@genai-fi/nanogpt 0.7.0 → 0.7.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/Generator.js +13 -9
- package/dist/NanoGPTModel.js +10 -10
- package/dist/{RealDiv-C4hOvYOZ.js → RealDiv-Dy0p8Bvo.js} +11 -11
- package/dist/{Reshape-BLijOA8h.js → Reshape-DH5srBP0.js} +2 -2
- package/dist/Reshape-DvudQDvJ.js +30 -0
- package/dist/TeachableLLM.js +9 -5
- package/dist/{TiedEmbedding-BLltddza.js → TiedEmbedding-BxOerUmB.js} +4 -4
- package/dist/{axis_util-DaAl5MER.js → axis_util-BzbKo31C.js} +1 -1
- package/dist/backend.js +2 -2
- package/dist/{backend_util-DWiwsi2N.js → backend_util-TE7aTPhZ.js} +40 -40
- package/dist/{broadcast_to-C4v-j9yA.js → broadcast_to-CdbwV-Dj.js} +2 -2
- package/dist/{concat-CsHeR4zV.js → concat-CsxrgovM.js} +1 -1
- package/dist/{dataset-JDyjG3QR.js → dataset-CtdBYwjo.js} +7 -7
- package/dist/{dropout-hpDwECTe.js → dropout-DYs5QFGQ.js} +11 -11
- package/dist/{gather-D0_gPiBz.js → gather-CMMy2KEG.js} +4 -4
- package/dist/{gelu-uyHP1x1f.js → gelu-C-dPj6Ku.js} +1 -1
- package/dist/{gpgpu_math-DJm3ZTAf.js → gpgpu_math-DGNLNL4I.js} +2 -2
- package/dist/{index-C0dhsYom.js → index-BoWRt-10.js} +126 -126
- package/dist/{index-BPPzKVdR.js → index-CLthM0TO.js} +1083 -1106
- package/dist/{kernel_funcs_utils-CwRTFqrc.js → kernel_funcs_utils-BYKWV8Aa.js} +3 -3
- package/dist/layers/BaseLayer.js +2 -2
- package/dist/layers/CausalSelfAttention.js +8 -8
- package/dist/layers/MLP.js +5 -5
- package/dist/layers/RMSNorm.js +3 -3
- package/dist/layers/RoPECache.js +4 -4
- package/dist/layers/TiedEmbedding.js +5 -5
- package/dist/layers/TransformerBlock.js +1 -1
- package/dist/loader/loadTransformers.js +1 -1
- package/dist/loader/oldZipLoad.js +11 -7
- package/dist/{log_sum_exp-D086OgZJ.js → log_sum_exp-DbjkV734.js} +8 -8
- package/dist/main.d.ts +11 -0
- package/dist/main.js +44 -27
- package/dist/{mat_mul-1nwdPkQ_.js → mat_mul-8m8pfdcx.js} +1 -1
- package/dist/{max-BQc2Aj-I.js → max-Ddnnb5xe.js} +3 -3
- package/dist/{mulmat_packed_gpu-Gzf3I9UV.js → mulmat_packed_gpu-VSekgsNv.js} +1 -1
- package/dist/{ones-D63HpSF_.js → ones-Dj0SDhHf.js} +2 -2
- package/dist/ops/adamAdjust.d.ts +2 -0
- package/dist/ops/adamAdjust.js +9 -0
- package/dist/ops/adamMoments.d.ts +2 -0
- package/dist/ops/adamMoments.js +9 -0
- package/dist/ops/appendCache.js +3 -3
- package/dist/ops/attentionMask.js +1 -1
- package/dist/ops/cpu/adamAdjust.d.ts +1 -0
- package/dist/ops/cpu/adamAdjust.js +18 -0
- package/dist/ops/cpu/adamMoments.d.ts +1 -0
- package/dist/ops/cpu/adamMoments.js +16 -0
- package/dist/ops/cpu/appendCache.js +2 -2
- package/dist/ops/cpu/attentionMask.js +5 -5
- package/dist/ops/cpu/fusedSoftmax.js +2 -2
- package/dist/ops/cpu/gatherSub.js +3 -3
- package/dist/ops/cpu/gelu.js +1 -1
- package/dist/ops/cpu/matMulGelu.js +2 -2
- package/dist/ops/cpu/matMulMul.js +1 -1
- package/dist/ops/cpu/mulDropout.js +1 -1
- package/dist/ops/cpu/normRMS.js +1 -1
- package/dist/ops/cpu/qkv.js +3 -3
- package/dist/ops/cpu/rope.js +5 -5
- package/dist/ops/cpu/scatterSub.js +11 -11
- package/dist/ops/fusedSoftmax.js +1 -1
- package/dist/ops/gatherSub.js +1 -1
- package/dist/ops/gelu.js +2 -2
- package/dist/ops/grads/attentionMask.js +1 -1
- package/dist/ops/grads/fusedSoftmax.js +2 -2
- package/dist/ops/grads/gelu.js +2 -2
- package/dist/ops/grads/matMulGelu.js +1 -1
- package/dist/ops/grads/normRMS.js +1 -1
- package/dist/ops/grads/qkv.js +1 -1
- package/dist/ops/grads/rope.js +1 -1
- package/dist/ops/matMulGelu.js +1 -1
- package/dist/ops/matMulMul.js +1 -1
- package/dist/ops/mulDrop.js +1 -1
- package/dist/ops/normRMS.js +1 -1
- package/dist/ops/qkv.js +1 -1
- package/dist/ops/rope.js +4 -4
- package/dist/ops/scatterSub.js +1 -1
- package/dist/ops/webgl/adamAdjust.d.ts +1 -0
- package/dist/ops/webgl/adamAdjust.js +50 -0
- package/dist/ops/webgl/adamMoments.d.ts +1 -0
- package/dist/ops/webgl/adamMoments.js +40 -0
- package/dist/ops/webgl/appendCache.js +1 -1
- package/dist/ops/webgl/attentionMask.js +1 -1
- package/dist/ops/webgl/fusedSoftmax.js +4 -4
- package/dist/ops/webgl/gatherSub.js +8 -8
- package/dist/ops/webgl/gelu.js +2 -2
- package/dist/ops/webgl/log.js +3 -3
- package/dist/ops/webgl/matMulGelu.js +4 -4
