@genai-fi/nanogpt 0.8.1 → 0.8.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/Generator.d.ts +5 -1
- package/dist/Generator.js +46 -42
- package/dist/checks/index.d.ts +3 -0
- package/dist/checks/index.js +15 -12
- package/dist/checks/qkv.js +35 -10
- package/dist/checks/rope.js +24 -7
- package/dist/checks/weights.d.ts +16 -0
- package/dist/checks/weights.js +29 -0
- package/dist/layers/BaseLayer.d.ts +5 -0
- package/dist/layers/CausalSelfAttention.js +29 -29
- package/dist/layers/MLP.js +17 -17
- package/dist/layers/TiedEmbedding.js +8 -8
- package/dist/layers/TransformerBlock.js +17 -17
- package/dist/main.d.ts +1 -0
- package/dist/models/NanoGPTV1.js +9 -11
- package/dist/models/model.d.ts +0 -2
- package/package.json +1 -1
- package/dist/tensor3d-BOukqWwr.js +0 -30
package/dist/Generator.d.ts
CHANGED
|
@@ -45,7 +45,11 @@ export default class Generator extends EE<'start' | 'stop' | 'tokens'> {
|
|
|
45
45
|
generate(prompt?: string, options?: IGenerateOptions): Promise<string>;
|
|
46
46
|
stop(): void;
|
|
47
47
|
getText(): string;
|
|
48
|
-
getAttentionData(): number[][][][];
|
|
48
|
+
getAttentionData(): number[][][][][];
|
|
49
49
|
getProbabilitiesData(): number[][][];
|
|
50
|
+
getEmbeddingsData(): {
|
|
51
|
+
name: string;
|
|
52
|
+
tensor: number[][];
|
|
53
|
+
}[][];
|
|
50
54
|
getTokens(): number[];
|
|
51
55
|
}
|
package/dist/Generator.js
CHANGED
|
@@ -63,18 +63,18 @@ import { c as G } from "./concat-pHiVqR3L.js";
|
|
|
63
63
|
* limitations under the License.
|
|
64
64
|
* =============================================================================
|
|
65
65
|
*/
|
|
66
|
-
function N(
|
|
67
|
-
const o = L(
|
|
66
|
+
function N(h, t, e, i = !1) {
|
|
67
|
+
const o = L(h, "logits", "multinomial"), s = o.size, n = o.rank;
|
|
68
68
|
if (s < 2)
|
|
69
69
|
throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);
|
|
70
70
|
if (n > 2)
|
|
71
71
|
throw new Error(`Rank of probabilities must be 1 or 2, but is ${n}`);
|
|
72
72
|
e = e || Math.random();
|
|
73
|
-
const a = { logits: n === 1 ? x(o, [1, -1]) : o },
|
|
74
|
-
return n === 1 ? x(
|
|
73
|
+
const a = { logits: n === 1 ? x(o, [1, -1]) : o }, l = { numSamples: t, seed: e, normalized: i }, m = C.runKernel(I, a, l);
|
|
74
|
+
return n === 1 ? x(m, [m.size]) : m;
|
|
75
75
|
}
|
|
76
|
-
const
|
|
77
|
-
...Array.from({ length: 95 }, (
|
|
76
|
+
const D = /* @__PURE__ */ A({ multinomial_: N }), H = [
|
|
77
|
+
...Array.from({ length: 95 }, (h, t) => String.fromCharCode(t + 32)),
|
|
78
78
|
// ASCII
|
|
79
79
|
// Spanish accented letters and punctuation
|
|
80
80
|
..."áéíóúüñ¿¡",
|
|
@@ -85,8 +85,8 @@ const S = /* @__PURE__ */ A({ multinomial_: N }), H = [
|
|
|
85
85
|
// Cyrillic letters
|
|
86
86
|
..."абвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ"
|
|
87
87
|
];
|
|
88
|
-
function U(
|
|
89
|
-
return
|
|
88
|
+
function U(h, t) {
|
|
89
|
+
return h.length === t ? h : h.length > t ? h.slice(0, t) : h.concat(Array(t - h.length).fill(""));
|
|
90
90
|
}
|
|
91
91
|
class qt extends z {
|
|
92
92
|
constructor(t, e) {
|
|
@@ -112,7 +112,9 @@ class qt extends z {
|
|
|
112
112
|
return null;
|
|
113
113
|
const n = await t.decode([s]);
|
|
114
114
|
if (i) {
|
|
115
|
-
const d = await Promise.all(
|
|
115
|
+
const d = await Promise.all(
|
|
116
|
+
i.map((a) => a.array().then((l) => l))
