@genai-fi/nanogpt 0.3.1 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/Generator.js +22 -22
- package/dist/MLP-KHhikThU.js +83 -0
- package/dist/NanoGPTModel.d.ts +2 -3
- package/dist/NanoGPTModel.js +79 -79
- package/dist/TeachableLLM.d.ts +4 -3
- package/dist/TeachableLLM.js +16 -13
- package/dist/Trainer.js +20 -13
- package/dist/axis_util-DeydwOoC.js +69 -0
- package/dist/{concat-BIZS_td9.js → concat-DS_qH7MI.js} +5 -5
- package/dist/config.js +7 -8
- package/dist/{gather-BPGW8RsB.js → gather-BUmJIS8n.js} +1 -1
- package/dist/{index-pWA4_lUh.js → index-XjBAhiFO.js} +1272 -1174
- package/dist/layers/BaseLayer.d.ts +14 -2
- package/dist/layers/BaseLayer.js +9 -9
- package/dist/layers/CausalSelfAttention.d.ts +4 -8
- package/dist/layers/CausalSelfAttention.js +108 -82
- package/dist/layers/MLP.d.ts +2 -3
- package/dist/layers/MLP.js +5 -62
- package/dist/layers/RMSNorm.d.ts +2 -2
- package/dist/layers/RMSNorm.js +11 -11
- package/dist/layers/RoPECache.js +3 -3
- package/dist/layers/TiedEmbedding.js +7 -6
- package/dist/layers/TransformerBlock.d.ts +2 -6
- package/dist/layers/TransformerBlock.js +9 -12
- package/dist/{sum-C7Mgy9Bw.js → log_sum_exp-DJPkVZZn.js} +32 -54
- package/dist/main.js +22 -19
- package/dist/{mat_mul-D7_a4KJn.js → mat_mul-CKwFEV1Q.js} +1 -1
- package/dist/max-DJvEiCAJ.js +25 -0
- package/dist/moments-CrWRPcR3.js +53 -0
- package/dist/norm-BzY929B_.js +86 -0
- package/dist/{ones-Cog-G2ag.js → ones-BO01zpJG.js} +2 -2
- package/dist/ops/appendCache.js +1 -1
- package/dist/ops/attentionMask.js +1 -1
- package/dist/ops/cpu/appendCache.js +2 -2
- package/dist/ops/cpu/attentionMask.js +2 -2
- package/dist/ops/cpu/fusedSoftmax.d.ts +9 -0
- package/dist/ops/cpu/fusedSoftmax.js +23 -0
- package/dist/ops/cpu/gatherSub.js +3 -3
- package/dist/ops/cpu/mulDropout.d.ts +1 -0
- package/dist/ops/cpu/mulDropout.js +17 -0
- package/dist/ops/cpu/qkv.js +3 -3
- package/dist/ops/cpu/rope.js +5 -5
- package/dist/ops/cpu/scatterSub.js +27 -27
- package/dist/ops/fusedSoftmax.d.ts +2 -0
- package/dist/ops/fusedSoftmax.js +10 -0
- package/dist/ops/gatherSub.js +1 -1
- package/dist/ops/grads/attentionMask.js +1 -1
- package/dist/ops/grads/fusedSoftmax.d.ts +2 -0
- package/dist/ops/grads/fusedSoftmax.js +17 -0
- package/dist/ops/grads/qkv.js +1 -1
- package/dist/ops/grads/rope.js +1 -1
- package/dist/ops/mulDrop.d.ts +2 -0
- package/dist/ops/mulDrop.js +9 -0
- package/dist/ops/node/sparseCrossEntropy.js +1 -1
- package/dist/ops/qkv.js +1 -1
- package/dist/ops/scatterSub.js +1 -1
- package/dist/ops/webgl/appendCache.js +1 -1
- package/dist/ops/webgl/attentionMask.js +1 -1
- package/dist/ops/webgl/fusedSoftmax.d.ts +11 -0
- package/dist/ops/webgl/fusedSoftmax.js +3930 -0
- package/dist/ops/webgl/gatherSub.js +1 -1
- package/dist/ops/webgl/mulDropout.d.ts +1 -0
- package/dist/ops/webgl/mulDropout.js +41 -0
- package/dist/ops/webgl/qkv.js +1 -1
- package/dist/ops/webgl/rope.js +1 -1
- package/dist/ops/webgl/scatterSub.js +1 -1
- package/dist/{random_width-oeUIlUZj.js → random_width-CMHmdbSu.js} +4212 -6630
- package/dist/{range-CcDl05lo.js → range-DQMNzBWs.js} +1 -1
- package/dist/{reshape-C8CR_Bad.js → reshape-DFzh97Sc.js} +1 -1
- package/dist/{sin-BJIrfnj7.js → sin-BYM-U4Ut.js} +1 -1
- package/dist/slice_util-CnVNPQI-.js +90 -0
- package/dist/softmax-4DOn6cPq.js +28 -0
- package/dist/{split-DZbvruEP.js → split-CkbeVdF8.js} +3 -3
- package/dist/{stack-BMm-efee.js → stack-DaIMO5iX.js} +1 -1
- package/dist/sum-C6u3xMi3.js +27 -0
- package/dist/{tensor-DJVbYhh1.js → tensor-Cu1fU7H7.js} +1 -1
