@genai-fi/nanogpt 0.6.3 → 0.7.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (169) hide show
  1. package/dist/Generator.js +17 -13
  2. package/dist/NanoGPTModel.d.ts +2 -2
  3. package/dist/NanoGPTModel.js +104 -136
  4. package/dist/{RealDiv-BYViZwhN.js → RealDiv-CVYNbZxu.js} +30 -29
  5. package/dist/{Reshape-t7Kcikjk.js → Reshape-CEsEp0AI.js} +5 -5
  6. package/dist/Reshape-Do18N3gO.js +30 -0
  7. package/dist/TeachableLLM.js +9 -5
  8. package/dist/{TiedEmbedding-9WeDwvjO.js → TiedEmbedding-ccLBFiZi.js} +4 -4
  9. package/dist/{axis_util-Bu4h7XWV.js → axis_util-5DTW2tFV.js} +3 -3
  10. package/dist/backend.d.ts +1 -0
  11. package/dist/backend.js +7 -0
  12. package/dist/backend_util-C9Ut8n0Q.js +749 -0
  13. package/dist/{broadcast_to-DARN-DBD.js → broadcast_to-Ba9h_8DO.js} +2 -2
  14. package/dist/{concat-5aPGqw3Z.js → concat-CbXTetof.js} +8 -8
  15. package/dist/{dataset-pgqp-YfL.js → dataset-U3PrjwgU.js} +7 -7
  16. package/dist/{dropout-Bciw46HT.js → dropout-DPfPgWWe.js} +8 -8
  17. package/dist/{gather-DjyCjmOD.js → gather-Bbh8DHhM.js} +1 -1
  18. package/dist/gelu-BFwVnd1r.js +26 -0
  19. package/dist/gpgpu_math-DffelNS-.js +2371 -0
  20. package/dist/index-DYD_yPa-.js +12076 -0
  21. package/dist/{index-BAzbokzv.js → index-UdZhlibC.js} +414 -398
  22. package/dist/{kernel_funcs_utils-CUxJCg0g.js → kernel_funcs_utils-CXDy3EN7.js} +31 -30
  23. package/dist/layers/BaseLayer.js +2 -2
  24. package/dist/layers/CausalSelfAttention.js +8 -8
  25. package/dist/layers/MLP.js +5 -5
  26. package/dist/layers/RMSNorm.js +3 -3
  27. package/dist/layers/RoPECache.js +4 -4
  28. package/dist/layers/TiedEmbedding.js +5 -5
  29. package/dist/layers/TransformerBlock.js +1 -1
  30. package/dist/loader/loadTransformers.js +1 -1
  31. package/dist/loader/oldZipLoad.js +11 -7
  32. package/dist/{log_sum_exp-YEo2h3gb.js → log_sum_exp-BnmCkHWl.js} +16 -16
  33. package/dist/main.d.ts +13 -0
  34. package/dist/main.js +44 -23
  35. package/dist/{mat_mul-7121rsJk.js → mat_mul-dwmZz69e.js} +4 -4
  36. package/dist/{max-DtlIuVeW.js → max-ByjEGoFx.js} +3 -3
  37. package/dist/{mulmat_packed_gpu-D4nKF7Je.js → mulmat_packed_gpu-IGPBp6h9.js} +1 -1
  38. package/dist/non_max_suppression_impl-CsEgBuMA.js +134 -0
  39. package/dist/{ones-BBlSRqn1.js → ones-C8Mfln6-.js} +2 -2
  40. package/dist/ops/adamAdjust.d.ts +2 -0
  41. package/dist/ops/adamAdjust.js +9 -0
  42. package/dist/ops/adamMoments.d.ts +2 -0
  43. package/dist/ops/adamMoments.js +9 -0
  44. package/dist/ops/appendCache.js +3 -3
  45. package/dist/ops/attentionMask.js +1 -1
  46. package/dist/ops/cpu/adamAdjust.d.ts +1 -0
  47. package/dist/ops/cpu/adamAdjust.js +18 -0
  48. package/dist/ops/cpu/adamMoments.d.ts +1 -0
  49. package/dist/ops/cpu/adamMoments.js +16 -0
  50. package/dist/ops/cpu/appendCache.js +8 -8
  51. package/dist/ops/cpu/attentionMask.js +9 -9
  52. package/dist/ops/cpu/fusedSoftmax.js +17 -11
  53. package/dist/ops/cpu/gatherSub.js +7 -7
  54. package/dist/ops/cpu/gelu.js +13 -13
  55. package/dist/ops/cpu/matMulGelu.js +36 -24
  56. package/dist/ops/cpu/matMulMul.js +14 -8
  57. package/dist/ops/cpu/mulDropout.js +9 -3
  58. package/dist/ops/cpu/normRMS.js +5 -5
  59. package/dist/ops/cpu/qkv.js +3 -3
  60. package/dist/ops/cpu/rope.js +5 -5
  61. package/dist/ops/cpu/scatterSub.js +11 -11
  62. package/dist/ops/fusedSoftmax.js +1 -1
  63. package/dist/ops/gatherSub.js +1 -1
  64. package/dist/ops/gelu.js +2 -2
  65. package/dist/ops/grads/attentionMask.js +1 -1
  66. package/dist/ops/grads/fusedSoftmax.js +2 -2
  67. package/dist/ops/grads/gelu.js +3 -24
  68. package/dist/ops/grads/matMulGelu.js +5 -5
  69. package/dist/ops/grads/normRMS.js +6 -6
  70. package/dist/ops/grads/qkv.js +1 -1
  71. package/dist/ops/grads/rope.js +3 -3
  72. package/dist/ops/matMulGelu.js +1 -1
  73. package/dist/ops/matMulMul.js +1 -1
  74. package/dist/ops/mulDrop.js +1 -1
  75. package/dist/ops/normRMS.js +1 -1
  76. package/dist/ops/qkv.js +1 -1
  77. package/dist/ops/rope.js +4 -4
  78. package/dist/ops/scatterSub.js +1 -1
  79. package/dist/ops/webgl/adamAdjust.d.ts +1 -0
  80. package/dist/ops/webgl/adamAdjust.js +50 -0
  81. package/dist/ops/webgl/adamMoments.d.ts +1 -0
  82. package/dist/ops/webgl/adamMoments.js +38 -0
  83. package/dist/ops/webgl/appendCache.js +1 -1
  84. package/dist/ops/webgl/attentionMask.js +1 -1
  85. package/dist/ops/webgl/fusedSoftmax.js +4 -4
  86. package/dist/ops/webgl/gatherSub.js +8 -8
  87. package/dist/ops/webgl/gelu.js +2 -2
  88. package/dist/ops/webgl/log.js +5 -5
  89. package/dist/ops/webgl/matMulGelu.js +17 -17
  90. package/dist/ops/webgl/matMulMul.js +1 -1
  91. package/dist/ops/webgl/mulDropout.js +4 -4
  92. package/dist/ops/webgl/normRMS.js +2 -2
  93. package/dist/ops/webgl/qkv.js +1 -1
  94. package/dist/ops/webgl/rope.js +1 -1
  95. package/dist/ops/webgl/scatterSub.js +1 -1
  96. package/dist/ops/webgpu/adamAdjust.d.ts +1 -0
  97. package/dist/ops/webgpu/adamAdjust.js +52 -0
  98. package/dist/ops/webgpu/adamMoments.d.ts +1 -0
  99. package/dist/ops/webgpu/adamMoments.js +51 -0
  100. package/dist/ops/webgpu/appendCache.d.ts +1 -0
  101. package/dist/ops/webgpu/appendCache.js +57 -0
  102. package/dist/ops/webgpu/attentionMask.d.ts +1 -0
  103. package/dist/ops/webgpu/attentionMask.js +65 -0
  104. package/dist/ops/webgpu/gatherSub.d.ts +1 -0
  105. package/dist/ops/webgpu/gatherSub.js +52 -0
  106. package/dist/ops/webgpu/gelu.d.ts +14 -0
  107. package/dist/ops/webgpu/gelu.js +87 -0
  108. package/dist/ops/webgpu/index.d.ts +0 -0
  109. package/dist/ops/webgpu/index.js +11 -0
  110. package/dist/ops/webgpu/normRMS.d.ts +1 -0
  111. package/dist/ops/webgpu/normRMS.js +41 -0
  112. package/dist/ops/webgpu/normRMSGrad.d.ts +1 -0
  113. package/dist/ops/webgpu/normRMSGrad.js +128 -0
  114. package/dist/ops/webgpu/qkv.d.ts +1 -0
  115. package/dist/ops/webgpu/qkv.js +57 -0
  116. package/dist/ops/webgpu/rope.d.ts +1 -0
  117. package/dist/ops/webgpu/rope.js +69 -0
  118. package/dist/ops/webgpu/scatterSub.d.ts +1 -0
  119. package/dist/ops/webgpu/scatterSub.js +38 -0
  120. package/dist/ops/webgpu/utils/reductions.d.ts +9 -0
  121. package/dist/ops/webgpu/utils/reductions.js +68 -0
  122. package/dist/{ops-C0sQEcPw.js → ops-aRTXR2Sr.js} +433 -508
  123. package/dist/{random_width-DWzaOgrn.js → random_width-DbSpgl4o.js} +144 -144
  124. package/dist/{range-DYsrnfiy.js → range-D9CZhVlR.js} +1 -1
  125. package/dist/{reciprocal-CJQeasVa.js → reciprocal-CGB48wZB.js} +1 -1
  126. package/dist/{register_all_kernels-BfFCQAqs.js → register_all_kernels-DnbAyBXt.js} +203 -200
  127. package/dist/{reshape-krWGKraP.js → reshape-BR0eoLYN.js} +1 -1
  128. package/dist/{scatter_nd_util-93ln7Hut.js → scatter_nd_util-OjyAxku2.js} +3 -3
  129. package/dist/{selu_util-sntGesxr.js → selu_util-Ce6pu9IM.js} +44 -44
  130. package/dist/{shared-Ca6iDobD.js → shared-Czipaeb6.js} +541 -606
  131. package/dist/shared-DS5waSIY.js +69 -0
  132. package/dist/{sin-D_h-qCSx.js → sin-CiBxrDqX.js} +1 -1
  133. package/dist/slice-BHbDHObE.js +28 -0
  134. package/dist/{softmax-fsdtf6JC.js → softmax-JMEIUo2J.js} +1 -1
  135. package/dist/{split-eiktj-6L.js → split-CRU0PjVV.js} +4 -4
  136. package/dist/{stack-dfEEz2OY.js → stack-ikk2Y8_P.js} +2 -2
  137. package/dist/{sum-BE_Irnim.js → sum-NLYbiDag.js} +3 -3
  138. package/dist/{tensor-Xyi595sG.js → tensor-Do9PKbIE.js} +1 -1
  139. package/dist/{tensor2d-CPEkynbH.js → tensor2d-CWHxHpLh.js} +1 -1
  140. package/dist/training/Adam.d.ts +22 -0
  141. package/dist/training/Adam.js +93 -0
  142. package/dist/training/AdamExt.d.ts +1 -1
  143. package/dist/training/AdamExt.js +13 -12
  144. package/dist/training/DatasetBuilder.js +2 -2
  145. package/dist/training/Evaluator.js +1 -1
  146. package/dist/training/FullTrainer.js +27 -27
  147. package/dist/training/Trainer.d.ts +5 -6
  148. package/dist/training/Trainer.js +54 -55
  149. package/dist/training/sparseCrossEntropy.d.ts +0 -4
  150. package/dist/training/sparseCrossEntropy.js +7 -7
  151. package/dist/utilities/arrayClose.d.ts +1 -0
  152. package/dist/utilities/arrayClose.js +11 -0
  153. package/dist/utilities/dummy.js +19 -19
  154. package/dist/utilities/generate.js +15 -16
  155. package/dist/utilities/multinomialCPU.d.ts +2 -0
  156. package/dist/utilities/multinomialCPU.js +13 -0
  157. package/dist/utilities/performance.d.ts +2 -0
  158. package/dist/utilities/performance.js +16 -0
  159. package/dist/utilities/profile.d.ts +1 -0
  160. package/dist/utilities/profile.js +9 -6
  161. package/dist/utilities/safetensors.js +2 -2
  162. package/dist/utilities/weights.js +2 -2
  163. package/dist/{variable-wSS22xj5.js → variable-BTBkayv_.js} +1 -1
  164. package/dist/webgpu_program-WaoMq-WD.js +548 -0
  165. package/dist/webgpu_util-DhSeP4b6.js +80 -0
  166. package/dist/{zeros-YJDE7oRb.js → zeros-DnPT2nD4.js} +10 -10
  167. package/package.json +2 -1
  168. package/dist/gpgpu_math-CNslybmD.js +0 -3115
  169. package/dist/norm-CzltS9Fz.js +0 -86
@@ -1,32 +1,35 @@
1
- import { o as oe, q as se, E as le, ch as ps, ci as hs, ck as en, cl as fs, cm as ms, co as gs, B as xs, cn as Cs, cp as bs, bm as To, i as Y, c$ as tn, cv as sn, aj as Do, z as nn, bo as Eo, cz as Is, cA as ys, cB as $s, ao as Nc, cE as on, l as vc, a as an, h as Ne, d0 as ks, cH as rn, cI as ws, L as It, bt as Fo, cM as Ns, d1 as cn, d2 as ln, s as Po, bx as Oo, d3 as un, cO as vs, d4 as dn, d5 as pn, ah as xe, d6 as S, a3 as Sc, a7 as Rc, T as Ao, d7 as Tc, cP as Dc, j as Ec, a4 as Fc, a5 as Pc, b as Oc, ac as L, d8 as _o, d9 as Lo, e as Me, aJ as Vt, da as Vo, aG as Wo, db as Ac, aF as Wt, af as Ke, dc as Mo, aq as hn, al as _c, g as z, bd as Ge, an as Lc, ar as fn, as as mn, D as Vc, aa as Wc, C as Bo, W as ne, ca as Go, cj as zo, bB as Uo, p as me, $ as st, bC as Ho, bD as Xo, bE as Ko, ai as ct, bF as qo, cq as jo, cr as Yo, bI as Qo, bH as Zo, aP as Jo, dd as ea, bJ as gn, ct as ta, aV as sa, J as na, bK as oa, bv as Te, c6 as aa, bL as ra, bM as ia, cu as ca, bN as la, a0 as xn, bO as Cn, b3 as ua, bP as da, u as nt, y as Mc, bQ as pa, bR as ha, bS as fa, c8 as ma, c9 as ga, de as xa, bl as Ss, bf as Ft, bi as bn, cw as Kn, df as mt, dg as Ca, cx as qn, dh as Bc, N as Gc, aR as ba, cy as Ia, bT as In, aS as ya, ax as $a, am as yt, di as ka, dj as wa, b4 as Na, c7 as va, dk as Sa, Y as Ra, G as Ta, dl as Da, bU as yn, aZ as $n, bW as kn, cD as Ea, M as zc, bX as Fa, bY as Pa, cF as Oa, cG as Aa, dm as _a, bZ as La, a2 as Va, be as Wa, S as Ma, a6 as Ba, b6 as Ga, b8 as za, b7 as Ua, b_ as Ha, cQ as Xa, b$ as Ka, P as qa, Z as ja, c0 as Ya, cJ as wn, dn as Qa, dp as Za, dq as Ja, R as er, K as Nn, b9 as tr, cK as sr, ba as nr, cL as or, c2 as ar, b5 as rr, b0 as vn, X as ir, dr as cr, aQ as lr, c3 as Sn, a1 as Rn, c4 as Tn, bV as Dn, c1 as ur, ds as dr, dt as pr, du as hr, dv as fr, dw as mr, F as gr, cN as xr, at as En, dx as Cr, dy as br, dz as Ir, bG as Fn, dA as yr, I as $r, bb as kr, av as Pn, b1 as wr, c5 as Nr, r as vr, dB as Sr, dC as jn, dD as Yn, dE as Uc, t as Hc, dF as Xc, dG as Kc, br as qc, b2 as jc, bc as Yc, bj as Qc, aO as Zc, bk as Jc, bs as el, a$ as tl, bg as sl, bh as nl, aM as Rr, bn as ol, a8 as al, ag as rl, bp as il, dH as cl, aT as ll, aU as ul, aW as dl, aX as pl, a9 as hl, bq as fl, a_ as ml, bz as gl, aY as xl, aw as Tr, bu as Cl, ap as bl, bw as Il, by as yl } from "./index-BAzbokzv.js";
2