|
|
117
|
+
);
|
|
116
118
|
i.forEach((a) => a.dispose()), this.attentionData.push(d);
|
|
117
119
|
}
|
|
118
120
|
if (o) {
|
|
@@ -130,48 +132,47 @@ class qt extends z {
|
|
|
130
132
|
} : void 0,
|
|
131
133
|
cache: e,
|
|
132
134
|
outputEmbeddings: i?.embeddings ?? !1
|
|
133
|
-
},
|
|
134
|
-
const
|
|
135
|
-
[0,
|
|
136
|
-
[
|
|
137
|
-
),
|
|
135
|
+
}, l = O(() => {
|
|
136
|
+
const p = t, u = p.shape[1], r = u <= this.model.config.blockSize ? p : p.slice(
|
|
137
|
+
[0, u - this.model.config.blockSize],
|
|
138
|
+
[p.shape[0], this.model.config.blockSize]
|
|
139
|
+
), f = d ? this.model.config.blockSize - r.shape[1] : 0, b = f > 0 ? _(r, [
|
|
138
140
|
[0, 0],
|
|
139
|
-
[0,
|
|
140
|
-
]) :
|
|
141
|
+
[0, f]
|
|
142
|
+
]) : r, [g] = this.model.forward(a, b), y = g.shape[1] - 1 - f, c = g.slice([0, y, 0], [g.shape[0], 1, g.shape[2]]);
|
|
141
143
|
return a.attentionScores?.attentionOut && a.attentionScores.attentionOut.forEach((T, E) => {
|
|
142
144
|
T.shape[1] !== 1 && (a.attentionScores.attentionOut[E] = R(
|
|
143
145
|
T.slice([0, y, 0], [T.shape[0], 1, T.shape[2]])
|
|
144
146
|
), T.dispose());
|
|
145
|
-
}),
|
|
147
|
+
}), g.dispose(), c.div(o).squeeze([1]);
|
|
146
148
|
});
|
|
147
|
-
let
|
|
149
|
+
let m;
|
|
148
150
|
if (n) {
|
|
149
|
-
const
|
|
150
|
-
|
|
151
|
-
const
|
|
152
|
-
let
|
|
153
|
-
const b = new Array(
|
|
154
|
-
for (const c of
|
|
155
|
-
if (
|
|
151
|
+
const p = v(l), u = await p.array();
|
|
152
|
+
p.dispose();
|
|
153
|
+
const r = u[0].map((c, k) => ({ prob: c, index: k })).sort((c, k) => k.prob - c.prob);
|
|
154
|
+
let f = 0;
|
|
155
|
+
const b = new Array(r.length).fill(0);
|
|
156
|
+
for (const c of r)
|
|
157
|
+
if (f += c.prob, b[c.index] = c.prob, f >= n)
|
|
156
158
|
break;
|
|
157
|
-
const
|
|
158
|
-
|
|
159
|
+
const g = b.reduce((c, k) => c + k, 0), y = b.map((c) => c / g);
|
|
160
|
+
m = $(y);
|
|
159
161
|
} else if (s) {
|
|
160
|
-
const { values:
|
|
161
|
-
|
|
162
|
+
const { values: p, indices: u } = K(l, s), r = D(p, 1);
|
|
163
|
+
m = q(u, r, 1), p.dispose(), u.dispose(), r.dispose();
|
|
162
164
|
} else
|
|
163
|
-
|
|
165
|
+
m = D(l, 1);
|
|
164
166
|
let w;
|
|
165
|
-
i?.includeProbabilities && (w = v(
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
);
|
|
173
|
-
|
|
174
|
-
return l.dispose(), l = D, p.dispose(), { output: l, probabilities: w, attention: a.attentionScores?.attentionOut };
|
|
167
|
+
if (i?.includeProbabilities && (w = v(l)), a.embeddings) {
|
|
168
|
+
const p = a.embeddings.map(async (r) => {
|
|
169
|
+
const f = await r.tensor.array();
|
|
170
|
+
return r.tensor.dispose(), { name: r.name, tensor: f };
|
|
171
|
+
}), u = await Promise.all(p);
|
|
172
|
+
this.embeddingsData.push(u);
|
|
173
|
+
}
|
|
174
|
+
const S = m.reshape([1, 1]);
|
|
175
|
+
return m.dispose(), m = S, l.dispose(), { output: m, probabilities: w, attention: a.attentionScores?.attentionOut };
|
|
175
176
|
}
|
|
176
177
|
/** Generate multiple tokens in a loop and produce text */
|
|
177
178
|
async _generate(t) {
|
|
@@ -189,8 +190,8 @@ class qt extends z {
|
|
|
189
190
|
if (this.cache)
|
|
190
191
|
e.dispose(), e = s;
|
|
191
192
|
else {
|
|
192
|
-
const
|
|
193
|
-
e = G([e, s], 1),
|
|
193
|
+
const l = e;
|
|
194
|
+
e = G([e, s], 1), l.dispose();
|
|
194
195
|
}
|
|
195
196