- package/dist/{tensor2d-ZuQSh2D-.js → tensor2d-D0CKdG6B.js} +1 -1
- package/dist/tfjs_backend-Bzl2SrRo.js +2460 -0
- package/dist/training/AdamExt.js +1 -1
- package/dist/training/DatasetBuilder.js +3 -3
- package/dist/training/FullTrainer.js +41 -33
- package/dist/training/Trainer.d.ts +6 -1
- package/dist/training/Trainer.js +13 -12
- package/dist/training/sparseCrossEntropy.js +12 -11
- package/dist/utilities/dummy.js +8 -8
- package/dist/utilities/generate.js +11 -11
- package/dist/utilities/load.js +1 -1
- package/dist/utilities/profile.js +1 -1
- package/dist/utilities/weights.js +2 -2
- package/dist/{variable-Dl_ub3pk.js → variable-BS4AKqNU.js} +1 -1
- package/dist/{zeros-CCy9C3uU.js → zeros-CmJFiC84.js} +1 -1
- package/package.json +1 -1
- package/dist/exports_layers-tbTBcwMM.js +0 -25
- package/dist/layers/LayerNorm.d.ts +0 -13
- package/dist/layers/LayerNorm.js +0 -33
- package/dist/moments-DfcpfwKi.js +0 -132
- package/dist/softmax-Be_lsqUc.js +0 -105
- package/dist/training/LayerTrainer.d.ts +0 -29
- package/dist/training/LayerTrainer.js +0 -90
- package/dist/training/lwSchedule.d.ts +0 -7
- package/dist/training/lwSchedule.js +0 -162
package/dist/softmax-Be_lsqUc.js
DELETED
|
@@ -1,105 +0,0 @@
|
|
|
1
|
-
import { o as r, h as e, E as c, _ as $, $ as h, a0 as E, s as S, Z as _, a1 as d } from "./index-pWA4_lUh.js";
|
|
2
|
-
import { m as k, s as w, e as K } from "./sum-C7Mgy9Bw.js";
|
|
3
|
-
import { r as l } from "./reshape-C8CR_Bad.js";
|
|
4
|
-
/**
|
|
5
|
-
* @license
|
|
6
|
-
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
7
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
8
|
-
* you may not use this file except in compliance with the License.
|
|
9
|
-
* You may obtain a copy of the License at
|
|
10
|
-
*
|
|
11
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
12
|
-
*
|
|
13
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
14
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
15
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
16
|
-
* See the License for the specific language governing permissions and
|
|
17
|
-
* limitations under the License.
|
|
18
|
-
* =============================================================================
|
|
19
|
-
*/
|
|
20
|
-
function T(n) {
|
|
21
|
-
const s = { x: e(n, "x", "exp") };
|
|
22
|
-
return c.runKernel($, s);
|
|
23
|
-
}
|
|
24
|
-
const b = /* @__PURE__ */ r({ exp_: T });
|
|
25
|
-
/**
|
|
26
|
-
* @license
|
|
27
|
-
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
28
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
29
|
-
* you may not use this file except in compliance with the License.
|
|
30
|
-
* You may obtain a copy of the License at
|
|
31
|
-
*
|
|
32
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
33
|
-
*
|
|
34
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
35
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
36
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
37
|
-
* See the License for the specific language governing permissions and
|
|
38
|
-
* limitations under the License.
|
|
39
|
-
* =============================================================================
|
|
40
|
-
*/
|
|
41
|
-
function L(n) {
|
|
42
|
-
const s = { x: e(n, "x", "log", "float32") };
|
|
43
|
-
return c.runKernel(h, s);
|
|
44
|
-
}
|
|
45
|
-
const N = /* @__PURE__ */ r({ log_: L });
|
|
46
|
-
/**
|
|
47
|
-
* @license
|
|
48
|
-
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
49
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
50
|
-
* you may not use this file except in compliance with the License.