- package/dist/ops/webgl/matMulMul.js +1 -1
- package/dist/ops/webgl/mulDropout.js +1 -1
- package/dist/ops/webgl/normRMS.js +2 -2
- package/dist/ops/webgl/qkv.js +1 -1
- package/dist/ops/webgl/rope.js +1 -1
- package/dist/ops/webgl/scatterSub.js +1 -1
- package/dist/ops/webgpu/adamAdjust.d.ts +1 -0
- package/dist/ops/webgpu/adamAdjust.js +54 -0
- package/dist/ops/webgpu/adamMoments.d.ts +1 -0
- package/dist/ops/webgpu/adamMoments.js +58 -0
- package/dist/ops/webgpu/appendCache.js +22 -18
- package/dist/ops/webgpu/attentionMask.js +24 -17
- package/dist/ops/webgpu/gatherSub.js +17 -15
- package/dist/ops/webgpu/gelu.js +7 -6
- package/dist/ops/webgpu/index.js +3 -0
- package/dist/ops/webgpu/normRMS.js +35 -101
- package/dist/ops/webgpu/normRMSGrad.d.ts +1 -0
- package/dist/ops/webgpu/normRMSGrad.js +133 -0
- package/dist/ops/webgpu/qkv.js +21 -16
- package/dist/ops/webgpu/rope.js +37 -23
- package/dist/ops/webgpu/scatterSub.js +16 -13
- package/dist/ops/webgpu/utils/reductions.d.ts +9 -0
- package/dist/ops/webgpu/utils/reductions.js +68 -0
- package/dist/{ops-CIQLNshk.js → ops-BFGCx8Ri.js} +195 -219
- package/dist/{random_width-DkYP8W8N.js → random_width-sZORGo5k.js} +22 -21
- package/dist/{range-CYzpQY53.js → range-CRuAh-gd.js} +1 -1
- package/dist/{reciprocal-_A9yv27J.js → reciprocal-BvGAyKyu.js} +1 -1
- package/dist/{register_all_kernels-guvSxp7M.js → register_all_kernels-BwDSRN-f.js} +30 -29
- package/dist/{reshape-BMUzc1UY.js → reshape-CdBq1WJ6.js} +3 -3
- package/dist/{scatter_nd_util-IRBqKz_b.js → scatter_nd_util-DUstGbU1.js} +1 -1
- package/dist/{selu_util-Dt_iuXaq.js → selu_util-BJEXVvjX.js} +41 -41
- package/dist/{shared-CDu9S76h.js → shared-B8ztnyEk.js} +6 -6
- package/dist/{shared-BNa2q6jD.js → shared-wS99K7_n.js} +1 -1
- package/dist/{sin-Cocju-BY.js → sin-BeA3tsEd.js} +6 -6
- package/dist/slice-BiOsknYS.js +28 -0
- package/dist/{softmax-GPNK3o-U.js → softmax-Bv_6lyMX.js} +3 -3
- package/dist/{split-CHzJjxDv.js → split-B-dikLRw.js} +1 -1
- package/dist/{stack-Dpgg_1W1.js → stack-B17UN2nn.js} +1 -1
- package/dist/{sum-B8wEpKsg.js → sum-66ew2byf.js} +3 -3
- package/dist/{tensor-RvZVNmg0.js → tensor-JwS7ZYY6.js} +1 -1
- package/dist/{tensor2d-B_kyod7_.js → tensor2d-wxPAnDQy.js} +1 -1
- package/dist/training/Adam.d.ts +22 -0
- package/dist/training/Adam.js +93 -0
- package/dist/training/AdamExt.d.ts +1 -1
- package/dist/training/AdamExt.js +13 -12
- package/dist/training/DatasetBuilder.js +35 -32
- package/dist/training/FullTrainer.js +22 -22
- package/dist/training/Trainer.d.ts +1 -1
- package/dist/training/Trainer.js +32 -32
- package/dist/training/sparseCrossEntropy.d.ts +0 -4
- package/dist/training/sparseCrossEntropy.js +7 -7
- package/dist/utilities/arrayClose.d.ts +1 -0
- package/dist/utilities/arrayClose.js +11 -0
- package/dist/utilities/dummy.js +2 -2
- package/dist/utilities/generate.js +3 -3
- package/dist/utilities/multinomialCPU.js +2 -2
- package/dist/utilities/performance.d.ts +1 -1
- package/dist/utilities/performance.js +11 -11
- package/dist/utilities/profile.js +1 -1
- package/dist/utilities/safetensors.js +2 -2
- package/dist/utilities/weights.js +2 -2
- package/dist/{variable-DXEUOwew.js → variable-BuddVFLa.js} +1 -1
- package/dist/{webgpu_util-g13LvDIv.js → webgpu_program-PFzf1hAQ.js} +138 -215
- package/dist/webgpu_util-D____QpY.js +80 -0
- package/dist/{zeros-DCPCdFGq.js → zeros--BdLQ3oG.js} +4 -4
- package/package.json +1 -1
|
@@ -1,6 +1,7 @@
|
|
|
1
|
-
import {
|
|
2
|
-
import { f as p } from "../../
|
|
3
|
-
|
|
1
|
+
import { g as u } from "../../webgpu_program-PFzf1hAQ.js";
|
|
2
|
+
import { f as h, c as p } from "../../webgpu_util-D____QpY.js";
|
|
3
|
+
import { f as c, a2 as r } from "../../index-BoWRt-10.js";
|
|
4
|
+
class l {
|
|
4
5
|
variableNames = ["labels", "logits", "values"];
|
|
5
6
|
outputShape;
|
|
6
7
|
shaderKey = "GatherSub";
|
|
@@ -9,29 +10,30 @@ class d {
|
|
|
9
10
|
workgroupSize = [64, 1, 1];
|
|
10
11
|
size = !0;
|
|
11
12
|
constructor(e) {
|
|
12
|
-
this.outputShape = [e], this.dispatchLayout =
|
|
13
|
+
this.outputShape = [e], this.dispatchLayout = h(this.outputShape), this.dispatch = p(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
