@huggingface/inference 2.6.3 → 2.6.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.d.ts CHANGED
@@ -1,10 +1,11 @@
1
+
1
2
  export interface Options {
2
3
  /**
3
4
  * (Default: true) Boolean. If a request 503s and wait_for_model is set to false, the request will be retried with the same parameters but with wait_for_model set to true.
4
5
  */
5
6
  retry_on_error?: boolean;
6
7
  /**
7
- * (Default: true). Boolean. There is a cache layer on the inference API to speedup requests we have already seen. Most models can use those results as is as models are deterministic (meaning the results will be the same anyway). However if you use a non deterministic model, you can set this parameter to prevent the caching mechanism from being used resulting in a real new query.
8
+ * (Default: true). Boolean. There is a cache layer on Inference API (serverless) to speedup requests we have already seen. Most models can use those results as is as models are deterministic (meaning the results will be the same anyway). However if you use a non deterministic model, you can set this parameter to prevent the caching mechanism from being used resulting in a real new query.
8
9
  */
9
10
  use_cache?: boolean;
10
11
  /**
@@ -24,6 +25,10 @@ export interface Options {
24
25
  * Custom fetch function to use instead of the default one, for example to use a proxy or edit headers.
25
26
  */
26
27
  fetch?: typeof fetch;
28
+ /**
29
+ * Abort Controller signal to use for request interruption.
30
+ */
31
+ signal?: AbortSignal;
27
32
 
28
33
  /**
29
34
  * (Default: "same-origin"). String | Boolean. Credentials to use for the request. If this is a string, it will be passed straight on. If it's a boolean, true will be "include" and false will not send credentials at all.
@@ -35,35 +40,51 @@ export type InferenceTask =
35
40
  | "audio-classification"
36
41
  | "audio-to-audio"
37
42
  | "automatic-speech-recognition"
38
- | "conversational"
39
43
  | "depth-estimation"
40
44
  | "document-question-answering"
41
45
  | "feature-extraction"
42
46
  | "fill-mask"
47
+ | "graph-ml"
43
48
  | "image-classification"
49
+ | "image-feature-extraction"
44
50
  | "image-segmentation"
51
+ | "image-text-to-text"
52
+ | "image-to-3d"
45
53
  | "image-to-image"
46
54
  | "image-to-text"
55
+ | "image-to-video"
56
+ | "mask-generation"
57
+ | "multiple-choice"
47
58
  | "object-detection"
48
- | "video-classification"
49
59
  | "question-answering"
50
60
  | "reinforcement-learning"
61
+ | "robotics"
51
62
  | "sentence-similarity"
52
63
  | "summarization"
53
64
  | "table-question-answering"
65
+ | "table-to-text"
54
66
  | "tabular-classification"
55
67
  | "tabular-regression"
68
+ | "tabular-to-text"
56
69
  | "text-classification"
57
70
  | "text-generation"
71
+ | "text-retrieval"
72
+ | "text-to-3d"
73
+ | "text-to-audio"
58
74
  | "text-to-image"
59
75
  | "text-to-speech"
60
76
  | "text-to-video"
77
+ | "text2text-generation"
78
+ | "time-series-forecasting"
61
79
  | "token-classification"
62
80
  | "translation"
63
81
  | "unconditional-image-generation"
82
+ | "video-classification"
64
83
  | "visual-question-answering"
84
+ | "voice-activity-detection"
65
85
  | "zero-shot-classification"
66
- | "zero-shot-image-classification";
86
+ | "zero-shot-image-classification"
87
+ | "zero-shot-object-detection";
67
88
 
68
89
  export interface BaseArgs {
69
90
  /**
@@ -73,7 +94,7 @@ export interface BaseArgs {
73
94
  */
74
95
  accessToken?: string;
75
96
  /**
76
- * The model to use. Can be a full URL for HF inference endpoints.
97
+ * The model to use. Can be a full URL for a dedicated inference endpoint.
77
98
  *
78
99
  * If not specified, will call huggingface.co/api/tasks to get the default model for the task.
