@hive-p2p/browser 1.0.39 → 1.0.40
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/hive-p2p.min.js +3 -3
- package/libs/ed25519-3.0.0.js +630 -0
- package/libs/hashes-2.0.0.js +397 -0
- package/package.json +1 -1
- package/services/cryptos.mjs +6 -4
|
@@ -0,0 +1,630 @@
|
|
|
1
|
+
/*! noble-ed25519 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
|
|
2
|
+
/**
|
|
3
|
+
* 5KB JS implementation of ed25519 EdDSA signatures.
|
|
4
|
+
* Compliant with RFC8032, FIPS 186-5 & ZIP215.
|
|
5
|
+
* @module
|
|
6
|
+
* @example
|
|
7
|
+
* ```js
|
|
8
|
+
import * as ed from '@noble/ed25519';
|
|
9
|
+
(async () => {
|
|
10
|
+
const secretKey = ed.utils.randomSecretKey();
|
|
11
|
+
const message = Uint8Array.from([0xab, 0xbc, 0xcd, 0xde]);
|
|
12
|
+
const pubKey = await ed.getPublicKeyAsync(secretKey); // Sync methods are also present
|
|
13
|
+
const signature = await ed.signAsync(message, secretKey);
|
|
14
|
+
const isValid = await ed.verifyAsync(signature, message, pubKey);
|
|
15
|
+
})();
|
|
16
|
+
```
|
|
17
|
+
*/
|
|
18
|
+
/**
|
|
19
|
+
* Curve params. ed25519 is twisted edwards curve. Equation is −x² + y² = -a + dx²y².
|
|
20
|
+
* * P = `2n**255n - 19n` // field over which calculations are done
|
|
21
|
+
* * N = `2n**252n + 27742317777372353535851937790883648493n` // group order, amount of curve points
|
|
22
|
+
* * h = 8 // cofactor
|
|
23
|
+
* * a = `Fp.create(BigInt(-1))` // equation param
|
|
24
|
+
* * d = -121665/121666 a.k.a. `Fp.neg(121665 * Fp.inv(121666))` // equation param
|
|
25
|
+
* * Gx, Gy are coordinates of Generator / base point
|
|
26
|
+
*/
|
|
27
|
+
const ed25519_CURVE = {
|
|
28
|
+
p: 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffedn,
|
|
29
|
+
n: 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3edn,
|
|
30
|
+
h: 8n,
|
|
31
|
+
a: 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffecn,
|
|
32
|
+
d: 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3n,
|
|
33
|
+
Gx: 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51an,
|
|
34
|
+
Gy: 0x6666666666666666666666666666666666666666666666666666666666666658n,
|
|
35
|
+
};
|
|
36
|
+
const { p: P, n: N, Gx, Gy, a: _a, d: _d, h } = ed25519_CURVE;
|
|
37
|
+
const L = 32; // field / group byte length
|
|
38
|
+
const L2 = 64;
|
|
39
|
+
// Helpers and Precomputes sections are reused between libraries
|
|
40
|
+
// ## Helpers
|
|
41
|
+
// ----------
|
|
42
|
+
const captureTrace = (...args) => {
|
|
43
|
+
if ('captureStackTrace' in Error && typeof Error.captureStackTrace === 'function') {
|
|
44
|
+
Error.captureStackTrace(...args);
|
|
45
|
+
}
|
|
46
|
+
};
|
|
47
|
+
const err = (message = '') => {
|
|
48
|
+
const e = new Error(message);
|
|
49
|
+
captureTrace(e, err);
|
|
50
|
+
throw e;
|
|
51
|
+
};
|
|
52
|
+
const isBig = (n) => typeof n === 'bigint'; // is big integer
|
|
53
|
+
const isStr = (s) => typeof s === 'string'; // is string
|
|
54
|
+
const isBytes = (a) => a instanceof Uint8Array || (ArrayBuffer.isView(a) && a.constructor.name === 'Uint8Array');
|
|
55
|
+
/** Asserts something is Uint8Array. */
|
|
56
|
+
const abytes = (value, length, title = '') => {
|
|
57
|
+
const bytes = isBytes(value);
|
|
58
|
+
const len = value?.length;
|
|
59
|
+
const needsLen = length !== undefined;
|
|
60
|
+
if (!bytes || (needsLen && len !== length)) {
|
|
61
|
+
const prefix = title && `"${title}" `;
|
|
62
|
+
const ofLen = needsLen ? ` of length ${length}` : '';
|
|
63
|
+
const got = bytes ? `length=${len}` : `type=${typeof value}`;
|
|
64
|
+
err(prefix + 'expected Uint8Array' + ofLen + ', got ' + got);
|
|
65
|
+
}
|
|
66
|
+
return value;
|
|
67
|
+
};
|
|
68
|
+
/** create Uint8Array */
|
|
69
|
+
const u8n = (len) => new Uint8Array(len);
|
|
70
|
+
const u8fr = (buf) => Uint8Array.from(buf);
|
|
71
|
+
const padh = (n, pad) => n.toString(16).padStart(pad, '0');
|
|
72
|
+
const bytesToHex = (b) => Array.from(abytes(b))
|
|
73
|
+
.map((e) => padh(e, 2))
|
|
74
|
+
.join('');
|
|
75
|
+
const C = { _0: 48, _9: 57, A: 65, F: 70, a: 97, f: 102 }; // ASCII characters
|
|
76
|
+
const _ch = (ch) => {
|
|
77
|
+
if (ch >= C._0 && ch <= C._9)
|
|
78
