@genai-fi/nanogpt 0.3.1 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/dist/Generator.js +22 -22
  2. package/dist/MLP-KHhikThU.js +83 -0
  3. package/dist/NanoGPTModel.d.ts +2 -3
  4. package/dist/NanoGPTModel.js +79 -79
  5. package/dist/TeachableLLM.d.ts +4 -3
  6. package/dist/TeachableLLM.js +16 -13
  7. package/dist/Trainer.js +20 -13
  8. package/dist/axis_util-DeydwOoC.js +69 -0
  9. package/dist/{concat-BIZS_td9.js → concat-DS_qH7MI.js} +5 -5
  10. package/dist/config.js +7 -8
  11. package/dist/{gather-BPGW8RsB.js → gather-BUmJIS8n.js} +1 -1
  12. package/dist/{index-pWA4_lUh.js → index-XjBAhiFO.js} +1272 -1174
  13. package/dist/layers/BaseLayer.d.ts +14 -2
  14. package/dist/layers/BaseLayer.js +9 -9
  15. package/dist/layers/CausalSelfAttention.d.ts +4 -8
  16. package/dist/layers/CausalSelfAttention.js +108 -82
  17. package/dist/layers/MLP.d.ts +2 -3
  18. package/dist/layers/MLP.js +5 -62
  19. package/dist/layers/RMSNorm.d.ts +2 -2
  20. package/dist/layers/RMSNorm.js +11 -11
  21. package/dist/layers/RoPECache.js +3 -3
  22. package/dist/layers/TiedEmbedding.js +7 -6
  23. package/dist/layers/TransformerBlock.d.ts +2 -6
  24. package/dist/layers/TransformerBlock.js +9 -12
  25. package/dist/{sum-C7Mgy9Bw.js → log_sum_exp-DJPkVZZn.js} +32 -54
  26. package/dist/main.js +22 -19
  27. package/dist/{mat_mul-D7_a4KJn.js → mat_mul-CKwFEV1Q.js} +1 -1
  28. package/dist/max-DJvEiCAJ.js +25 -0
  29. package/dist/moments-CrWRPcR3.js +53 -0
  30. package/dist/norm-BzY929B_.js +86 -0
  31. package/dist/{ones-Cog-G2ag.js → ones-BO01zpJG.js} +2 -2
  32. package/dist/ops/appendCache.js +1 -1
  33. package/dist/ops/attentionMask.js +1 -1
  34. package/dist/ops/cpu/appendCache.js +2 -2
  35. package/dist/ops/cpu/attentionMask.js +2 -2
  36. package/dist/ops/cpu/fusedSoftmax.d.ts +9 -0
  37. package/dist/ops/cpu/fusedSoftmax.js +23 -0
  38. package/dist/ops/cpu/gatherSub.js +3 -3
  39. package/dist/ops/cpu/mulDropout.d.ts +1 -0
  40. package/dist/ops/cpu/mulDropout.js +17 -0
  41. package/dist/ops/cpu/qkv.js +3 -3
  42. package/dist/ops/cpu/rope.js +5 -5
  43. package/dist/ops/cpu/scatterSub.js +27 -27
  44. package/dist/ops/fusedSoftmax.d.ts +2 -0
  45. package/dist/ops/fusedSoftmax.js +10 -0
  46. package/dist/ops/gatherSub.js +1 -1
  47. package/dist/ops/grads/attentionMask.js +1 -1
  48. package/dist/ops/grads/fusedSoftmax.d.ts +2 -0
  49. package/dist/ops/grads/fusedSoftmax.js +17 -0
  50. package/dist/ops/grads/qkv.js +1 -1
  51. package/dist/ops/grads/rope.js +1 -1
  52. package/dist/ops/mulDrop.d.ts +2 -0
  53. package/dist/ops/mulDrop.js +9 -0
  54. package/dist/ops/node/sparseCrossEntropy.js +1 -1
  55. package/dist/ops/qkv.js +1 -1
  56. package/dist/ops/scatterSub.js +1 -1
  57. package/dist/ops/webgl/appendCache.js +1 -1
  58. package/dist/ops/webgl/attentionMask.js +1 -1
  59. package/dist/ops/webgl/fusedSoftmax.d.ts +11 -0
  60. package/dist/ops/webgl/fusedSoftmax.js +3930 -0
  61. package/dist/ops/webgl/gatherSub.js +1 -1
  62. package/dist/ops/webgl/mulDropout.d.ts +1 -0
  63. package/dist/ops/webgl/mulDropout.js +41 -0
  64. package/dist/ops/webgl/qkv.js +1 -1
  65. package/dist/ops/webgl/rope.js +1 -1
  66. package/dist/ops/webgl/scatterSub.js +1 -1