79
100
  */
@@ -174,7 +195,7 @@ export type TextToSpeechOutput = Blob;
174
195
  */
175
196
  export function textToSpeech(args: TextToSpeechArgs, options?: Options): Promise<TextToSpeechOutput>;
176
197
  /**
177
- * Primitive to make custom calls to the inference API
198
+ * Primitive to make custom calls to Inference Endpoints
178
199
  */
179
200
  export function request<T>(
180
201
  args: RequestArgs,
@@ -479,65 +500,6 @@ export function visualQuestionAnswering(
479
500
  args: VisualQuestionAnsweringArgs,
480
501
  options?: Options
481
502
  ): Promise<VisualQuestionAnsweringOutput>;
482
- export type ConversationalArgs = BaseArgs & {
483
- inputs: {
484
- /**
485
- * A list of strings corresponding to the earlier replies from the model.
486
- */
487
- generated_responses?: string[];
488
- /**
489
- * A list of strings corresponding to the earlier replies from the user. Should be of the same length of generated_responses.
490
- */
491
- past_user_inputs?: string[];
492
- /**
493
- * The last input from the user in the conversation.
494
- */
495
- text: string;
496
- };
497
- parameters?: {
498
- /**
499
- * (Default: None). Integer to define the maximum length in tokens of the output summary.
500
- */
501
- max_length?: number;
502
- /**
503
- * (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. Network can cause some overhead so it will be a soft limit.
504
- */
505
- max_time?: number;
506
- /**
507
- * (Default: None). Integer to define the minimum length in tokens of the output summary.
508
- */
509
- min_length?: number;
510
- /**
511
- * (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized to not be picked in successive generation passes.
512
- */
513
- repetition_penalty?: number;
514
- /**
515
- * (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
516
- */
517
- temperature?: number;
518
- /**
519
- * (Default: None). Integer to define the top tokens considered within the sample operation to create new text.
520
- */
521
- top_k?: number;
522
- /**
523
- * (Default: None). Float to define the tokens that are within the sample operation of text generation. Add tokens in the sample for more probable to least probable until the sum of the probabilities is greater than top_p.
524
- */
525
- top_p?: number;
526
- };
527
- };
528
- export interface ConversationalOutput {
529
- conversation: {
530
- generated_responses: string[];
531
- past_user_inputs: string[];
532
- };
533
- generated_text: string;
534
- warnings: string[];
535
- }
536
- /**
537
- * This task corresponds to any chatbot like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long range dependency or not. Recommended model: microsoft/DialoGPT-large.
538
- *
539
- */
540
- export function conversational(args: ConversationalArgs, options?: Options): Promise<ConversationalOutput>;
541
503
  export type FeatureExtractionArgs = BaseArgs & {
542
504
  /**
543
505
  * The inputs is a string or a list of strings to get the features from.
@@ -740,64 +702,13 @@ export function textClassification(
740
702
  args: TextClassificationArgs,
741
703
  options?: Options
742
704
  ): Promise<TextClassificationOutput>;
743
- export type TextGenerationArgs = BaseArgs & {
744
- /**
745
- * A string to be generated from
746
- */
747
- inputs: string;
748
- parameters?: {
749
- /**
750
- * (Optional: True). Bool. Whether or not to use sampling, use greedy decoding otherwise.
751
- */
752
- do_sample?: boolean;
753
- /**
754
- * (Default: None). Int (0-250). The amount of new tokens to be generated, this does not include the input length it is a estimate of the size of generated text you want. Each new tokens slows down the request, so look for balance between response times and length of text generated.
755
- */
756
- max_new_tokens?: number;
757
- /**
758
- * (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. Network can cause some overhead so it will be a soft limit. Use that in combination with max_new_tokens for best results.
759
- */
760
- max_time?: number;
761
- /**
762
- * (Default: 1). Integer. The number of proposition you want to be returned.
763
- */
764
- num_return_sequences?: number;
765
- /**
766
- * (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized to not be picked in successive generation passes.
767
- */
768
- repetition_penalty?: number;
769
- /**
770
- * (Default: True). Bool. If set to False, the return results will not contain the original query making it easier for prompting.
771
- */
772
- return_full_text?: boolean;
773
- /**
774
- * (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
775
- */
776
- temperature?: number;
777
- /**
778
- * (Default: None). Integer to define the top tokens considered within the sample operation to create new text.
779
- */
780
- top_k?: number;
781
- /**
782
- * (Default: None). Float to define the tokens that are within the sample operation of text generation. Add tokens in the sample for more probable to least probable until the sum of the probabilities is greater than top_p.