13
14
|
}
|
|
14
15
|
getUserCode() {
|
|
15
16
|
return `
|
|
16
|
-
${
|
|
17
|
+
${u("index")} {
|
|
17
18
|
if (index < uniforms.size) {
|
|
18
|
-
let
|
|
19
|
-
let
|
|
20
|
-
let
|
|
21
|
-
let logit = getLogits(coords, idx);
|
|
19
|
+
let idx = i32(labels[index]);
|
|
20
|
+
let val = values[index];
|
|
21
|
+
let logit = logits[index * uniforms.logitsShape[1] + idx];
|
|
22
22
|
setOutputAtIndex(index, val - logit);
|
|
23
23
|
}
|
|
24
24
|
}
|
|
25
25
|
`;
|
|
26
26
|
}
|
|
27
27
|
}
|
|
28
|
-
function
|
|
29
|
-
const { logits: e, labels: a, values: s } = t.inputs,
|
|
30
|
-
|
|
28
|
+
function d(t) {
|
|
29
|
+
const { logits: e, labels: a, values: s } = t.inputs, o = t.backend, i = a.shape[0];
|
|
30
|
+
r(s.shape, [i], "Error in EfficientGatherSub: "), r(a.shape, [i], "Error in EfficientGatherSub: ");
|
|
31
|
+
const n = new l(i);
|
|
32
|
+
return o.runWebGPUProgram(n, [a, e, s], "float32");
|
|
31
33
|
}
|
|
32
|
-
const
|
|
34
|
+
const f = {
|
|
33
35
|
kernelName: "EfficientGatherSub",
|
|
34
36
|
backendName: "webgpu",
|
|
35
|
-
kernelFunc:
|
|
37
|
+
kernelFunc: d
|
|
36
38
|
};
|
|
37
|
-
|
|
39
|
+
c(f);
|
package/dist/ops/webgpu/gelu.js
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
|
-
import { f as i } from "../../index-
|
|
2
|
-
import {
|
|
1
|
+
import { f as i } from "../../index-BoWRt-10.js";
|
|
2
|
+
import { g as o } from "../../webgpu_program-PFzf1hAQ.js";
|
|
3
|
+
import { f as s, c as p } from "../../webgpu_util-D____QpY.js";
|
|
3
4
|
const u = 0.7978845608028654, a = 0.044715;
|
|
4
5
|
class c {
|
|
5
6
|
outputShape;
|
|
@@ -10,7 +11,7 @@ class c {
|
|
|
10
11
|
workgroupSize;
|
|
11
12
|
size = !0;
|
|
12
13
|
constructor(e) {
|
|
13
|
-
this.workgroupSize = [128, 1, 1], this.outputShape = e, this.dispatchLayout =
|
|
14
|
+
this.workgroupSize = [128, 1, 1], this.outputShape = e, this.dispatchLayout = s(this.outputShape), this.dispatch = p(this.dispatchLayout, this.outputShape, this.workgroupSize), this.shaderKey = "unary_gelu";
|
|
14
15
|
}
|
|
15
16
|
getUserCode() {
|
|
16
17
|
return `
|
|
@@ -22,7 +23,7 @@ class c {
|
|
|
22
23
|
inner = 0.5 * (1.0 + inner);
|
|
23
24
|
return x * inner;
|
|
24
25
|
}
|
|
25
|
-
${
|
|
26
|
+
${o("index")} {
|
|
26
27
|
if (index < uniforms.size) {
|
|
27
28
|
let a = getAByOutputIndex(index);
|
|
28
29
|
setOutputAtIndex(index, unaryOperation(a));
|
|
@@ -51,11 +52,11 @@ class x {
|
|
|
51
52
|
workgroupSize = [128, 1, 1];
|
|
52
53
|
size = !0;
|
|
53
54
|
constructor(e) {
|
|
54
|
-
this.outputShape = e, this.dispatchLayout =
|
|
55
|
+
this.outputShape = e, this.dispatchLayout = s(this.outputShape), this.dispatch = p(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
55
56
|
}
|
|
56
57
|
getUserCode() {
|
|
57
58
|
return `
|
|
58
|
-
${
|
|
59
|
+
${o("index")} {
|
|
59
60
|
if (index < uniforms.size) {
|
|
60
61
|
let X = getXByOutputIndex(index);
|
|
61
62
|
let x2 = X * X;
|
package/dist/ops/webgpu/index.js
CHANGED
|
@@ -1,8 +1,11 @@
|
|
|
1
1
|
import "./attentionMask.js";
|
|
2
2
|
import "./normRMS.js";
|
|
3
|
+
import "./normRMSGrad.js";
|
|
3
4
|
import "./rope.js";
|
|
4
5
|
import "./appendCache.js";
|
|
5
6
|
import "./scatterSub.js";
|
|
6
7
|
import "./gatherSub.js";
|
|
7
8
|
import "./qkv.js";
|
|
8
9
|
import "./gelu.js";
|
|
10
|
+
import "./adamMoments.js";
|
|
11
|
+
import "./adamAdjust.js";
|
|
@@ -1,115 +1,49 @@
|
|
|
1
|
-
import { f as
|
|
2
|
-
import { f as
|
|
3
|
-
import {
|
|
4
|
-
class
|
|
5
|
-
variableNames = ["x", "meanSquare", "gamma"];
|
|
1
|
+
import { f as n } from "../../webgpu_util-D____QpY.js";
|
|
2
|
+
import { f as p, a2 as h } from "../../index-BoWRt-10.js";
|
|
3
|
+
import { createReduceInfo as u, reduce as c, createReductionShader as m } from "./utils/reductions.js";
|
|
4
|
+
class d {
|
|
6
5
|
outputShape;
|
|
7
6
|
shaderKey = "RMSNorm";
|
|
8
7
|
dispatchLayout;
|
|
9
8
|
dispatch;
|
|
10
9
|
workgroupSize = [64, 1, 1];
|
|
10
|
+
variableNames = ["x", "gamma"];
|
|
11
|
+
uniforms = "reduceSize : i32,";
|
|
12
|
+
inputShape;
|
|
11
13
|
size = !0;
|
|
12
|
-
constructor(
|
|
13
|
-
this.