|
|
51
|
-
* You may obtain a copy of the License at
|
|
52
|
-
*
|
|
53
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
54
|
-
*
|
|
55
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
56
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
57
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
58
|
-
* See the License for the specific language governing permissions and
|
|
59
|
-
* limitations under the License.
|
|
60
|
-
* =============================================================================
|
|
61
|
-
*/
|
|
62
|
-
function v(n, o = null, s = !1) {
|
|
63
|
-
const t = e(n, "x", "logSumExp"), a = E(o, t.shape), p = k(
|
|
64
|
-
t,
|
|
65
|
-
a,
|
|
66
|
-
!0
|
|
67
|
-
/* keepDims */
|
|
68
|
-
), i = S(t, p), f = b(i), m = w(f, a), u = N(m), x = _(l(p, u.shape), u);
|
|
69
|
-
if (s) {
|
|
70
|
-
const g = K(x.shape, a);
|
|
71
|
-
return l(x, g);
|
|
72
|
-
}
|
|
73
|
-
return x;
|
|
74
|
-
}
|
|
75
|
-
const I = /* @__PURE__ */ r({ logSumExp_: v });
|
|
76
|
-
/**
|
|
77
|
-
* @license
|
|
78
|
-
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
79
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
80
|
-
* you may not use this file except in compliance with the License.
|
|
81
|
-
* You may obtain a copy of the License at
|
|
82
|
-
*
|
|
83
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
84
|
-
*
|
|
85
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
86
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
87
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
88
|
-
* See the License for the specific language governing permissions and
|
|
89
|
-
* limitations under the License.
|
|
90
|
-
* =============================================================================
|
|
91
|
-
*/
|
|
92
|
-
function y(n, o = -1) {
|
|
93
|
-
const s = e(n, "logits", "softmax", "float32");
|
|
94
|
-
if (o === -1 && (o = s.rank - 1), o !== s.rank - 1)
|
|
95
|
-
throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${s.rank} and dim was ${o}`);
|
|
96
|
-
const t = { logits: s }, a = { dim: o };
|
|
97
|
-
return c.runKernel(d, t, a);
|
|
98
|
-
}
|
|
99
|
-
const M = /* @__PURE__ */ r({ softmax_: y });
|
|
100
|
-
export {
|
|
101
|
-
N as a,
|
|
102
|
-
b as e,
|
|
103
|
-
I as l,
|
|
104
|
-
M as s
|
|
105
|
-
};
|
|
@@ -1,29 +0,0 @@
|
|
|
1
|
-
import { ITokeniser } from '../tokeniser/type';
|
|
2
|
-
import { default as NanoGPT } from '../NanoGPTModel';
|
|
3
|
-
import { default as GPTTrainer, TrainingOptions } from './Trainer';
|
|
4
|
-
import { Tensor } from '@tensorflow/tfjs-core';
|
|
5
|
-
import { Dataset } from '@tensorflow/tfjs-data';
|
|
6
|
-
interface LayerTrainingOptions extends TrainingOptions {
|
|
7
|
-
stepsPerLayer: number;
|
|
8
|
-
maxPasses: number;
|
|
9
|
-
onLayerChange?: (layer: number, pass: number, valLoss?: number) => Promise<void> | void;