|
+
return ch - C._0; // '2' => 50-48
|
|
79
|
+
if (ch >= C.A && ch <= C.F)
|
|
80
|
+
return ch - (C.A - 10); // 'B' => 66-(65-10)
|
|
81
|
+
if (ch >= C.a && ch <= C.f)
|
|
82
|
+
return ch - (C.a - 10); // 'b' => 98-(97-10)
|
|
83
|
+
return;
|
|
84
|
+
};
|
|
85
|
+
const hexToBytes = (hex) => {
|
|
86
|
+
const e = 'hex invalid';
|
|
87
|
+
if (!isStr(hex))
|
|
88
|
+
return err(e);
|
|
89
|
+
const hl = hex.length;
|
|
90
|
+
const al = hl / 2;
|
|
91
|
+
if (hl % 2)
|
|
92
|
+
return err(e);
|
|
93
|
+
const array = u8n(al);
|
|
94
|
+
for (let ai = 0, hi = 0; ai < al; ai++, hi += 2) {
|
|
95
|
+
// treat each char as ASCII
|
|
96
|
+
const n1 = _ch(hex.charCodeAt(hi)); // parse first char, multiply it by 16
|
|
97
|
+
const n2 = _ch(hex.charCodeAt(hi + 1)); // parse second char
|
|
98
|
+
if (n1 === undefined || n2 === undefined)
|
|
99
|
+
return err(e);
|
|
100
|
+
array[ai] = n1 * 16 + n2; // example: 'A9' => 10*16 + 9
|
|
101
|
+
}
|
|
102
|
+
return array;
|
|
103
|
+
};
|
|
104
|
+
const cr = () => globalThis?.crypto; // WebCrypto is available in all modern environments
|
|
105
|
+
const subtle = () => cr()?.subtle ?? err('crypto.subtle must be defined, consider polyfill');
|
|
106
|
+
// prettier-ignore
|
|
107
|
+
const concatBytes = (...arrs) => {
|
|
108
|
+
const r = u8n(arrs.reduce((sum, a) => sum + abytes(a).length, 0)); // create u8a of summed length
|
|
109
|
+
let pad = 0; // walk through each array,
|
|
110
|
+
arrs.forEach(a => { r.set(a, pad); pad += a.length; }); // ensure they have proper type
|
|
111
|
+
return r;
|
|
112
|
+
};
|
|
113
|
+
/** WebCrypto OS-level CSPRNG (random number generator). Will throw when not available. */
|
|
114
|
+
const randomBytes = (len = L) => {
|
|
115
|
+
const c = cr();
|
|
116
|
+
return c.getRandomValues(u8n(len));
|
|
117
|
+
};
|
|
118
|
+
const big = BigInt;
|
|
119
|
+
const assertRange = (n, min, max, msg = 'bad number: out of range') => (isBig(n) && min <= n && n < max ? n : err(msg));
|
|
120
|
+
/** modular division */
|
|
121
|
+
const M = (a, b = P) => {
|
|
122
|
+
const r = a % b;
|
|
123
|
+
return r >= 0n ? r : b + r;
|
|
124
|
+
};
|
|
125
|
+
const modN = (a) => M(a, N);
|
|
126
|
+
/** Modular inversion using euclidean GCD (non-CT). No negative exponent for now. */
|
|
127
|
+
// prettier-ignore
|
|
128
|
+
const invert = (num, md) => {
|
|
129
|
+
if (num === 0n || md <= 0n)
|
|
130
|
+
err('no inverse n=' + num + ' mod=' + md);
|
|
131
|
+
let a = M(num, md), b = md, x = 0n, y = 1n, u = 1n, v = 0n;
|
|
132
|
+
while (a !== 0n) {
|
|
133
|
+
const q = b / a, r = b % a;
|
|
134
|
+
const m = x - u * q, n = y - v * q;
|
|
135
|
+
b = a, a = r, x = u, y = v, u = m, v = n;
|
|
136
|
+
}
|
|
137
|
+
return b === 1n ? M(x, md) : err('no inverse'); // b is gcd at this point
|
|
138
|
+
};
|
|
139
|
+
const callHash = (name) => {
|
|
140
|
+
// @ts-ignore
|
|
141
|
+
const fn = hashes[name];
|
|
142
|
+
if (typeof fn !== 'function')
|
|
143
|
+
err('hashes.' + name + ' not set');
|
|
144
|
+
return fn;
|
|
145
|
+
};
|
|
146
|
+
const hash = (msg) => callHash('sha512')(msg);
|
|
147
|
+
const apoint = (p) => (p instanceof Point ? p : err('Point expected'));
|
|
148
|
+
// ## End of Helpers
|
|
149
|
+
// -----------------
|
|
150
|
+
const B256 = 2n ** 256n;
|
|
151
|
+
/** Point in XYZT extended coordinates. */
|
|
152
|
+
class Point {
|
|
153
|
+
static BASE;
|
|
154
|
+
static ZERO;
|
|
155
|
+
X;
|
|
156
|
+
Y;
|
|
157
|
+
Z;
|
|
158
|
+
T;
|
|
159
|
+
constructor(X, Y, Z, T) {
|
|
160
|
+
const max = B256;
|
|
161
|
+
this.X = assertRange(X, 0n, max);
|
|
162
|
+
this.Y = assertRange(Y, 0n, max);
|
|
163
|
+
this.Z = assertRange(Z, 1n, max);
|
|
164
|
+
this.T = assertRange(T, 0n, max);
|
|
165
|
+
Object.freeze(this);
|
|
166
|
+
}
|
|
167
|
+
static CURVE() {
|
|
168
|
+
return ed25519_CURVE;
|
|
169
|
+
}
|
|
170
|
+
static fromAffine(p) {
|
|
171
|
+
return new Point(p.x, p.y, 1n, M(p.x * p.y));
|
|
172
|
+
}
|
|
173
|
+
/** RFC8032 5.1.3: Uint8Array to Point. */
|
|
174
|
+
static fromBytes(hex, zip215 = false) {
|
|
175
|
+
const d = _d;
|
|
176
|
+
// Copy array to not mess it up.