  67. package/dist/{random_width-oeUIlUZj.js → random_width-CMHmdbSu.js} +4212 -6630
  68. package/dist/{range-CcDl05lo.js → range-DQMNzBWs.js} +1 -1
  69. package/dist/{reshape-C8CR_Bad.js → reshape-DFzh97Sc.js} +1 -1
  70. package/dist/{sin-BJIrfnj7.js → sin-BYM-U4Ut.js} +1 -1
  71. package/dist/slice_util-CnVNPQI-.js +90 -0
  72. package/dist/softmax-4DOn6cPq.js +28 -0
  73. package/dist/{split-DZbvruEP.js → split-CkbeVdF8.js} +3 -3
  74. package/dist/{stack-BMm-efee.js → stack-DaIMO5iX.js} +1 -1
  75. package/dist/sum-C6u3xMi3.js +27 -0
  76. package/dist/{tensor-DJVbYhh1.js → tensor-Cu1fU7H7.js} +1 -1
  77. package/dist/{tensor2d-ZuQSh2D-.js → tensor2d-D0CKdG6B.js} +1 -1
  78. package/dist/tfjs_backend-Bzl2SrRo.js +2460 -0
  79. package/dist/training/AdamExt.js +1 -1
  80. package/dist/training/DatasetBuilder.js +3 -3
  81. package/dist/training/FullTrainer.js +41 -33
  82. package/dist/training/Trainer.d.ts +6 -1
  83. package/dist/training/Trainer.js +13 -12
  84. package/dist/training/sparseCrossEntropy.js +12 -11
  85. package/dist/utilities/dummy.js +8 -8
  86. package/dist/utilities/generate.js +11 -11
  87. package/dist/utilities/load.js +1 -1
  88. package/dist/utilities/profile.js +1 -1
  89. package/dist/utilities/weights.js +2 -2
  90. package/dist/{variable-Dl_ub3pk.js → variable-BS4AKqNU.js} +1 -1
  91. package/dist/{zeros-CCy9C3uU.js → zeros-CmJFiC84.js} +1 -1
  92. package/package.json +1 -1
  93. package/dist/exports_layers-tbTBcwMM.js +0 -25
  94. package/dist/layers/LayerNorm.d.ts +0 -13
  95. package/dist/layers/LayerNorm.js +0 -33
  96. package/dist/moments-DfcpfwKi.js +0 -132
  97. package/dist/softmax-Be_lsqUc.js +0 -105
  98. package/dist/training/LayerTrainer.d.ts +0 -29
  99. package/dist/training/LayerTrainer.js +0 -90
  100. package/dist/training/lwSchedule.d.ts +0 -7
  101. package/dist/training/lwSchedule.js +0 -162
@@ -1,105 +0,0 @@
1
- import { o as r, h as e, E as c, _ as $, $ as h, a0 as E, s as S, Z as _, a1 as d } from "./index-pWA4_lUh.js";
2
- import { m as k, s as w, e as K } from "./sum-C7Mgy9Bw.js";
3
- import { r as l } from "./reshape-C8CR_Bad.js";
4
- /**
5
- * @license
6
- * Copyright 2018 Google LLC. All Rights Reserved.
7
- * Licensed under the Apache License, Version 2.0 (the "License");
8
- * you may not use this file except in compliance with the License.
9
- * You may obtain a copy of the License at
10
- *
11
- * http://www.apache.org/licenses/LICENSE-2.0
12
- *
13
- * Unless required by applicable law or agreed to in writing, software
14
- * distributed under the License is distributed on an "AS IS" BASIS,
15
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
- * See the License for the specific language governing permissions and
17
- * limitations under the License.
18
- * =============================================================================
19
- */
20
- function T(n) {
21
- const s = { x: e(n, "x", "exp") };
22
- return c.runKernel($, s);
23
- }
24
- const b = /* @__PURE__ */ r({ exp_: T });
25
- /**
26
- * @license
27
- * Copyright 2018 Google LLC. All Rights Reserved.
28
- * Licensed under the Apache License, Version 2.0 (the "License");
29
- * you may not use this file except in compliance with the License.