|
|
10
|
-
onPassComplete?: (pass: number) => Promise<void> | void;
|
|
11
|
-
}
|
|
12
|
-
export default class LayerTrainer extends GPTTrainer {
|
|
13
|
-
private trainingPattern;
|
|
14
|
-
private startPass;
|
|
15
|
-
private startLayer;
|
|
16
|
-
constructor(model: NanoGPT, tokenizer: ITokeniser, learningRate?: number);
|
|
17
|
-
private applyTrainingPattern;
|
|
18
|
-
trainOnDataset(dataset: Dataset<{
|
|
19
|
-
xs: Tensor;
|
|
20
|
-
ys: Tensor;
|
|
21
|
-
}>, options: Partial<LayerTrainingOptions>, validationDataset?: Dataset<{
|
|
22
|
-
xs: Tensor;
|
|
23
|
-
ys: Tensor;
|
|
24
|
-
}>): Promise<{
|
|
25
|
-
losses: number[];
|
|
26
|
-
validationLosses: number[];
|
|
27
|
-
}>;
|
|
28
|
-
}
|
|
29
|
-
export {};
|
|
@@ -1,90 +0,0 @@
|
|
|
1
|
-
import { generateText as u } from "../utilities/generate.js";
|
|
2
|
-
import v from "./Trainer.js";
|
|
3
|
-
import { schedule as w } from "./lwSchedule.js";
|
|
4
|
-
import T from "./Evaluator.js";
|
|
5
|
-
import { a as m } from "../index-pWA4_lUh.js";
|
|
6
|
-
const x = {
|
|
7
|
-
desiredLoss: 0.01,
|
|
8
|
-
logInterval: 1,
|
|
9
|
-
stepsPerLayer: 400,
|
|
10
|
-
maxPasses: 3,
|
|
11
|
-
maxSteps: 1e3
|
|
12
|
-
};
|
|
13
|
-
class E extends v {
|
|
14
|
-
trainingPattern = [];
|
|
15
|
-
startPass = 0;
|
|
16
|
-
startLayer = 0;
|
|
17
|
-
constructor(s, r, e = 3e-4) {
|
|
18
|
-
if (super(s, r, e), this.trainingPattern = w[s.config.nLayer - 1] || [], s.log.length > 0) {
|
|
19
|
-
const i = s.log[s.log.length - 1];
|
|
20
|
-
i.pass !== void 0 && i.layer !== void 0 && (this.startPass = i.pass, this.startLayer = i.layer, console.log(`Resuming training from pass ${this.startPass}, layer ${this.startLayer}`));
|
|
21
|
-
}
|
|
22
|
-
}
|
|
23
|
-
applyTrainingPattern(s) {
|
|
24
|
-
const r = s < this.trainingPattern.length ? s : this.trainingPattern.length - 1, e = this.trainingPattern[r];
|
|
25
|
-
this.model.setSkipMask(e.skip), this.model.setTrainableMask(e.trainable), this.resetOptimizer(e.adam), console.log("Applied training pattern:", r, e);
|
|
26
|
-
}
|
|
27
|
-
// Train for multiple epochs using Dataset API - FIXED memory leaks
|
|
28
|
-
async trainOnDataset(s, r, e) {
|
|
29
|
-
const { desiredLoss: i, logInterval: L, stepsPerLayer: f, onLayerChange: o, onPassComplete: p, onStep: h, prompt: c } = {
|
|
30
|
-
...x,
|
|
31
|
-
...r
|
|
32
|
-
}, t = {
|
|
33
|
-
pass: 0,
|
|
34
|
-
layerStep: 0,
|
|
35
|
-
step: 0,
|
|
36
|
-
stepSinceLayerChange: 0,
|
|
37
|
-
lastLoss: 1e6,
|
|
38
|
-
totalSteps: 0,
|
|
39
|
-
losses: [],
|
|
40
|
-
validationLosses: []
|
|
41
|
-
};
|
|
42
|
-
this.dummyPass();
|
|
43
|
-
const d = Date.now();
|
|
44
|
-
this.startPass = 0, this.startLayer = 0;
|
|
45
|
-
const g = e ? new T(this.model, e) : void 0, P = await s.iterator();