- import { e as Dr, s as Er, l as Fr, a as Pr, b as Or, m as Ar, c as _r, r as Gs, f as $l, g as kl, h as wl, i as Nl, j as vl, k as Sl, n as Rl, o as Tl, q as Dl, t as El, u as Fl, v as Pl, w as Ol, x as Al, y as _l, z as Ll, A as Vl, B as Wl, C as Ml, p as Bl, F as Gl, G as zl, H as Ul, I as Hl, J as Xl, K as Kl, L as ql } from "./random_width-DWzaOgrn.js";
3
- import { r as re } from "./reshape-krWGKraP.js";
4
- import { b as jl } from "./broadcast_to-DARN-DBD.js";
5
- import { c as os } from "./concat-5aPGqw3Z.js";
6
- import { c as Yl, s as Ql } from "./sin-D_h-qCSx.js";
7
- import { w as Lr, n as ss, a as zs, r as Us, o as Vr, s as as, h as Zl, g as Jl, e as eu, b as tu, f as su, m as nu, p as ou, q as au, v as ru, j as iu, d as cu, c as lu, u as uu, x as Wr, y as Mr, z as Br } from "./ops-C0sQEcPw.js";
8
- import { m as Tt } from "./mat_mul-7121rsJk.js";
9
- import { w as Gr, k as Ye, h as Ve, x as du, z as pu, A as hu, y as fu, B as mu, v as gu, i as ot, j as lt, d as De, e as $t, g as Rs, S as zr, a as Ur, C as Hr, D as Xr, p as xu, q as Cu, r as bu, u as Iu } from "./selu_util-sntGesxr.js";
10
- import { n as Kr, m as yu } from "./norm-CzltS9Fz.js";
11
- import { e as $u, l as ku, a as wu } from "./log_sum_exp-YEo2h3gb.js";
12
- import { f as Nu } from "./dropout-Bciw46HT.js";
13
- import { g as vu } from "./gather-DjyCjmOD.js";
14
- import { c as Hs, z as qr } from "./zeros-YJDE7oRb.js";
15
- import { m as Su } from "./max-DtlIuVeW.js";
16
- import { r as Ru } from "./reciprocal-CJQeasVa.js";
17
- import { s as Xs } from "./split-eiktj-6L.js";
18
- import { s as Tu } from "./softmax-fsdtf6JC.js";
19
- import { s as Du } from "./stack-dfEEz2OY.js";
20
- import { s as Eu } from "./sum-BE_Irnim.js";
21
- import { a as j, u as ue, c as ut, i as dt, s as Fu, b as Pt, d as Pe, e as kt, f as gt, g as jr, r as Ot, h as Be, j as Pu, k as Ou, l as On, z as Au, n as An, o as Yr, p as _u, q as Lu, v as Vu, w as Wu, x as Mu, y as Bu, A as Gu, B as zu, C as Uu, D as Hu, E as ft, F as Xu, G as Ku, H as Qr, I as qu, J as ju, K as Yu, L as Qu, M as Zu, N as Ju, O as ed, P as td, Q as sd, R as nd, S as od, T as ad, U as rd, V as id, W as cd, X as ld, Y as ud, Z as dd, _ as pd, $ as hd, a0 as fd, a1 as md, a2 as gd, a3 as xd, a4 as Cd, a5 as bd, a6 as Id, a7 as yd, a8 as $d, a9 as kd, aa as wd, ab as Nd, ac as vd, ad as Sd, ae as Rd, af as Td, ag as Dd, ah as Ed, ai as Fd, aj as Pd, ak as Zr, al as Od, t as Jr, am as Ad, an as _d, ao as ei, ap as Ld, aq as Vd, ar as Wd, as as Md, at as Bd, au as Gd, av as zd, aw as Ud, ax as Hd, ay as Xd, az as Kd, aA as qd, aB as jd, aC as Yd, aD as Qd, aE as Zd, aF as Jd, aG as ep, aH as tp, aI as sp, aJ as np, aK as op, aL as ap, aM as rp, aN as ip, aO as cp, aP as lp, aQ as up, aR as dp, aS as pp, aT as hp, aU as ti, aV as fp, aW as mp, aX as gp, aY as xp, aZ as Cp, a_ as bp, a$ as Ip, b0 as yp, b1 as $p, b2 as kp } from "./shared-Ca6iDobD.js";
22
- import { m as xt, D as Ts, E as Ds, F as Es, G as si, H as ni, I as oi, J as je, K as ai, L as ri, M as ii, N as ci, O as li, P as ui, Q as di, S as pi, T as hi, U as fi, V as mi, W as gi, X as wp, Y as Np, Z as vp, _ as Sp, $ as Rp, a0 as Tp, a1 as xi, a2 as Ci, a3 as bi, a4 as Ii, a5 as Qn, a6 as Dp, a7 as Ep, a8 as Fp, a9 as Pp, aa as Op, ab as Ap, ac as _n, ad as ze, u as We, ae as yi, c as $i, af as _e, ag as ki, g as wi, a as Ni, ah as _p, ai as Lp, aj as Z, ak as Mt, al as Vp, am as Zn, an as Wp, ao as Mp, ap as Bt, aq as Bp, ar as Gp, as as Ks, at as jt, au as Yt, av as zp, aw as Up, ax as Jn, ay as Hp, az as Xp, aA as Vs, aB as Kp, aC as qp, aD as jp, aE as Qt, aF as Ws, aG as Yp, f as Ce, aH as we, aI as Zt, aJ as Jt, aK as Qp, d as eo, e as to, i as vi, aL as Zp, aM as Jp, aN as eh, aO as th, aP as sh, aQ as nh, j as Si, aR as Gt, h as oh, aS as ah, aT as rh } from "./gpgpu_math-CNslybmD.js";
23
- import { g as ye, a as $e, b as Re, c as Ee, e as Oe, h as Fs } from "./axis_util-Bu4h7XWV.js";
24
- import { s as ih } from "./index-C4L8Cm77.js";
25
- import { c as wt } from "./scatter_nd_util-93ln7Hut.js";
26
- import { a as Se, c as ch, U as it, d as tt, e as qe, A as so, f as Nt, B as Ln, h as Vn, m as At, u as ae, C as Ue, b as ke, i as Le, j as Wn, k as pt, l as vt, n as lh, o as uh, p as dh, q as ph } from "./kernel_funcs_utils-CUxJCg0g.js";
27
- import { R as hh, r as H, a as fh } from "./Reshape-t7Kcikjk.js";
28
- import { M as Ri } from "./mulmat_packed_gpu-D4nKF7Je.js";
29
- import { t as Ti, s as Mn, a as zt, m as mh, r as gh, b as xh, c as Ch, d as bh } from "./RealDiv-BYViZwhN.js";
1
+ import { B as oe, C as se, E as le, cl as ps, cm as hs, co as en, cp as fs, cq as ms, cs as gs, I as xs, cr as Cs, ct as bs, bp as To, l as Y, dd as tn, cz as sn, n as Do, z as nn, br as Eo, cD as Is, cE as ys, cF as $s, aq as Nc, cI as on, y as vc, a as an, k as Ne, dl as ks, cL as rn, cM as ws, X as It, bw as Fo, cQ as Ns, dg as cn, dj as ln, b as Po, bA as Oo, ds as un, cS as vs, dv as dn, dw as pn, al as xe, dx as S, aT as Sc, o as Rc, T as Ao, dy as Tc, cT as Dc, x as Ec, q as Fc, aU as Pc, c as Oc, ac as L, d2 as _o, d3 as Lo, e as Me, aO as Vt, d7 as Vo, aM as Wo, d4 as Ac, aL as Wt, aj as Ke, d8 as Mo, as as hn, an as _c, j as z, bg as Ge, ap as Lc, at as fn, au as mn, K as Vc, a2 as Wc, J as Bo, a1 as ne, cd as Go, cn as zo, bE as Uo, p as me, a7 as st, bF as Ho, bG as Xo, bH as Ko, ab as ct, bI as qo, cu as jo, cv as Yo, bL as Qo, bK as Zo, aP as Jo, dc as ea, bM as gn, cx as ta, aY as sa, Q as na, bN as oa, by as Te, c9 as aa, bO as ra, bP as ia, cy as ca, bQ as la, a8 as xn, bR as Cn, b6 as ua, bS as da, u as nt, H as Mc, bT as pa, bU as ha, bV as fa, cb as ma, cc as ga, de as xa, bo as Ss, bi as Ft, bl as bn, cA as Kn, dz as mt, dA as Ca, cB as qn, df as Bc, Y as Gc, aR as ba, cC as Ia, bW as In, aV as ya, az as $a, ao as yt, d9 as ka, da as wa, b7 as Na, ca as va, di as Sa, a4 as Ra, G as Ta, dk as Da, bX as yn, b0 as $n, bZ as kn, cH as Ea, U as zc, b_ as Fa, b$ as Pa, cJ as Oa, cK as Aa, dm as _a, c0 as La, aS as Va, bh as Wa, S as Ma, ad as Ba, b9 as Ga, bb as za, ba as Ua, c1 as Ha, cU as Xa, c2 as Ka, P as qa, a5 as ja, c3 as Ya, cN as wn, dB as Qa, dC as Za, dD as Ja, R as er, V as Nn, bc as tr, cO as sr, bd as nr, cP as or, c5 as ar, b8 as rr, b3 as vn, a3 as ir, dn as cr, aQ as lr, c6 as Sn, a9 as Rn, c7 as Tn, bY as Dn, c4 as ur, dE as dr, dF as pr, dp as hr, dq as fr, dr as mr, L as gr, cR as xr, av as En, dt as Cr, dG as br, dH as Ir, bJ as Fn, du as yr, N as $r, be as kr, ax as Pn, b4 as wr, c8 as Nr, f as vr, dI as Sr, dJ as jn, d5 as Yn, d6 as Uc, t as Hc, dK as Xc, dL as Kc, bu as qc, b5 as jc, bf as Yc, bm as Qc, W as Zc, bn as Jc, bv as el, b2 as tl, bj as sl, bk as nl, aI as Rr, bq as ol, ae as al, ak as rl, bs as il, dh as cl, aW as ll, aX as ul, aZ as dl, a_ as pl, af as hl, bt as fl, b1 as ml, bC as gl, a$ as xl, ay as Tr, bx as Cl, ar as bl, bz as Il, bB as yl } from "./index-UdZhlibC.js";
2
+ import { e as Dr, s as Er, l as Fr, a as Pr, b as Or, m as Ar, c as _r, r as Gs, f as $l, g as kl, h as wl, i as Nl, j as vl, k as Sl, n as Rl, o as Tl, q as Dl, t as El, u as Fl, v as Pl, w as Ol, x as Al, y as _l, z as Ll, A as Vl, B as Wl, C as Ml, p as Bl, F as Gl, G as zl, H as Ul, I as Hl, J as Xl, K as Kl, L as ql } from "./random_width-DbSpgl4o.js";
3
+ import { r as re } from "./reshape-BR0eoLYN.js";
4
+ import { b as jl } from "./broadcast_to-Ba9h_8DO.js";
5
+ import { c as os } from "./concat-CbXTetof.js";
6
+ import { c as Yl, s as Ql } from "./sin-CiBxrDqX.js";
7
+ import { w as Lr, o as Vr, n as ss, a as zs, r as Us, p as Wr, f as Zl, g as Jl, d as eu, b as tu, e as su, k as nu, m as ou, q as au, v as ru, x as iu, s as cu, c as lu, t as uu, u as du } from "./ops-aRTXR2Sr.js";
8
+ import { m as Tt } from "./mat_mul-dwmZz69e.js";
9
+ import { w as Mr, k as Ye, h as Ve, x as pu, z as hu, A as fu, y as mu, D as gu, v as xu, i as ot, j as lt, d as De, e as $t, g as Rs, S as Br, a as Gr, B as zr, C as Ur, p as Cu, q as bu, r as Iu, u as yu } from "./selu_util-Ce6pu9IM.js";
10
+ import { e as $u, l as ku, a as wu } from "./log_sum_exp-BnmCkHWl.js";
11
+ import { f as Nu } from "./dropout-DPfPgWWe.js";
12
+ import { g as vu } from "./gather-Bbh8DHhM.js";
13
+ import { c as Hs, z as Hr } from "./zeros-DnPT2nD4.js";
14
+ import { s as as } from "./slice-BHbDHObE.js";
15
+ import { m as Su } from "./max-ByjEGoFx.js";
16
+ import { r as Ru } from "./reciprocal-CGB48wZB.js";
17
+ import { s as Xs } from "./split-CRU0PjVV.js";
18
+ import { s as Tu } from "./softmax-JMEIUo2J.js";
19
+ import { s as Du } from "./stack-ikk2Y8_P.js";
20
+ import { s as Eu } from "./sum-NLYbiDag.js";
21
+ import { a as j, u as ue, c as ut, i as dt, b as Fu, d as Pt, t as Pe, e as kt, f as gt, g as Xr, r as Ot, h as Be, j as Pu, k as Ou, l as On, z as Au, m as An, n as Kr, o as _u, p as Lu, q as Vu, v as Wu, w as Mu, x as Bu, y as Gu, A as zu, B as Uu, C as Hu, D as ft, E as Xu, F as Ku, G as qr, H as qu, I as ju, J as Yu, K as Qu, L as Zu, M as Ju, N as ed, O as td, P as sd, Q as nd, R as od, S as ad, T as rd, U as id, V as cd, W as ld, X as ud, Y as dd, Z as pd, _ as hd, $ as fd, a0 as md, a1 as gd, a2 as xd, a3 as Cd, a4 as bd, a5 as Id, a6 as yd, a7 as $d, a8 as kd, a9 as wd, aa as Nd, ab as vd, ac as Sd, ad as Rd, ae as Td, af as Dd, ag as Ed, ah as Fd, ai as Pd } from "./shared-Czipaeb6.js";
22
+ import { m as xt, A as Ts, B as Ds, C as Es, D as jr, F as Yr, H as Qr, G as je, I as Zr, J as Jr, K as ei, L as ti, M as si, z as ni, y as oi, x as ai, w as ri, u as ii, E as ci, T as li, U as Od, V as Ad, W as _d, X as Ld, Y as Vd, Z as Wd, N as ui, O as di, P as pi, Q as hi, c as fi, f as Md, S as Bd, _ as Gd } from "./backend_util-C9Ut8n0Q.js";
23
+ import { g as ye, a as $e, b as Re, c as Ee, e as Oe, h as Fs } from "./axis_util-5DTW2tFV.js";
24
+ import { s as zd } from "./index-C4L8Cm77.js";
25
+ import { n as mi, b as gi, a as xi } from "./non_max_suppression_impl-CsEgBuMA.js";
26
+ import { c as wt } from "./scatter_nd_util-OjyAxku2.js";
27
+ import { h as Qn, j as Ud, k as Hd, l as Xd, m as Kd, n as qd, o as jd, P as _n, p as ze, u as We, q as Ci, c as bi, T as _e, E as Ii, g as yi, a as $i, r as Yd, s as Qd, t as Z, v as Mt, w as Zd, x as Zn, y as Jd, z as ep, A as Bt, B as tp, C as sp, D as Ks, F as jt, G as Yt, H as np, I as op, J as Jn, K as ap, L as rp, M as Vs, N as ip, O as cp, Q as lp, R as Qt, S as Ws, U as up, f as Ce, V as we, W as Zt, X as Jt, Y as dp, d as eo, e as to, i as ki, Z as pp, _ as hp, $ as fp, a0 as mp, a1 as gp, a2 as xp, a3 as Gt } from "./gpgpu_math-DffelNS-.js";
28
+ import { s as wi, a as Cp, t as Ni, b as bp, c as Ip, d as vi, e as yp, n as $p, f as kp, g as wp, h as Np, i as vp, j as Sp, k as Rp, l as Tp, o as Dp, p as Ep, q as Fp, r as Pp, u as Op, v as Ap, w as _p, x as Lp, y as Vp, z as Wp, A as Mp, B as Bp, C as Gp, D as zp, E as Up, F as Hp, G as Xp, H as Kp, I as qp, J as jp, K as Yp, L as Qp, M as Si, N as Zp, O as Jp, P as eh, Q as th, R as sh, S as nh, T as oh, U as ah, V as rh, W as ih } from "./shared-DS5waSIY.js";
29
+ import { a as Se, c as ch, U as it, d as tt, e as qe, A as so, f as Nt, B as Ln, h as Vn, m as At, u as ae, C as Ue, b as ke, i as Le, j as Wn, k as pt, l as vt, n as lh, o as uh, p as dh, q as ph } from "./kernel_funcs_utils-CXDy3EN7.js";
30
+ import { R as hh, r as H, a as fh } from "./Reshape-CEsEp0AI.js";
31
+ import { M as Ri } from "./mulmat_packed_gpu-IGPBp6h9.js";
32
+ import { t as Ti, s as Mn, a as zt, m as mh, r as gh, b as xh, c as Ch, d as bh } from "./RealDiv-CVYNbZxu.js";
30
33
  /**
31
34
  * @license
32
35
  * Copyright 2018 Google LLC. All Rights Reserved.