783
- */
784
- top_p?: number;
785
- /**
786
- * (Default: None). Integer. The maximum number of tokens from the input.
787
- */
788
- truncate?: number;
789
- };
790
- };
791
- export interface TextGenerationOutput {
792
- /**
793
- * The continuated string
794
- */
795
- generated_text: string;
796
- }
797
705
  /**
798
706
  * Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
799
707
  */
800
- export function textGeneration(args: TextGenerationArgs, options?: Options): Promise<TextGenerationOutput>;
708
+ export function textGeneration(
709
+ args: BaseArgs & TextGenerationInput,
710
+ options?: Options
711
+ ): Promise<TextGenerationOutput>;
801
712
  export type TextGenerationStreamFinishReason =
802
713
  /** number of generated tokens == `max_new_tokens` */
803
714
  | "length"
@@ -875,7 +786,7 @@ export interface TextGenerationStreamOutput {
875
786
  * Use to continue text from a prompt. Same as `textGeneration` but returns generator that can be read one token at a time
876
787
  */
877
788
  export function textGenerationStream(
878
- args: TextGenerationArgs,
789
+ args: BaseArgs & TextGenerationInput,
879
790
  options?: Options
880
791
  ): AsyncGenerator<TextGenerationStreamOutput>;
881
792
  export type TokenClassificationArgs = BaseArgs & {
@@ -934,9 +845,10 @@ export type TranslationArgs = BaseArgs & {
934
845
  /**
935
846
  * A string to be translated
936
847
  */
937
- inputs: string;
848
+ inputs: string | string[];
938
849
  };
939
- export interface TranslationOutput {
850
+ export type TranslationOutput = TranslationOutputValue | TranslationOutputValue[];
851
+ export interface TranslationOutputValue {
940
852
  /**
941
853
  * The string after translation
942
854
  */
@@ -1050,7 +962,7 @@ export class HfInference {
1050
962
  */
1051
963
  textToSpeech(args: Omit<TextToSpeechArgs, 'accessToken'>, options?: Options): Promise<TextToSpeechOutput>;
1052
964
  /**
1053
- * Primitive to make custom calls to the inference API
965
+ * Primitive to make custom calls to Inference Endpoints
1054
966
  */
1055
967
  request<T>(
1056
968
  args: Omit<RequestArgs, 'accessToken'>,
@@ -1130,11 +1042,6 @@ export class HfInference {
1130
1042
  args: Omit<VisualQuestionAnsweringArgs, 'accessToken'>,
1131
1043
  options?: Options
1132
1044
  ): Promise<VisualQuestionAnsweringOutput>;
1133
- /**
1134
- * This task corresponds to any chatbot like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long range dependency or not. Recommended model: microsoft/DialoGPT-large.
1135
- *
1136
- */
1137
- conversational(args: Omit<ConversationalArgs, 'accessToken'>, options?: Options): Promise<ConversationalOutput>;
1138
1045
  /**
1139
1046
  * This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search.
1140
1047
  */
@@ -1181,12 +1088,15 @@ export class HfInference {
1181
1088
  /**
1182
1089
  * Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
1183
1090
  */
1184
- textGeneration(args: Omit<TextGenerationArgs, 'accessToken'>, options?: Options): Promise<TextGenerationOutput>;
1091
+ textGeneration(
1092
+ args: Omit<BaseArgs, 'accessToken'> & TextGenerationInput,
1093
+ options?: Options
1094
+ ): Promise<TextGenerationOutput>;
1185
1095
  /**
1186
1096
  * Use to continue text from a prompt. Same as `textGeneration` but returns generator that can be read one token at a time
1187
1097
  */
1188
1098
  textGenerationStream(
1189
- args: Omit<TextGenerationArgs, 'accessToken'>,
1099
+ args: Omit<BaseArgs, 'accessToken'> & TextGenerationInput,
1190
1100
  options?: Options
1191
1101
  ): AsyncGenerator<TextGenerationStreamOutput>;
1192
1102
  /**
@@ -1255,7 +1165,7 @@ export class HfInferenceEndpoint {
1255
1165
  */
1256
1166
  textToSpeech(args: Omit<TextToSpeechArgs, 'accessToken' | 'model'>, options?: Options): Promise<TextToSpeechOutput>;
1257
1167
  /**
1258
- * Primitive to make custom calls to the inference API
1168
+ * Primitive to make custom calls to Inference Endpoints
1259
1169
  */
1260
1170
  request<T>(
1261
1171
  args: Omit<RequestArgs, 'accessToken' | 'model'>,
@@ -1335,11 +1245,6 @@ export class HfInferenceEndpoint {
1335
1245
  args: Omit<VisualQuestionAnsweringArgs, 'accessToken' | 'model'>,
1336
1246
  options?: Options
1337
1247
  ): Promise<VisualQuestionAnsweringOutput>;
1338
- /**
1339
- * This task corresponds to any chatbot like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long range dependency or not. Recommended model: microsoft/DialoGPT-large.
