENT = "not-for-all-audiences";
3124
+ var OTHER_TAGS_SUGGESTIONS = [
3125
+ "chemistry",
3126
+ "biology",
3127
+ "finance",
3128
+ "legal",
3129
+ "music",
3130
+ "art",
3131
+ "code",
3132
+ "climate",
3133
+ "medical",
3134
+ TAG_NFAA_CONTENT
3135
+ ];
3136
+ var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3137
+ var TAG_CUSTOM_CODE = "custom_code";
3106
3138
  export {
3139
+ ALL_DISPLAY_MODEL_LIBRARY_KEYS,
3107
3140
  MODALITIES,
3141
+ MODALITY_LABELS,
3108
3142
  ModelLibrary,
3143
+ OTHER_TAGS_SUGGESTIONS,
3109
3144
  PIPELINE_DATA,
3145
+ PIPELINE_TYPES,
3146
+ PIPELINE_TYPES_SET,
3147
+ SUBTASK_TYPES,
3148
+ TAG_CUSTOM_CODE,
3149
+ TAG_NFAA_CONTENT,
3150
+ TAG_TEXT_GENERATION_INFERENCE,
3110
3151
  TASKS_DATA
3111
3152
  };
package/package.json CHANGED
@@ -1,8 +1,8 @@
1
1
  {
2
2
  "name": "@huggingface/tasks",
3
- "packageManager": "pnpm@8.3.1",
4
- "version": "0.0.4",
5
- "description": "List of ISO-639 languages used in the Hub",
3
+ "packageManager": "pnpm@8.10.5",
4
+ "version": "0.0.6",
5
+ "description": "List of ML tasks for huggingface.co/tasks",
6
6
  "repository": "https://github.com/huggingface/huggingface.js.git",
7
7
  "publishConfig": {
8
8
  "access": "public"
@@ -39,6 +39,6 @@
39
39
  "format": "prettier --write .",
40
40
  "format:check": "prettier --check .",
41
41
  "build": "tsup src/index.ts --format cjs,esm --clean --dts",
42
- "type-check": "tsc"
42
+ "check": "tsc"
43
43
  }
44
44
  }
@@ -65,9 +65,9 @@ Pix2Pix is a popular model used for image to image translation tasks. It is base
65
65
 
66
66
  Below images show some of the examples shared in the paper that can be obtained using Pix2Pix. There are various cases this model can be applied on. It is capable of relatively simpler things, e.g. converting a grayscale image to its colored version. But more importantly, it can generate realistic pictures from rough sketches (can be seen in the purse example) or from painting-like images (can be seen in the street and facade examples below).
67
67
 
68
- <img src="/tasks/assets/image-to-image/pix2pix_examples.jpg" alt="Alt text" title="Optional title">
68
+ ![Examples](https://huggingface.co/datasets/huggingfacejs/tasks/resolve/main/image-to-image/pix2pix_examples.jpg)
69
69
 
70
- ## Useful Resources
70
+ ## Useful Resources
71
71
 
72
72
  - [Train your ControlNet with diffusers 🧨](https://huggingface.co/blog/train-your-controlnet)
73
73
  - [Ultra fast ControlNet with 🧨 Diffusers](https://huggingface.co/blog/controlnet)
package/src/index.ts CHANGED
@@ -1,4 +1,17 @@
1
1
  export type { TaskData, TaskDemo, TaskDemoEntry, ExampleRepo } from "./Types";
2
2
  export { TASKS_DATA } from "./tasksData";
3
- export { PIPELINE_DATA, type PipelineType, type PipelineData, type Modality, MODALITIES } from "./pipelines";
4
- export { ModelLibrary } from "./modelLibraries";
3
+ export {
4
+ PIPELINE_DATA,
5
+ PIPELINE_TYPES,
6
+ type PipelineType,
7
+ type PipelineData,
8
+ type Modality,
9
+ MODALITIES,
10
+ MODALITY_LABELS,
11
+ SUBTASK_TYPES,
12
+ PIPELINE_TYPES_SET,
13
+ } from "./pipelines";
14
+ export { ModelLibrary, ALL_DISPLAY_MODEL_LIBRARY_KEYS } from "./modelLibraries";
15
+ export type { ModelLibraryKey } from "./modelLibraries";
16
+
17
+ export { TAG_NFAA_CONTENT, OTHER_TAGS_SUGGESTIONS, TAG_TEXT_GENERATION_INFERENCE, TAG_CUSTOM_CODE } from "./tags";
@@ -41,3 +41,7 @@ export enum ModelLibrary {
41
41
  }
42
42
 
43
43
  export type ModelLibraryKey = keyof typeof ModelLibrary;
44
+
45
+ export const ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
46
+ (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
47
+ );
package/src/pipelines.ts CHANGED
@@ -2,6 +2,16 @@ export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl",
2
2
 
3
3
  export type Modality = (typeof MODALITIES)[number];
4
4
 
5
+ export const MODALITY_LABELS = {
6
+ multimodal: "Multimodal",
7
+ nlp: "Natural Language Processing",
8
+ audio: "Audio",
9
+ cv: "Computer Vision",
10
+ rl: "Reinforcement Learning",
11
+ tabular: "Tabular",
12
+ other: "Other",
13
+ } satisfies Record<Modality, string>;
14
+
5
15
  /**
6
16
  * Public interface for a sub task.
7
17
  *
@@ -606,3 +616,11 @@ export const PIPELINE_DATA = {
606
616
  } satisfies Record<string, PipelineData>;
607
617
 
608
618
  export type PipelineType = keyof typeof PIPELINE_DATA;
619
+
620
+ export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
621
+
622
+ export const SUBTASK_TYPES = Object.values(PIPELINE_DATA)
623
+ .flatMap((data) => ("subtasks" in data ? data.subtasks : []))
624
+ .map((s) => s.type);
625
+
626
+ export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
package/src/tags.ts ADDED
@@ -0,0 +1,15 @@
1
+ export const TAG_NFAA_CONTENT = "not-for-all-audiences";
2
+ export const OTHER_TAGS_SUGGESTIONS = [
3
+ "chemistry",
4
+ "biology",
5
+ "finance",
6
+ "legal",
7
+ "music",
8
+ "art",
9
+ "code",
10
+ "climate",
11
+ "medical",
12
+ TAG_NFAA_CONTENT,
13
+ ];
14
+ export const TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
15
+ export const TAG_CUSTOM_CODE = "custom_code";