|
const a = await this.processResponse(this.actualTokeniser, s, d, n);
|
|
196
197
|
if (this.cache || s.dispose(), a === null)
|
|
@@ -239,6 +240,9 @@ class qt extends z {
|
|
|
239
240
|
getProbabilitiesData() {
|
|
240
241
|
return this.probabilitiesData;
|
|
241
242
|
}
|
|
243
|
+
getEmbeddingsData() {
|
|
244
|
+
return this.embeddingsData;
|
|
245
|
+
}
|
|
242
246
|
getTokens() {
|
|
243
247
|
return this.tokens;
|
|
244
248
|
}
|
package/dist/checks/index.d.ts
CHANGED
|
@@ -6,6 +6,7 @@ import { execute as normRMSGrad } from './normRMSGrad';
|
|
|
6
6
|
import { execute as appendCache } from './appendCache';
|
|
7
7
|
import { execute as attentionMask } from './attentionMask';
|
|
8
8
|
import { default as runCheck } from './check';
|
|
9
|
+
import { createWeightStatistics, createTensorStatistics } from './weights';
|
|
9
10
|
declare const checks: {
|
|
10
11
|
rope: typeof rope;
|
|
11
12
|
qkv: typeof qkv;
|
|
@@ -15,5 +16,7 @@ declare const checks: {
|
|
|
15
16
|
appendCache: typeof appendCache;
|
|
16
17
|
attentionMask: typeof attentionMask;
|
|
17
18
|
runCheck: typeof runCheck;
|
|
19
|
+
createLayerWeightStatistics: typeof createWeightStatistics;
|
|
20
|
+
createWeightStatistics: typeof createTensorStatistics;
|
|
18
21
|
};
|
|
19
22
|
export default checks;
|
package/dist/checks/index.js
CHANGED
|
@@ -1,20 +1,23 @@
|
|
|
1
1
|
import { execute as e } from "./rope.js";
|
|
2
2
|
import { execute as t } from "./normRMS.js";
|
|
3
|
-
import { execute as
|
|
4
|
-
import { execute as
|
|
5
|
-
import { execute as
|
|
6
|
-
import { execute as
|
|
7
|
-
import { execute as
|
|
8
|
-
import
|
|
3
|
+
import { execute as r } from "./qkv.js";
|
|
4
|
+
import { execute as c } from "./gelu.js";
|
|
5
|
+
import { execute as o } from "./normRMSGrad.js";
|
|
6
|
+
import { execute as a } from "./appendCache.js";
|
|
7
|
+
import { execute as i } from "./attentionMask.js";
|
|
8
|
+
import m from "./check.js";
|
|
9
|
+
import { createTensorStatistics as s, createWeightStatistics as u } from "./weights.js";
|
|
9
10
|
const d = {
|
|
10
11
|
rope: e,
|
|
11
|
-
qkv:
|
|
12
|
-
gelu:
|
|
12
|
+
qkv: r,
|
|
13
|
+
gelu: c,
|
|
13
14
|
normRMS: t,
|
|
14
|
-
normRMSGrad:
|
|
15
|
-
appendCache:
|
|
16
|
-
attentionMask:
|
|
17
|
-
runCheck:
|
|
15
|
+
normRMSGrad: o,
|
|
16
|
+
appendCache: a,
|
|
17
|
+
attentionMask: i,
|
|
18
|
+
runCheck: m,
|
|
19
|
+
createLayerWeightStatistics: u,
|
|
20
|
+
createWeightStatistics: s
|
|
18
21
|
};
|
|
19
22
|
export {
|
|
20
23
|
d as default
|
package/dist/checks/qkv.js
CHANGED
|
@@ -1,9 +1,34 @@
|
|
|
1
|
-
import {
|
|
2
|
-
import { t as
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
1
|
+
import { z as i, A as u, B as c, s as l, e as h } from "../index-DdmHGZjq.js";
|
|
2
|
+
import { t as f } from "../tensor2d-CObBWBkW.js";
|
|
3
|
+
/**
|
|
4
|
+
* @license
|
|
5
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
6
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
* you may not use this file except in compliance with the License.
|
|
8
|
+
* You may obtain a copy of the License at
|
|
9
|
+
*
|
|
10
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
*
|
|
12
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
* See the License for the specific language governing permissions and
|
|
16
|
+
* limitations under the License.