|
|
14
|
+
constructor(e) {
|
|
15
|
+
this.inputShape = [e.batchSize, e.inSize], this.outputShape = this.inputShape, this.dispatchLayout = n(this.outputShape), this.dispatch = [e.batchSize, 1, 1];
|
|
14
16
|
}
|
|
15
17
|
getUserCode() {
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
}
|
|
29
|
-
`;
|
|
18
|
+
const e = this.workgroupSize[0];
|
|
19
|
+
return m(e, "mean", `
|
|
20
|
+
candidate = candidate * candidate;
|
|
21
|
+
`, `
|
|
22
|
+
bestValue = inverseSqrt(bestValue + 1e-8);
|
|
23
|
+
`, `
|
|
24
|
+
let X = f32(x[offset + k]);
|
|
25
|
+
let gamma = gamma[k];
|
|
26
|
+
let normalized = X * bestValue;
|
|
27
|
+
let outVal = normalized * gamma;
|
|
28
|
+
result[offset + k] = f32(outVal);
|
|
29
|
+
`);
|
|
30
30
|
}
|
|
31
31
|
}
|
|
32
|
-
function
|
|
33
|
-
const { x:
|
|
34
|
-
|
|
32
|
+
function S(a) {
|
|
33
|
+
const { x: e, gamma: r } = a.inputs, o = a.backend, s = [e, r], t = u(s, -1), i = new d(t);
|
|
34
|
+
if (h(r.shape, [e.shape[e.shape.length - 1]], "Error in RMSNorm: "), e.shape.length !== 3)
|
|
35
|
+
throw new Error(`rmsNormGPU: input rank ${e.shape.length} not supported, only rank 3 is supported`);
|
|
36
|
+
if (t.inSize !== e.shape[2])
|
|
37
|
+
throw new Error(`rmsNormGPU: reduction size ${t.inSize} does not match expected size ${e.shape[2]}`);
|
|
38
|
+
if (t.batchSize !== e.shape[0] * e.shape[1])
|
|
39
|
+
throw new Error(
|
|
40
|
+
`rmsNormGPU: batch size ${t.batchSize} does not match expected size ${e.shape[0] * e.shape[1]}`
|
|
41
|
+
);
|
|
42
|
+
return c(i, s, o);
|
|
35
43
|
}
|
|
36
|
-
const
|
|
44
|
+
const l = {
|
|
37
45
|
kernelName: "RMSNorm",
|
|
38
46
|
backendName: "webgpu",
|
|
39
|
-
kernelFunc:
|
|
47
|
+
kernelFunc: S
|
|
40
48
|
};
|
|
41
|
-
l
|
|
42
|
-
class R {
|
|
43
|
-
variableNames = ["x", "meanSquare", "dyGamma", "dyXMean"];
|
|
44
|
-
outputShape;
|
|
45
|
-
shaderKey = "RMSNormGradX";
|
|
46
|
-
dispatchLayout;
|
|
47
|
-
dispatch;
|
|
48
|
-
workgroupSize = [64, 1, 1];
|
|
49
|
-
size = !0;
|
|
50
|
-
C;
|
|
51
|
-
constructor(t, e, a) {
|
|
52
|
-
this.outputShape = [t, e, a], this.dispatchLayout = m(this.outputShape), this.dispatch = p(this.dispatchLayout, this.outputShape, this.workgroupSize), this.C = a;
|
|
53
|
-
}
|
|
54
|
-
getUserCode() {
|
|
55
|
-
return `
|
|
56
|
-
${c("index")} {
|
|
57
|
-
if (index < uniforms.size) {
|
|
58
|
-
let coords = getCoordsFromIndex(index);
|
|
59
|
-
let x = getXByOutputIndex(index);
|
|
60
|
-
let meanSquare = getMeanSquare(coords[0], coords[1], 0) + 1e-8;
|
|
61
|
-
let dyGamma = getDyGammaByOutputIndex(index);
|
|
62
|
-
let dyXMean = getDyXMean(coords[0], coords[1], 0) / ${this.C}.0;
|
|
63
|
-
let invRms = inverseSqrt(meanSquare);
|
|
64
|
-
let dx = dyGamma * invRms - x * dyXMean * invRms / meanSquare;
|
|
65
|
-
setOutputAtIndex(index, dx);
|
|
66
|
-
}
|
|
67
|
-
}
|
|
68
|
-
`;
|
|
69
|
-
}
|
|
70
|
-
}
|
|
71
|
-
class v {
|
|
72
|
-
variableNames = ["x", "meanSquare", "dy"];
|
|
73
|
-
outputShape;
|
|
74
|
-
shaderKey = "RMSNormGradGamma";
|
|
75
|
-
dispatchLayout;
|
|
76
|
-
dispatch;
|
|
77
|
-
workgroupSize = [64, 1, 1];
|
|
78
|
-
size = !0;
|
|
79
|
-
constructor(t, e, a) {
|
|
80
|
-
this.outputShape = [t, e, a], this.dispatchLayout = m(this.outputShape), this.dispatch = p(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
81
|
-
}
|
|
82
|
-
getUserCode() {
|
|
83
|
-
return `
|
|
84
|
-
${c("index")} {
|
|
85
|
-
if (index < uniforms.size) {
|
|
86
|
-
let coords = getCoordsFromIndex(index);
|
|
87
|
-
let x = getXByOutputIndex(index);
|
|
88
|
-
let meanSquare = getMeanSquare(coords[0], coords[1], 0) + 1e-8;
|
|
89
|
-
let dy = getDyByOutputIndex(index);
|
|
90
|
-
let invRms = inverseSqrt(meanSquare);
|
|
91
|
-
let dGamma = dy * (x * invRms);
|
|
92
|
-
setOutputAtIndex(index,dGamma);
|
|
93
|
-
}
|
|
94
|
-
}
|
|
95
|
-
`;
|
|
96
|
-
}
|
|
97
|
-
}
|
|
98
|
-
function I(s) {
|
|
99
|
-
const { dy: t, x: e, gamma: a } = s.inputs, o = s.backend, n = e.shape[0], i = e.shape[1], u = e.shape[2], r = t.mul(a), h = r.mul(e), g = h.sum(-1, !0);
|
|
100
|
-
h.dispose();
|
|
101
|
-
const S = e.square(), d = S.mean(-1, !0);
|
|
102
|
-
S.dispose();
|
|
103
|