@@ -345,7 +348,7 @@ const Hh = /* @__PURE__ */ oe({ dot_: Uh });
345
348
  * =============================================================================
346
349
  */
347
350
  function Xh(o, t = null, e = !1) {
348
- return Kr(o, "euclidean", t, e);
351
+ return Vr(o, "euclidean", t, e);
349
352
  }
350
353
  const Kh = /* @__PURE__ */ oe({ euclideanNorm_: Xh });
351
354
  /**
@@ -476,7 +479,7 @@ const nf = /* @__PURE__ */ oe({ localResponseNormalization_: sf });
476
479
  */
477
480
  function of(o) {
478
481
  const t = se(o, "x", "logSigmoid");
479
- return vc((n) => ({ value: ss(Er(ss(n))), gradFunc: (r) => an(r, Gr(ss(n))) }))(t);
482
+ return vc((n) => ({ value: ss(Er(ss(n))), gradFunc: (r) => an(r, Mr(ss(n))) }))(t);
480
483
  }
481
484
  const af = /* @__PURE__ */ oe({ logSigmoid_: of });
482
485
  /**
@@ -722,7 +725,7 @@ function wf(o) {
722
725
  const s = re(o, [e, t]);
723
726
  n = qs(s);
724
727
  } else {
725
- const s = [e, 2 * (t - 1)], a = re(Us(o), [e, t]), r = re(Vr(o), [e, t]), i = Gs(as(a, [0, 1], [e, t - 2]), 1), c = an(Gs(as(r, [0, 1], [e, t - 2]), 1), Po(-1)), l = os([a, i], 1), u = os([r, c], 1), p = re(Hs(l, u), [s[0], s[1]]);
728
+ const s = [e, 2 * (t - 1)], a = re(Us(o), [e, t]), r = re(Wr(o), [e, t]), i = Gs(as(a, [0, 1], [e, t - 2]), 1), c = an(Gs(as(r, [0, 1], [e, t - 2]), 1), Po(-1)), l = os([a, i], 1), u = os([r, c], 1), p = re(Hs(l, u), [s[0], s[1]]);
726
729
  n = qs(p);
727
730
  }
728
731
  if (n = Us(n), o.rank === 3 && o.shape[0] !== 0) {
@@ -758,10 +761,10 @@ function vf(o, t) {
758
761
  m[o.shape.length - 1] = t, s = as(o, f, m), e = t;
759
762
  } else if (t != null && t > e) {
760
763
  const f = o.shape.map((m) => m);
761
- f[o.shape.length - 1] = t - e, s = os([o, qr(f)], o.shape.length - 1), e = t;
764
+ f[o.shape.length - 1] = t - e, s = os([o, Hr(f)], o.shape.length - 1), e = t;
762
765
  } else
763
766
  s = o;
764
- const a = nn(s), r = re(Hs(s, a), [n, e]), i = Ei(r), c = Math.floor(e / 2) + 1, l = Us(i), u = Vr(i), p = Xs(l, [c, e - c], l.shape.length - 1), d = Xs(u, [c, e - c], u.shape.length - 1), h = s.shape.slice();
767
+ const a = nn(s), r = re(Hs(s, a), [n, e]), i = Ei(r), c = Math.floor(e / 2) + 1, l = Us(i), u = Wr(i), p = Xs(l, [c, e - c], l.shape.length - 1), d = Xs(u, [c, e - c], u.shape.length - 1), h = s.shape.slice();
765
768
  return h[s.shape.length - 1] = c, re(Hs(p[0], d[0]), h);
766
769
  }
767
770
  const Sf = /* @__PURE__ */ oe({ rfft_: vf });
@@ -1698,7 +1701,7 @@ S().prototype.dot = function(o) {
1698
1701
  * =============================================================================
1699
1702
  */
1700
1703
  S().prototype.elu = function() {
1701
- return this.throwIfDisposed(), du(this);
1704
+ return this.throwIfDisposed(), pu(this);
1702
1705
  };
1703
1706
  /**
1704
1707
  * @license
@@ -2059,7 +2062,7 @@ S().prototype.isNaN = function() {
2059
2062
  * =============================================================================
2060
2063
  */
2061
2064
  S().prototype.leakyRelu = function(o) {
2062
- return this.throwIfDisposed(), pu(this, o);
2065
+ return this.throwIfDisposed(), hu(this, o);
2063
2066
  };
2064
2067
  /**
2065
2068
  * @license
@@ -2385,7 +2388,7 @@ S().prototype.mean = function(o, t) {
2385
2388
  * =============================================================================
2386
2389
  */
2387
2390
  S().prototype.min = function(o, t) {
2388
- return this.throwIfDisposed(), yu(this, o, t);
2391
+ return this.throwIfDisposed(), nu(this, o, t);
2389
2392
  };
2390
2393
  /**
2391
2394
  * @license
@@ -2404,7 +2407,7 @@ S().prototype.min = function(o, t) {
2404
2407
  * =============================================================================
2405
2408
  */
2406
2409
  S().prototype.minimum = function(o) {
2407
- return this.throwIfDisposed(), nu(this, o);
2410
+ return this.throwIfDisposed(), ou(this, o);
2408
2411
  };
2409
2412
  /**
2410
2413
  * @license
@@ -2499,7 +2502,7 @@ S().prototype.neg = function() {
2499
2502
  * =============================================================================
2500
2503
  */
2501
2504
  S().prototype.norm = function(o, t, e) {
2502
- return this.throwIfDisposed(), Kr(this, o, t, e);
2505
+ return this.throwIfDisposed(), Vr(this, o, t, e);
2503
2506
  };
2504
2507
  /**
2505
2508
  * @license
@@ -2616,7 +2619,7 @@ S().prototype.pow = function(o) {
2616
2619
  * =============================================================================
2617
2620
  */
2618
2621
  S().prototype.prelu = function(o) {
2619
- return this.throwIfDisposed(), hu(this, o);
2622
+ return this.throwIfDisposed(), fu(this, o);
2620
2623
  };
2621
2624
  /**
2622
2625
  * @license
@@ -2673,7 +2676,7 @@ S().prototype.reciprocal = function() {
2673
2676
  * =============================================================================
2674
2677
  */
2675
2678
  S().prototype.relu = function() {
2676
- return this.throwIfDisposed(), fu(this);
2679
+ return this.throwIfDisposed(), mu(this);
2677
2680
  };
2678
2681
  /**
2679
2682
  * @license
@@ -2692,7 +2695,7 @@ S().prototype.relu = function() {
2692
2695
  * =============================================================================
2693
2696
  */
2694
2697
  S().prototype.relu6 = function() {
2695
- return this.throwIfDisposed(), mu(this);
2698
+ return this.throwIfDisposed(), gu(this);
2696
2699
  };
2697
2700
  /**
2698
2701
  * @license
@@ -2749,7 +2752,7 @@ S().prototype.reshape = function(o) {
2749
2752
  * =============================================================================
2750
2753
  */
2751
2754
  S().prototype.resizeBilinear = function(o, t, e) {
2752
- return this.throwIfDisposed(), ou(this, o, t, e);
2755
+ return this.throwIfDisposed(), au(this, o, t, e);
2753
2756
  };
2754
2757
  /**
2755
2758
  * @license
@@ -2768,7 +2771,7 @@ S().prototype.resizeBilinear = function(o, t, e) {
2768
2771
  * =============================================================================
2769
2772
  */
2770
2773
  S().prototype.resizeNearestNeighbor = function(o, t, e) {
2771
- return this.throwIfDisposed(), au(this, o, t, e);
2774
+ return this.throwIfDisposed(), ru(this, o, t, e);
2772
2775
  };
2773
2776
  /**
2774
2777
  * @license
@@ -2825,7 +2828,7 @@ S().prototype.rfft = function() {
2825
2828
  * =============================================================================
2826
2829
  */
2827
2830
  S().prototype.round = function() {
2828
- return this.throwIfDisposed(), ru(this);
2831
+ return this.throwIfDisposed(), iu(this);
2829
2832
  };
2830
2833
  /**
2831
2834
  * @license
@@ -2901,7 +2904,7 @@ S().prototype.separableConv2d = function(o, t, e, n, s, a) {
2901
2904
  * =============================================================================
2902
2905
  */
2903
2906
  S().prototype.sigmoid = function() {
2904
- return this.throwIfDisposed(), Gr(this);
2907
+ return this.throwIfDisposed(), Mr(this);
2905
2908
  };
2906
2909
  /**
2907
2910
  * @license
@@ -3129,7 +3132,7 @@ S().prototype.squaredDifference = function(o) {
3129
3132
  * =============================================================================
3130
3133
  */
3131
3134
  S().prototype.squeeze = function(o) {
3132
- return this.throwIfDisposed(), iu(this, o);
3135
+ return this.throwIfDisposed(), cu(this, o);
3133
3136
  };
3134
3137
  /**
3135
3138
  * @license
@@ -3169,7 +3172,7 @@ S().prototype.stack = function(o, t) {
3169
3172
  * =============================================================================
3170
3173
  */
3171
3174
  S().prototype.step = function(o) {
3172
- return this.throwIfDisposed(), gu(this, o);
3175
+ return this.throwIfDisposed(), xu(this, o);
3173
3176
  };
3174
3177
  /**
3175
3178
  * @license
@@ -3283,7 +3286,7 @@ S().prototype.tanh = function() {
3283
3286
  * =============================================================================
3284
3287
  */
3285
3288
  S().prototype.tile = function(o) {
3286
- return this.throwIfDisposed(), cu(this, o);
3289
+ return this.throwIfDisposed(), lu(this, o);
3287
3290
  };
3288
3291
  /**
3289
3292
  * @license
@@ -3378,7 +3381,7 @@ S().prototype.topk = function(o, t) {
3378
3381
  * =============================================================================
3379
3382
  */
3380
3383
  S().prototype.transpose = function(o) {
3381
- return this.throwIfDisposed(), lu(this, o);
3384
+ return this.throwIfDisposed(), uu(this, o);
3382
3385
  };
3383
3386
  /**
3384
3387
  * @license
@@ -3435,7 +3438,7 @@ S().prototype.unsortedSegmentSum = function(o, t) {
3435
3438
  * =============================================================================
3436
3439
  */
3437
3440
  S().prototype.unstack = function(o) {
3438
- return this.throwIfDisposed(), uu(this, o);
3441
+ return this.throwIfDisposed(), du(this, o);
3439
3442
  };
3440
3443
  /**
3441
3444
  * @license
@@ -4677,7 +4680,7 @@ const Em = {
4677
4680
  function Fm(o) {
4678
4681
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { blockShape: a, crops: r } = n;
4679
4682
  j([s], "batchToSpaceND");
4680
- const i = a.reduce((g, C) => g * C), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = si(r, a.length), d = ni(u, r, a.length), h = he({ inputs: { x: s }, backend: e, attrs: { shape: c } }), f = Pe({ inputs: { x: h }, backend: e, attrs: { perm: l } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = gt({
4683
+ const i = a.reduce((g, C) => g * C), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = jr(r, a.length), d = Yr(u, r, a.length), h = he({ inputs: { x: s }, backend: e, attrs: { shape: c } }), f = Pe({ inputs: { x: h }, backend: e, attrs: { perm: l } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = gt({
4681
4684
  inputs: { x: m },
4682
4685
  backend: e,
4683
4686
  attrs: { begin: p, size: d }
@@ -4706,7 +4709,7 @@ const Pm = {
4706
4709
  * =============================================================================
4707
4710
  */
4708
4711
  function Om(o) {
4709
- const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, l = jr(i, c, a.dtype, a.shape, r);
4712
+ const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, l = Xr(i, c, a.dtype, a.shape, r);
4710
4713
  return e.makeTensorInfo([r], a.dtype, l);
4711
4714
  }
4712
4715
  const Am = {
@@ -4834,7 +4837,7 @@ const Gm = {
4834
4837
  */
4835
4838
  function bt(o) {
4836
4839
  const { inputs: t, backend: e, attrs: n } = o, { axis: s } = n, a = me(s, t[0].shape)[0], r = t.map((m) => m.shape);
4837
- oi(r, a);
4840
+ Qr(r, a);
4838
4841
  let i = je(t.map((m) => m.shape), a);
4839
4842
  if (z(i) === 0)
4840
4843
  return e.makeTensorInfo(i, t[0].dtype, []);
@@ -5427,7 +5430,7 @@ const ug = {
5427
5430
  function dg(o) {
5428
5431
  const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r, binaryOutput: i } = n;
5429
5432
  if (s.shape.length === 1) {
5430
- const c = e.data.get(s.dataId).values, l = e.data.get(a.dataId).values, u = jr(c, l, a.dtype, a.shape, r);
5433
+ const c = e.data.get(s.dataId).values, l = e.data.get(a.dataId).values, u = Xr(c, l, a.dtype, a.shape, r);
5431
5434
  return e.makeTensorInfo([r], a.dtype, u);
5432
5435
  } else if (s.shape.length === 2) {
5433
5436
  const c = e.bufferSync(s), l = e.bufferSync(a), u = Ou(c, l, r, i);
@@ -5937,16 +5940,16 @@ const Sg = {
5937
5940
  * =============================================================================
5938
5941
  */
5939
5942
  function Rg(o) {
5940
- const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = ai(s, a.length);
5941
- ri(r.length, c, a);
5942
- const { path: l, steps: u } = ii(i, c), p = u.length;
5943
+ const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = Zr(s, a.length);
5944
+ Jr(r.length, c, a);
5945
+ const { path: l, steps: u } = ei(i, c), p = u.length;
5943
5946
  let d = null, h = r.length;
5944
5947
  const f = [];
5945
5948
  for (let m = 0; m < p; ++m) {
5946
5949
  for (const x of u[m]) {
5947
- const { permutationIndices: g, expandDims: C } = ci(h, c[x]);
5950
+ const { permutationIndices: g, expandDims: C } = ti(h, c[x]);
5948
5951
  let I;
5949
- li(g) ? I = a[x] : (I = Pe({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
5952
+ si(g) ? I = a[x] : (I = Pe({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
5950
5953
  const b = I.shape.slice();
5951
5954
  for (let y = 0; y < C.length; ++y)
5952
5955
  b.splice(C[y], 0, 1);
@@ -6017,7 +6020,7 @@ const Eg = {
6017
6020
  * limitations under the License.