|
|
17
|
+
* =============================================================================
|
|
18
|
+
*/
|
|
19
|
+
function m(t, e, n) {
|
|
20
|
+
if (i(t), e != null && e.length !== 3)
|
|
21
|
+
throw new Error("tensor3d() requires shape to have three numbers");
|
|
22
|
+
const r = u(t, n);
|
|
23
|
+
if (r.length !== 3 && r.length !== 1)
|
|
24
|
+
throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");
|
|
25
|
+
if (r.length === 1 && e == null)
|
|
26
|
+
throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");
|
|
27
|
+
return c(t, e, r, n);
|
|
28
|
+
}
|
|
29
|
+
async function y(t) {
|
|
30
|
+
await l(t);
|
|
31
|
+
const e = m(
|
|
7
32
|
[
|
|
8
33
|
[
|
|
9
34
|
[0.1, 0.2],
|
|
@@ -11,15 +36,15 @@ async function w(a) {
|
|
|
11
36
|
]
|
|
12
37
|
],
|
|
13
38
|
[1, 2, 2]
|
|
14
|
-
),
|
|
39
|
+
), n = f(
|
|
15
40
|
[
|
|
16
41
|
[0.5, 0.6, 0.9, 1, 1.3, 1.4],
|
|
17
42
|
[0.7, 0.8, 1.1, 1.2, 1.5, 1.6]
|
|
18
43
|
],
|
|
19
44
|
[2, 6]
|
|
20
|
-
),
|
|
21
|
-
return [
|
|
45
|
+
), r = h().runKernel("QKV", { x: e, kernel: n }, { heads: 1 }), o = await r[0].array(), a = await r[1].array(), s = await r[2].array();
|
|
46
|
+
return [o, a, s];
|
|
22
47
|
}
|
|
23
48
|
export {
|
|
24
|
-
|
|
49
|
+
y as execute
|
|
25
50
|
};
|
package/dist/checks/rope.js
CHANGED
|
@@ -1,9 +1,9 @@
|
|
|
1
|
+
import t from "../layers/RoPECache.js";
|
|
1
2
|
import { s as c, e as i } from "../index-DdmHGZjq.js";
|
|
2
|
-
import { t as
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
const s = m(
|
|
3
|
+
import { t as p } from "../tensor4d-DLtk7Nxh.js";
|
|
4
|
+
async function y(a) {
|
|
5
|
+
await c(a);
|
|
6
|
+
const o = p(
|
|
7
7
|
[
|
|
8
8
|
[
|
|
9
9
|
[
|
|
@@ -13,8 +13,25 @@ async function y(n) {
|
|
|
13
13
|
]
|
|
14
14
|
],
|
|
15
15
|
[1, 1, 2, 2]
|
|
16
|
-
),
|
|
17
|
-
|
|
16
|
+
), n = {
|
|
17
|
+
biasInLayerNorm: !1,
|
|
18
|
+
vocabSize: 20,
|
|
19
|
+
nEmbed: 16,
|
|
20
|
+
nHead: 2,
|
|
21
|
+
nLayer: 1,
|
|
22
|
+
biasInLinear: !1,
|
|
23
|
+
dropout: 0,
|
|
24
|
+
blockSize: 128,
|
|
25
|
+
mlpFactor: 4,
|
|
26
|
+
useRope: !0
|
|
27
|
+
}, e = new t(n);
|
|
28
|
+
e.ensureRopeCache(120);
|
|
29
|
+
const r = i().runKernel(
|
|
30
|
+
"Rope",
|
|
31
|
+
{ x: o, sin: e.getSin(), cos: e.getCos() },
|
|
32
|
+
{ pastLen: 20 }
|
|
33
|
+
);
|
|
34
|
+
return Array.isArray(r) ? r.map((s) => s.array()) : r.array();
|
|
18
35
|
}
|
|
19
36
|
export {
|
|
20
37
|
y as execute
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
import { default as BaseLayer } from '../layers/BaseLayer';
|
|
2
|
+
import { Tensor } from '@tensorflow/tfjs-core';
|
|
3
|
+
export interface TensorStatistics {
|
|
4
|
+
mean: number;
|
|
5
|
+
std: number;
|
|
6
|
+
min: number;
|
|
7
|
+
max: number;
|
|
8
|
+
sparsity: number;
|
|
9
|
+
isFinite: boolean;
|
|
10
|
+
hasNaN: boolean;
|
|
11
|
+
closeToZeroCount: number;
|
|
12
|
+
}
|
|
13
|
+
export declare function createTensorStatistics(weight: Tensor | number[]): Promise<TensorStatistics>;
|
|
14
|
+
export declare function createWeightStatistics(layer: BaseLayer): Promise<{
|
|
15
|
+
[key: string]: TensorStatistics;
|
|
16
|
+
}>;
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
async function d(s) {
|
|
2
|
+
const e = Array.isArray(s) ? s : await s.data(), a = e.length;
|
|
3
|
+
let n = 0, l = 0, i = e[0], r = e[0], u = 0, h = !0, f = !1, m = 0;