|
|
177
|
+
const normed = u8fr(abytes(hex, L));
|
|
178
|
+
// adjust first LE byte = last BE byte
|
|
179
|
+
const lastByte = hex[31];
|
|
180
|
+
normed[31] = lastByte & ~0x80;
|
|
181
|
+
const y = bytesToNumLE(normed);
|
|
182
|
+
// zip215=true: 0 <= y < 2^256
|
|
183
|
+
// zip215=false, RFC8032: 0 <= y < 2^255-19
|
|
184
|
+
const max = zip215 ? B256 : P;
|
|
185
|
+
assertRange(y, 0n, max);
|
|
186
|
+
const y2 = M(y * y); // y²
|
|
187
|
+
const u = M(y2 - 1n); // u=y²-1
|
|
188
|
+
const v = M(d * y2 + 1n); // v=dy²+1
|
|
189
|
+
let { isValid, value: x } = uvRatio(u, v); // (uv³)(uv⁷)^(p-5)/8; square root
|
|
190
|
+
if (!isValid)
|
|
191
|
+
err('bad point: y not sqrt'); // not square root: bad point
|
|
192
|
+
const isXOdd = (x & 1n) === 1n; // adjust sign of x coordinate
|
|
193
|
+
const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
|
|
194
|
+
if (!zip215 && x === 0n && isLastByteOdd)
|
|
195
|
+
err('bad point: x==0, isLastByteOdd'); // x=0, x_0=1
|
|
196
|
+
if (isLastByteOdd !== isXOdd)
|
|
197
|
+
x = M(-x);
|
|
198
|
+
return new Point(x, y, 1n, M(x * y)); // Z=1, T=xy
|
|
199
|
+
}
|
|
200
|
+
static fromHex(hex, zip215) {
|
|
201
|
+
return Point.fromBytes(hexToBytes(hex), zip215);
|
|
202
|
+
}
|
|
203
|
+
get x() {
|
|
204
|
+
return this.toAffine().x;
|
|
205
|
+
}
|
|
206
|
+
get y() {
|
|
207
|
+
return this.toAffine().y;
|
|
208
|
+
}
|
|
209
|
+
/** Checks if the point is valid and on-curve. */
|
|
210
|
+
assertValidity() {
|
|
211
|
+
const a = _a;
|
|
212
|
+
const d = _d;
|
|
213
|
+
const p = this;
|
|
214
|
+
if (p.is0())
|
|
215
|
+
return err('bad point: ZERO'); // TODO: optimize, with vars below?
|
|
216
|
+
// Equation in affine coordinates: ax² + y² = 1 + dx²y²
|
|
217
|
+
// Equation in projective coordinates (X/Z, Y/Z, Z): (aX² + Y²)Z² = Z⁴ + dX²Y²
|
|
218
|
+
const { X, Y, Z, T } = p;
|
|
219
|
+
const X2 = M(X * X); // X²
|
|
220
|
+
const Y2 = M(Y * Y); // Y²
|
|
221
|
+
const Z2 = M(Z * Z); // Z²
|
|
222
|
+
const Z4 = M(Z2 * Z2); // Z⁴
|
|
223
|
+
const aX2 = M(X2 * a); // aX²
|
|
224
|
+
const left = M(Z2 * M(aX2 + Y2)); // (aX² + Y²)Z²
|
|
225
|
+
const right = M(Z4 + M(d * M(X2 * Y2))); // Z⁴ + dX²Y²
|
|
226
|
+
if (left !== right)
|
|
227
|
+
return err('bad point: equation left != right (1)');
|
|
228
|
+
// In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
|
|
229
|
+
const XY = M(X * Y);
|
|
230
|
+
const ZT = M(Z * T);
|
|
231
|
+
if (XY !== ZT)
|
|
232
|
+
return err('bad point: equation left != right (2)');
|
|
233
|
+
return this;
|
|
234
|
+
}
|
|
235
|
+
/** Equality check: compare points P&Q. */
|
|
236
|
+
equals(other) {
|
|
237
|
+
const { X: X1, Y: Y1, Z: Z1 } = this;
|
|
238
|
+
const { X: X2, Y: Y2, Z: Z2 } = apoint(other); // checks class equality
|
|
239
|
+
const X1Z2 = M(X1 * Z2);
|
|
240
|
+
const X2Z1 = M(X2 * Z1);
|
|
241
|
+
const Y1Z2 = M(Y1 * Z2);
|
|
242
|
+
const Y2Z1 = M(Y2 * Z1);
|
|
243
|
+
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
|
|
244
|
+
}
|
|
245
|
+