1340
- *
1341
- */
1342
- conversational(args: Omit<ConversationalArgs, 'accessToken' | 'model'>, options?: Options): Promise<ConversationalOutput>;
1343
1248
  /**
1344
1249
  * This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search.
1345
1250
  */
@@ -1386,12 +1291,15 @@ export class HfInferenceEndpoint {
1386
1291
  /**
1387
1292
  * Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
1388
1293
  */
1389
- textGeneration(args: Omit<TextGenerationArgs, 'accessToken' | 'model'>, options?: Options): Promise<TextGenerationOutput>;
1294
+ textGeneration(
1295
+ args: Omit<BaseArgs, 'accessToken' | 'model'> & TextGenerationInput,
1296
+ options?: Options
1297
+ ): Promise<TextGenerationOutput>;
1390
1298
  /**
1391
1299
  * Use to continue text from a prompt. Same as `textGeneration` but returns generator that can be read one token at a time
1392
1300
  */
1393
1301
  textGenerationStream(
1394
- args: Omit<TextGenerationArgs, 'accessToken' | 'model'>,
1302
+ args: Omit<BaseArgs, 'accessToken' | 'model'> & TextGenerationInput,
1395
1303
  options?: Options
1396
1304
  ): AsyncGenerator<TextGenerationStreamOutput>;
1397
1305
  /**
package/dist/index.js CHANGED
@@ -1,61 +1,9 @@
1
1
  /// <reference path="./index.d.ts" />
2
- "use strict";
3
2
  var __defProp = Object.defineProperty;
4
- var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
5
- var __getOwnPropNames = Object.getOwnPropertyNames;
6
- var __hasOwnProp = Object.prototype.hasOwnProperty;
7
3
  var __export = (target, all) => {
8
4
  for (var name in all)
9
5
  __defProp(target, name, { get: all[name], enumerable: true });
10
6
  };
11
- var __copyProps = (to, from, except, desc) => {
12
- if (from && typeof from === "object" || typeof from === "function") {
13
- for (let key of __getOwnPropNames(from))
14
- if (!__hasOwnProp.call(to, key) && key !== except)
15
- __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
16
- }
17
- return to;
18
- };
19
- var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
20
-
21
- // src/index.ts
22
- var src_exports = {};
23
- __export(src_exports, {
24
- HfInference: () => HfInference,
25
- HfInferenceEndpoint: () => HfInferenceEndpoint,
26
- InferenceOutputError: () => InferenceOutputError,
27
- audioClassification: () => audioClassification,
28
- audioToAudio: () => audioToAudio,
29
- automaticSpeechRecognition: () => automaticSpeechRecognition,
30
- conversational: () => conversational,
31
- documentQuestionAnswering: () => documentQuestionAnswering,
32
- featureExtraction: () => featureExtraction,
33
- fillMask: () => fillMask,
34
- imageClassification: () => imageClassification,
35
- imageSegmentation: () => imageSegmentation,
36
- imageToImage: () => imageToImage,
37
- imageToText: () => imageToText,
38
- objectDetection: () => objectDetection,
39
- questionAnswering: () => questionAnswering,
40
- request: () => request,
41
- sentenceSimilarity: () => sentenceSimilarity,
42
- streamingRequest: () => streamingRequest,
43
- summarization: () => summarization,
44
- tableQuestionAnswering: () => tableQuestionAnswering,
45
- tabularClassification: () => tabularClassification,
46
- tabularRegression: () => tabularRegression,
47
- textClassification: () => textClassification,
48
- textGeneration: () => textGeneration,
49
- textGenerationStream: () => textGenerationStream,
50
- textToImage: () => textToImage,
51
- textToSpeech: () => textToSpeech,
52
- tokenClassification: () => tokenClassification,
53
- translation: () => translation,
54
- visualQuestionAnswering: () => visualQuestionAnswering,
55
- zeroShotClassification: () => zeroShotClassification,
56
- zeroShotImageClassification: () => zeroShotImageClassification
57
- });
58
- module.exports = __toCommonJS(src_exports);
59
7
 
60
8
  // src/tasks/index.ts
61
9
  var tasks_exports = {};
@@ -63,7 +11,6 @@ __export(tasks_exports, {
63
11