6018
6021
  * =============================================================================
6019
6022
  */
6020
- const Fg = mi, Pg = fi, Og = hi, Ag = pi, _g = di, Lg = ui, Vg = ue(In, (o) => {
6023
+ const Fg = ci, Pg = ii, Og = ri, Ag = ai, _g = oi, Lg = ni, Vg = ue(In, (o) => {
6021
6024
  const t = Math.sign(o), e = Math.abs(o), n = 1 / (1 + Fg * e);
6022
6025
  return t * (1 - ((((Lg * n + _g) * n + Ag) * n + Og) * n + Pg) * n * Math.exp(-e * e));
6023
6026
  }), Wg = {
@@ -6101,7 +6104,7 @@ function zi(o, t, e) {
6101
6104
  attrs: { begin: [x, 0], size: [1, a] }
6102
6105
  }), I = Be({ inputs: { real: g, imag: C }, backend: e }), { real: b, imag: y } = Gg(I, t, e), $ = xt(b, y);
6103
6106
  for (let k = 0; k < a; k++) {
6104
- const w = gi($, k);
6107
+ const w = li($, k);
6105
6108
  p[x * a + k] = w.real, d[x * a + k] = w.imag;
6106
6109
  }
6107
6110
  e.disposeIntermediateTensorInfo(g), e.disposeIntermediateTensorInfo(C), e.disposeIntermediateTensorInfo(I);
@@ -6120,7 +6123,7 @@ function Gg(o, t, e) {
6120
6123
  return i;
6121
6124
  } else {
6122
6125
  const i = xt(a, r), c = Ug(i, n, t);
6123
- return wp(c);
6126
+ return Od(c);
6124
6127
  }
6125
6128
  }
6126
6129
  function zg(o) {
@@ -6129,13 +6132,13 @@ function zg(o) {
6129
6132
  function Ys(o, t, e, n, s) {
6130
6133
  if (e === 1)
6131
6134
  return { real: o, imag: t };
6132
- const a = xt(o, t), r = e / 2, i = Np(a), c = i.real, l = i.imag, u = [c.length], p = s.makeTensorInfo(u, "float32", c), d = s.makeTensorInfo(u, "float32", l), h = Be({ inputs: { real: p, imag: d }, backend: s }), f = vp(a), m = f.real, x = f.imag, g = [m.length], C = s.makeTensorInfo(g, "float32", m), I = s.makeTensorInfo(g, "float32", x), b = Be({ inputs: { real: C, imag: I }, backend: s }), y = Ys(c, l, r, n, s), $ = y.real, k = y.imag, w = [$.length], v = s.makeTensorInfo(w, "float32", $), N = s.makeTensorInfo(w, "float32", k), P = Be({
6135
+ const a = xt(o, t), r = e / 2, i = Ad(a), c = i.real, l = i.imag, u = [c.length], p = s.makeTensorInfo(u, "float32", c), d = s.makeTensorInfo(u, "float32", l), h = Be({ inputs: { real: p, imag: d }, backend: s }), f = _d(a), m = f.real, x = f.imag, g = [m.length], C = s.makeTensorInfo(g, "float32", m), I = s.makeTensorInfo(g, "float32", x), b = Be({ inputs: { real: C, imag: I }, backend: s }), y = Ys(c, l, r, n, s), $ = y.real, k = y.imag, w = [$.length], v = s.makeTensorInfo(w, "float32", $), N = s.makeTensorInfo(w, "float32", k), P = Be({
6133
6136
  inputs: { real: v, imag: N },
6134
6137
  backend: s
6135
- }), O = Ys(m, x, r, n, s), E = O.real, F = O.imag, T = [E.length], D = s.makeTensorInfo(T, "float32", E), _ = s.makeTensorInfo(T, "float32", F), R = Be({ inputs: { real: D, imag: _ }, backend: s }), A = Sp(e, n), W = [A.real.length], V = s.makeTensorInfo(W, "float32", A.real), G = s.makeTensorInfo(W, "float32", A.imag), M = Be({ inputs: { real: V, imag: G }, backend: s }), U = An({ inputs: { a: M, b: R }, backend: s }), B = Pt({
6138
+ }), O = Ys(m, x, r, n, s), E = O.real, F = O.imag, T = [E.length], D = s.makeTensorInfo(T, "float32", E), _ = s.makeTensorInfo(T, "float32", F), R = Be({ inputs: { real: D, imag: _ }, backend: s }), A = Ld(e, n), W = [A.real.length], V = s.makeTensorInfo(W, "float32", A.real), G = s.makeTensorInfo(W, "float32", A.imag), M = Be({ inputs: { real: V, imag: G }, backend: s }), U = An({ inputs: { a: M, b: R }, backend: s }), B = Pt({
6136
6139
  inputs: { a: P, b: U },
6137
6140
  backend: s
6138
- }), X = Yr({
6141
+ }), X = Kr({
6139
6142
  inputs: { a: P, b: U },
6140
6143
  backend: s
6141
6144
  }), q = Ot({ inputs: { input: B }, backend: s }), J = Ot({ inputs: { input: X }, backend: s }), Q = Ct({ inputs: { input: B }, backend: s }), ee = Ct({ inputs: { input: X }, backend: s }), te = bt({
@@ -6154,10 +6157,10 @@ function Ug(o, t, e) {
6154
6157
  for (let s = 0; s < t; s++) {
6155
6158
  let a = 0, r = 0;
6156
6159
  for (let i = 0; i < t; i++) {
6157
- const c = Tp(s * i, t, e), l = gi(o, i);
6160
+ const c = Wd(s * i, t, e), l = li(o, i);
6158
6161
  a += l.real * c.real - l.imag * c.imag, r += l.real * c.imag + l.imag * c.real;
6159
6162
  }
6160
- e && (a /= t, r /= t), Rp(n, a, r, s);
6163
+ e && (a /= t, r /= t), Vd(n, a, r, s);
6161
6164
  }
6162
6165
  return n;
6163
6166
  }
@@ -6367,7 +6370,7 @@ const Jg = {
6367
6370
  * =============================================================================
6368
6371
  */
6369
6372
  function ex(o) {
6370
- const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = z(n.shape), r = s.shape, i = r[r.length - 1], [c, l, u, p] = xi(n, s);
6373
+ const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = z(n.shape), r = s.shape, i = r[r.length - 1], [c, l, u, p] = ui(n, s);
6371
6374
  if (l === 0)
6372
6375
  return e.makeTensorInfo(c, n.dtype, []);
6373
6376
  const d = e.data.get(s.dataId).values, h = e.bufferSync(n), f = _u(d, h, n.dtype, l, i, u, p, n.shape, a);
@@ -6404,7 +6407,7 @@ function sx(o) {
6404
6407
  }
6405
6408
  let p = i;
6406
6409
  i == null && (p = 0);
6407
- const d = z(a.shape), h = Ci(s, a, c, p), f = he({
6410
+ const d = z(a.shape), h = di(s, a, c, p), f = he({
6408
6411
  inputs: { x: s },
6409
6412
  backend: e,
6410
6413
  attrs: {
@@ -7132,7 +7135,7 @@ function Hi(o) {
7132
7135
  inputs: { x: s },
7133
7136
  backend: e,
7134
7137
  attrs: { reductionIndices: c, keepDims: !1 }
7135
- }), u = Oe(l.shape, c), p = he({ inputs: { x: l }, backend: e, attrs: { shape: u } }), d = Yr({ inputs: { a: s, b: p }, backend: e }), h = Bu({ inputs: { x: d }, backend: e }), f = Ut({ inputs: { x: h }, backend: e, attrs: { axis: c, keepDims: !1 } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = Gn({ inputs: { a: h, b: m }, backend: e });
7138
+ }), u = Oe(l.shape, c), p = he({ inputs: { x: l }, backend: e, attrs: { shape: u } }), d = Kr({ inputs: { a: s, b: p }, backend: e }), h = Bu({ inputs: { x: d }, backend: e }), f = Ut({ inputs: { x: h }, backend: e, attrs: { axis: c, keepDims: !1 } }), m = he({ inputs: { x: f }, backend: e, attrs: { shape: u } }), x = Gn({ inputs: { a: h, b: m }, backend: e });
7136
7139
  return e.disposeIntermediateTensorInfo(l), e.disposeIntermediateTensorInfo(p), e.disposeIntermediateTensorInfo(d), e.disposeIntermediateTensorInfo(h), e.disposeIntermediateTensorInfo(f), e.disposeIntermediateTensorInfo(m), x;
7137
7140
  }
7138
7141
  const qx = {
@@ -7165,7 +7168,7 @@ function jx(o) {
7165
7168
  x[0] = p[m];
7166
7169
  for (let I = 1; I < x.length; ++I)
7167
7170
  x[I] = x[I - 1] + p[m + I];
7168
- const g = ih.alea(r.toString()), C = f * a;
7171
+ const g = zd.alea(r.toString()), C = f * a;
7169
7172
  for (let I = 0; I < a; ++I) {
7170
7173
  const b = g();
7171
7174
  h[C + I] = x.length;
@@ -7199,7 +7202,7 @@ const Yx = {
7199
7202
  * limitations under the License.
7200
7203
  * =============================================================================
7201
7204
  */
7202
- const Qx = Wr;
7205
+ const Qx = mi;
7203
7206
  function Zx(o) {
7204
7207
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c } = n;
7205
7208
  j(s, "NonMaxSuppression");
@@ -7227,7 +7230,7 @@ const Jx = {
7227
7230
  * limitations under the License.
7228
7231
  * =============================================================================
7229
7232
  */
7230
- const eC = Mr;
7233
+ const eC = gi;
7231
7234
  function tC(o) {
7232
7235
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, padToMaxOutputSize: l } = n;
7233
7236
  j(s, "NonMaxSuppressionPadded");
@@ -7258,7 +7261,7 @@ const sC = {
7258
7261
  * limitations under the License.
7259
7262
  * =============================================================================
7260
7263
  */
7261
- const nC = Br;
7264
+ const nC = xi;
7262
7265
  function oC(o) {
7263
7266
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, softNmsSigma: l } = n;
7264
7267
  j(s, "NonMaxSuppressionWithScore");
@@ -7842,7 +7845,7 @@ const AC = {
7842
7845
  kernelName: rr,
7843
7846
  backendName: "cpu",
7844
7847
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
7845
- const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = Ge(n.dtype, z(n.shape)), [l, u, p, d] = n.shape, [h, f] = bi(r, u, p), m = 255, x = Math.sin(s), g = Math.cos(s), C = i.data.get(n.dataId).values;
7848
+ const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = Ge(n.dtype, z(n.shape)), [l, u, p, d] = n.shape, [h, f] = pi(r, u, p), m = 255, x = Math.sin(s), g = Math.cos(s), C = i.data.get(n.dataId).values;
7846
7849
  for (let b = 0; b < l; b++) {
7847
7850
  const y = b * p * u * d;
7848
7851
  for (let $ = 0; $ < u; $++) {
@@ -8026,7 +8029,7 @@ const XC = {
8026
8029
  * limitations under the License.
8027
8030
  * =============================================================================
8028
8031
  */
8029
- const KC = Ur, qC = zr, jC = ue(Sn, (o) => o >= 0 ? qC * o : KC * (Math.exp(o) - 1)), YC = {
8032
+ const KC = Gr, qC = Br, jC = ue(Sn, (o) => o >= 0 ? qC * o : KC * (Math.exp(o) - 1)), YC = {
8030
8033
  kernelName: Sn,
8031
8034
  backendName: "cpu",
8032
8035
  kernelFunc: jC
@@ -8262,7 +8265,7 @@ function pb(o) {
8262
8265
  ${a.shape}`);
8263
8266
  if (s.shape[0] !== a.shape[0])
8264
8267
  throw new Error("segmentIds and indices should have same size.");
8265
- const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = Qr(r, n.shape, n.dtype, i, c, !0);
8268
+ const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = qr(r, n.shape, n.dtype, i, c, !0);
8266
8269
  return e.makeTensorInfo(u, n.dtype, l);
8267
8270
  }
8268
8271
  const hb = {
@@ -8298,7 +8301,7 @@ function fb(o) {
8298
8301
  ${a.shape}`);
8299
8302
  if (s.shape[0] !== a.shape[0])
8300
8303
  throw new Error("segmentIds and indices should have same size.");
8301
- const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = Qr(r, n.shape, n.dtype, i, c);
8304
+ const r = e.data.get(n.dataId).values, i = e.data.get(s.dataId).values, c = e.data.get(a.dataId).values, [l, u] = qr(r, n.shape, n.dtype, i, c);
8302
8305
  return e.makeTensorInfo(u, n.dtype, l);
8303
8306
  }
8304
8307
  const mb = {
@@ -8373,7 +8376,7 @@ const xb = {
8373
8376
  * =============================================================================
8374
8377
  */
8375
8378
  function Cb(o) {
8376
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = Ii(s, a, i), l = new Array(s.shape.length).fill(0), u = s.shape.slice();
8379
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = hi(s, a, i), l = new Array(s.shape.length).fill(0), u = s.shape.slice();
8377
8380
  return c.map((p) => {
8378
8381
  const d = [...u];
8379
8382
  d[i] = p;
@@ -8459,13 +8462,13 @@ const yb = ue(En, (o, t) => {
8459
8462
  function kb(o) {
8460
8463
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n;
8461
8464
  j(s, "stridedSlice");
8462
- const { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = Hr(s.shape, a, r, i, c, l, u, p, d);
8465
+ const { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = zr(s.shape, a, r, i, c, l, u, p, d);
8463
8466
  let y;
8464
8467
  if (m)
8465
8468
  y = he({ inputs: { x: s }, backend: e, attrs: { shape: f } });
8466
8469
  else if (x || g) {
8467
8470
  Y(s.shape.length >= 1, () => `Input must have rank at least 1, got: ${s.shape.length}`);
8468
- const $ = Xr(C, I, b), k = gt({ inputs: { x: s }, backend: e, attrs: { begin: C, size: $ } });
8471
+ const $ = Ur(C, I, b), k = gt({ inputs: { x: s }, backend: e, attrs: { begin: C, size: $ } });
8469
8472
  y = he({ inputs: { x: k }, backend: e, attrs: { shape: f } }), e.disposeIntermediateTensorInfo(k);
8470
8473
  } else {
8471
8474
  const $ = e.bufferSync(s), k = qu(h, $, b, C);
@@ -9148,17 +9151,17 @@ K.registerFlag("WEBGL_PACK_REDUCE", () => K.getBool("WEBGL_PACK"));
9148
9151
  K.registerFlag("WEBGL_LAZILY_UNPACK", () => K.getBool("WEBGL_PACK"));
9149
9152
  K.registerFlag("WEBGL_CONV_IM2COL", () => K.getBool("WEBGL_PACK"));
9150
9153
  K.registerFlag("WEBGL_PACK_CONV2DTRANSPOSE", () => K.getBool("WEBGL_PACK"));
9151
- K.registerFlag("WEBGL_MAX_TEXTURE_SIZE", () => Dp(K.getNumber("WEBGL_VERSION")));
9152
- K.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER", () => Ep(K.getNumber("WEBGL_VERSION")));
9154
+ K.registerFlag("WEBGL_MAX_TEXTURE_SIZE", () => Ud(K.getNumber("WEBGL_VERSION")));
9155
+ K.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER", () => Hd(K.getNumber("WEBGL_VERSION")));
9153
9156
  K.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION", () => {
9154
9157
  const o = K.getNumber("WEBGL_VERSION");
9155
- return o === 0 ? 0 : Fp(o);
9158
+ return o === 0 ? 0 : Xd(o);
9156
9159
  });
9157
9160
  K.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE", () => K.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 && !Sr());
9158
- K.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE", () => Pp(K.getNumber("WEBGL_VERSION")));
9161
+ K.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE", () => Kd(K.getNumber("WEBGL_VERSION")));
9159
9162
  K.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED", () => K.getBool("WEBGL_FORCE_F16_TEXTURES") ? !1 : K.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));
9160
- K.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED", () => Op(K.getNumber("WEBGL_VERSION")));
9161
- K.registerFlag("WEBGL_FENCE_API_ENABLED", () => Ap(K.getNumber("WEBGL_VERSION")));
9163
+ K.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED", () => qd(K.getNumber("WEBGL_VERSION")));
9164
+ K.registerFlag("WEBGL_FENCE_API_ENABLED", () => jd(K.getNumber("WEBGL_VERSION")));
9162
9165
  K.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM", () => K.getBool("WEBGL_RENDER_FLOAT32_ENABLED") ? 4 : 0);
9163
9166
  K.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD", () => -1, (o) => {
9164
9167
  if (typeof o != "number")
@@ -9204,7 +9207,7 @@ class s1 {
9204
9207
  const e = ze();
9205
9208
  this.outputShape = t, this.enableShapeUniforms = We(this.outputShape.length), this.userCode = `
9206
9209
  ivec3 outCoordsFromFlatIndex(int index) {
9207
- ${this.enableShapeUniforms ? yi(["r", "c", "d"], t) : $i(["r", "c", "d"], t)}
9210
+ ${this.enableShapeUniforms ? Ci(["r", "c", "d"], t) : bi(["r", "c", "d"], t)}
9208
9211
  return ivec3(r, c, d);
9209
9212
  }
9210
9213
 
@@ -9247,7 +9250,7 @@ class n1 {
9247
9250
  const e = ze();
9248
9251
  this.outputShape = t, this.enableShapeUniforms = We(this.outputShape.length), this.userCode = `
9249
9252
  ivec3 outCoordsFromFlatIndex(int index) {
9250
- ${this.enableShapeUniforms ? yi(["r", "c", "d"], t) : $i(["r", "c", "d"], t)}
9253
+ ${this.enableShapeUniforms ? Ci(["r", "c", "d"], t) : bi(["r", "c", "d"], t)}
9251
9254
  return ivec3(r, c, d);
9252
9255
  }