-
const y = new R(n, i, u), G = o.runWebGPUProgram(y, [e, d, r, g], "float32");
|
|
104
|
-
r.dispose(), g.dispose();
|
|
105
|
-
const q = new v(n, i, u), x = o.runWebGPUProgram(q, [e, d, t], "float32");
|
|
106
|
-
d.dispose();
|
|
107
|
-
const f = M(k().makeTensorFromTensorInfo(x), [0, 1]);
|
|
108
|
-
return o.disposeData(x), [G, f];
|
|
109
|
-
}
|
|
110
|
-
const P = {
|
|
111
|
-
kernelName: "RMSNormGrad",
|
|
112
|
-
backendName: "webgpu",
|
|
113
|
-
kernelFunc: I
|
|
114
|
-
};
|
|
115
|
-
l(P);
|
|
49
|
+
p(l);
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
export {};
|
|
@@ -0,0 +1,133 @@
|
|
|
1
|
+
import { f, a2 as c, e as g } from "../../index-BoWRt-10.js";
|
|
2
|
+
import { createReduceInfo as k } from "./utils/reductions.js";
|
|
3
|
+
import { f as x } from "../../webgpu_util-D____QpY.js";
|
|
4
|
+
import { g as z } from "../../webgpu_program-PFzf1hAQ.js";
|
|
5
|
+
import { s as d } from "../../slice-BiOsknYS.js";
|
|
6
|
+
import { s as w } from "../../sum-66ew2byf.js";
|
|
7
|
+
class y {
|
|
8
|
+
outputShape;
|
|
9
|
+
shaderKey = "RMSNormGrad";
|
|
10
|
+
dispatchLayout;
|
|
11
|
+
dispatch;
|
|
12
|
+
workgroupSize = [64, 1, 1];
|
|
13
|
+
variableNames = ["x", "gamma", "dy"];
|
|
14
|
+
uniforms = "reduceSize : i32, batchSize: i32";
|
|
15
|
+
inputShape;
|
|
16
|
+
size = !1;
|
|
17
|
+
rowsPerWorkgroup;
|
|
18
|
+
constructor(r, e = 4) {
|
|
19
|
+
if (this.shaderKey = `RMSNormGrad_${e}`, this.rowsPerWorkgroup = e, this.inputShape = [r.batchSize, r.inSize], this.outputShape = [r.batchSize + r.batchSize / this.rowsPerWorkgroup, r.inSize], this.dispatchLayout = x(this.outputShape), this.dispatch = [r.batchSize / this.rowsPerWorkgroup, 1, 1], r.batchSize % this.rowsPerWorkgroup !== 0)
|
|
20
|
+
throw new Error(
|
|
21
|
+
`RMSNormGradProgram: batch size ${r.batchSize} must be divisible by rowsPerWorkgroup ${this.rowsPerWorkgroup}`
|
|
22
|
+
);
|
|
23
|
+
if (r.inSize > 1024)
|
|
24
|
+
throw new Error(`RMSNormGradProgram: inSize ${r.inSize} exceeds max of 1024`);
|
|
25
|
+
}
|
|
26
|
+
getUserCode() {
|
|
27
|
+
const r = this.workgroupSize[0], e = this.rowsPerWorkgroup;
|
|
28
|
+
return `
|
|
29
|
+
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
30
|
+
return ((a - 1u) / b + 1u);
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
${`
|
|
34
|
+
var<workgroup> partials : array<vec2<f32>, ${r}>;
|
|
35
|
+
var<workgroup> accumulation: array<f32, 1024>;
|
|
36
|
+
`}
|
|
37
|
+
|
|
38
|
+
${z("index")} {
|
|
39
|
+
// One workgroup per row (batch).
|
|
40
|
+
let Length = uniforms.reduceSize;
|
|
41
|
+
let BatchSize = uniforms.batchSize;
|
|
42
|
+
for (var k = i32(localId.x); k < Length; k = k + ${r}) {
|
|
43
|
+
accumulation[k] = 0.0;
|
|
44
|
+
}
|
|
45
|
+
|
|
46
|
+
for (var rowOff = 0; rowOff < ${e}; rowOff = rowOff + 1) {
|
|
47
|
+
let row = i32(workgroupId.x) * ${e} + rowOff;
|
|
48
|
+
let offset = row * Length;
|
|
49
|
+
|
|
50
|
+
var sum_x2 = 0.0;
|
|
51
|
+
var sum_dygx = 0.0;
|
|
52
|
+
|
|
53
|
+
for (var k = i32(localId.x); k < Length; k = k + ${r}) {
|
|
54
|
+
let X = f32(x[offset + k]);
|
|
55
|
+
let DY = f32(dy[offset + k]);
|
|
56
|
+
let G = f32(gamma[k]);
|
|
57
|
+
sum_x2 = fma(X, X, sum_x2);
|
|
58
|
+
sum_dygx = fma(DY * G, X, sum_dygx);
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
partials[localId.x] = vec2<f32>(sum_x2, sum_dygx);
|
|
62
|
+
workgroupBarrier();
|
|
63
|
+
|
|
64
|
+
var reduceSize = min(u32(Length), ${r}u);
|
|
65
|
+
for (var currentSize = reduceSize / 2u; reduceSize > 1u; currentSize = reduceSize / 2u) {
|
|
66
|
+
let interval = DIV_CEIL(reduceSize, 2u);
|
|
67
|
+
if (localId.x < currentSize) {
|
|
68
|
+
partials[localId.x] = partials[localId.x] + partials[localId.x + interval];
|
|
69
|
+
}
|
|
70
|
+
reduceSize = interval;
|
|
71
|
+
workgroupBarrier();
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
let invN = 1.0 / f32(Length);
|
|
75
|
+
let mean_x2 = fma(partials[0].x, invN, 1e-8);
|
|
76
|
+
let mean_dygx = partials[0].y * invN;
|
|
77
|
+
|
|
78
|
+
let invRMS = inverseSqrt(mean_x2);
|
|
79
|
+
let scale = (mean_dygx / (mean_x2)) * invRMS;
|
|
80
|
+
|
|
81
|
+
// write dx and dGamma.