|
|
4
|
+
for (let c = 0; c < a; c++) {
|
|
5
|
+
const t = e[c];
|
|
6
|
+
n += t, l += t * t, t < i && (i = t), t > r && (r = t), t === 0 && u++, Math.abs(t) < 1e-8 && m++, Number.isNaN(t) && (f = !0);
|
|
7
|
+
}
|
|
8
|
+
const o = n / a, y = l / a - o * o, N = Math.sqrt(y), b = u / a;
|
|
9
|
+
return {
|
|
10
|
+
mean: o,
|
|
11
|
+
std: N,
|
|
12
|
+
min: i,
|
|
13
|
+
max: r,
|
|
14
|
+
sparsity: b,
|
|
15
|
+
isFinite: h,
|
|
16
|
+
hasNaN: f,
|
|
17
|
+
closeToZeroCount: m
|
|
18
|
+
};
|
|
19
|
+
}
|
|
20
|
+
async function S(s) {
|
|
21
|
+
const e = s.trainableVariables, a = {};
|
|
22
|
+
for (const n of e)
|
|
23
|
+
a[n.name] = await d(n);
|
|
24
|
+
return a;
|
|
25
|
+
}
|
|
26
|
+
export {
|
|
27
|
+
d as createTensorStatistics,
|
|
28
|
+
S as createWeightStatistics
|
|
29
|
+
};
|
|
@@ -6,6 +6,11 @@ export interface ForwardAttributes {
|
|
|
6
6
|
training: boolean;
|
|
7
7
|
checkpointing?: boolean;
|
|
8
8
|
ropeCache?: RoPECache;
|
|
9
|
+
outputEmbeddings?: boolean;
|
|
10
|
+
embeddings?: {
|
|
11
|
+
name: string;
|
|
12
|
+
tensor: Tensor;
|
|
13
|
+
}[];
|
|
9
14
|
}
|
|
10
15
|
export default abstract class BaseLayer<ATTR extends ForwardAttributes = ForwardAttributes> {
|
|
11
16
|
readonly parent?: BaseLayer;
|
|
@@ -1,16 +1,16 @@
|
|
|
1
1
|
import { attentionMask as g } from "../ops/attentionMask.js";
|
|
2
2
|
import O from "./BaseLayer.js";
|
|
3
|
-
import { qkv as
|
|
3
|
+
import { qkv as _ } from "../ops/qkv.js";
|
|
4
4
|
import { rope as v } from "../ops/rope.js";
|
|
5
5
|
import { appendCache as V } from "../ops/appendCache.js";
|
|
6
|
-
import { k as c, t as
|
|
7
|
-
import { fusedSoftmax as
|
|
8
|
-
import { d as
|
|
9
|
-
import { v as
|
|
10
|
-
import { r as
|
|
11
|
-
import { r as
|
|
12
|
-
import { m as
|
|
13
|
-
class
|
|
6
|
+
import { k as c, t as P } from "../index-DdmHGZjq.js";
|
|
7
|
+
import { fusedSoftmax as b } from "../ops/fusedSoftmax.js";
|
|
8
|
+
import { d as C } from "../random_width-DKGeiFuR.js";
|
|
9
|
+
import { v as k } from "../variable-DPFOJyRG.js";
|
|
10
|
+
import { r as T, d as L } from "../dropout-CcKSfOYE.js";
|
|
11
|
+
import { r as j } from "../reshape-WeJkT3ja.js";
|
|
12
|
+
import { m as x } from "../mat_mul-Dpy2mMRu.js";
|
|
13
|
+
class W extends O {
|
|
14
14
|
divisor;
|
|
15
15
|
index;
|
|
16
16
|
units;
|
|
@@ -23,34 +23,34 @@ class $ extends O {
|
|
|
23
23
|
build() {
|
|
24
24
|
this.hasVariable(this.ATTN) === !1 && this.setVariable(
|
|
25
25
|
this.ATTN,
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
!0
|
|
29
|
-
|
|
26
|
+
k(
|
|
27
|
+
T([this.config.nEmbed, this.units], 0, 0.02),
|
|
28
|
+
!0,
|
|
29
|
+
`block_${this.index}_attn_cAttn_kernel`
|
|
30
30
|
)
|
|
31
31
|
), this.hasVariable(this.PROJ) === !1 && this.setVariable(
|
|
32
32
|
this.PROJ,
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
!0
|
|
36
|
-
|
|
33
|
+
k(
|
|
34
|
+
T([this.projUnits, this.config.nEmbed], 0, 0.02),
|
|
35
|
+
!0,
|
|
36
|
+
`block_${this.index}_attn_cProj_kernel`
|
|
37
37
|
)
|
|
38
38
|
);
|
|
39
39
|
}
|
|
40
40
|
getAttentionScores(t, i, s, o) {
|
|
41
|
-
const e = g(t, i, this.divisor), n =
|
|
41
|
+
const e = g(t, i, this.divisor), n = b(e, s ? this.config.dropout : 0, o);
|
|
42
42
|
return e.dispose(), n;
|
|
43
43
|
}
|
|
44
44
|
// Attention with optional past. If pastLen > 0 and T_cur == 1, no mask needed.