9253
9256
 
@@ -9289,7 +9292,7 @@ class o1 {
9289
9292
  this.variableNames = ["A"], this.outTexUsage = _e.DOWNLOAD;
9290
9293
  const e = ze();
9291
9294
  this.outputShape = t, this.userCode = `
9292
- ${ki}
9295
+ ${Ii}
9293
9296
 
9294
9297
  void main() {
9295
9298
  float x = getAAtOutCoords();
@@ -9319,7 +9322,7 @@ class a1 {
9319
9322
  this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !1, this.outTexUsage = _e.DOWNLOAD;
9320
9323
  const e = ze();
9321
9324
  this.outputShape = t, this.userCode = `
9322
- ${ki}
9325
+ ${Ii}
9323
9326
 
9324
9327
  void main() {
9325
9328
  ivec3 coords = getOutputCoords();
@@ -9367,7 +9370,7 @@ class io {
9367
9370
  }`;
9368
9371
  }
9369
9372
  this.userCode = `
9370
- ${this.enableShapeUniforms ? wi() : Ni(t)}
9373
+ ${this.enableShapeUniforms ? yi() : $i(t)}
9371
9374
 
9372
9375
  void main() {
9373
9376
  ivec3 coords = getOutputCoords();
@@ -9446,7 +9449,7 @@ class i1 {
9446
9449
  `;
9447
9450
  }
9448
9451
  this.userCode = `
9449
- ${this.enableShapeUniforms ? wi() : Ni(t)}
9452
+ ${this.enableShapeUniforms ? yi() : $i(t)}
9450
9453
 
9451
9454
  void main() {
9452
9455
  ivec3 coords = getOutputCoords();
@@ -9491,19 +9494,19 @@ function c1(o) {
9491
9494
  gl_Position = vec4(clipSpacePos, 1);
9492
9495
  resultUV = uv;
9493
9496
  }`;
9494
- return Vp(o, e);
9497
+ return Zd(o, e);
9495
9498
  }
9496
9499
  function l1(o) {
9497
9500
  const t = new Float32Array([-1, 1, 0, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 0]);
9498
- return _p(o, t);
9501
+ return Yd(o, t);
9499
9502
  }
9500
9503
  function u1(o) {
9501
9504
  const t = new Uint16Array([0, 1, 2, 2, 1, 3]);
9502
- return Lp(o, t);
9505
+ return Qd(o, t);
9503
9506
  }
9504
9507
  function Ht(o, t, e, n, s, a) {
9505
- Wp(t, e);
9506
- const r = Mp(o), i = o.TEXTURE_2D;
9508
+ Jd(t, e);
9509
+ const r = ep(o), i = o.TEXTURE_2D;
9507
9510
  return Z(o, () => o.bindTexture(i, r)), Z(o, () => o.texParameteri(i, o.TEXTURE_WRAP_S, o.CLAMP_TO_EDGE)), Z(o, () => o.texParameteri(i, o.TEXTURE_WRAP_T, o.CLAMP_TO_EDGE)), Z(o, () => o.texParameteri(i, o.TEXTURE_MIN_FILTER, o.NEAREST)), Z(o, () => o.texParameteri(i, o.TEXTURE_MAG_FILTER, o.NEAREST)), L().getNumber("WEBGL_VERSION") === 1 ? Z(o, () => o.texImage2D(i, 0, n, t, e, 0, s, a, null)) : Z(o, () => o.texStorage2D(i, 1, n, t, e)), Z(o, () => o.bindTexture(o.TEXTURE_2D, null)), { texture: r, texShape: [e, t] };
9508
9511
  }
9509
9512
  function ji(o) {
@@ -9563,11 +9566,11 @@ function I1(o, t, e) {
9563
9566
  return n.bindBuffer(n.PIXEL_PACK_BUFFER, t), n.getBufferSubData(n.PIXEL_PACK_BUFFER, 0, s), n.bindBuffer(n.PIXEL_PACK_BUFFER, null), s;
9564
9567
  }
9565
9568
  function y1(o, t, e, n) {
9566
- const [s, a] = Mt(t, e), r = 4, i = new Uint8Array(Bp(t * e, r));
9569
+ const [s, a] = Mt(t, e), r = 4, i = new Uint8Array(tp(t * e, r));
9567
9570
  return Z(o, () => o.readPixels(0, 0, s, a, n.downloadTextureFormat, o.UNSIGNED_BYTE, i)), new Float32Array(i.buffer);
9568
9571
  }
9569
9572
  function $1(o, t, e, n, s, a, r, i) {
9570
- const c = o, l = new Float32Array(Gp(a, r));
9573
+ const c = o, l = new Float32Array(sp(a, r));
9571
9574
  return c.bindBuffer(c.PIXEL_PACK_BUFFER, t), c.getBufferSubData(c.PIXEL_PACK_BUFFER, 0, l), c.bindBuffer(c.PIXEL_PACK_BUFFER, null), l;
9572
9575
  }
9573
9576
  function k1(o, t, e) {
@@ -9594,7 +9597,7 @@ class Ms {
9594
9597
  constructor(t) {
9595
9598
  this.outputTexture = null, this.program = null, this.disposed = !1, this.itemsToPoll = [];
9596
9599
  const e = L().getNumber("WEBGL_VERSION");
9597
- if (t != null ? (this.gl = t, Yp(e, t)) : this.gl = Ks(e), t = this.gl, L().getNumber("WEBGL_VERSION") === 2) {
9600
+ if (t != null ? (this.gl = t, up(e, t)) : this.gl = Ks(e), t = this.gl, L().getNumber("WEBGL_VERSION") === 2) {
9598
9601
  const a = t;
9599
9602
  this.createVertexArray = () => Z(a, () => a.createVertexArray()), this.bindVertexArray = (r) => Z(a, () => a.bindVertexArray(r)), this.deleteVertexArray = (r) => Z(a, () => a.deleteVertexArray(r)), this.getVertexArray = () => Z(a, () => a.getParameter(a.VERTEX_ARRAY_BINDING));
9600
9603
  } else if (t != null) {
@@ -9621,7 +9624,7 @@ class Ms {
9621
9624
  this.colorBufferHalfFloatExtension = this.gl.getExtension(s);
9622
9625
  else
9623
9626
  throw new Error("GL context does not support color renderable floats");
9624
- this.vertexBuffer = l1(this.gl), this.indexBuffer = u1(this.gl), this.framebuffer = zp(this.gl), this.textureConfig = Up(this.gl, this.textureHalfFloatExtension);
9627
+ this.vertexBuffer = l1(this.gl), this.indexBuffer = u1(this.gl), this.framebuffer = np(this.gl), this.textureConfig = op(this.gl, this.textureHalfFloatExtension);
9625
9628
  }
9626
9629
  get debug() {
9627
9630
  return L().getBool("DEBUG");
@@ -9693,8 +9696,8 @@ class Ms {
9693
9696
  this.throwIfDisposed();
9694
9697
  const e = this.gl;
9695
9698
  this.vertexShader == null && (this.vertexShader = c1(e));
9696
- const n = Hp(e);
9697
- Z(e, () => e.attachShader(n, this.vertexShader)), Z(e, () => e.attachShader(n, t)), Xp(e, n);
9699
+ const n = ap(e);
9700
+ Z(e, () => e.attachShader(n, this.vertexShader)), Z(e, () => e.attachShader(n, t)), rp(e, n);
9698
9701
  const s = Object.assign(n, { vao: this.createVertexArray() });
9699
9702
  return this.debug && Vs(e, s), s;
9700
9703
  }
@@ -9710,7 +9713,7 @@ class Ms {
9710
9713
  this.throwIfDisposed(), this.program = t, this.program != null && this.debug && Vs(this.gl, this.program), Z(this.gl, () => this.gl.useProgram(t));
9711
9714
  }
9712
9715
  getUniformLocation(t, e, n = !0) {
9713
- return this.throwIfDisposed(), n ? Kp(this.gl, t, e) : qp(this.gl, t, e);
9716
+ return this.throwIfDisposed(), n ? ip(this.gl, t, e) : cp(this.gl, t, e);
9714
9717
  }
9715
9718
  getAttributeLocation(t, e) {
9716
9719
  return this.throwIfDisposed(), Z(this.gl, () => this.gl.getAttribLocation(t, e));
@@ -9719,7 +9722,7 @@ class Ms {
9719
9722
  return this.throwIfDisposed(), this.gl.getUniformLocation(t, e);
9720
9723
  }
9721
9724
  setInputMatrixTexture(t, e, n) {
9722
- this.throwIfDisposed(), this.throwIfNoProgram(), jp(this.gl, t, e, n);
9725
+ this.throwIfDisposed(), this.throwIfNoProgram(), lp(this.gl, t, e, n);
9723
9726
  }
9724
9727
  setOutputMatrixTexture(t, e, n) {
9725
9728
  this.setOutputMatrixTextureDriver(t, n, e);
@@ -10297,7 +10300,7 @@ class Os extends _o {
10297
10300
  if (t != null)
10298
10301
  for (let e = 0; e < t.length; e++) {
10299
10302
  const n = t[e];
10300
- if (!Qp(n))
10303
+ if (!dp(n))
10301
10304
  throw L().getBool("WEBGL_RENDER_FLOAT32_CAPABLE") ? Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`) : Error(`The value ${n} cannot be represented on this device.`);
10302
10305
  }
10303
10306
  }
@@ -10423,7 +10426,7 @@ class Os extends _o {
10423
10426
  // Also remove the op from unary_op.
10424
10427
  abs(t) {
10425
10428
  if (this.shouldExecuteOnCPU([t]) && t.dtype !== "complex64") {
10426
- const s = Zr(this.texData.get(t.dataId).values);
10429
+ const s = wi(this.texData.get(t.dataId).values);
10427
10430
  return this.makeOutput(t.shape, t.dtype, s);
10428
10431
  }
10429
10432
  if (L().getBool("WEBGL_PACK_UNARY_OPERATIONS"))
@@ -10501,16 +10504,16 @@ class Os extends _o {
10501
10504
  }
10502
10505
  if (this.uploadToGPU(g.dataId), !!C.isPacked != !!t.packedInputs)
10503
10506
  g = C.isPacked ? this.unpackTensor(g) : this.packTensor(g), l.push(g), C = this.texData.get(g.dataId);
10504
- else if (C.isPacked && !vi(C.shape, g.shape)) {
10507
+ else if (C.isPacked && !ki(C.shape, g.shape)) {
10505
10508
  const I = g, b = g.shape;
10506
10509
  g.shape = C.shape, g = this.packedReshape(g, b), l.push(g), C = this.texData.get(g.dataId), I.shape = b;
10507
10510
  }
10508
10511
  return { shape: g.shape, texData: C, isUniform: !1 };
10509
10512
  });
10510
10513
  this.uploadToGPU(i.dataId);
10511
- const p = { shape: i.shape, texData: c, isUniform: !1 }, d = Zp(t, u, p), h = this.getAndSaveBinary(d, () => Jp(this.gpgpu, t, u, p)), f = this.activeTimers != null;
10514
+ const p = { shape: i.shape, texData: c, isUniform: !1 }, d = pp(t, u, p), h = this.getAndSaveBinary(d, () => hp(this.gpgpu, t, u, p)), f = this.activeTimers != null;
10512
10515
  let m;
10513
- f && (m = this.startTimer()), L().get("ENGINE_COMPILE_ONLY") || eh(this.gpgpu, h, u, p, s), l.forEach((g) => this.disposeIntermediateTensorInfo(g)), f && (m = this.endTimer(m), this.activeTimers.push({ name: t.constructor.name, query: this.getQueryTime(m) }));
10516
+ f && (m = this.startTimer()), L().get("ENGINE_COMPILE_ONLY") || fp(this.gpgpu, h, u, p, s), l.forEach((g) => this.disposeIntermediateTensorInfo(g)), f && (m = this.endTimer(m), this.activeTimers.push({ name: t.constructor.name, query: this.getQueryTime(m) }));
10514
10517
  const x = L().getNumber("WEBGL_FLUSH_THRESHOLD");
10515
10518
  if (x > 0) {
10516
10519
  const g = Ke();
@@ -10560,7 +10563,7 @@ class Os extends _o {
10560
10563
  let u;
10561
10564
  l && (u = Ke());
10562
10565
  let p = e.texShape;
10563
- if (p == null && (p = th(n, c), e.texShape = p), a != null) {
10566
+ if (p == null && (p = mp(n, c), e.texShape = p), a != null) {
10564
10567
  const d = Zt(n);
10565
10568
  let h, f = p[1], m = p[0];
10566
10569
  const x = a instanceof Uint8Array || a instanceof Uint8ClampedArray;
@@ -10617,13 +10620,13 @@ class Os extends _o {
10617
10620
  }
10618
10621
  checkCompletion_(t) {
10619
10622
  if (this.gpgpu.gl.getProgramParameter(t.webGLProgram, this.gpgpu.gl.LINK_STATUS) === !1)
10620
- throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)), this.gpgpu.gl.getShaderParameter(t.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === !1 ? (sh(t.source, this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)), new Error("Failed to compile fragment shader.")) : new Error("Failed to link vertex and fragment shaders.");
10623
+ throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)), this.gpgpu.gl.getShaderParameter(t.fragmentShader, this.gpgpu.gl.COMPILE_STATUS) === !1 ? (gp(t.source, this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)), new Error("Failed to compile fragment shader.")) : new Error("Failed to link vertex and fragment shaders.");
10621
10624
  return !0;
10622
10625
  }
10623
10626
  getUniformLocations() {
10624
10627
  for (const t of Object.values(this.binaryCache)) {
10625
10628
  this.gpgpu.buildVao(t.webGLProgram);
10626
- const { variablesLocations: e, customUniformLocations: n, infLoc: s, nanLoc: a, outShapeLocation: r, outShapeStridesLocation: i, outTexShapeLocation: c } = nh(this.gpgpu, t.program, t.webGLProgram);
10629
+ const { variablesLocations: e, customUniformLocations: n, infLoc: s, nanLoc: a, outShapeLocation: r, outShapeStridesLocation: i, outTexShapeLocation: c } = xp(this.gpgpu, t.program, t.webGLProgram);
10627
10630
  t.variablesLocations = e, t.customUniformLocations = n, t.infLoc = s, t.nanLoc = a, t.outShapeLocation = r, t.outShapeStridesLocation = i, t.outTexShapeLocation = c;
10628
10631
  }
10629
10632
  }
@@ -10757,7 +10760,7 @@ function Un(o) {
10757
10760
  return e.disposeIntermediateTensorInfo(d), e.disposeIntermediateTensorInfo(h), f;
10758
10761
  }
10759
10762
  if (e.shouldExecuteOnCPU([n, s])) {
10760
- const i = e.texData.get(n.dataId), c = e.texData.get(s.dataId), [l, u] = Od(n.shape, s.shape, i.values, c.values, a), p = e.makeTensorInfo(u, a), d = e.texData.get(p.dataId);
10763
+ const i = e.texData.get(n.dataId), c = e.texData.get(s.dataId), [l, u] = Cp(n.shape, s.shape, i.values, c.values, a), p = e.makeTensorInfo(u, a), d = e.texData.get(p.dataId);
10761
10764
  return d.values = l, p;
10762
10765
  }
10763
10766
  let r;
@@ -10790,7 +10793,7 @@ function ve(o) {
10790
10793
  c[u] = s.shape[a[u]];
10791
10794
  let l;
10792
10795
  if (r.shouldExecuteOnCPU([s])) {
10793
- const p = r.texData.get(s.dataId).values, d = Jr(p, s.shape, s.dtype, a, c);
10796
+ const p = r.texData.get(s.dataId).values, d = Ni(p, s.shape, s.dtype, a, c);
10794
10797
  l = r.makeTensorInfo(c, s.dtype);
10795
10798
  const h = r.texData.get(l.dataId);
10796
10799
  h.values = d;
@@ -10913,7 +10916,7 @@ const mo = "return abs(x);";
10913
10916
  function z1(o) {
10914
10917
  const { inputs: t, backend: e } = o, { x: n } = t;
10915
10918
  if (e.shouldExecuteOnCPU([n]) && n.dtype !== "complex64") {
10916
- const a = e.texData.get(n.dataId), r = Zr(a.values);
10919
+ const a = e.texData.get(n.dataId), r = wi(a.values);
10917
10920
  return e.makeTensorInfo(n.shape, n.dtype, r);
10918
10921
  }
10919
10922
  let s;
@@ -10993,7 +10996,7 @@ const go = "return a + b;", Q1 = ke({
10993
10996
  opSnippet: go,
10994
10997
  packedOpSnippet: go,
10995
10998
  supportsComplex: !0,
10996
- cpuKernelImpl: Ad
10999
+ cpuKernelImpl: bp
10997
11000
  }), Z1 = {
10998
11001
  kernelName: Qc,
10999
11002
  backendName: "webgl",
@@ -11332,7 +11335,7 @@ class iI {
11332
11335
  function tc(o, t, e, n = null) {
11333
11336
  let s = t.shape[0], a = t.shape[1];
11334
11337
  n != null && (s = n.shape[0], a = n.shape[1]);
11335
- const r = Si(a), i = { windowSize: r, inSize: a, batchSize: s, outSize: Math.ceil(a / r) }, c = new rI(i, e, n == null), l = [t];
11338
+ const r = fi(a), i = { windowSize: r, inSize: a, batchSize: s, outSize: Math.ceil(a / r) }, c = new rI(i, e, n == null), l = [t];
11336
11339
  n != null && l.push(n);
11337
11340
  const u = o.runWebGLProgram(c, l, "int32");
11338
11341
  if (u.shape[1] === 1)
@@ -11341,7 +11344,7 @@ function tc(o, t, e, n = null) {
11341
11344
  return o.disposeIntermediateTensorInfo(u), p;
11342
11345
  }
11343
11346
  function sc(o, t, e, n = null) {
11344
- const s = n != null ? n.shape : t.shape, a = s[s.length - 1], r = Si(a), i = new iI(s, r, e, n == null), c = n == null ? [t] : [t, n], l = o.runWebGLProgram(i, c, "int32");
11347
+ const s = n != null ? n.shape : t.shape, a = s[s.length - 1], r = fi(a), i = new iI(s, r, e, n == null), c = n == null ? [t] : [t, n], l = o.runWebGLProgram(i, c, "int32");
11345
11348
  if (l.shape.length === t.shape.length) {
11346
11349
  const u = sc(o, t, e, l);
11347
11350
  return o.disposeIntermediateTensorInfo(l), u;
@@ -12390,7 +12393,7 @@ class XI {
12390
12393
  function KI(o, t, e, n) {
12391
12394
  const s = n.texData.get(o.dataId), a = n.makeTensorInfo(e, o.dtype), r = n.texData.get(a.dataId);
12392
12395
  Object.assign(r, s), r.refCount = 1, r.shape = e, r.dtype = o.dtype;
12393
- let i = Iu(t, ne(o.shape));
12396
+ let i = yu(t, ne(o.shape));
12394
12397
  s.slice && (i += s.slice.flatOffset), r.slice = {
12395
12398
  flatOffset: i,
12396
12399
  // Point to the original dataId, which is used to do ref counting.