is0() {
|
|
246
|
+
return this.equals(I);
|
|
247
|
+
}
|
|
248
|
+
/** Flip point over y coordinate. */
|
|
249
|
+
negate() {
|
|
250
|
+
return new Point(M(-this.X), this.Y, this.Z, M(-this.T));
|
|
251
|
+
}
|
|
252
|
+
/** Point doubling. Complete formula. Cost: `4M + 4S + 1*a + 6add + 1*2`. */
|
|
253
|
+
double() {
|
|
254
|
+
const { X: X1, Y: Y1, Z: Z1 } = this;
|
|
255
|
+
const a = _a;
|
|
256
|
+
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
|
|
257
|
+
const A = M(X1 * X1);
|
|
258
|
+
const B = M(Y1 * Y1);
|
|
259
|
+
const C = M(2n * M(Z1 * Z1));
|
|
260
|
+
const D = M(a * A);
|
|
261
|
+
const x1y1 = X1 + Y1;
|
|
262
|
+
const E = M(M(x1y1 * x1y1) - A - B);
|
|
263
|
+
const G = D + B;
|
|
264
|
+
const F = G - C;
|
|
265
|
+
const H = D - B;
|
|
266
|
+
const X3 = M(E * F);
|
|
267
|
+
const Y3 = M(G * H);
|
|
268
|
+
const T3 = M(E * H);
|
|
269
|
+
const Z3 = M(F * G);
|
|
270
|
+
return new Point(X3, Y3, Z3, T3);
|
|
271
|
+
}
|
|
272
|
+
/** Point addition. Complete formula. Cost: `8M + 1*k + 8add + 1*2`. */
|
|
273
|
+
add(other) {
|
|
274
|
+
const { X: X1, Y: Y1, Z: Z1, T: T1 } = this;
|
|
275
|
+
const { X: X2, Y: Y2, Z: Z2, T: T2 } = apoint(other); // doesn't check if other on-curve
|
|
276
|
+
const a = _a;
|
|
277
|
+
const d = _d;
|
|
278
|
+
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3
|
|
279
|
+
const A = M(X1 * X2);
|
|
280
|
+
const B = M(Y1 * Y2);
|
|
281
|
+
const C = M(T1 * d * T2);
|
|
282
|
+
const D = M(Z1 * Z2);
|
|
283
|
+
const E = M((X1 + Y1) * (X2 + Y2) - A - B);
|
|
284
|
+
const F = M(D - C);
|
|
285
|
+
const G = M(D + C);
|
|
286
|
+
const H = M(B - a * A);
|
|
287
|
+
const X3 = M(E * F);
|
|
288
|
+
const Y3 = M(G * H);
|
|
289
|
+
const T3 = M(E * H);
|
|
290
|
+
const Z3 = M(F * G);
|
|
291
|
+
return new Point(X3, Y3, Z3, T3);
|
|
292
|
+
}
|
|
293
|
+
subtract(other) {
|
|
294
|
+
return this.add(apoint(other).negate());
|
|
295
|
+
}
|
|
296
|
+
/**
|
|
297
|
+
* Point-by-scalar multiplication. Scalar must be in range 1 <= n < CURVE.n.
|
|
298
|
+
* Uses {@link wNAF} for base point.
|
|
299
|
+
* Uses fake point to mitigate side-channel leakage.
|
|
300
|
+
* @param n scalar by which point is multiplied
|
|
301
|
+
* @param safe safe mode guards against timing attacks; unsafe mode is faster
|
|
302
|
+
*/
|
|
303
|
+
multiply(n, safe = true) {
|
|
304
|
+
if (!safe && (n === 0n || this.is0()))
|
|
305
|
+
return I;
|
|
306
|
+
assertRange(n, 1n, N);
|
|
307
|
+
if (n === 1n)
|
|
308
|
+
return this;
|
|
309
|
+
if (this.equals(G))
|
|
310
|
+
return wNAF(n).p;
|
|
311
|
+
// init result point & fake point
|
|
312
|
+
let p = I;
|
|
313
|
+
let f = G;
|
|
314
|
+
for (let d = this; n > 0n; d = d.double(), n >>= 1n) {
|
|
315
|
+
// if bit is present, add to point
|
|
316
|
+
// if not present, add to fake, for timing safety
|
|
317
|
+
if (n & 1n)
|
|
318
|
+
p = p.add(d);
|
|
319
|
+
else if (safe)
|
|
320
|
+
f = f.add(d);
|
|
321
|
+
}
|
|
322
|
+
return p;
|
|
323
|
+
}
|
|
324
|
+
multiplyUnsafe(scalar) {