|
|
45
45
|
getAttentionScoresWithPast(t, i, s) {
|
|
46
|
-
const o = g(t, i, this.divisor, s), e =
|
|
46
|
+
const o = g(t, i, this.divisor, s), e = b(o, 0, 0);
|
|
47
47
|
return o.dispose(), e;
|
|
48
48
|
}
|
|
49
49
|
getQKV(t) {
|
|
50
|
-
return
|
|
50
|
+
return _(t, this.getVariable(this.ATTN), this.config.nHead);
|
|
51
51
|
}
|
|
52
52
|
getOutputProjection(t) {
|
|
53
|
-
const i = t.shape[0], s = t.shape[2], o = this.config.nEmbed, e = t.transpose([0, 2, 1, 3]), n =
|
|
53
|
+
const i = t.shape[0], s = t.shape[2], o = this.config.nEmbed, e = t.transpose([0, 2, 1, 3]), n = j(e, [i, s, o]), r = C(n, this.getVariable(this.PROJ));
|
|
54
54
|
return n.dispose(), e.dispose(), r;
|
|
55
55
|
}
|
|
56
56
|
updateCache(t, i, s) {
|
|
@@ -62,19 +62,19 @@ class $ extends O {
|
|
|
62
62
|
s.length = d, s.cumulativeLength = h, s.k = c(r), s.v = c(p);
|
|
63
63
|
}
|
|
64
64
|
forward(t, i) {
|
|
65
|
-
return
|
|
65
|
+
return P(() => {
|
|
66
66
|
this.startMemory();
|
|
67
67
|
const [s, o, e] = this.getQKV(i), n = t.pastKV ? t.pastKV.cumulativeLength : 0, r = t.ropeCache, p = r ? v(s, r, n) : s, d = r ? v(o, r, n) : o;
|
|
68
68
|
r && (s.dispose(), o.dispose());
|
|
69
69
|
const h = t.pastKV ? t.pastKV.length : 0;
|
|
70
70
|
t.pastKV && !t.training && this.updateCache(d, e, t.pastKV);
|
|
71
|
-
const u = t.pastKV?.k ? t.pastKV.k : d,
|
|
71
|
+
const u = t.pastKV?.k ? t.pastKV.k : d, l = t.pastKV?.v ? t.pastKV.v : e;
|
|
72
72
|
let a;
|
|
73
73
|
h > 0 ? a = this.getAttentionScoresWithPast(p, u, h) : a = this.getAttentionScores(p, u, t.training, t.seed || 0), p.dispose(), t.pastKV || u.dispose();
|
|
74
|
-
const
|
|
75
|
-
f || a.dispose(), t.pastKV ||
|
|
76
|
-
const A = this.getOutputProjection(
|
|
77
|
-
if (
|
|
74
|
+
const m = x(a, l), f = t.attentionScores !== void 0 && t.attentionScores.attentionOut !== void 0;
|
|
75
|
+
f || a.dispose(), t.pastKV || l.dispose();
|
|
76
|
+
const A = this.getOutputProjection(m);
|
|
77
|
+
if (m.dispose(), f && t.attentionScores && t.attentionScores.attentionOut !== void 0) {
|
|
78
78
|
const K = a.shape[1], S = a.shape[2];
|
|
79
79
|
t.attentionScores.attentionOut?.push(
|
|
80
80
|
c(a.slice([0, 0, 0, 0], [1, -1, -1, -1]).reshape([K, S, -1]))
|
|
@@ -85,12 +85,12 @@ class $ extends O {
|
|
|
85
85
|
}
|
|
86
86
|
dropout(t) {
|
|
87
87
|
if (this.config.dropout > 0) {
|
|
88
|
-
const i =
|
|
88
|
+
const i = L(t, this.config.dropout);
|
|
89
89
|
return t.dispose(), i;
|
|
90
90
|
} else
|
|
91
91
|
return t;
|
|
92
92
|
}
|
|
93
93
|
}
|
|
94
94
|
export {
|
|
95
|
-
|
|
95
|
+
W as default
|
|
96
96
|
};
|
package/dist/layers/MLP.js
CHANGED
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
import { t as p } from "../index-DdmHGZjq.js";
|
|
2
2
|
import u from "./BaseLayer.js";
|
|
3
3
|
import { matMulGelu as M } from "../ops/matMulGelu.js";
|
|
4
|
-
import { v as
|
|
5
|
-
import { r as
|
|
6
|
-
import { r as
|
|
7
|
-
import { m as
|
|
4
|
+
import { v as a } from "../variable-DPFOJyRG.js";
|
|
5
|
+
import { r as d, d as c } from "../dropout-CcKSfOYE.js";
|
|
6
|
+
import { r as h } from "../reshape-WeJkT3ja.js";
|
|
7
|
+
import { m as b } from "../mat_mul-Dpy2mMRu.js";
|
|
8
8
|
class H extends u {
|
|
9
9
|
index;
|
|
10
10
|
hiddenUnits;
|
|
@@ -16,32 +16,32 @@ class H extends u {
|
|
|
16
16
|
build() {
|
|
17
17
|
this.hasVariable(this.MLPHIDDEN) === !1 && this.setVariable(
|
|
18
18
|
this.MLPHIDDEN,
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
!0
|
|
22
|
-
|
|
19
|
+
a(
|
|
20
|
+
d([this.config.nEmbed, this.hiddenUnits], 0, 0.02),
|
|
21
|
+
!0,
|
|
22
|
+
`block_${this.index}_mlpHidden_kernel`
|
|
23
23
|
)
|
|
24
24
|
), this.hasVariable(this.MLPOUT) === !1 && this.setVariable(
|
|
25
25
|
this.MLPOUT,
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
!0
|
|
29
|
-
|
|
26
|
+
a(
|
|
27
|
+