|
|
46
|
-
this.applyTrainingPattern(t.layerStep % this.trainingPattern.length);
|
|
47
|
-
try {
|
|
48
|
-
for (; !(t.lastLoss < i); ) {
|
|
49
|
-
const n = await P.next();
|
|
50
|
-
if (n.done) break;
|
|
51
|
-
const y = n.value, S = this.trainBatch(t, y);
|
|
52
|
-
t.stepSinceLayerChange++;
|
|
53
|
-
const l = {
|
|
54
|
-
loss: t.lastLoss,
|
|
55
|
-
step: t.step,
|
|
56
|
-
time: Date.now() - d,
|
|
57
|
-
batchSize: y.xs.shape[0],
|
|
58
|
-
pass: t.pass,
|
|
59
|
-
layer: t.layerStep % this.model.config.nLayer
|
|
60
|
-
};
|
|
61
|
-
if (this.model.log.push(l), t.step % L === 0) {
|
|
62
|
-
if (await S, g)
|
|
63
|
-
try {
|
|
64
|
-
const a = await g.evaluate(5);
|
|
65
|
-
t.validationLosses.push(a), l.valLoss = a;
|
|
66
|
-
} catch (a) {
|
|
67
|
-
console.error("Validation error:", a);
|
|
68
|
-
}
|
|
69
|
-
if (h) {
|
|
70
|
-
if (c) {
|
|
71
|
-
const a = await u(this.tokenizer, this.model, c, 100, {
|
|
72
|
-
temperature: 0.8,
|
|
73
|
-
topK: 10
|
|
74
|
-
});
|
|
75
|
-
l.example = a;
|
|
76
|
-
}
|
|
77
|
-
await h(l);
|
|
78
|
-
}
|
|
79
|
-
}
|
|
80
|
-
t.stepSinceLayerChange >= f && (t.layerStep++, t.layerStep % this.model.config.nLayer === 0 ? (o && await o(t.layerStep, t.pass), p && await p(t.pass), t.pass++) : o && await o(t.layerStep, t.pass), t.stepSinceLayerChange = 0, this.applyTrainingPattern(t.layerStep % this.trainingPattern.length));
|
|
81
|
-
}
|
|
82
|
-
} catch (n) {
|
|
83
|
-
throw console.error("Training error:", n), m(), n;
|
|
84
|
-
}
|
|
85
|
-
return m(), { losses: t.losses, validationLosses: t.validationLosses };
|
|
86
|
-
}
|
|
87
|
-
}
|
|
88
|
-
export {
|
|
89
|
-
E as default
|
|
90
|
-
};
|
|
@@ -1,162 +0,0 @@
|
|
|
1
|
-
const e = [
|
|
2
|
-
[
|
|
3
|
-
{
|
|
4
|
-
adam: {
|
|
5
|
-
learningRateFactor: 1,
|
|
6
|
-
beta1: 0.9,
|
|
7
|
-
beta2: 0.999,
|
|
8
|
-
epsilon: 1e-8
|
|
9
|
-
},
|
|
10
|
-
skip: [!1],
|
|
11
|
-
trainable: [!0]
|
|
12
|
-
}
|
|
13
|
-
],
|
|
14
|
-
[
|
|
15
|
-
{
|
|
16
|
-
adam: {
|
|
17
|
-
learningRateFactor: 1,
|
|
18
|
-
beta1: 0.9,
|
|
19
|
-
beta2: 0.999,
|
|
20
|
-
epsilon: 1e-8
|
|
21
|
-
},
|
|
22
|
-
skip: [!0, !1],
|
|
23
|
-
trainable: [!1, !0]
|
|
24
|
-
},
|
|
25
|
-
{
|
|
26
|
-
adam: {
|
|
27
|
-
learningRateFactor: 1,
|
|
28
|
-
beta1: 0.9,
|
|
29
|
-
beta2: 0.999,
|
|
30
|
-
epsilon: 1e-8
|
|
31
|
-
},
|
|
32
|
-
skip: [!1, !1],
|
|
33
|
-
trainable: [!0, !1]
|
|
34
|
-
},
|
|
35
|
-
{
|
|
36
|
-
adam: {
|
|
37
|
-
learningRateFactor: 0.3333333333333333,
|
|
38
|
-
beta1: 0.95,
|
|
39
|
-
beta2: 0.999,
|
|
40
|
-
epsilon: 1e-8
|
|
41
|
-
},
|
|
42
|
-
skip: [!1, !1],
|
|
43
|
-
trainable: [!0, !0]
|
|
44
|
-
}
|
|
45
|
-
],
|
|
46
|
-
[],
|
|
47
|
-
[
|
|
48
|
-
{
|
|
49
|
-
adam: {
|
|
50
|
-
learningRateFactor: 1,
|
|
51
|
-
beta1: 0.9,
|
|
52
|
-
beta2: 0.999,