|
|
325
|
+
return this.multiply(scalar, false);
|
|
326
|
+
}
|
|
327
|
+
/** Convert point to 2d xy affine point. (X, Y, Z) ∋ (x=X/Z, y=Y/Z) */
|
|
328
|
+
toAffine() {
|
|
329
|
+
const { X, Y, Z } = this;
|
|
330
|
+
// fast-paths for ZERO point OR Z=1
|
|
331
|
+
if (this.equals(I))
|
|
332
|
+
return { x: 0n, y: 1n };
|
|
333
|
+
const iz = invert(Z, P);
|
|
334
|
+
// (Z * Z^-1) must be 1, otherwise bad math
|
|
335
|
+
if (M(Z * iz) !== 1n)
|
|
336
|
+
err('invalid inverse');
|
|
337
|
+
// x = X*Z^-1; y = Y*Z^-1
|
|
338
|
+
const x = M(X * iz);
|
|
339
|
+
const y = M(Y * iz);
|
|
340
|
+
return { x, y };
|
|
341
|
+
}
|
|
342
|
+
toBytes() {
|
|
343
|
+
const { x, y } = this.assertValidity().toAffine();
|
|
344
|
+
const b = numTo32bLE(y);
|
|
345
|
+
// store sign in first LE byte
|
|
346
|
+
b[31] |= x & 1n ? 0x80 : 0;
|
|
347
|
+
return b;
|
|
348
|
+
}
|
|
349
|
+
toHex() {
|
|
350
|
+
return bytesToHex(this.toBytes());
|
|
351
|
+
}
|
|
352
|
+
clearCofactor() {
|
|
353
|
+
return this.multiply(big(h), false);
|
|
354
|
+
}
|
|
355
|
+
isSmallOrder() {
|
|
356
|
+
return this.clearCofactor().is0();
|
|
357
|
+
}
|
|
358
|
+
isTorsionFree() {
|
|
359
|
+
// Multiply by big number N. We can't `mul(N)` because of checks. Instead, we `mul(N/2)*2+1`
|
|
360
|
+
let p = this.multiply(N / 2n, false).double();
|
|
361
|
+
if (N % 2n)
|
|
362
|
+
p = p.add(this);
|
|
363
|
+
return p.is0();
|
|
364
|
+
}
|
|
365
|
+
}
|
|
366
|
+
/** Generator / base point */
|
|
367
|
+
const G = new Point(Gx, Gy, 1n, M(Gx * Gy));
|
|
368
|
+
/** Identity / zero point */
|
|
369
|
+
const I = new Point(0n, 1n, 1n, 0n);
|
|
370
|
+
// Static aliases
|
|
371
|
+
Point.BASE = G;
|
|
372
|
+
Point.ZERO = I;
|
|
373
|
+
const numTo32bLE = (num) => hexToBytes(padh(assertRange(num, 0n, B256), L2)).reverse();
|
|
374
|
+
const bytesToNumLE = (b) => big('0x' + bytesToHex(u8fr(abytes(b)).reverse()));
|
|
375
|
+
const pow2 = (x, power) => {
|
|
376
|
+
// pow2(x, 4) == x^(2^4)
|
|
377
|
+
let r = x;
|
|
378
|
+
while (power-- > 0n) {
|
|
379
|
+
r *= r;
|
|
380
|
+
r %= P;
|
|
381
|
+
}
|
|
382
|
+
return r;
|
|
383
|
+
};
|
|
384
|
+
// prettier-ignore
|
|
385
|
+
const pow_2_252_3 = (x) => {
|
|
386
|
+
const x2 = (x * x) % P; // x^2, bits 1
|
|
387
|
+
const b2 = (x2 * x) % P; // x^3, bits 11
|
|
388
|
+
const b4 = (pow2(b2, 2n) * b2) % P; // x^(2^4-1), bits 1111
|
|
389
|
+
const b5 = (pow2(b4, 1n) * x) % P; // x^(2^5-1), bits 11111
|
|
390
|
+
const b10 = (pow2(b5, 5n) * b5) % P; // x^(2^10)
|
|
391
|
+
const b20 = (pow2(b10, 10n) * b10) % P; // x^(2^20)
|
|
392
|
+
const b40 = (pow2(b20, 20n) * b20) % P; // x^(2^40)
|
|
393
|
+
const b80 = (pow2(b40, 40n) * b40) % P; // x^(2^80)
|
|
394
|
+
const b160 = (pow2(b80, 80n) * b80) % P; // x^(2^160)
|
|
395
|
+
const b240 = (pow2(b160, 80n) * b80) % P; // x^(2^240)
|
|
396
|
+
const b250 = (pow2(b240, 10n) * b10) % P; // x^(2^250)
|
|
397
|
+
const pow_p_5_8 = (pow2(b250, 2n) * x) % P; // < To pow to (p+3)/8, multiply it by x.