  audioClassification: () => audioClassification,
64
12
  audioToAudio: () => audioToAudio,
65
13
  automaticSpeechRecognition: () => automaticSpeechRecognition,
66
- conversational: () => conversational,
67
14
  documentQuestionAnswering: () => documentQuestionAnswering,
68
15
  featureExtraction: () => featureExtraction,
69
16
  fillMask: () => fillMask,
@@ -192,7 +139,8 @@ async function makeRequestOptions(args, options) {
192
139
  ...otherArgs,
193
140
  options: options && otherOptions
194
141
  }),
195
- credentials
142
+ credentials,
143
+ signal: options?.signal
196
144
  };
197
145
  return { url, info };
198
146
  }
@@ -326,7 +274,7 @@ async function* streamingRequest(args, options) {
326
274
  const { url, info } = await makeRequestOptions({ ...args, stream: true }, options);
327
275
  const response = await (options?.fetch ?? fetch)(url, info);
328
276
  if (options?.retry_on_error !== false && response.status === 503 && !options?.wait_for_model) {
329
- return streamingRequest(args, {
277
+ return yield* streamingRequest(args, {
330
278
  ...options,
331
279
  wait_for_model: true
332
280
  });
@@ -584,18 +532,6 @@ async function zeroShotImageClassification(args, options) {
584
532
  return res;
585
533
  }
586
534
 
587
- // src/tasks/nlp/conversational.ts
588
- async function conversational(args, options) {
589
- const res = await request(args, { ...options, taskHint: "conversational" });
590
- const isValidOutput = Array.isArray(res.conversation.generated_responses) && res.conversation.generated_responses.every((x) => typeof x === "string") && Array.isArray(res.conversation.past_user_inputs) && res.conversation.past_user_inputs.every((x) => typeof x === "string") && typeof res.generated_text === "string" && (typeof res.warnings === "undefined" || Array.isArray(res.warnings) && res.warnings.every((x) => typeof x === "string"));
591
- if (!isValidOutput) {
592
- throw new InferenceOutputError(
593
- "Expected {conversation: {generated_responses: string[], past_user_inputs: string[]}, generated_text: string, warnings: string[]}"
594
- );
595
- }
596
- return res;
597
- }
598
-
599
535
  // src/tasks/nlp/featureExtraction.ts
600
536
  async function featureExtraction(args, options) {
601
537
  const defaultTask = args.model ? await getDefaultTask(args.model, args.accessToken, options) : void 0;
@@ -765,7 +701,7 @@ async function translation(args, options) {
765
701
  if (!isValidOutput) {
766
702
  throw new InferenceOutputError("Expected type Array<{translation_text: string}>");
767
703
  }
768
- return res?.[0];
704
+ return res?.length === 1 ? res?.[0] : res;
769
705
  }
770
706
 
771
707
  // src/tasks/nlp/zeroShotClassification.ts
@@ -902,15 +838,13 @@ var HfInferenceEndpoint = class {
902
838
  }
903
839
  }
904
840
  };
905
- // Annotate the CommonJS export names for ESM import in node:
906
- 0 && (module.exports = {
841
+ export {
907
842
  HfInference,
908
843
  HfInferenceEndpoint,
909
844
  InferenceOutputError,
910
845
  audioClassification,
911
846
  audioToAudio,
912
847
  automaticSpeechRecognition,
913
- conversational,
914
848
  documentQuestionAnswering,
915
849
  featureExtraction,
916
850
  fillMask,
@@ -937,4 +871,4 @@ var HfInferenceEndpoint = class {
937
871
  visualQuestionAnswering,
938
872
  zeroShotClassification,
939
873
  zeroShotImageClassification
940
- });
874
+ };
package/package.json CHANGED
@@ -1,10 +1,10 @@
1
1
  {
2
2
  "name": "@huggingface/inference",
3
- "version": "2.6.3",
4
- "packageManager": "pnpm@8.3.1",
3
+ "version": "2.6.5",
4
+ "packageManager": "pnpm@8.10.5",
5
5
  "license": "MIT",
6
6
  "author": "Tim Mikeladze <tim.mikeladze@gmail.com>",
7
- "description": "Typescript wrapper for the Hugging Face Inference API",
7
+ "description": "Typescript wrapper for the Hugging Face Inference Endpoints & Inference API",
8
8
  "repository": {
9
9
  "type": "git",
10
10