d([this.hiddenUnits, this.config.nEmbed], 0, 0.02 / Math.sqrt(2 * this.config.nLayer)),
|
|
28
|
+
!0,
|
|
29
|
+
`block_${this.index}_mlpOut_kernel`
|
|
30
30
|
)
|
|
31
31
|
);
|
|
32
32
|
}
|
|
33
33
|
forward(i, t) {
|
|
34
34
|
return p(() => {
|
|
35
35
|
this.startMemory();
|
|
36
|
-
const [s,
|
|
37
|
-
|
|
38
|
-
const
|
|
39
|
-
return this.endMemory("MLP"),
|
|
36
|
+
const [s, e, r] = t.shape, n = h(t, [s * e, r]), o = M(n, this.getVariable(this.MLPHIDDEN)), l = b(o, this.getVariable(this.MLPOUT));
|
|
37
|
+
o.dispose();
|
|
38
|
+
const m = h(l, [s, e, r]);
|
|
39
|
+
return this.endMemory("MLP"), m;
|
|
40
40
|
});
|
|
41
41
|
}
|
|
42
42
|
dropout(i) {
|
|
43
43
|
if (this.config.dropout > 0) {
|
|
44
|
-
const t =
|
|
44
|
+
const t = c(i, this.config.dropout);
|
|
45
45
|
return i.dispose(), t;
|
|
46
46
|
}
|
|
47
47
|
return i;
|
|
@@ -2,28 +2,28 @@ import { d as r } from "../random_width-DKGeiFuR.js";
|
|
|
2
2
|
import "../index-DdmHGZjq.js";
|
|
3
3
|
import { r as a } from "../exports_initializers-DKk7-bsx.js";
|
|
4
4
|
import s from "./BaseLayer.js";
|
|
5
|
-
import { v as
|
|
6
|
-
import { g as
|
|
5
|
+
import { v as o } from "../variable-DPFOJyRG.js";
|
|
6
|
+
import { g as m } from "../gather-CPg6ZlQA.js";
|
|
7
7
|
class S extends s {
|
|
8
8
|
vocabSize;
|
|
9
9
|
embedDim;
|
|
10
10
|
initializer;
|
|
11
11
|
WEIGHTS;
|
|
12
|
-
constructor(i,
|
|
13
|
-
super(i,
|
|
12
|
+
constructor(i, t, e) {
|
|
13
|
+
super(i, e), this.WEIGHTS = t, this.vocabSize = i.vocabSize, this.embedDim = i.nEmbed, this.initializer = a({
|
|
14
14
|
mean: 0,
|
|
15
15
|
stddev: 0.02
|
|
16
|
-
}), this.addVariable(this.WEIGHTS,
|
|
16
|
+
}), this.addVariable(this.WEIGHTS, o(this.initializer.apply([this.vocabSize, this.embedDim]), !0, t));
|
|
17
17
|
}
|
|
18
18
|
embed(i) {
|
|
19
|
-
return
|
|
19
|
+
return m(this.getVariable(this.WEIGHTS), i, 0);
|
|
20
20
|
}
|
|
21
21
|
project(i) {
|
|
22
22
|
return r(i, this.getVariable(this.WEIGHTS).transpose());
|
|
23
23
|
}
|
|
24
24
|
// Dummy, should not be used.
|
|
25
|
-
forward(i,
|
|
26
|
-
return this.project(
|
|
25
|
+
forward(i, t) {
|
|
26
|
+
return this.project(t);
|
|
27
27
|
}
|
|
28
28
|
}
|
|
29
29
|
export {
|
|
@@ -1,32 +1,32 @@
|
|
|
1
1
|
import l from "./CausalSelfAttention.js";
|
|
2
|
-
import
|
|
2
|
+
import p from "./MLP.js";
|
|
3
3
|
import o from "./RMSNorm.js";
|
|
4
|
-
import
|
|
5
|
-
import { t as
|
|
6
|
-
class k extends
|
|
4
|
+
import m from "./BaseLayer.js";
|
|
5
|
+
import { k as n, t as h } from "../index-DdmHGZjq.js";
|
|
6
|
+
class k extends m {
|
|
7
7
|
ln1;
|
|
8
8
|
attn;
|
|
9
9
|
ln2;
|
|
10
10
|
mlp;
|
|
11
11
|
index;
|
|
12
12
|
skipped = !1;
|
|
13
|
-
constructor(
|
|
14
|
-
super(s,
|
|
13
|
+
constructor(i, s, e) {
|
|
14
|
+
super(s, e), this.index = i, this.ln1 = new o(s, `block_${this.index}_rms1`, this), this.attn = new l(this.index, s, this), this.ln2 = new o(s, `block_${this.index}_rms2`, this), this.mlp = new p(this.index, s, this);
|
|
15
15
|
}
|
|
16
|
-
getMLPOutput(
|
|
17
|
-
const
|
|
18
|
-
|
|
19
|
-
const
|
|
20
|
-
return
|
|
16
|
+
getMLPOutput(i, s) {
|
|
17
|
+
const e = this.ln2.call({ training: s.training }, i), t = this.mlp.call({ training: s.training }, e);
|
|
18
|
+
s.outputEmbeddings ? (n(e), s.embeddings.push({ name: `block_ln2_${this.index}`, tensor: e })) : e.dispose();
|
|
19
|
+
const d = i.add(t);
|
|
20
|
+
return i.dispose(), s.outputEmbeddings ? (n(t), s.embeddings.push({ name: `block_mlp_out_${this.index}`, tensor: t })) : t.dispose(), d;
|
|
21
21
|
}
|
|
22
|
-
forward(
|
|
23
|
-
return
|
|
22
|
+
forward(i, s) {
|
|
23
|
+
return h(() => {
|
|
24
24
|
if (this.skipped)
|
|
25
25
|
return s;
|
|
26
|
-
const
|
|
27
|
-
i.dispose();
|
|
28
|
-
const
|
|
29
|
-
return
|
|
26
|
+
const e = this.ln1.call(i, s), t = this.attn.call(i, e);
|
|
27
|
+
i.outputEmbeddings ? (n(e), i.embeddings.push({ name: `block_ln1_${this.index}`, tensor: e })) : e.dispose();