|
|
398
|
+
return { pow_p_5_8, b2 };
|
|
399
|
+
};
|
|
400
|
+
const RM1 = 0x2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0n; // √-1
|
|
401
|
+
// for sqrt comp
|
|
402
|
+
// prettier-ignore
|
|
403
|
+
const uvRatio = (u, v) => {
|
|
404
|
+
const v3 = M(v * v * v); // v³
|
|
405
|
+
const v7 = M(v3 * v3 * v); // v⁷
|
|
406
|
+
const pow = pow_2_252_3(u * v7).pow_p_5_8; // (uv⁷)^(p-5)/8
|
|
407
|
+
let x = M(u * v3 * pow); // (uv³)(uv⁷)^(p-5)/8
|
|
408
|
+
const vx2 = M(v * x * x); // vx²
|
|
409
|
+
const root1 = x; // First root candidate
|
|
410
|
+
const root2 = M(x * RM1); // Second root candidate; RM1 is √-1
|
|
411
|
+
const useRoot1 = vx2 === u; // If vx² = u (mod p), x is a square root
|
|
412
|
+
const useRoot2 = vx2 === M(-u); // If vx² = -u, set x <-- x * 2^((p-1)/4)
|
|
413
|
+
const noRoot = vx2 === M(-u * RM1); // There is no valid root, vx² = -u√-1
|
|
414
|
+
if (useRoot1)
|
|
415
|
+
x = root1;
|
|
416
|
+
if (useRoot2 || noRoot)
|
|
417
|
+
x = root2; // We return root2 anyway, for const-time
|
|
418
|
+
if ((M(x) & 1n) === 1n)
|
|
419
|
+
x = M(-x); // edIsNegative
|
|
420
|
+
return { isValid: useRoot1 || useRoot2, value: x };
|
|
421
|
+
};
|
|
422
|
+
// N == L, just weird naming
|
|
423
|
+
const modL_LE = (hash) => modN(bytesToNumLE(hash)); // modulo L; but little-endian
|
|
424
|
+
/** hashes.sha512 should conform to the interface. */
|
|
425
|
+
// TODO: rename
|
|
426
|
+
const sha512a = (...m) => hashes.sha512Async(concatBytes(...m)); // Async SHA512
|
|
427
|
+
const sha512s = (...m) => callHash('sha512')(concatBytes(...m));
|
|
428
|
+
// RFC8032 5.1.5
|
|
429
|
+
const hash2extK = (hashed) => {
|
|
430
|
+
// slice creates a copy, unlike subarray
|
|
431
|
+
const head = hashed.slice(0, L);
|
|
432
|
+
head[0] &= 248; // Clamp bits: 0b1111_1000
|
|
433
|
+
head[31] &= 127; // 0b0111_1111
|
|
434
|
+
head[31] |= 64; // 0b0100_0000
|
|
435
|
+
const prefix = hashed.slice(L, L2); // secret key "prefix"
|
|
436
|
+
const scalar = modL_LE(head); // modular division over curve order
|
|
437
|
+
const point = G.multiply(scalar); // public key point
|
|
438
|
+
const pointBytes = point.toBytes(); // point serialized to Uint8Array
|
|
439
|
+
return { head, prefix, scalar, point, pointBytes };
|
|
440
|
+
};
|
|
441
|
+
// RFC8032 5.1.5; getPublicKey async, sync. Hash priv key and extract point.
|
|
442
|
+
const getExtendedPublicKeyAsync = (secretKey) => sha512a(abytes(secretKey, L)).then(hash2extK);
|
|
443
|
+
const getExtendedPublicKey = (secretKey) => hash2extK(sha512s(abytes(secretKey, L)));
|
|
444
|
+
/** Creates 32-byte ed25519 public key from 32-byte secret key. Async. */
|
|
445
|
+
const getPublicKeyAsync = (secretKey) => getExtendedPublicKeyAsync(secretKey).then((p) => p.pointBytes);
|
|
446
|
+
/** Creates 32-byte ed25519 public key from 32-byte secret key. To use, set `hashes.sha512` first. */
|
|
447
|
+
const getPublicKey = (priv) => getExtendedPublicKey(priv).pointBytes;
|
|
448
|
+
const hashFinishA = (res) => sha512a(res.hashable).then(res.finish);
|
|
449
|
+
const hashFinishS = (res) => res.finish(sha512s(res.hashable));
|
|
450
|
+
// Code, shared between sync & async sign
|
|
451
|
+
const _sign = (e, rBytes, msg) => {
|
|
452
|
+
const { pointBytes: P, scalar: s } = e;
|
|
453
|
+
const r = modL_LE(rBytes); // r was created outside, reduce it modulo L
|
|
454
|
+
const R = G.multiply(r).toBytes(); // R = [r]B
|
|
455
|
+
const hashable = concatBytes(R, P, msg); // dom2(F, C) || R || A || PH(M)
|
|
456
|
+
const finish = (hashed) => {
|
|
457
|
+
// k = SHA512(dom2(F, C) || R || A || PH(M))
|
|
458
|
+
const S = modN(r + modL_LE(hashed) * s); // S = (r + k * s) mod L; 0 <= s < l
|
|
459
|
+
return abytes(concatBytes(R, numTo32bLE(S)), L2); // 64-byte sig: 32b R.x + 32b LE(S)
|
|
460
|
+
};
|
|
461
|
+
return { hashable, finish };
|
|
462
|
+
};
|
|
463
|
+
/**
|
|
464
|
+
* Signs message using secret key. Async.
|
|
465
|
+
* Follows RFC8032 5.1.6.
|
|
466
|
+
*/
|
|
467
|
+
const signAsync = async (message, secretKey) => {
|
|
468
|
+
const m = abytes(message);
|
|
469
|
+
const e = await getExtendedPublicKeyAsync(secretKey);
|
|
470
|
+
const rBytes = await sha512a(e.prefix, m); // r = SHA512(dom2(F, C) || prefix || PH(M))
|
|
471
|
+
return hashFinishA(_sign(e, rBytes, m)); // gen R, k, S, then 64-byte signature
|
|
472
|
+
};
|
|
473
|
+
/**
|
|
474
|
+
* Signs message using secret key. To use, set `hashes.sha512` first.
|
|
475
|
+
* Follows RFC8032 5.1.6.