30
- * You may obtain a copy of the License at
31
- *
32
- * http://www.apache.org/licenses/LICENSE-2.0
33
- *
34
- * Unless required by applicable law or agreed to in writing, software
35
- * distributed under the License is distributed on an "AS IS" BASIS,
36
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37
- * See the License for the specific language governing permissions and
38
- * limitations under the License.
39
- * =============================================================================
40
- */
41
- function L(n) {
42
- const s = { x: e(n, "x", "log", "float32") };
43
- return c.runKernel(h, s);
44
- }
45
- const N = /* @__PURE__ */ r({ log_: L });
46
- /**
47
- * @license
48
- * Copyright 2020 Google LLC. All Rights Reserved.
49
- * Licensed under the Apache License, Version 2.0 (the "License");
50
- * you may not use this file except in compliance with the License.
51
- * You may obtain a copy of the License at
52
- *
53
- * http://www.apache.org/licenses/LICENSE-2.0
54
- *
55
- * Unless required by applicable law or agreed to in writing, software
56
- * distributed under the License is distributed on an "AS IS" BASIS,
57
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
58
- * See the License for the specific language governing permissions and
59
- * limitations under the License.
60
- * =============================================================================
61
- */
62
- function v(n, o = null, s = !1) {
63
- const t = e(n, "x", "logSumExp"), a = E(o, t.shape), p = k(
64
- t,
65
- a,
66
- !0
67
- /* keepDims */
68
- ), i = S(t, p), f = b(i), m = w(f, a), u = N(m), x = _(l(p, u.shape), u);
69
- if (s) {
70
- const g = K(x.shape, a);
71
- return l(x, g);
72
- }
73
- return x;
74
- }
75
- const I = /* @__PURE__ */ r({ logSumExp_: v });
76
- /**
77
- * @license
78
- * Copyright 2018 Google LLC. All Rights Reserved.
79
- * Licensed under the Apache License, Version 2.0 (the "License");
80
- * you may not use this file except in compliance with the License.
81
- * You may obtain a copy of the License at
82
- *
83
- * http://www.apache.org/licenses/LICENSE-2.0
84
- *
85
- * Unless required by applicable law or agreed to in writing, software
86
- * distributed under the License is distributed on an "AS IS" BASIS,
87
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
88
- * See the License for the specific language governing permissions and
89
- * limitations under the License.
90
- * =============================================================================
91
- */
92
- function y(n, o = -1) {
93
- const s = e(n, "logits", "softmax", "float32");
94
- if (o === -1 && (o = s.rank - 1), o !== s.rank - 1)
95
- throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${s.rank} and dim was ${o}`);
96
- const t = { logits: s }, a = { dim: o };
97
- return c.runKernel(d, t, a);
98
- }
99
- const M = /* @__PURE__ */ r({ softmax_: y });
100
- export {
101
- N as a,
102
- b as e,
103
- I as l,
104
- M as s
105
- };
@@ -1,29 +0,0 @@
1
- import { ITokeniser } from '../tokeniser/type';
2
- import { default as NanoGPT } from '../NanoGPTModel';
3
- import { default as GPTTrainer, TrainingOptions } from './Trainer';
4
- import { Tensor } from '@tensorflow/tfjs-core';
5
- import { Dataset } from '@tensorflow/tfjs-data';
6
- interface LayerTrainingOptions extends TrainingOptions {
7
- stepsPerLayer: number;
8
- maxPasses: number;
9
- onLayerChange?: (layer: number, pass: number, valLoss?: number) => Promise<void> | void;
10