|
|
82
|
+
for (var k = i32(localId.x); k < Length; k = k + ${r}) {
|
|
83
|
+
let X = f32(x[offset + k]);
|
|
84
|
+
let DY = f32(dy[offset + k]);
|
|
85
|
+
let G = f32(gamma[k]);
|
|
86
|
+
|
|
87
|
+
let dyGamma = DY * G;
|
|
88
|
+
let dx = fma(dyGamma, invRMS, -X * scale);
|
|
89
|
+
|
|
90
|
+
result[offset + k] = dx;
|
|
91
|
+
|
|
92
|
+
// dGamma
|
|
93
|
+
accumulation[k] = fma(DY, X * invRMS, accumulation[k]);
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
workgroupBarrier();
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
// Write out the partially accumulated dGamma
|
|
100
|
+
let outDgBase = BatchSize * Length + i32(workgroupId.x) * Length;
|
|
101
|
+
for (var k = i32(localId.x); k < Length; k = k + ${r}) {
|
|
102
|
+
result[outDgBase + k] = accumulation[k];
|
|
103
|
+
}
|
|
104
|
+
}
|
|
105
|
+
`;
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
function v(o) {
|
|
109
|
+
const { dy: r, x: e, gamma: t } = o.inputs, i = 4;
|
|
110
|
+
c(e.shape, r.shape, "Error in RMSNormGrad dy: "), c(t.shape, [e.shape[e.shape.length - 1]], "Error in RMSNormGrad gamma: ");
|
|
111
|
+
const l = o.backend, a = k([e, t, r], -1), s = new y(a, i), p = [
|
|
112
|
+
{ type: "int32", data: [s.inputShape[1]] },
|
|
113
|
+
// Reduce size
|
|
114
|
+
{ type: "int32", data: [s.inputShape[0]] }
|
|
115
|
+
// Batch size
|
|
116
|
+
];
|
|
117
|
+
if (a.inSize > 1024)
|
|
118
|
+
throw new Error(`rmsNormGradGPU: inSize ${a.inSize} exceeds max of 1024`);
|
|
119
|
+
const n = g().makeTensorFromTensorInfo(
|
|
120
|
+
l.runWebGPUProgram(s, [e, t, r], "float32", p)
|
|
121
|
+
), m = d(n, [0, 0], [a.batchSize, a.inSize]), u = d(n, [a.batchSize, 0], [a.batchSize / i, a.inSize]);
|
|
122
|
+
n.dispose();
|
|
123
|
+
const h = m.reshape(e.shape);
|
|
124
|
+
m.dispose();
|
|
125
|
+
const S = w(u, [0]);
|
|
126
|
+
return u.dispose(), [h, S];
|
|
127
|
+
}
|
|
128
|
+
const b = {
|
|
129
|
+
kernelName: "RMSNormGrad",
|
|
130
|
+
backendName: "webgpu",
|
|
131
|
+
kernelFunc: v
|
|
132
|
+
};
|
|
133
|
+
f(b);
|
package/dist/ops/webgpu/qkv.js
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
|
-
import {
|
|
2
|
-
import { f as
|
|
1
|
+
import { g as h } from "../../webgpu_program-PFzf1hAQ.js";
|
|
2
|
+
import { f as c, c as d } from "../../webgpu_util-D____QpY.js";
|
|
3
|
+
import { f as p, a2 as m } from "../../index-BoWRt-10.js";
|
|
3
4
|
class l {
|
|
4
5
|
variableNames = ["x", "kernel"];
|
|
5
6
|
outputShape;
|
|
@@ -10,8 +11,8 @@ class l {
|
|
|
10
11
|
workgroupSize = [64, 1, 1];
|
|
11
12
|
size = !0;
|
|
12
13
|
constructor(t, e, o, s) {
|
|
13
|
-
const
|
|
14
|
-
this.outputShape = [t, e, o,
|
|
14
|
+
const n = s / e;
|
|
15
|
+
this.shaderKey = `QKV_${e}_${n}`, this.outputShape = [t, e, o, n], this.dispatchLayout = c(this.outputShape), this.dispatch = d(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
15
16
|
}
|
|
16
17
|
getUserCode() {
|
|
17
18
|
const t = this.outputShape[1], e = this.outputShape[3], o = t * e;
|
|
@@ -25,13 +26,14 @@ class l {
|
|
|
25
26
|
let d = coords[3];
|
|
26
27
|
|
|
27
28
|
// Compute output channel index in fused kernel
|
|
28
|
-
let out_offset = uniforms.mode * ${
|
|
29
|
+
let out_offset = uniforms.mode * ${o} + h * ${e} + d;
|
|
29
30
|
|
|
30
31
|
var sum = 0.0;
|
|
32
|
+
let baseX = b * uniforms.xShape[1] * uniforms.xShape[2] + t * uniforms.xShape[2];
|
|
31
33
|
for (var c = 0; c < ${o}; c += 1) {
|
|
32
|
-
let xval =
|
|
33
|
-
let kval = getKernel(c, out_offset);
|
|
34
|
-
sum
|
|
34
|
+
let xval = x[baseX + c];
|
|
35
|
+
let kval = getKernel(c, out_offset);
|
|
36
|
+
sum = fma(xval, kval, sum);
|
|
35
37
|
}
|
|
36
38
|
|
|
37
39
|
setOutputAtIndex(index, sum);
|
|
@@ -40,17 +42,20 @@ class l {
|
|
|