|
|
476
|
+
*/
|
|
477
|
+
const sign = (message, secretKey) => {
|
|
478
|
+
const m = abytes(message);
|
|
479
|
+
const e = getExtendedPublicKey(secretKey);
|
|
480
|
+
const rBytes = sha512s(e.prefix, m); // r = SHA512(dom2(F, C) || prefix || PH(M))
|
|
481
|
+
return hashFinishS(_sign(e, rBytes, m)); // gen R, k, S, then 64-byte signature
|
|
482
|
+
};
|
|
483
|
+
const defaultVerifyOpts = { zip215: true };
|
|
484
|
+
const _verify = (sig, msg, pub, opts = defaultVerifyOpts) => {
|
|
485
|
+
sig = abytes(sig, L2); // Signature hex str/Bytes, must be 64 bytes
|
|
486
|
+
msg = abytes(msg); // Message hex str/Bytes
|
|
487
|
+
pub = abytes(pub, L);
|
|
488
|
+
const { zip215 } = opts; // switch between zip215 and rfc8032 verif
|
|
489
|
+
let A;
|
|
490
|
+
let R;
|
|
491
|
+
let s;
|
|
492
|
+
let SB;
|
|
493
|
+
let hashable = Uint8Array.of();
|
|
494
|
+
try {
|
|
495
|
+
A = Point.fromBytes(pub, zip215); // public key A decoded
|
|
496
|
+
R = Point.fromBytes(sig.slice(0, L), zip215); // 0 <= R < 2^256: ZIP215 R can be >= P
|
|
497
|
+
s = bytesToNumLE(sig.slice(L, L2)); // Decode second half as an integer S
|
|
498
|
+
SB = G.multiply(s, false); // in the range 0 <= s < L
|
|
499
|
+
hashable = concatBytes(R.toBytes(), A.toBytes(), msg); // dom2(F, C) || R || A || PH(M)
|
|
500
|
+
}
|
|
501
|
+
catch (error) { }
|
|
502
|
+
const finish = (hashed) => {
|
|
503
|
+
// k = SHA512(dom2(F, C) || R || A || PH(M))
|
|
504
|
+
if (SB == null)
|
|
505
|
+
return false; // false if try-catch catched an error
|
|
506
|
+
if (!zip215 && A.isSmallOrder())
|
|
507
|
+
return false; // false for SBS: Strongly Binding Signature
|
|
508
|
+
const k = modL_LE(hashed); // decode in little-endian, modulo L
|
|
509
|
+
const RkA = R.add(A.multiply(k, false)); // [8]R + [8][k]A'
|
|
510
|
+
return RkA.add(SB.negate()).clearCofactor().is0(); // [8][S]B = [8]R + [8][k]A'
|
|
511
|
+
};
|
|
512
|
+
return { hashable, finish };
|
|
513
|
+
};
|
|
514
|
+
/** Verifies signature on message and public key. Async. Follows RFC8032 5.1.7. */
|
|
515
|
+
const verifyAsync = async (signature, message, publicKey, opts = defaultVerifyOpts) => hashFinishA(_verify(signature, message, publicKey, opts));
|
|
516
|
+
/** Verifies signature on message and public key. To use, set `hashes.sha512` first. Follows RFC8032 5.1.7. */
|
|
517
|
+
const verify = (signature, message, publicKey, opts = defaultVerifyOpts) => hashFinishS(_verify(signature, message, publicKey, opts));
|
|
518
|
+
/** Math, hex, byte helpers. Not in `utils` because utils share API with noble-curves. */
|
|
519
|
+
const etc = {
|
|
520
|
+
bytesToHex: bytesToHex,
|
|
521
|
+
hexToBytes: hexToBytes,
|
|
522
|
+
concatBytes: concatBytes,
|
|
523
|
+
mod: M,
|
|
524
|
+
invert: invert,
|
|
525
|
+
randomBytes: randomBytes,
|
|
526
|
+
};
|
|
527
|
+
const hashes = {
|
|
528
|
+
sha512Async: async (message) => {
|
|
529
|
+
const s = subtle();
|
|
530
|
+
const m = concatBytes(message);
|
|
531
|
+
return u8n(await s.digest('SHA-512', m.buffer));
|
|
532
|
+
},
|
|
533
|
+
sha512: undefined,
|
|
534
|
+
};
|
|
535
|
+
// FIPS 186 B.4.1 compliant key generation produces private keys
|
|
536
|
+
// with modulo bias being neglible. takes >N+16 bytes, returns (hash mod n-1)+1
|
|
537
|
+
const randomSecretKey = (seed = randomBytes(L)) => seed;
|
|
538
|
+
const keygen = (seed) => {
|
|
539
|
+
const secretKey = randomSecretKey(seed);
|
|
540
|
+
const publicKey = getPublicKey(secretKey);
|
|
541
|
+
return { secretKey, publicKey };
|
|
542
|
+
};
|
|
543
|
+
const keygenAsync = async (seed) => {
|
|
544
|
+
const secretKey = randomSecretKey(seed);
|
|
545
|
+
const publicKey = await getPublicKeyAsync(secretKey);
|
|
546
|
+
return { secretKey, publicKey };
|
|
547
|
+
};
|
|
548
|
+
/** ed25519-specific key utilities. */
|
|
549
|
+
const utils = {