  "url": "https://github.com/huggingface/huggingface.js.git"
@@ -30,30 +30,28 @@
30
30
  ],
31
31
  "source": "src/index.ts",
32
32
  "types": "./dist/index.d.ts",
33
- "main": "./dist/index.js",
34
- "module": "./dist/index.mjs",
33
+ "main": "./dist/index.cjs",
34
+ "module": "./dist/index.js",
35
35
  "exports": {
36
36
  "types": "./dist/index.d.ts",
37
- "require": "./dist/index.js",
38
- "import": "./dist/index.mjs"
37
+ "require": "./dist/index.cjs",
38
+ "import": "./dist/index.js"
39
39
  },
40
+ "type": "module",
40
41
  "devDependencies": {
41
42
  "@types/node": "18.13.0",
42
- "ts-node": "^10.9.1",
43
- "typescript": "^5.0.4",
44
- "vite": "^4.1.4",
45
- "vitest": "^0.29.8"
43
+ "@huggingface/tasks": "^0.6.0"
46
44
  },
47
45
  "resolutions": {},
48
46
  "scripts": {
49
47
  "build": "tsup src/index.ts --format cjs,esm --clean && pnpm run dts",
50
- "dts": "ts-node scripts/generate-dts.ts",
48
+ "dts": "tsx scripts/generate-dts.ts",
51
49
  "lint": "eslint --quiet --fix --ext .cjs,.ts .",
52
50
  "lint:check": "eslint --ext .cjs,.ts .",
53
51
  "format": "prettier --write .",
54
52
  "format:check": "prettier --check .",
55
- "test": "vitest run --config vitest.config.ts",
56
- "test:browser": "vitest run --browser.name=chrome --browser.headless --config vitest.config.ts",
57
- "type-check": "tsc"
53
+ "test": "vitest run --config vitest.config.mts",
54
+ "test:browser": "vitest run --browser.name=chrome --browser.headless --config vitest.config.mts",
55
+ "check": "tsc"
58
56
  }
59
57
  }
@@ -2,7 +2,7 @@ import { isUrl } from "./isUrl";
2
2
 
3
3
  /**
4
4
  * We want to make calls to the huggingface hub the least possible, eg if
5
- * someone is calling the inference API 1000 times per second, we don't want
5
+ * someone is calling Inference Endpoints 1000 times per second, we don't want
6
6
  * to make 1000 calls to the hub to get the task name.
7
7
  */
8
8
  const taskCache = new Map<string, { task: string; date: Date }>();
@@ -106,6 +106,7 @@ export async function makeRequestOptions(
106
106
  options: options && otherOptions,
107
107
  }),
108
108
  credentials,
109
+ signal: options?.signal,
109
110
  };
110
111
 
111
112
  return { url, info };
@@ -2,7 +2,7 @@ import type { InferenceTask, Options, RequestArgs } from "../../types";
2
2
  import { makeRequestOptions } from "../../lib/makeRequestOptions";
3
3
 
4
4
  /**
5
- * Primitive to make custom calls to the inference API
5
+ * Primitive to make custom calls to Inference Endpoints
6
6
  */
7
7
  export async function request<T>(
8
8
  args: RequestArgs,
@@ -19,7 +19,7 @@ export async function* streamingRequest<T>(
19
19
  const response = await (options?.fetch ?? fetch)(url, info);
20
20
 
21
21
  if (options?.retry_on_error !== false && response.status === 503 && !options?.wait_for_model) {
22
- return streamingRequest(args, {
22
+ return yield* streamingRequest(args, {
23
23
  ...options,
24
24
  wait_for_model: true,
25
25
  });
@@ -18,7 +18,6 @@ export * from "./cv/imageToImage";
18
18
  export * from "./cv/zeroShotImageClassification";
19
19
 
20
20
  // Natural Language Processing tasks
21
- export * from "./nlp/conversational";
22
21
  export * from "./nlp/featureExtraction";
23
22
  export * from "./nlp/fillMask";
24
23
  export * from "./nlp/questionAnswering";
@@ -1,67 +1,15 @@
1
+ import type { TextGenerationInput, TextGenerationOutput } from "@huggingface/tasks/src/tasks/text-generation/inference";
1
2
  import { InferenceOutputError } from "../../lib/InferenceOutputError";
2
3
  import type { BaseArgs, Options } from "../../types";
3
4
  import { request } from "../custom/request";
4
5
 
5
- export type TextGenerationArgs = BaseArgs & {
6
- /**
7
- * A string to be generated from
8
- */
9
- inputs: string;
10
- parameters?: {
11
- /**
12
- * (Optional: True). Bool. Whether or not to use sampling, use greedy decoding otherwise.