|
|
53
|
-
epsilon: 1e-8
|
|
54
|
-
},
|
|
55
|
-
skip: [!0, !0, !0, !1],
|
|
56
|
-
trainable: [!1, !1, !1, !0]
|
|
57
|
-
},
|
|
58
|
-
{
|
|
59
|
-
adam: {
|
|
60
|
-
learningRateFactor: 1,
|
|
61
|
-
beta1: 0.9,
|
|
62
|
-
beta2: 0.999,
|
|
63
|
-
epsilon: 1e-8
|
|
64
|
-
},
|
|
65
|
-
skip: [!0, !0, !1, !1],
|
|
66
|
-
trainable: [!1, !1, !0, !1]
|
|
67
|
-
},
|
|
68
|
-
{
|
|
69
|
-
adam: {
|
|
70
|
-
learningRateFactor: 0.3333333333333333,
|
|
71
|
-
beta1: 0.95,
|
|
72
|
-
beta2: 0.999,
|
|
73
|
-
epsilon: 1e-8
|
|
74
|
-
},
|
|
75
|
-
skip: [!0, !0, !1, !1],
|
|
76
|
-
trainable: [!1, !1, !1, !0]
|
|
77
|
-
},
|
|
78
|
-
{
|
|
79
|
-
adam: {
|
|
80
|
-
learningRateFactor: 1,
|
|
81
|
-
beta1: 0.9,
|
|
82
|
-
beta2: 0.999,
|
|
83
|
-
epsilon: 1e-8
|
|
84
|
-
},
|
|
85
|
-
skip: [!0, !1, !1, !1],
|
|
86
|
-
trainable: [!1, !0, !1, !1]
|
|
87
|
-
},
|
|
88
|
-
{
|
|
89
|
-
adam: {
|
|
90
|
-
learningRateFactor: 0.3333333333333333,
|
|
91
|
-
beta1: 0.95,
|
|
92
|
-
beta2: 0.999,
|
|
93
|
-
epsilon: 1e-8
|
|
94
|
-
},
|
|
95
|
-
skip: [!0, !1, !1, !1],
|
|
96
|
-
trainable: [!1, !1, !0, !1]
|
|
97
|
-
},
|
|
98
|
-
{
|
|
99
|
-
adam: {
|
|
100
|
-
learningRateFactor: 0.16666666666666666,
|
|
101
|
-
beta1: 0.98,
|
|
102
|
-
beta2: 0.9999,
|
|
103
|
-
epsilon: 1e-8
|
|
104
|
-
},
|
|
105
|
-
skip: [!0, !1, !1, !1],
|
|
106
|
-
trainable: [!1, !1, !1, !0]
|
|
107
|
-
},
|
|
108
|
-
{
|
|
109
|
-
adam: {
|
|
110
|
-
learningRateFactor: 1,
|
|
111
|
-
beta1: 0.9,
|
|
112
|
-
beta2: 0.999,
|
|
113
|
-
epsilon: 1e-8
|
|
114
|
-
},
|
|
115
|
-
skip: [!1, !1, !1, !1],
|
|
116
|
-
trainable: [!0, !1, !1, !1]
|
|
117
|
-
},
|
|
118
|
-
{
|
|
119
|
-
adam: {
|
|
120
|
-
learningRateFactor: 0.3333333333333333,
|
|
121
|
-
beta1: 0.95,
|
|
122
|
-
beta2: 0.999,
|
|
123
|
-
epsilon: 1e-8
|
|
124
|
-
},
|
|
125
|
-
skip: [!1, !1, !1, !1],
|
|
126
|
-
trainable: [!1, !0, !1, !1]
|
|
127
|
-
},
|
|
128
|
-
{
|
|
129
|
-
adam: {
|
|
130
|
-
learningRateFactor: 0.16666666666666666,
|
|
131
|
-
beta1: 0.98,
|
|
132
|
-
beta2: 0.9999,
|
|
133
|
-
epsilon: 1e-8
|
|
134
|
-
},
|
|
135
|
-
skip: [!1, !1, !1, !1],
|
|
136
|
-
trainable: [!1, !1, !0, !1]
|
|
137
|
-
},
|
|
138
|
-
{
|
|
139
|
-
adam: {
|
|
140
|
-
learningRateFactor: 0.16666666666666666,
|
|
141
|
-
beta1: 0.98,
|
|
142
|
-
beta2: 0.9999,
|
|
143
|
-
epsilon: 1e-8
|
|
144
|
-
},
|
|
145
|
-
skip: [!1, !1, !1, !1],
|
|
146
|
-
trainable: [!1, !1, !1, !0]
|
|
147
|
-
},
|
|
148
|
-
{
|
|
149
|
-
adam: {
|
|
150
|
-
learningRateFactor: 0.16666666666666666,
|
|
151
|
-
beta1: 0.98,
|
|
152
|
-
beta2: 0.9999,
|
|
153
|
-
epsilon: 1e-8
|
|
154
|
-
},
|
|
155
|
-
skip: [!1, !1, !1, !1],
|
|
156
|
-
trainable: [!0, !0, !0, !0]
|
|
157
|
-
}
|
|
158
|
-
]
|
|
159
|
-
];
|
|
160
|
-
export {
|
|
161
|
-
e as schedule
|
|
162
|
-
};
|