@genai-fi/nanogpt 0.2.4 → 0.2.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/NanoGPTModel.js +43 -44
- package/dist/TeachableLLM.js +3 -0
- package/dist/complex-D6Bq1XDf.js +27 -0
- package/dist/data/docx.d.ts +1 -0
- package/dist/data/docx.js +15 -0
- package/dist/data/pdf.d.ts +1 -1
- package/dist/data/pdf.js +10 -8
- package/dist/data/textLoader.js +29 -24
- package/dist/{index-DcaSvB38.js → index-D1SlunD-.js} +553 -522
- package/dist/{jszip.min-CAxN99oA.js → jszip.min-CjP2V1VV.js} +1 -1
- package/dist/layers/TiedEmbedding.js +113 -178
- package/dist/main.d.ts +2 -0
- package/dist/main.js +18 -10
- package/dist/ops/gatherSub.d.ts +2 -0
- package/dist/ops/gatherSub.js +66 -0
- package/dist/ops/node/sparseCrossEntropy.d.ts +1 -0
- package/dist/ops/node/sparseCrossEntropy.js +11 -0
- package/dist/ops/scatterSub.d.ts +2 -0
- package/dist/ops/scatterSub.js +150 -0
- package/dist/stack-DB2YLlAs.js +50 -0
- package/dist/sum-02UQ5Eaq.js +49 -0
- package/dist/tokeniser/CharTokeniser.d.ts +1 -0
- package/dist/tokeniser/CharTokeniser.js +48 -39
- package/dist/training/AdamExt.js +1 -1
- package/dist/training/DatasetBuilder.js +3 -2
- package/dist/training/Trainer.js +3 -3
- package/dist/training/sparseCrossEntropy.d.ts +11 -0
- package/dist/training/sparseCrossEntropy.js +177 -0
- package/dist/utilities/load.js +5 -5
- package/dist/utilities/parameters.d.ts +10 -0
- package/dist/utilities/parameters.js +52 -0
- package/dist/utilities/save.js +1 -1
- package/package.json +3 -2
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
import { engine as $ } from "@tensorflow/tfjs";
|
|
2
|
+
import { i as u, j as S, k as h, E as f, l as E, o as N, c as l, n as y, r as p, a as D, m as x } from "../index-D1SlunD-.js";
|
|
3
|
+
import { c as m } from "../complex-D6Bq1XDf.js";
|
|
4
|
+
import { r as v, s as T } from "../stack-DB2YLlAs.js";
|
|
5
|
+
/**
|
|
6
|
+
* @license
|
|
7
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
8
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
9
|
+
* you may not use this file except in compliance with the License.
|
|
10
|
+
* You may obtain a copy of the License at
|
|
11
|
+
*
|
|
12
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
13
|
+
*
|
|
14
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
15
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
16
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
17
|
+
* See the License for the specific language governing permissions and
|
|
18
|
+
* limitations under the License.
|
|
19
|
+
* =============================================================================
|
|
20
|
+
*/
|
|
21
|
+
function i(e, t = "float32") {
|
|
22
|
+
if (u(e), t === "complex64") {
|
|
23
|
+
const a = i(e, "float32"), o = i(e, "float32");
|
|
24
|
+
return m(a, o);
|
|
25
|
+
}
|
|
26
|
+
const r = S(h(e), t);
|
|
27
|
+
return f.makeTensor(r, e, t);
|
|
28
|
+
}
|
|
29
|
+
/**
|
|
30
|
+
* @license
|
|
31
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
32
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
33
|
+
* you may not use this file except in compliance with the License.
|
|
34
|
+
* You may obtain a copy of the License at
|
|
35
|
+
*
|
|
36
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
37
|
+
*
|
|
38
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
39
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
40
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
41
|
+
* See the License for the specific language governing permissions and
|
|
42
|
+
* limitations under the License.