- onPassComplete?: (pass: number) => Promise<void> | void;
11
- }
12
- export default class LayerTrainer extends GPTTrainer {
13
- private trainingPattern;
14
- private startPass;
15
- private startLayer;
16
- constructor(model: NanoGPT, tokenizer: ITokeniser, learningRate?: number);
17
- private applyTrainingPattern;
18
- trainOnDataset(dataset: Dataset<{
19
- xs: Tensor;
20
- ys: Tensor;
21
- }>, options: Partial<LayerTrainingOptions>, validationDataset?: Dataset<{
22
- xs: Tensor;
23
- ys: Tensor;
24
- }>): Promise<{
25
- losses: number[];
26
- validationLosses: number[];
27
- }>;
28
- }
29
- export {};
@@ -1,90 +0,0 @@
1
- import { generateText as u } from "../utilities/generate.js";
2
- import v from "./Trainer.js";
3
- import { schedule as w } from "./lwSchedule.js";
4
- import T from "./Evaluator.js";
5
- import { a as m } from "../index-pWA4_lUh.js";
6
- const x = {
7
- desiredLoss: 0.01,
8
- logInterval: 1,
9
- stepsPerLayer: 400,
10
- maxPasses: 3,
11
- maxSteps: 1e3
12
- };
13
- class E extends v {
14
- trainingPattern = [];
15
- startPass = 0;
16
- startLayer = 0;
17
- constructor(s, r, e = 3e-4) {
18
- if (super(s, r, e), this.trainingPattern = w[s.config.nLayer - 1] || [], s.log.length > 0) {
19
- const i = s.log[s.log.length - 1];
20
- i.pass !== void 0 && i.layer !== void 0 && (this.startPass = i.pass, this.startLayer = i.layer, console.log(`Resuming training from pass ${this.startPass}, layer ${this.startLayer}`));
21
- }
22
- }
23
- applyTrainingPattern(s) {
24
- const r = s < this.trainingPattern.length ? s : this.trainingPattern.length - 1, e = this.trainingPattern[r];
25
- this.model.setSkipMask(e.skip), this.model.setTrainableMask(e.trainable), this.resetOptimizer(e.adam), console.log("Applied training pattern:", r, e);
26
- }
27
- // Train for multiple epochs using Dataset API - FIXED memory leaks
28
- async trainOnDataset(s, r, e) {
29
- const { desiredLoss: i, logInterval: L, stepsPerLayer: f, onLayerChange: o, onPassComplete: p, onStep: h, prompt: c } = {
30
- ...x,
31
- ...r
32
- }, t = {
33
- pass: 0,
34
- layerStep: 0,
35
- step: 0,
36
- stepSinceLayerChange: 0,
37
- lastLoss: 1e6,
38
- totalSteps: 0,
39
- losses: [],
40
- validationLosses: []
41
- };
42
- this.dummyPass();
43
- const d = Date.now();
44
- this.startPass = 0, this.startLayer = 0;
45
- const g = e ? new T(this.model, e) : void 0, P = await s.iterator();
46
- this.applyTrainingPattern(t.layerStep % this.trainingPattern.length);
47
- try {
48
- for (; !(t.lastLoss < i); ) {
49
- const n = await P.next();
50
- if (n.done) break;
51
- const y = n.value, S = this.trainBatch(t, y);
52
- t.stepSinceLayerChange++;
53
- const l = {
54
- loss: t.lastLoss,
55
- step: t.step,
56
- time: Date.now() - d,
57
- batchSize: y.xs.shape[0],
58
- pass: t.pass,
59
- layer: t.layerStep % this.model.config.nLayer
60
- };
61
- if (this.model.log.push(l), t.step % L === 0) {
62
- if (await S, g)
63
- try {
64
- const a = await g.evaluate(5);
65
- t.validationLosses.push(a), l.valLoss = a;
66
- } catch (a) {
67
- console.error("Validation error:", a);
68
- }
69
- if (h) {
70
- if (c) {
71
- const a = await u(this.tokenizer, this.model, c, 100, {
72
- temperature: 0.8,
73
- topK: 10
74
- });
75
- l.example = a;
76
- }
77
- await h(l);
78
- }
79
- }
80
- t.stepSinceLayerChange >= f && (t.layerStep++, t.layerStep % this.model.config.nLayer === 0 ? (o && await o(t.layerStep, t.pass), p && await p(t.pass), t.pass++) : o && await o(t.layerStep, t.pass), t.stepSinceLayerChange = 0, this.applyTrainingPattern(t.layerStep % this.trainingPattern.length));