@@ -12400,14 +12403,14 @@ function KI(o, t, e, n) {
12400
12403
  return n.dataRefCount.set(r.slice.origDataId, c + 1), a;
12401
12404
  }
12402
12405
  function St(o) {
12403
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, size: r } = n, [i, c] = xu(s, a, r);
12404
- if (Cu(s, i, c), z(c) === 0)
12406
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, size: r } = n, [i, c] = Cu(s, a, r);
12407
+ if (bu(s, i, c), z(c) === 0)
12405
12408
  return e.makeTensorInfo(c, s.dtype, []);
12406
12409
  if (e.shouldExecuteOnCPU([s]) || s.dtype === "string") {
12407
- const p = e.texData.get(s.dataId), d = _d(p.values, i, c, s.shape, s.dtype);
12410
+ const p = e.texData.get(s.dataId), d = Ip(p.values, i, c, s.shape, s.dtype);
12408
12411
  return e.makeTensorInfo(c, s.dtype, d);
12409
12412
  }
12410
- const { isPacked: l } = e.texData.get(s.dataId), u = bu(s.shape, i, c);
12413
+ const { isPacked: l } = e.texData.get(s.dataId), u = Iu(s.shape, i, c);
12411
12414
  if (l || !u) {
12412
12415
  const p = L().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new XI(c) : new UI(c), d = [i];
12413
12416
  return e.runWebGLProgram(p, [s], s.dtype, d);
@@ -12438,7 +12441,7 @@ const qI = {
12438
12441
  const jI = (o) => {
12439
12442
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { blockShape: a, crops: r } = n;
12440
12443
  Y(s.shape.length <= 4, () => "batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");
12441
- const i = a.reduce((C, I) => C * I), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = si(r, a.length), d = ni(u, r, a.length), h = [], f = H({ inputs: { x: s }, backend: e, attrs: { shape: c } }), m = ve({ inputs: { x: f }, backend: e, attrs: { perm: l } }), x = H({
12444
+ const i = a.reduce((C, I) => C * I), c = Ts(s.shape, a, i), l = Ds(c.length, a.length), u = Es(s.shape, a, i), p = jr(r, a.length), d = Yr(u, r, a.length), h = [], f = H({ inputs: { x: s }, backend: e, attrs: { shape: c } }), m = ve({ inputs: { x: f }, backend: e, attrs: { perm: l } }), x = H({
12442
12445
  inputs: { x: m },
12443
12446
  backend: e,
12444
12447
  attrs: { shape: u }
@@ -12470,7 +12473,7 @@ const jI = (o) => {
12470
12473
  * =============================================================================
12471
12474
  */
12472
12475
  function QI(o) {
12473
- const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.readSync(s.dataId), c = e.readSync(a.dataId), l = ei(i, c, a.dtype, a.shape, r);
12476
+ const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r } = n, i = e.readSync(s.dataId), c = e.readSync(a.dataId), l = vi(i, c, a.dtype, a.shape, r);
12474
12477
  return e.makeTensorInfo([r], a.dtype, l);
12475
12478
  }
12476
12479
  const ZI = {
@@ -12506,7 +12509,7 @@ const JI = `
12506
12509
  function ty(o) {
12507
12510
  const { inputs: t, backend: e } = o, { a: n, b: s } = t, a = L().getBool("WEBGL_PACK_BINARY_OPERATIONS"), r = L().getNumber("WEBGL_VERSION");
12508
12511
  if (e.shouldExecuteOnCPU([n, s]) || r === 1) {
12509
- const c = e.texData.get(n.dataId).values, l = e.texData.get(s.dataId).values, [u, p] = Ld(n.shape, s.shape, c, l, n.dtype), d = e.makeTensorInfo(p, n.dtype), h = e.texData.get(d.dataId);
12512
+ const c = e.texData.get(n.dataId).values, l = e.texData.get(s.dataId).values, [u, p] = yp(n.shape, s.shape, c, l, n.dtype), d = e.makeTensorInfo(p, n.dtype), h = e.texData.get(d.dataId);
12510
12513
  return h.values = u, d;
12511
12514
  }
12512
12515
  let i;
@@ -12558,7 +12561,7 @@ const oy = {
12558
12561
  * limitations under the License.
12559
12562
  * =============================================================================
12560
12563
  */
12561
- const ay = "return float(a != b);", oc = ke({ opSnippet: ay, cpuKernelImpl: Vd, dtype: "bool" }), ry = {
12564
+ const ay = "return float(a != b);", oc = ke({ opSnippet: ay, cpuKernelImpl: $p, dtype: "bool" }), ry = {
12562
12565
  kernelName: el,
12563
12566
  backendName: "webgl",
12564
12567
  kernelFunc: oc
@@ -12630,7 +12633,7 @@ function Zs(o) {
12630
12633
  if (a === "complex64") {
12631
12634
  if (s.dtype === "complex64")
12632
12635
  return Le({ inputs: { x: s }, backend: e });
12633
- const r = qr(s.shape), i = Zs({ inputs: { x: s }, backend: e, attrs: { dtype: "float32" } }), c = Nt({ inputs: { real: i, imag: r }, backend: e });
12636
+ const r = Hr(s.shape), i = Zs({ inputs: { x: s }, backend: e, attrs: { dtype: "float32" } }), c = Nt({ inputs: { real: i, imag: r }, backend: e });
12634
12637
  return r.dispose(), e.disposeIntermediateTensorInfo(i), c;
12635
12638
  }
12636
12639
  if (s.dtype === "complex64") {
@@ -12642,7 +12645,7 @@ function Zs(o) {
12642
12645
  return { dataId: r.dataId, shape: r.shape, dtype: a };
12643
12646
  }
12644
12647
  if (e.shouldExecuteOnCPU([s])) {
12645
- const r = e.texData.get(s.dataId).values, [i, c, l] = Wd(r, s.shape, s.dtype, a);
12648
+ const r = e.texData.get(s.dataId).values, [i, c, l] = kp(r, s.shape, s.dtype, a);
12646
12649
  return e.makeTensorInfo(i, c, l);
12647
12650
  }
12648
12651
  if (a === "int32")
@@ -12674,7 +12677,7 @@ const uy = {
12674
12677
  * limitations under the License.
12675
12678
  * =============================================================================
12676
12679
  */
12677
- const xo = "return ceil(x);", dy = ae({ opSnippet: xo, packedOpSnippet: xo, cpuKernelImpl: Md }), py = {
12680
+ const xo = "return ceil(x);", dy = ae({ opSnippet: xo, packedOpSnippet: xo, cpuKernelImpl: wp }), py = {
12678
12681
  kernelName: To,
12679
12682
  backendName: "webgl",
12680
12683
  kernelFunc: dy
@@ -13024,7 +13027,7 @@ function Et(o, t, e) {
13024
13027
  h.map((b) => b.shape),
13025
13028
  1
13026
13029
  /* axis */
13027
- ), x = h[0].shape[0] === 1, g = Bd(f, m, n, x), C = je(o.map((b) => b.shape), t), I = e.makeTensorInfo(C, n, g);
13030
+ ), x = h[0].shape[0] === 1, g = Np(f, m, n, x), C = je(o.map((b) => b.shape), t), I = e.makeTensorInfo(C, n, g);
13028
13031
  return h.forEach((b) => e.disposeIntermediateTensorInfo(b)), I;
13029
13032
  }
13030
13033
  const a = o.filter((h) => z(h.shape) > 0), r = L().getBool("WEBGL_PACK_ARRAY_OPERATIONS") && a[0].shape.length > 1;
@@ -13079,7 +13082,7 @@ function ky(o, t, e) {
13079
13082
  */
13080
13083
  function ac(o) {
13081
13084
  const { inputs: t, backend: e, attrs: n } = o, { axis: s } = n, a = me(s, t[0].shape)[0], r = t.map((l) => l.shape);
13082
- oi(r, a);
13085
+ Qr(r, a);
13083
13086
  const i = je(t.map((l) => l.shape), a);
13084
13087
  if (z(i) === 0)
13085
13088
  return e.makeTensorInfo(i, t[0].dtype, []);
@@ -13726,7 +13729,7 @@ function cc({ x: o, filter: t, convInfo: e, backend: n, bias: s = null, preluAct
13726
13729
  shape: [1, b, e.inChannels],
13727
13730
  dtype: o.dtype
13728
13731
  }, $ = l.shape;
13729
- l.shape = l.shape.slice(), l.shape[l.shape.length - 2]++, Y(vi(l.shape, y.shape), () => `packed reshape ${l.shape} to ${y.shape} isn't free`);
13732
+ l.shape = l.shape.slice(), l.shape[l.shape.length - 2]++, Y(ki(l.shape, y.shape), () => `packed reshape ${l.shape} to ${y.shape} isn't free`);
13730
13733
  const k = H({
13731
13734
  inputs: { x: t },
13732
13735
  backend: n,
@@ -14655,10 +14658,10 @@ const n0 = {
14655
14658
  function o0(o) {
14656
14659
  const { inputs: t, backend: e, attrs: n } = o, { x: s, weights: a } = t, { size: r, binaryOutput: i } = n;
14657
14660
  if (s.shape.length === 1) {
14658
- const c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = ei(c, l, a.dtype, a.shape, r);
14661
+ const c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = vi(c, l, a.dtype, a.shape, r);
14659
14662
  return e.makeTensorInfo([r], a.dtype, u);
14660
14663
  } else if (s.shape.length === 2) {
14661
- const c = e.bufferSync(s), l = e.bufferSync(a), u = Gd(c, l, r, i);
14664
+ const c = e.bufferSync(s), l = e.bufferSync(a), u = vp(c, l, r, i);
14662
14665
  return e.makeTensorInfo(u.shape, a.dtype, u.values);
14663
14666
  }
14664
14667
  throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`);
@@ -15453,16 +15456,16 @@ const $0 = {
15453
15456
  * =============================================================================
15454
15457
  */
15455
15458
  function k0(o) {
15456
- const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = ai(s, a.length);
15457
- ri(r.length, c, a);
15458
- const { path: l, steps: u } = ii(i, c), p = u.length;
15459
+ const { inputs: t, backend: e, attrs: n } = o, { equation: s } = n, a = t, { allDims: r, summedDims: i, idDims: c } = Zr(s, a.length);
15460
+ Jr(r.length, c, a);
15461
+ const { path: l, steps: u } = ei(i, c), p = u.length;
15459
15462
  let d = null, h = r.length;
15460
15463
  const f = [];
15461
15464
  for (let m = 0; m < p; ++m) {
15462
15465
  for (const x of u[m]) {
15463
- const { permutationIndices: g, expandDims: C } = ci(h, c[x]);
15466
+ const { permutationIndices: g, expandDims: C } = ti(h, c[x]);
15464
15467
  let I;
15465
- li(g) ? I = a[x] : (I = ve({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
15468
+ si(g) ? I = a[x] : (I = ve({ inputs: { x: a[x] }, backend: e, attrs: { perm: g } }), f.push(I));
15466
15469
  const b = I.shape.slice();
15467
15470
  for (let y = 0; y < C.length; ++y)
15468
15471
  b.splice(C[y], 0, 1);
@@ -15565,7 +15568,7 @@ const P0 = `
15565
15568
  opSnippet: O0,
15566
15569
  packedOpSnippet: P0,
15567
15570
  dtype: "bool",
15568
- cpuKernelImpl: zd
15571
+ cpuKernelImpl: Sp
15569
15572
  }), _0 = {
15570
15573
  kernelName: ol,
15571
15574
  backendName: "webgl",
@@ -15591,12 +15594,12 @@ const L0 = `
15591
15594
  // Error function is calculated approximately with elementary function.
15592
15595
  // See "Handbook of Mathematical Functions with Formulas,
15593
15596
  // Graphs, and Mathematical Tables", Abramowitz and Stegun.