40
42
|
`;
|
|
41
43
|
}
|
|
42
44
|
}
|
|
43
|
-
function
|
|
44
|
-
const { x: t, kernel: e } =
|
|
45
|
+
function f(r) {
|
|
46
|
+
const { x: t, kernel: e } = r.inputs, { heads: o } = r.attrs, s = r.backend, n = t.shape[0], u = t.shape[1], a = t.shape[2];
|
|
47
|
+
if (m(e.shape, [a, 3 * a], "Error in QKV: "), a % o !== 0)
|
|
48
|
+
throw new Error(`Channel dimension ${a} must be divisible by number of heads ${o} in QKV.`);
|
|
49
|
+
const i = new l(n, o, u, a);
|
|
45
50
|
return [
|
|
46
|
-
s.runWebGPUProgram(
|
|
47
|
-
s.runWebGPUProgram(
|
|
48
|
-
s.runWebGPUProgram(
|
|
51
|
+
s.runWebGPUProgram(i, [t, e], "float32", [{ type: "int32", data: [0] }]),
|
|
52
|
+
s.runWebGPUProgram(i, [t, e], "float32", [{ type: "int32", data: [1] }]),
|
|
53
|
+
s.runWebGPUProgram(i, [t, e], "float32", [{ type: "int32", data: [2] }])
|
|
49
54
|
];
|
|
50
55
|
}
|
|
51
|
-
const
|
|
56
|
+
const b = {
|
|
52
57
|
kernelName: "QKV",
|
|
53
58
|
backendName: "webgpu",
|
|
54
|
-
kernelFunc:
|
|
59
|
+
kernelFunc: f
|
|
55
60
|
};
|
|
56
|
-
p(
|
|
61
|
+
p(b);
|
package/dist/ops/webgpu/rope.js
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
|
-
import {
|
|
2
|
-
import { f as
|
|
3
|
-
|
|
1
|
+
import { g as c } from "../../webgpu_program-PFzf1hAQ.js";
|
|
2
|
+
import { f as m, c as l } from "../../webgpu_util-D____QpY.js";
|
|
3
|
+
import { f as x, a2 as f } from "../../index-BoWRt-10.js";
|
|
4
|
+
class S {
|
|
4
5
|
variableNames = ["x", "sin", "cos"];
|
|
5
6
|
outputShape;
|
|
6
7
|
shaderKey = "Rope";
|
|
@@ -9,13 +10,13 @@ class f {
|
|
|
9
10
|
workgroupSize = [64, 1, 1];
|
|
10
11
|
size = !0;
|
|
11
12
|
uniforms = "pastLen: i32";
|
|
12
|
-
constructor(t,
|
|
13
|
-
this.outputShape = [t,
|
|
13
|
+
constructor(t, e, a, s) {
|
|
14
|
+
this.shaderKey = `Rope_${s}`, this.outputShape = [t, e, a, s], this.dispatchLayout = m(this.outputShape), this.dispatch = l(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
14
15
|
}
|
|
15
16
|
getUserCode() {
|
|
16
17
|
const t = this.outputShape[3];
|
|
17
18
|
return `
|
|
18
|
-
${
|
|
19
|
+
${c("index")} {
|
|
19
20
|
if (index < uniforms.size) {
|
|
20
21
|
let coords = getCoordsFromIndex(index); // [b, h, t, d]
|
|
21
22
|
let b = coords[0];
|
|
@@ -27,27 +28,31 @@ class f {
|
|
|
27
28
|
|
|
28
29
|
var outVal = 0.0;
|
|
29
30
|
|
|
31
|
+
let xIdx = b * uniforms.outShapeStrides[0] +
|
|
32
|
+
h * uniforms.outShapeStrides[1] +
|
|
33
|
+
t * uniforms.outShapeStrides[2] +
|
|
34
|
+
d;
|
|
35
|
+
|
|
30
36
|
if (d < rotaryDim) {
|
|
31
|
-
let
|
|
32
|
-
let cos =
|
|
33
|
-
let sin =
|
|
37
|
+
let idx = (t + uniforms.pastLen) * uniforms.cosShape[1] + d / 2;
|
|
38
|
+
let cos = cos[idx];
|
|
39
|
+
let sin = sin[idx];
|
|
34
40
|
|
|
35
|
-
let ownX =
|
|
41
|
+
let ownX = x[xIdx] * cos;
|
|
42
|
+
var evenOdd = 0.0;
|
|
36
43
|
|
|
37
44
|
if (d % 2 == 0) {
|
|
38
45
|
// even index
|
|
39
|
-
|
|
40
|
-
let odd = getX(b, h, t, d + 1);
|
|
41
|
-
outVal = even - odd * sin;
|
|
46
|
+
evenOdd = -x[xIdx + 1];
|
|
42
47
|
} else {
|
|
43
48
|
// odd index
|
|
44
|
-
|
|
45
|
-
let odd = ownX;
|
|
46
|
-
outVal = even * sin + odd;
|
|
49
|
+
evenOdd = x[xIdx - 1];
|
|
47
50
|
}
|
|
51
|
+
|
|
52
|
+
outVal = fma(evenOdd, sin, ownX);
|
|
48
53
|
} else {
|
|
49
54
|
// pass through for non-rotary dims
|
|
50
|
-
outVal =
|
|
55
|
+
outVal = x[xIdx];
|
|
51
56
|
}
|
|
52
57
|
|
|
53
58
|
setOutputAtIndex(index, outVal);
|
|
@@ -56,13 +61,22 @@ class f {
|
|
|
56
61
|
`;
|
|
57
62
|
}
|
|
58
63
|
}
|
|
59
|
-
function
|
|
60
|
-
const { x: t, sin:
|
|
61
|
-
|
|
64
|
+
function g(o) {
|
|
65
|
+
const { x: t, sin: e, cos: a } = o.inputs, { pastLen: s } = o.attrs, i = o.backend, p = t.shape[0], d = t.shape[1], n = t.shape[2], r = t.shape[3];