81
- }
82
- } catch (n) {
83
- throw console.error("Training error:", n), m(), n;
84
- }
85
- return m(), { losses: t.losses, validationLosses: t.validationLosses };
86
- }
87
- }
88
- export {
89
- E as default
90
- };
@@ -1,7 +0,0 @@
1
- import { AdamConfig } from './Trainer';
2
- export interface LWSchedule {
3
- adam: AdamConfig;
4
- skip: boolean[];
5
- trainable: boolean[];
6
- }
7
- export declare const schedule: LWSchedule[][];
@@ -1,162 +0,0 @@
1
- const e = [
2
- [
3
- {
4
- adam: {
5
- learningRateFactor: 1,
6
- beta1: 0.9,
7
- beta2: 0.999,
8
- epsilon: 1e-8
9
- },
10
- skip: [!1],
11
- trainable: [!0]
12
- }
13
- ],
14
- [
15
- {
16
- adam: {
17
- learningRateFactor: 1,
18
- beta1: 0.9,
19
- beta2: 0.999,
20
- epsilon: 1e-8
21
- },
22
- skip: [!0, !1],
23
- trainable: [!1, !0]
24
- },
25
- {
26
- adam: {
27
- learningRateFactor: 1,
28
- beta1: 0.9,
29
- beta2: 0.999,
30
- epsilon: 1e-8
31
- },
32
- skip: [!1, !1],
33
- trainable: [!0, !1]
34
- },
35
- {
36
- adam: {
37
- learningRateFactor: 0.3333333333333333,
38
- beta1: 0.95,
39
- beta2: 0.999,
40
- epsilon: 1e-8
41
- },
42
- skip: [!1, !1],
43
- trainable: [!0, !0]
44
- }
45
- ],
46
- [],
47
- [
48
- {
49
- adam: {
50
- learningRateFactor: 1,
51
- beta1: 0.9,
52
- beta2: 0.999,
53
- epsilon: 1e-8
54
- },
55
- skip: [!0, !0, !0, !1],
56
- trainable: [!1, !1, !1, !0]
57
- },
58
- {
59
- adam: {
60
- learningRateFactor: 1,
61
- beta1: 0.9,
62
- beta2: 0.999,
63
- epsilon: 1e-8
64
- },
65
- skip: [!0, !0, !1, !1],
66
- trainable: [!1, !1, !0, !1]
67
- },
68
- {
69
- adam: {
70
- learningRateFactor: 0.3333333333333333,
71
- beta1: 0.95,
72
- beta2: 0.999,
73
- epsilon: 1e-8
74
- },
75
- skip: [!0, !0, !1, !1],
76
- trainable: [!1, !1, !1, !0]
77
- },
78
- {
79
- adam: {
80
- learningRateFactor: 1,
81
- beta1: 0.9,
82
- beta2: 0.999,
83
- epsilon: 1e-8
84
- },
85
- skip: [!0, !1, !1, !1],
86
- trainable: [!1, !0, !1, !1]
87
- },
88
- {
89
- adam: {
90
- learningRateFactor: 0.3333333333333333,
91
- beta1: 0.95,
92
- beta2: 0.999,
93
- epsilon: 1e-8
94
- },
95
- skip: [!0, !1, !1, !1],
96
- trainable: [!1, !1, !0, !1]
97
- },
98
- {
99
- adam: {
100
- learningRateFactor: 0.16666666666666666,
101
- beta1: 0.98,
102
- beta2: 0.9999,
103
- epsilon: 1e-8
104
- },
105
- skip: [!0, !1, !1, !1],
106
- trainable: [!1, !1, !1, !0]
107
- },
108
- {
109
- adam: {
110
- learningRateFactor: 1,
111
- beta1: 0.9,
112
- beta2: 0.999,
113
- epsilon: 1e-8
114
- },
115
- skip: [!1, !1, !1, !1],
116
- trainable: [!0, !1, !1, !1]
117
- },
118
- {
119
- adam: {
120
- learningRateFactor: 0.3333333333333333,
121
- beta1: 0.95,
122
- beta2: 0.999,
123
- epsilon: 1e-8
124
- },
125
- skip: [!1, !1, !1, !1],
126
- trainable: [!1, !0, !1, !1]
127
- },
128
- {
129
- adam: {
130
- learningRateFactor: 0.16666666666666666,
131
- beta1: 0.98,
132
- beta2: 0.9999,
133
- epsilon: 1e-8
134
- },
135
- skip: [!1, !1, !1, !1],
136
- trainable: [!1, !1, !0, !1]
137
- },
138
- {
139
- adam: {
140
- learningRateFactor: 0.16666666666666666,
141
- beta1: 0.98,
142
- beta2: 0.9999,
143
- epsilon: 1e-8
144
- },
145
- skip: [!1, !1, !1, !1],
146
- trainable: [!1, !1, !1, !0]
147
- },
148
- {
149
- adam: {
150
- learningRateFactor: 0.16666666666666666,
151
- beta1: 0.98,
152
- beta2: 0.9999,
153
- epsilon: 1e-8
154
- },
155
- skip: [!1, !1, !1, !1],
156
- trainable: [!0, !0, !0, !0]
157
- }
158
- ]
159
- ];
160
- export {
161
- e as schedule
162
- };