15594
- float p = ${mi};
15595
- float a1 = ${fi};
15596
- float a2 = ${hi};
15597
- float a3 = ${pi};
15598
- float a4 = ${di};
15599
- float a5 = ${ui};
15597
+ float p = ${ci};
15598
+ float a1 = ${ii};
15599
+ float a2 = ${ri};
15600
+ float a3 = ${ai};
15601
+ float a4 = ${oi};
15602
+ float a5 = ${ni};
15600
15603
 
15601
15604
  float sign = sign(x);
15602
15605
  x = abs(x);
@@ -15637,7 +15640,7 @@ const M0 = vt + `
15637
15640
  `, hc = ae({
15638
15641
  opSnippet: M0,
15639
15642
  packedOpSnippet: B0,
15640
- cpuKernelImpl: Ud,
15643
+ cpuKernelImpl: Rp,
15641
15644
  dtype: "float32"
15642
15645
  }), G0 = {
15643
15646
  kernelName: al,
@@ -15686,7 +15689,7 @@ const z0 = {
15686
15689
  * limitations under the License.
15687
15690
  * =============================================================================
15688
15691
  */
15689
- const $o = "return exp(x) - 1.0;", U0 = ae({ opSnippet: $o, packedOpSnippet: $o, cpuKernelImpl: Hd }), H0 = {
15692
+ const $o = "return exp(x) - 1.0;", U0 = ae({ opSnippet: $o, packedOpSnippet: $o, cpuKernelImpl: Tp }), H0 = {
15690
15693
  kernelName: Eo,
15691
15694
  backendName: "webgl",
15692
15695
  kernelFunc: U0
@@ -15949,7 +15952,7 @@ const Q0 = {
15949
15952
  * limitations under the License.
15950
15953
  * =============================================================================
15951
15954
  */
15952
- const wo = "return floor(x);", Z0 = ae({ opSnippet: wo, packedOpSnippet: wo, cpuKernelImpl: Xd }), J0 = {
15955
+ const wo = "return floor(x);", Z0 = ae({ opSnippet: wo, packedOpSnippet: wo, cpuKernelImpl: Dp }), J0 = {
15953
15956
  kernelName: rl,
15954
15957
  backendName: "webgl",
15955
15958
  kernelFunc: Z0
@@ -16316,13 +16319,13 @@ class p$ {
16316
16319
  * =============================================================================
16317
16320
  */
16318
16321
  function h$(o) {
16319
- const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = s.shape, r = a[a.length - 1], i = z(n.shape), [c, l, u, p] = xi(n, s), d = H({ inputs: { x: s }, backend: e, attrs: { shape: [l, r] } }), h = H({
16322
+ const { inputs: t, backend: e } = o, { params: n, indices: s } = t, a = s.shape, r = a[a.length - 1], i = z(n.shape), [c, l, u, p] = ui(n, s), d = H({ inputs: { x: s }, backend: e, attrs: { shape: [l, r] } }), h = H({
16320
16323
  inputs: { x: n },
16321
16324
  backend: e,
16322
16325
  attrs: { shape: [z(n.shape) / u, u] }
16323
16326
  });
16324
16327
  if (e.shouldExecuteOnCPU([n, s]) || n.dtype === "string") {
16325
- const g = e.readSync(s.dataId), C = e.bufferSync(n), I = Kd(g, C, n.dtype, l, r, u, p, n.shape, i);
16328
+ const g = e.readSync(s.dataId), C = e.bufferSync(n), I = Ep(g, C, n.dtype, l, r, u, p, n.shape, i);
16326
16329
  return e.makeTensorInfo(c, n.dtype, I.values);
16327
16330
  }
16328
16331
  const f = new p$(r, p, [l, u], n.shape), m = e.runWebGLProgram(f, [h, d], h.dtype), x = H({ inputs: { x: m }, backend: e, attrs: { shape: c } });
@@ -16394,7 +16397,7 @@ function mc(o) {
16394
16397
  Y(y <= I - 1 && y >= 0, () => `GatherV2: the index value ${y} is not in [0, ${I - 1}]`);
16395
16398
  }
16396
16399
  }
16397
- const l = Ci(s, a, c, i), u = z(a.shape), p = [], d = H({
16400
+ const l = di(s, a, c, i), u = z(a.shape), p = [], d = H({
16398
16401
  inputs: { x: s },
16399
16402
  backend: e,
16400
16403
  attrs: {
@@ -16418,7 +16421,7 @@ function mc(o) {
16418
16421
  l.sliceSize
16419
16422
  ];
16420
16423
  if (e.shouldExecuteOnCPU([s, a]) || s.dtype === "string") {
16421
- const C = e.bufferSync(h), I = e.bufferSync(d), b = qd(I, C, f);
16424
+ const C = e.bufferSync(h), I = e.bufferSync(d), b = Fp(I, C, f);
16422
16425
  return p.forEach((y) => e.disposeIntermediateTensorInfo(y)), e.makeTensorInfo(l.outputShape, b.dtype, b.values);
16423
16426
  }
16424
16427
  const m = new m$(d.shape, f), x = e.runWebGLProgram(m, [d, h], d.dtype);
@@ -16452,7 +16455,7 @@ const C$ = "return float(a > b);", b$ = `
16452
16455
  `, I$ = ke({
16453
16456
  opSnippet: C$,
16454
16457
  packedOpSnippet: b$,
16455
- cpuKernelImpl: jd,
16458
+ cpuKernelImpl: Pp,
16456
16459
  dtype: "bool"
16457
16460
  }), y$ = {
16458
16461
  kernelName: ll,
@@ -16481,7 +16484,7 @@ const $$ = "return float(a >= b);", k$ = `
16481
16484
  opSnippet: $$,
16482
16485
  packedOpSnippet: k$,
16483
16486
  dtype: "bool",
16484
- cpuKernelImpl: Yd
16487
+ cpuKernelImpl: Op
16485
16488
  }), N$ = {
16486
16489
  kernelName: ul,
16487
16490
  backendName: "webgl",
@@ -16596,7 +16599,7 @@ const L$ = "return float(a < b);", V$ = `
16596
16599
  `, W$ = ke({
16597
16600
  opSnippet: L$,
16598
16601
  packedOpSnippet: V$,
16599
- cpuKernelImpl: Qd,
16602
+ cpuKernelImpl: Ap,
16600
16603
  dtype: "bool"
16601
16604
  }), M$ = {
16602
16605
  kernelName: dl,
@@ -16624,7 +16627,7 @@ const B$ = "return float(a <= b);", G$ = `
16624
16627
  `, z$ = ke({
16625
16628
  opSnippet: B$,
16626
16629
  packedOpSnippet: G$,
16627
- cpuKernelImpl: Zd,
16630
+ cpuKernelImpl: _p,
16628
16631
  dtype: "bool"
16629
16632
  }), U$ = {
16630
16633
  kernelName: pl,
@@ -16648,7 +16651,7 @@ const B$ = "return float(a <= b);", G$ = `
16648
16651
  * =============================================================================
16649
16652
  */
16650
16653
  function H$(o) {
16651
- const { backend: t, attrs: e } = o, { start: n, stop: s, num: a } = e, r = Jd(n, s, a);
16654
+ const { backend: t, attrs: e } = o, { start: n, stop: s, num: a } = e, r = Lp(n, s, a);
16652
16655
  return t.makeTensorInfo([r.length], "float32", r);
16653
16656
  }
16654
16657
  const X$ = {
@@ -16682,7 +16685,7 @@ const K$ = vt + `
16682
16685
  result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
16683
16686
  result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
16684
16687
  return result;
16685
- `, j$ = ae({ opSnippet: K$, packedOpSnippet: q$, cpuKernelImpl: ep }), Y$ = {
16688
+ `, j$ = ae({ opSnippet: K$, packedOpSnippet: q$, cpuKernelImpl: Vp }), Y$ = {
16686
16689
  kernelName: hl,
16687
16690
  backendName: "webgl",
16688
16691
  kernelFunc: j$
@@ -17071,7 +17074,7 @@ const Ck = Wn + `
17071
17074
  `, Ik = ke({
17072
17075
  opSnippet: Ck,
17073
17076
  packedOpSnippet: bk,
17074
- cpuKernelImpl: tp
17077
+ cpuKernelImpl: Wp
17075
17078
  }), yk = {
17076
17079
  kernelName: fl,
17077
17080
  backendName: "webgl",
@@ -17431,7 +17434,7 @@ const Ak = {
17431
17434
  const b = r.texData.get(f.dataId).values, y = new Array(i);
17432
17435
  for (let w = 0; w < y.length; w++)
17433
17436
  y[w] = n.shape[u[w]];
17434
- const $ = Jr(b, n.shape, n.dtype, u, y);
17437
+ const $ = Ni(b, n.shape, n.dtype, u, y);
17435
17438
  f = r.makeTensorInfo(y, n.dtype);
17436
17439
  const k = r.texData.get(f.dataId);
17437
17440
  k.values = $;
@@ -17513,7 +17516,7 @@ const Vk = Wn + `
17513
17516
  `, Mk = ke({
17514
17517
  opSnippet: Vk,
17515
17518
  packedOpSnippet: Wk,
17516
- cpuKernelImpl: sp
17519
+ cpuKernelImpl: Mp
17517
17520
  }), Bk = {
17518
17521
  kernelName: ml,
17519
17522
  backendName: "webgl",
@@ -17783,7 +17786,7 @@ const No = "return a - b;", gc = ke({
17783
17786
  opSnippet: No,
17784
17787
  packedOpSnippet: No,
17785
17788
  supportsComplex: !0,
17786
- cpuKernelImpl: np
17789
+ cpuKernelImpl: Bp
17787
17790
  }), Qk = {
17788
17791
  kernelName: gl,
17789
17792
  backendName: "webgl",
@@ -17875,7 +17878,7 @@ const tw = Ue + `
17875
17878
  function nw(o) {
17876
17879
  const { inputs: t, backend: e } = o, { x: n } = t;
17877
17880
  if (e.shouldExecuteOnCPU([n])) {
17878
- const a = e.texData.get(n.dataId), [r, i] = op(a.values, n.shape, n.dtype);
17881
+ const a = e.texData.get(n.dataId), [r, i] = Gp(a.values, n.shape, n.dtype);
17879
17882
  return e.makeTensorInfo(i, n.dtype, r);
17880
17883
  }
17881
17884
  let s;
@@ -17902,7 +17905,7 @@ const ow = {
17902
17905
  * limitations under the License.
17903
17906
  * =============================================================================
17904
17907
  */
17905
- const aw = Wr;
17908
+ const aw = mi;
17906
17909
  function rw(o) {
17907
17910
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17908
17911
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), { selectedIndices: p } = aw(l, u, r, i, c);
@@ -17929,7 +17932,7 @@ const iw = {
17929
17932
  * limitations under the License.
17930
17933
  * =============================================================================
17931
17934
  */
17932
- const cw = Mr;
17935
+ const cw = gi;
17933
17936
  function lw(o) {
17934
17937
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17935
17938
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, padToMaxOutputSize: l } = n, u = e.readSync(s.dataId), p = e.readSync(a.dataId), { selectedIndices: d, validOutputs: h } = cw(u, p, r, i, c, l);
@@ -17959,7 +17962,7 @@ const uw = {
17959
17962
  * limitations under the License.
17960
17963
  * =============================================================================
17961
17964
  */
17962
- const dw = Br;
17965
+ const dw = xi;
17963
17966
  function pw(o) {
17964
17967
  Vt("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");
17965
17968
  const { inputs: t, backend: e, attrs: n } = o, { boxes: s, scores: a } = t, { maxOutputSize: r, iouThreshold: i, scoreThreshold: c, softNmsSigma: l } = n, u = e.readSync(s.dataId), p = e.readSync(a.dataId), d = r, h = i, f = c, m = l, { selectedIndices: x, selectedScores: g } = dw(u, p, d, h, f, m);
@@ -18349,7 +18352,7 @@ function Rw(o) {
18349
18352
  p != null && (d = ve({ inputs: { x: s }, backend: e, attrs: { perm: p } }), u = $e(u.length, i), c.push(d)), Re("prod", u, i);
18350
18353
  let h;
18351
18354
  if (e.shouldExecuteOnCPU([d])) {
18352
- const f = e.texData.get(d.dataId).values, { outVals: m, outShape: x, outDtype: g } = ap(d.shape, d.dtype, f, u);
18355
+ const f = e.texData.get(d.dataId).values, { outVals: m, outShape: x, outDtype: g } = zp(d.shape, d.dtype, f, u);
18353
18356
  h = e.makeTensorInfo(x, g, m);
18354
18357
  } else {
18355
18358
  const [f, m] = Ee(d.shape, u), x = z(m), g = H({ inputs: { x: d }, backend: e, attrs: { shape: [-1, x] } }), C = Tr(s.dtype), I = zt(g, C, "prod", e);
@@ -18384,7 +18387,7 @@ const Tw = {
18384
18387
  * =============================================================================
18385
18388
  */
18386
18389
  function Dw(o) {
18387
- const { inputs: t, backend: e, attrs: n } = o, { paramsNestedSplits: s, paramsDenseValues: a, indices: r } = t, { outputRaggedRank: i } = n, c = s.map((g) => e.readSync(g.dataId)), l = s.map((g) => g.shape), u = e.readSync(a.dataId), p = e.readSync(r.dataId), [d, h, f] = rp(c, l, u, a.shape, a.dtype, p, r.shape, i), m = d.map((g) => e.makeTensorInfo([g.length], "int32", g)), x = e.makeTensorInfo(f, a.dtype, h);
18390
+ const { inputs: t, backend: e, attrs: n } = o, { paramsNestedSplits: s, paramsDenseValues: a, indices: r } = t, { outputRaggedRank: i } = n, c = s.map((g) => e.readSync(g.dataId)), l = s.map((g) => g.shape), u = e.readSync(a.dataId), p = e.readSync(r.dataId), [d, h, f] = Up(c, l, u, a.shape, a.dtype, p, r.shape, i), m = d.map((g) => e.makeTensorInfo([g.length], "int32", g)), x = e.makeTensorInfo(f, a.dtype, h);
18388
18391
  return m.concat([x]);
18389
18392
  }
18390
18393
  const Ew = {
@@ -18409,7 +18412,7 @@ const Ew = {
18409
18412
  * =============================================================================
18410
18413
  */
18411
18414
  function Fw(o) {
18412
- const { inputs: t, backend: e } = o, { starts: n, limits: s, deltas: a } = t, r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ip(r, n.shape, n.dtype, i, s.shape, c, a.shape), p = e.makeTensorInfo([l.length], "int32", l), d = e.makeTensorInfo([u.length], n.dtype, u);
18415
+ const { inputs: t, backend: e } = o, { starts: n, limits: s, deltas: a } = t, r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Hp(r, n.shape, n.dtype, i, s.shape, c, a.shape), p = e.makeTensorInfo([l.length], "int32", l), d = e.makeTensorInfo([u.length], n.dtype, u);
18413
18416
  return [p, d];
18414
18417
  }
18415
18418
  const Pw = {
@@ -18434,7 +18437,7 @@ const Pw = {
18434
18437
  * =============================================================================
18435
18438
  */
18436
18439
  function Ow(o) {
18437
- const { inputs: t, backend: e, attrs: n } = o, { shape: s, values: a, defaultValue: r, rowPartitionTensors: i } = t, { rowPartitionTypes: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), p = e.readSync(r.dataId), d = i.map((x) => e.readSync(x.dataId)), h = i.map((x) => x.shape), [f, m] = cp(l, s.shape, u, a.shape, a.dtype, p, r.shape, d, h, c);
18440
+ const { inputs: t, backend: e, attrs: n } = o, { shape: s, values: a, defaultValue: r, rowPartitionTensors: i } = t, { rowPartitionTypes: c } = n, l = e.readSync(s.dataId), u = e.readSync(a.dataId), p = e.readSync(r.dataId), d = i.map((x) => e.readSync(x.dataId)), h = i.map((x) => x.shape), [f, m] = Xp(l, s.shape, u, a.shape, a.dtype, p, r.shape, d, h, c);
18438
18441
  return e.makeTensorInfo(f, a.dtype, m);
18439
18442
  }
18440
18443
  const Aw = {
@@ -18459,7 +18462,7 @@ const Aw = {
18459
18462
  * =============================================================================
18460
18463
  */
18461
18464
  const Ic = (o) => {
18462
- const { backend: t, attrs: e } = o, { start: n, stop: s, step: a, dtype: r } = e, i = lp(n, s, a, r);
18465
+ const { backend: t, attrs: e } = o, { start: n, stop: s, step: a, dtype: r } = e, i = Kp(n, s, a, r);
18463
18466
  return t.makeTensorInfo([i.length], r, i);
18464
18467
  }, _w = {
18465
18468
  kernelName: er,
@@ -19369,7 +19372,7 @@ const hN = {
19369
19372
  kernelName: rr,
19370
19373
  backendName: "webgl",
19371
19374
  kernelFunc: ({ inputs: o, attrs: t, backend: e }) => {
19372
- const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = new pN(n.shape, a), [l, u] = bi(r, n.shape[1], n.shape[2]), p = [[l, u, Math.sin(s), Math.cos(s)]];
19375
+ const { image: n } = o, { radians: s, fillValue: a, center: r } = t, i = e, c = new pN(n.shape, a), [l, u] = pi(r, n.shape[1], n.shape[2]), p = [[l, u, Math.sin(s), Math.cos(s)]];
19373
19376
  return i.runWebGLProgram(c, [n], n.dtype, p);
19374
19377
  }
19375
19378
  };
@@ -19425,7 +19428,7 @@ const fN = `
19425
19428
  * limitations under the License.