|
|
550
|
+
getExtendedPublicKeyAsync: getExtendedPublicKeyAsync,
|
|
551
|
+
getExtendedPublicKey: getExtendedPublicKey,
|
|
552
|
+
randomSecretKey: randomSecretKey,
|
|
553
|
+
};
|
|
554
|
+
// ## Precomputes
|
|
555
|
+
// --------------
|
|
556
|
+
const W = 8; // W is window size
|
|
557
|
+
const scalarBits = 256;
|
|
558
|
+
const pwindows = Math.ceil(scalarBits / W) + 1; // 33 for W=8, NOT 32 - see wNAF loop
|
|
559
|
+
const pwindowSize = 2 ** (W - 1); // 128 for W=8
|
|
560
|
+
const precompute = () => {
|
|
561
|
+
const points = [];
|
|
562
|
+
let p = G;
|
|
563
|
+
let b = p;
|
|
564
|
+
for (let w = 0; w < pwindows; w++) {
|
|
565
|
+
b = p;
|
|
566
|
+
points.push(b);
|
|
567
|
+
for (let i = 1; i < pwindowSize; i++) {
|
|
568
|
+
b = b.add(p);
|
|
569
|
+
points.push(b);
|
|
570
|
+
} // i=1, bc we skip 0
|
|
571
|
+
p = b.double();
|
|
572
|
+
}
|
|
573
|
+
return points;
|
|
574
|
+
};
|
|
575
|
+
let Gpows = undefined; // precomputes for base point G
|
|
576
|
+
// const-time negate
|
|
577
|
+
const ctneg = (cnd, p) => {
|
|
578
|
+
const n = p.negate();
|
|
579
|
+
return cnd ? n : p;
|
|
580
|
+
};
|
|
581
|
+
/**
|
|
582
|
+
* Precomputes give 12x faster getPublicKey(), 10x sign(), 2x verify() by
|
|
583
|
+
* caching multiples of G (base point). Cache is stored in 32MB of RAM.
|
|
584
|
+
* Any time `G.multiply` is done, precomputes are used.
|
|
585
|
+
* Not used for getSharedSecret, which instead multiplies random pubkey `P.multiply`.
|
|
586
|
+
*
|
|
587
|
+
* w-ary non-adjacent form (wNAF) precomputation method is 10% slower than windowed method,
|
|
588
|
+
* but takes 2x less RAM. RAM reduction is possible by utilizing `.subtract`.
|
|
589
|
+
*
|
|
590
|
+
* !! Precomputes can be disabled by commenting-out call of the wNAF() inside Point#multiply().
|
|
591
|
+
*/
|
|
592
|
+
const wNAF = (n) => {
|
|
593
|
+
const comp = Gpows || (Gpows = precompute());
|
|
594
|
+
let p = I;
|
|
595
|
+
let f = G; // f must be G, or could become I in the end
|
|
596
|
+
const pow_2_w = 2 ** W; // 256 for W=8
|
|
597
|
+
const maxNum = pow_2_w; // 256 for W=8
|
|
598
|
+
const mask = big(pow_2_w - 1); // 255 for W=8 == mask 0b11111111
|
|
599
|
+
const shiftBy = big(W); // 8 for W=8
|
|
600
|
+
for (let w = 0; w < pwindows; w++) {
|
|
601
|
+
let wbits = Number(n & mask); // extract W bits.
|
|
602
|
+
n >>= shiftBy; // shift number by W bits.
|
|
603
|
+
// We use negative indexes to reduce size of precomputed table by 2x.
|
|
604
|
+
// Instead of needing precomputes 0..256, we only calculate them for 0..128.
|
|
605
|
+
// If an index > 128 is found, we do (256-index) - where 256 is next window.
|
|
606
|
+
// Naive: index +127 => 127, +224 => 224
|
|
607
|
+
// Optimized: index +127 => 127, +224 => 256-32
|
|
608
|
+
if (wbits > pwindowSize) {
|
|
609
|
+
wbits -= maxNum;
|
|
610
|
+
n += 1n;
|
|
611
|
+
}
|
|
612
|
+
const off = w * pwindowSize;
|
|
613
|
+
const offF = off; // offsets, evaluate both
|
|
614
|
+
const offP = off + Math.abs(wbits) - 1;
|
|
615
|
+
const isEven = w % 2 !== 0; // conditions, evaluate both
|
|
616
|
+
const isNeg = wbits < 0;
|
|
617
|
+
if (wbits === 0) {
|
|
618
|
+
// off == I: can't add it. Adding random offF instead.
|
|
619
|
+
f = f.add(ctneg(isEven, comp[offF])); // bits are 0: add garbage to fake point
|
|
620
|
+
}
|
|
621
|
+
else {
|
|
622
|
+
p = p.add(ctneg(isNeg, comp[offP])); // bits are 1: add to result point
|
|
623
|
+
}
|
|
624
|
+
}
|
|
625
|
+
if (n !== 0n)
|
|
626
|
+
err('invalid wnaf');
|
|
627
|
+
return { p, f }; // return both real and fake points for JIT
|
|
628
|
+
};
|
|
629
|
+
// !! Remove the export to easily use in REPL / browser console
|
|
630
|
+
export { etc, getPublicKey, getPublicKeyAsync, hash, hashes, keygen, keygenAsync, Point, sign, signAsync, utils, verify, verifyAsync, };
|