|
|
66
|
+
if (f(e.shape, a.shape, "Error in Rope: "), e.shape[0] < n + s)
|
|
67
|
+
throw new Error(
|
|
68
|
+
`Sin tensor shape ${e.shape} is not compatible with seqLength ${n} and pastLen ${s}.`
|
|
69
|
+
);
|
|
70
|
+
if (e.shape[1] * 2 < r)
|
|
71
|
+
throw new Error(`Sin tensor shape ${e.shape} is not compatible with feature dimension ${r}.`);
|
|
72
|
+
if (e.shape.length !== 3)
|
|
73
|
+
throw new Error(`Sin tensor must be 3-dimensional, but got shape ${e.shape}.`);
|
|
74
|
+
const h = new S(p, d, n, r), u = [{ type: "int32", data: [s] }];
|
|
75
|
+
return i.runWebGPUProgram(h, [t, e, a], "float32", u);
|
|
62
76
|
}
|
|
63
|
-
const
|
|
77
|
+
const b = {
|
|
64
78
|
kernelName: "Rope",
|
|
65
79
|
backendName: "webgpu",
|
|
66
|
-
kernelFunc:
|
|
80
|
+
kernelFunc: g
|
|
67
81
|
};
|
|
68
|
-
|
|
82
|
+
x(b);
|
|
@@ -1,6 +1,7 @@
|
|
|
1
|
-
import {
|
|
2
|
-
import { f as
|
|
3
|
-
|
|
1
|
+
import { g as p } from "../../webgpu_program-PFzf1hAQ.js";
|
|
2
|
+
import { f as u, c as d } from "../../webgpu_util-D____QpY.js";
|
|
3
|
+
import { f as h, a2 as o } from "../../index-BoWRt-10.js";
|
|
4
|
+
class b {
|
|
4
5
|
variableNames = ["labels", "softmaxProbs", "dy"];
|
|
5
6
|
outputShape;
|
|
6
7
|
shaderKey = "ScatterSub";
|
|
@@ -9,29 +10,31 @@ class h {
|
|
|
9
10
|
workgroupSize = [64, 1, 1];
|
|
10
11
|
size = !0;
|
|
11
12
|
constructor(t, e) {
|
|
12
|
-
this.outputShape = [t, e], this.dispatchLayout =
|
|
13
|
+
this.outputShape = [t, e], this.dispatchLayout = u(this.outputShape), this.dispatch = d(this.dispatchLayout, this.outputShape, this.workgroupSize);
|
|
13
14
|
}
|
|
14
15
|
getUserCode() {
|
|
15
16
|
return `
|
|
16
|
-
${
|
|
17
|
+
${p("index")} {
|
|
17
18
|
if (index < uniforms.size) {
|
|
18
19
|
let coords = getCoordsFromIndex(index); // [batch, depth]
|
|
19
|
-
let idx = i32(
|
|
20
|
-
let prob =
|
|
21
|
-
let dy =
|
|
20
|
+
let idx = i32(labels[coords[0]]);
|
|
21
|
+
let prob = softmaxProbs[index];
|
|
22
|
+
let dy = dy[coords[0]];
|
|
22
23
|
setOutputAtIndex(index, select(prob, prob - 1.0, idx == coords[1]) * dy);
|
|
23
24
|
}
|
|
24
25
|
}
|
|
25
26
|
`;
|
|
26
27
|
}
|
|
27
28
|
}
|
|
28
|
-
function
|
|
29
|
-
const { logits: t, labels: e, dy: s } =
|
|
30
|
-
|
|
29
|
+
function f(a) {
|
|
30
|
+
const { logits: t, labels: e, dy: s } = a.inputs, c = a.backend, r = e.shape[0], i = t.shape[1];
|
|
31
|
+
o(s.shape, [r], "Error in EfficientScatterSub dy: "), o(t.shape, [r, i], "Error in EfficientScatterSub logits: "), o(e.shape, [r], "Error in EfficientScatterSub labels: ");
|
|
32
|
+
const n = new b(r, i);
|
|
33
|
+
return c.runWebGPUProgram(n, [e, t, s], "float32");
|
|
31
34
|
}
|
|
32
35
|
const l = {
|
|
33
36
|
kernelName: "EfficientScatterSub",
|
|
34
37
|
backendName: "webgpu",
|
|
35
|
-
kernelFunc:
|
|
38
|
+
kernelFunc: f
|
|
36
39
|
};
|
|
37
|
-
|
|
40
|
+
h(l);
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
import { backend_util, TensorInfo } from '@tensorflow/tfjs-core';
|
|
2
|
+
import { WebGPUProgram } from '@tensorflow/tfjs-backend-webgpu/dist/webgpu_program';
|
|
3
|
+
import { WebGPUBackend } from '@tensorflow/tfjs-backend-webgpu';
|
|
4
|
+
export interface ReduceWebGPUProgram extends WebGPUProgram {
|
|
5
|
+
inputShape: number[];
|
|
6
|
+
}
|
|
7
|
+
export declare function createReductionShader(workgroupSizeX: number, reductionOp: 'mean' | 'sum', inputSnippet: string, reducedSnippet: string, outputSnippet: string): string;
|
|
8
|
+
export declare function createReduceInfo(inputs: TensorInfo[], axis: number | number[]): backend_util.ReduceInfo;
|
|
9
|
+
export declare function reduce(program: ReduceWebGPUProgram, inputs: TensorInfo[], backend: WebGPUBackend): TensorInfo;
|