19426
19429
  * =============================================================================
19427
19430
  */
19428
- const xN = "return inversesqrt(x);", CN = ae({ opSnippet: xN, cpuKernelImpl: up }), bN = {
19431
+ const xN = "return inversesqrt(x);", CN = ae({ opSnippet: xN, cpuKernelImpl: qp }), bN = {
19429
19432
  kernelName: Cl,
19430
19433
  backendName: "webgl",
19431
19434
  kernelFunc: CN
@@ -19743,8 +19746,8 @@ const RN = {
19743
19746
  const TN = `
19744
19747
  // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
19745
19748
  // see: https://arxiv.org/abs/1706.02515
19746
- float scaleAlpha = ${Ur};
19747
- float scale = ${zr};
19749
+ float scaleAlpha = ${Gr};
19750
+ float scale = ${Br};
19748
19751
  return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
19749
19752
  `, DN = ae({ opSnippet: TN }), EN = {
19750
19753
  kernelName: Sn,
@@ -19782,7 +19785,7 @@ const FN = vt + `
19782
19785
  `, ON = ae({
19783
19786
  opSnippet: FN,
19784
19787
  packedOpSnippet: PN,
19785
- cpuKernelImpl: dp
19788
+ cpuKernelImpl: jp
19786
19789
  }), AN = {
19787
19790
  kernelName: bl,
19788
19791
  backendName: "webgl",
@@ -19973,7 +19976,7 @@ function QN(o) {
19973
19976
  if (r.shape.length !== 0)
19974
19977
  throw new Error(`Default value must be a scalar, saw:
19975
19978
  ${r.shape}`);
19976
- const i = e.readSync(n.dataId), c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = e.readSync(r.dataId)[0], [p, d, h, f, m] = pp(i, n.shape, n.dtype, c, s.dtype, l, u);
19979
+ const i = e.readSync(n.dataId), c = e.readSync(s.dataId), l = e.readSync(a.dataId), u = e.readSync(r.dataId)[0], [p, d, h, f, m] = Yp(i, n.shape, n.dtype, c, s.dtype, l, u);
19977
19980
  return [
19978
19981
  e.makeTensorInfo(d, n.dtype, p),
19979
19982
  e.makeTensorInfo([d[0]], s.dtype, h),
@@ -20010,7 +20013,7 @@ function JN(o) {
20010
20013
  throw new Error(`Input shape should be a vector but received shape ${s.shape}`);
20011
20014
  if (a.shape.length !== 1)
20012
20015
  throw new Error(`Target shape should be a vector but received shape ${a.shape}`);
20013
- const r = Array.from(e.readSync(s.dataId)), i = e.readSync(n.dataId), c = Array.from(e.readSync(a.dataId)), [l, u, p] = hp(i, n.shape, n.dtype, r, c);
20016
+ const r = Array.from(e.readSync(s.dataId)), i = e.readSync(n.dataId), c = Array.from(e.readSync(a.dataId)), [l, u, p] = Qp(i, n.shape, n.dtype, r, c);
20014
20017
  return [
20015
20018
  e.makeTensorInfo(u, n.dtype, l),
20016
20019
  e.makeTensorInfo([p.length], a.dtype, new Int32Array(p))
@@ -20047,7 +20050,7 @@ function tv(o) {
20047
20050
  if (a.shape.length !== 1)
20048
20051
  throw new Error(`Segment ids should be a vector but received shape
20049
20052
  ${a.shape}`);
20050
- const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ti(r, n.shape, n.dtype, i, c, !0);
20053
+ const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Si(r, n.shape, n.dtype, i, c, !0);
20051
20054
  return e.makeTensorInfo(u, n.dtype, l);
20052
20055
  }
20053
20056
  const sv = {
@@ -20081,7 +20084,7 @@ function nv(o) {
20081
20084
  if (a.shape.length !== 1)
20082
20085
  throw new Error(`Segment ids should be a vector but received shape
20083
20086
  ${a.shape}`);
20084
- const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = ti(r, n.shape, n.dtype, i, c);
20087
+ const r = e.readSync(n.dataId), i = e.readSync(s.dataId), c = e.readSync(a.dataId), [l, u] = Si(r, n.shape, n.dtype, i, c);
20085
20088
  return e.makeTensorInfo(u, n.dtype, l);
20086
20089
  }
20087
20090
  const ov = {
@@ -20108,7 +20111,7 @@ const ov = {
20108
20111
  function av(o) {
20109
20112
  const { inputs: t, backend: e, attrs: n } = o, { sparseIndices: s, sparseValues: a, defaultValue: r } = t, { outputShape: i } = n, { sliceRank: c, numUpdates: l, sliceSize: u, strides: p, outputSize: d } = wt(a, s, i), h = !1;
20110
20113
  if (a.dtype === "string") {
20111
- const g = e.bufferSync(s), C = e.bufferSync(a), I = Wt(e.readSync(r.dataId)[0]), b = fp(g, C, i, d, u, l, c, p, I, h);
20114
+ const g = e.bufferSync(s), C = e.bufferSync(a), I = Wt(e.readSync(r.dataId)[0]), b = Zp(g, C, i, d, u, l, c, p, I, h);
20112
20115
  return e.makeTensorInfo(i, b.dtype, b.values);
20113
20116
  }
20114
20117
  const f = new Xn(l, c, s.shape.length, a.shape.length, p, [d, 1], h), m = e.runWebGLProgram(f, [a, s, r], a.dtype), x = H({ inputs: { x: m }, backend: e, attrs: { shape: i } });
@@ -20136,7 +20139,7 @@ const rv = {
20136
20139
  * =============================================================================
20137
20140
  */
20138
20141
  function iv(o) {
20139
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = Ii(s, a, i), l = s.shape.length, u = new Array(l).fill(0), p = s.shape.slice();
20142
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { numOrSizeSplits: a, axis: r } = n, i = me(r, s.shape)[0], c = hi(s, a, i), l = s.shape.length, u = new Array(l).fill(0), p = s.shape.slice();
20140
20143
  return c.map((d) => {
20141
20144
  const h = [...p];
20142
20145
  h[i] = d;
@@ -20165,7 +20168,7 @@ const cv = {
20165
20168
  * limitations under the License.
20166
20169
  * =============================================================================
20167
20170
  */
20168
- const vo = "return sqrt(x);", lv = ae({ opSnippet: vo, packedOpSnippet: vo, cpuKernelImpl: mp }), uv = {
20171
+ const vo = "return sqrt(x);", lv = ae({ opSnippet: vo, packedOpSnippet: vo, cpuKernelImpl: Jp }), uv = {
20169
20172
  kernelName: Il,
20170
20173
  backendName: "webgl",
20171
20174
  kernelFunc: lv
@@ -20232,7 +20235,7 @@ function gv(o) {
20232
20235
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t;
20233
20236
  if (s.dtype !== "string")
20234
20237
  throw new Error("Input must be of datatype string");
20235
- const a = e.readSync(s.dataId), r = oh(a), i = gp(r, "string", n);
20238
+ const a = e.readSync(s.dataId), r = Md(a), i = eh(r, "string", n);
20236
20239
  return e.makeTensorInfo(s.shape, "string", i);
20237
20240
  }
20238
20241
  const xv = {
@@ -20322,16 +20325,16 @@ class Iv {
20322
20325
  * =============================================================================
20323
20326
  */
20324
20327
  function yv(o) {
20325
- const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n, { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = Hr(s.shape, a, r, i, c, l, u, p, d);
20328
+ const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { begin: a, end: r, strides: i, beginMask: c, endMask: l, ellipsisMask: u, newAxisMask: p, shrinkAxisMask: d } = n, { finalShapeSparse: h, finalShape: f, isIdentity: m, sliceDim0: x, isSimpleSlice: g, begin: C, end: I, strides: b } = zr(s.shape, a, r, i, c, l, u, p, d);
20326
20329
  let y;
20327
20330
  if (m)
20328
20331
  y = H({ inputs: { x: s }, backend: e, attrs: { shape: f } });
20329
20332
  else if (x || g) {
20330
20333
  Y(s.shape.length >= 1, () => `Input must have rank at least 1, got: ${s.shape.length}`);
20331
- const k = Xr(C, I, b), w = St({ inputs: { x: s }, backend: e, attrs: { begin: C, size: k } });
20334
+ const k = Ur(C, I, b), w = St({ inputs: { x: s }, backend: e, attrs: { begin: C, size: k } });
20332
20335
  y = H({ inputs: { x: w }, backend: e, attrs: { shape: f } }), e.disposeIntermediateTensorInfo(w);
20333
20336
  } else if (e.shouldExecuteOnCPU([s])) {
20334
- const w = e.readSync(s.dataId), v = xe(s.shape, s.dtype, w), N = xp(h, v, b, C);
20337
+ const w = e.readSync(s.dataId), v = xe(s.shape, s.dtype, w), N = th(h, v, b, C);
20335
20338
  y = e.makeTensorInfo(f, s.dtype, N.values);
20336
20339
  } else {
20337
20340
  const w = new Iv(C, b, h);
@@ -20362,7 +20365,7 @@ const $v = {
20362
20365
  * =============================================================================
20363
20366
  */
20364
20367
  function kv(o) {
20365
- const { inputs: t, backend: e, attrs: n } = o, { separator: s, nGramWidths: a, leftPad: r, rightPad: i, padWidth: c, preserveShortSequences: l } = n, { data: u, dataSplits: p } = t, d = e.readSync(u.dataId), h = e.readSync(p.dataId), [f, m] = Cp(d, h, s, a, r, i, c, l);
20368
+ const { inputs: t, backend: e, attrs: n } = o, { separator: s, nGramWidths: a, leftPad: r, rightPad: i, padWidth: c, preserveShortSequences: l } = n, { data: u, dataSplits: p } = t, d = e.readSync(u.dataId), h = e.readSync(p.dataId), [f, m] = sh(d, h, s, a, r, i, c, l);
20366
20369
  return [
20367
20370
  e.makeTensorInfo([f.length], "string", f),
20368
20371
  e.makeTensorInfo(p.shape, "int32", m)
@@ -20397,7 +20400,7 @@ function Nv(o) {
20397
20400
  throw new Error(`Input must be a vector, got shape: ${a.shape}`);
20398
20401
  if (r.shape.length !== 0)
20399
20402
  throw new Error(`Delimiter must be a scalar, got shape: ${r.shape}`);
20400
- const i = e.readSync(a.dataId), c = e.readSync(r.dataId)[0], [l, u, p] = bp(i, c, s), d = u.length;
20403
+ const i = e.readSync(a.dataId), c = e.readSync(r.dataId)[0], [l, u, p] = nh(i, c, s), d = u.length;
20401
20404
  return [
20402
20405
  e.makeTensorInfo([d, 2], "int32", l),
20403
20406
  e.makeTensorInfo([d], "string", u),
@@ -20431,7 +20434,7 @@ function Sv(o) {
20431
20434
  throw new Error("Input must be of datatype string");
20432
20435
  if (s <= 0)
20433
20436
  throw new Error("Number of buckets must be at least 1");
20434
- const r = e.readSync(a.dataId), i = Ip(r, s);
20437
+ const r = e.readSync(a.dataId), i = oh(r, s);
20435
20438
  return e.makeTensorInfo(a.shape, "int32", i);
20436
20439
  }
20437
20440
  const Rv = {
@@ -20574,7 +20577,7 @@ function Vv(o) {
20574
20577
  function yc(o) {
20575
20578
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { reps: a } = n;
20576
20579
  if (s.dtype === "string" || s.shape.length > 5) {
20577
- const c = e.readSync(s.dataId), l = s.dtype === "string" ? c.map((d) => Wt(d)) : c, u = xe(s.shape, s.dtype, l), p = yp(u, a);
20580
+ const c = e.readSync(s.dataId), l = s.dtype === "string" ? c.map((d) => Wt(d)) : c, u = xe(s.shape, s.dtype, l), p = ah(u, a);
20578
20581
  return e.makeTensorInfo(p.shape, p.dtype, p.values);
20579
20582
  }
20580
20583
  const r = new Lv(s.shape, a);
@@ -20714,7 +20717,7 @@ function Ro(o) {
20714
20717
  function Gv(o) {
20715
20718
  const { inputs: t, backend: e, attrs: n } = o, { x: s } = t, { k: a, sorted: r } = n, i = L().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"), c = L().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"), l = s.shape, u = l[l.length - 1];
20716
20719
  if (e.shouldExecuteOnCPU([s]) || u < i || a > c) {
20717
- const N = e.readSync(s.dataId), [P, O] = $p(N, l, s.dtype, a, r);
20720
+ const N = e.readSync(s.dataId), [P, O] = rh(N, l, s.dtype, a, r);
20718
20721
  return [
20719
20722
  e.makeTensorInfo(P.shape, P.dtype, P.values),
20720
20723
  e.makeTensorInfo(O.shape, O.dtype, O.values)
@@ -20966,7 +20969,7 @@ const Xv = {
20966
20969
  function Kv(o) {
20967
20970
  const { inputs: t, attrs: e, backend: n } = o, { axis: s } = e, { x: a } = t;
20968
20971
  Gt(a, "unique"), console.warn("WARNING: ", "UI might be locked temporarily as data is being downloaded");
20969
- const r = n.readSync(a.dataId), { outputValues: i, outputShape: c, indices: l } = kp(r, s, a.shape, a.dtype);
20972
+ const r = n.readSync(a.dataId), { outputValues: i, outputShape: c, indices: l } = ih(r, s, a.shape, a.dtype);
20970
20973
  return [
20971
20974
  n.makeTensorInfo(c, a.dtype, i),
20972
20975
  n.makeTensorInfo([l.length], "int32", l)
@@ -21172,10 +21175,10 @@ function Zv(o) {
21172
21175
  const u = ye([l], i);
21173
21176
  let p = s;
21174
21177
  u != null && (p = ve({ inputs: { x: s }, backend: e, attrs: { perm: u } }), c.push(p), l = $e(1, i)[0]);
21175
- const d = ah(p.shape, l, r), h = z([p.shape[l]]), f = H({ inputs: { x: p }, backend: e, attrs: { shape: [-1, h] } });
21178
+ const d = Bd(p.shape, l, r), h = z([p.shape[l]]), f = H({ inputs: { x: p }, backend: e, attrs: { shape: [-1, h] } });
21176
21179
  c.push(f);
21177
21180
  const m = Tr(s.dtype), x = (b, y, $, k, w) => {
21178
- const v = b.shape[0], N = b.shape[1], P = rh(N, w), O = { windowSize: P, inSize: N, batchSize: v, numSegments: w }, E = new Qv(O, y), F = e.compileAndRun(E, [b, $], k);
21181
+ const v = b.shape[0], N = b.shape[1], P = Gd(N, w), O = { windowSize: P, inSize: N, batchSize: v, numSegments: w }, E = new Qv(O, y), F = e.compileAndRun(E, [b, $], k);
21179
21182
  if (c.push(F), F.shape[1] === w)
21180
21183
  return F;
21181
21184
  const T = Ic({