|
|
28
|
+
const d = s.add(t);
|
|
29
|
+
return i.outputEmbeddings ? (n(t), i.embeddings.push({ name: `block_attn_out_${this.index}`, tensor: t })) : t.dispose(), this.getMLPOutput(d, i);
|
|
30
30
|
});
|
|
31
31
|
}
|
|
32
32
|
dispose() {
|
package/dist/main.d.ts
CHANGED
package/dist/models/NanoGPTV1.js
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
import { defaultConfig as
|
|
2
|
-
import
|
|
3
|
-
import
|
|
1
|
+
import { defaultConfig as a } from "./config.js";
|
|
2
|
+
import u from "../layers/TransformerBlock.js";
|
|
3
|
+
import f from "../layers/TiedEmbedding.js";
|
|
4
4
|
import g from "../layers/RoPECache.js";
|
|
5
5
|
import b from "../layers/RMSNorm.js";
|
|
6
6
|
import { t as l, k as p } from "../index-DdmHGZjq.js";
|
|
@@ -17,9 +17,9 @@ class R extends w {
|
|
|
17
17
|
// Final layer norm
|
|
18
18
|
ropeCache;
|
|
19
19
|
constructor(e = {}) {
|
|
20
|
-
super({ ...
|
|
20
|
+
super({ ...a, ...e }), this.wte = new f(this.config, "token_embedding", this), this.config.useRope === !1 ? this.wpe = new k(this.config, "positional_embedding", this) : this.ropeCache = new g(this.config), this.blocks = [];
|
|
21
21
|
for (let i = 0; i < this.config.nLayer; i++)
|
|
22
|
-
this.blocks.push(new
|
|
22
|
+
this.blocks.push(new u(i, this.config, this));
|
|
23
23
|
this.lnF = new b(this.config, "final_rms_norm", this);
|
|
24
24
|
}
|
|
25
25
|
getClassName() {
|
|
@@ -47,17 +47,15 @@ class R extends w {
|
|
|
47
47
|
);
|
|
48
48
|
for (let t = 0; t < this.blocks.length; t++) {
|
|
49
49
|
const c = this.blocks[t], d = Math.random() * 1e9, r = {
|
|
50
|
-
|
|
51
|
-
training: e.training,
|
|
50
|
+
...e,
|
|
52
51
|
seed: d,
|
|
53
|
-
attentionScores: e.attentionScores,
|
|
54
52
|
pastKV: e.cache ? e.cache[t] : void 0
|
|
55
|
-
},
|
|
56
|
-
e.outputEmbeddings ? (p(o), e.embeddings.push(o)) : o.dispose(), o =
|
|
53
|
+
}, m = e.checkpointing && e.training ? c.callCheckpoint(r, o) : c.call(r, o);
|
|
54
|
+
e.outputEmbeddings ? (p(o), e.embeddings.push({ name: `block_output_${t}`, tensor: o })) : o.dispose(), o = m;
|
|
57
55
|
}
|
|
58
56
|
o = this.lnF.call(e, o);
|
|
59
57
|
const n = this.wte.project(o);
|
|
60
|
-
e.outputEmbeddings ? (p(o), e.embeddings.push(o)) : o.dispose();
|
|
58
|
+
e.outputEmbeddings ? (p(o), e.embeddings.push({ name: "final_norm_output", tensor: o })) : o.dispose();
|
|
61
59
|
let h;
|
|
62
60
|
return s && (h = this.calculateLoss(n, s)), this.endMemory("Forward"), h ? [n, h] : [n];
|
|
63
61
|
});
|
package/dist/models/model.d.ts
CHANGED
package/package.json
CHANGED
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
import { z as o, A as a, B as s } from "./index-DdmHGZjq.js";
|
|
2
|
-
/**
|
|
3
|
-
* @license
|
|
4
|
-
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
5
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
* you may not use this file except in compliance with the License.
|
|
7
|
-
* You may obtain a copy of the License at
|
|
8
|
-
*
|
|
9
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
*
|
|
11
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
* See the License for the specific language governing permissions and
|
|
15
|
-
* limitations under the License.
|
|
16
|
-
* =============================================================================
|
|
17
|
-
*/
|
|
18
|
-
function h(n, r, t) {
|
|
19
|
-
if (o(n), r != null && r.length !== 3)
|
|
20
|
-
throw new Error("tensor3d() requires shape to have three numbers");
|
|
21
|
-
const e = a(n, t);
|
|
22
|
-
if (e.length !== 3 && e.length !== 1)
|
|
23
|
-
throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");
|
|
24
|
-
if (e.length === 1 && r == null)
|
|
25
|
-
throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");
|
|
26
|
-
return s(n, r, e, t);
|
|
27
|
-
}
|
|
28
|
-
export {
|
|
29
|
-
h as t
|
|
30
|
-
};
|