13
- */
14
- do_sample?: boolean;
15
- /**
16
- * (Default: None). Int (0-250). The amount of new tokens to be generated, this does not include the input length it is a estimate of the size of generated text you want. Each new tokens slows down the request, so look for balance between response times and length of text generated.
17
- */
18
- max_new_tokens?: number;
19
- /**
20
- * (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. Network can cause some overhead so it will be a soft limit. Use that in combination with max_new_tokens for best results.
21
- */
22
- max_time?: number;
23
- /**
24
- * (Default: 1). Integer. The number of proposition you want to be returned.
25
- */
26
- num_return_sequences?: number;
27
- /**
28
- * (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized to not be picked in successive generation passes.
29
- */
30
- repetition_penalty?: number;
31
- /**
32
- * (Default: True). Bool. If set to False, the return results will not contain the original query making it easier for prompting.
33
- */
34
- return_full_text?: boolean;
35
- /**
36
- * (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, 0 means always take the highest score, 100.0 is getting closer to uniform probability.
37
- */
38
- temperature?: number;
39
- /**
40
- * (Default: None). Integer to define the top tokens considered within the sample operation to create new text.
41
- */
42
- top_k?: number;
43
- /**
44
- * (Default: None). Float to define the tokens that are within the sample operation of text generation. Add tokens in the sample for more probable to least probable until the sum of the probabilities is greater than top_p.
45
- */
46
- top_p?: number;
47
- /**
48
- * (Default: None). Integer. The maximum number of tokens from the input.
49
- */
50
- truncate?: number;
51
- };
52
- };
53
-
54
- export interface TextGenerationOutput {
55
- /**
56
- * The continuated string
57
- */
58
- generated_text: string;
59
- }
60
-
61
6
  /**
62
7
  * Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
63
8
  */
64
- export async function textGeneration(args: TextGenerationArgs, options?: Options): Promise<TextGenerationOutput> {
9
+ export async function textGeneration(
10
+ args: BaseArgs & TextGenerationInput,
11
+ options?: Options
12
+ ): Promise<TextGenerationOutput> {
65
13
  const res = await request<TextGenerationOutput[]>(args, {
66
14
  ...options,
67
15
  taskHint: "text-generation",
@@ -1,6 +1,7 @@
1
- import type { Options } from "../../types";
1
+ import type { BaseArgs, Options } from "../../types";
2
2
  import { streamingRequest } from "../custom/streamingRequest";
3
- import type { TextGenerationArgs } from "./textGeneration";
3
+
4
+ import type { TextGenerationInput } from "@huggingface/tasks/src/tasks/text-generation/inference";
4
5
 
5
6
  export interface TextGenerationStreamToken {
6
7
  /** Token ID from the model tokenizer */
@@ -85,7 +86,7 @@ export interface TextGenerationStreamOutput {
85
86
  * Use to continue text from a prompt. Same as `textGeneration` but returns generator that can be read one token at a time
86
87
  */
87
88
  export async function* textGenerationStream(
88
- args: TextGenerationArgs,
89
+ args: BaseArgs & TextGenerationInput,
89
90
  options?: Options
90
91
  ): AsyncGenerator<TextGenerationStreamOutput> {
91
92
  yield* streamingRequest<TextGenerationStreamOutput>(args, {