|
|
43
|
+
* =============================================================================
|
|
44
|
+
*/
|
|
45
|
+
function d(e, t = "float32") {
|
|
46
|
+
if (u(e), t === "complex64") {
|
|
47
|
+
const a = d(e, "float32"), o = i(e, "float32");
|
|
48
|
+
return m(a, o);
|
|
49
|
+
}
|
|
50
|
+
const r = E(h(e), t);
|
|
51
|
+
return f.makeTensor(r, e, t);
|
|
52
|
+
}
|
|
53
|
+
function C(e, t, r) {
|
|
54
|
+
const a = t.rank > 1 ? t.shape[t.rank - 1] : 1, o = t.rank > 1 ? t.rank - 1 : 1, s = `Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${o}.`;
|
|
55
|
+
if (r.rank < o)
|
|
56
|
+
throw new Error(s + ` update.rank < ${o}. `);
|
|
57
|
+
if (e.length < a + (r.rank - o))
|
|
58
|
+
throw new Error(s + ` Output shape length < ${a + (r.rank - o)}`);
|
|
59
|
+
if (r.rank !== o + e.length - a)
|
|
60
|
+
throw new Error(s + ` update.rank != ${o + e.length - a}`);
|
|
61
|
+
for (let n = 0; n < o; ++n)
|
|
62
|
+
if (r.shape[n] !== t.shape[n])
|
|
63
|
+
throw new Error(s + ` updates.shape[${n}] (${r.shape[n]}) != indices.shape[${n}] (${t.shape[n]}).`);
|
|
64
|
+
for (let n = 0; n < r.rank - o; ++n)
|
|
65
|
+
if (r.shape[n + o] !== e[n + a])
|
|
66
|
+
throw new Error(s + ` updates.shape[${n + o}] (${r.shape[n + o]}) != shape[${n + o}] (${e[n + o]})`);
|
|
67
|
+
}
|
|
68
|
+
function O(e, t, r) {
|
|
69
|
+
if (t.rank < 1)
|
|
70
|
+
throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);
|
|
71
|
+
if (e.rank < 1)
|
|
72
|
+
throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);
|
|
73
|
+
if (t.dtype !== "int32")
|
|
74
|
+
throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);
|
|
75
|
+
if (r.length < 1)
|
|
76
|
+
throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);
|
|
77
|
+
if (r.length === 0) {
|
|
78
|
+
if (t.size === 0)
|
|
79
|
+
throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);
|
|
80
|
+
if (e.size === 0)
|
|
81
|
+
throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`);
|
|
82
|
+
}
|
|
83
|
+
C(r, t, e);
|
|
84
|
+
}
|
|
85
|
+
/**
|
|
86
|
+
* @license
|
|
87
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
88
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
89
|
+
* you may not use this file except in compliance with the License.
|
|
90
|
+
* You may obtain a copy of the License at
|
|
91
|
+
*
|
|
92
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
93
|
+
*
|
|
94
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
95
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
96
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
97
|
+
* See the License for the specific language governing permissions and
|
|
98
|
+
* limitations under the License.
|
|
99
|
+
* =============================================================================
|
|
100
|
+
*/
|
|
101
|
+
function z(e, t, r) {
|
|
102
|
+
u(r);
|
|
103
|
+
const a = l(e, "indices", "scatterND", "int32"), o = l(t, "updates", "scatterND");
|
|
104
|
+
O(o, a, r);
|
|
105
|
+
const s = { indices: a, updates: o }, n = { shape: r };
|
|
106
|
+
return f.runKernel(y, s, n);
|
|
107
|
+
}
|
|
108
|
+
const I = /* @__PURE__ */ N({ scatterND_: z });
|
|
109
|
+
class L {
|
|
110
|
+
variableNames = ["labels", "softmaxProbs", "dy"];
|
|
111
|
+
outputShape;
|
|
112
|
+
userCode;
|
|
113
|
+
constructor(t, r) {
|
|
114
|
+
this.outputShape = [t, r], this.userCode = `
|
|
115
|
+
void main() {
|
|
116
|
+
ivec2 coords = getOutputCoords();
|
|
117
|
+
int index = int(getLabels(coords.x));
|
|
118
|
+
float prob = getSoftmaxProbsAtOutCoords();
|
|
119
|
+
float dy = getDy(coords.x);
|
|
120
|
+
setOutput((index == coords.y ? prob - 1.0 : prob) * dy);
|
|
121
|
+
}
|
|
122
|
+
`;
|
|
123
|
+
}
|
|
124
|
+
}
|
|
125
|
+
function P(e) {
|
|
126
|
+
const { logits: t, labels: r, dy: a } = e.inputs, o = e.backend, s = r.shape[0], n = t.shape[1], c = new L(s, n);
|
|
127
|
+
return o.runWebGLProgram(c, [r, t, a], "float32");
|
|
128
|
+
}
|
|
129
|
+
const K = {
|
|
130
|
+
kernelName: "EfficientScatterSub",
|
|
131
|
+
backendName: "webgl",
|
|
132
|
+
kernelFunc: P
|
|
133
|
+
};
|
|
134
|
+
p(K);
|
|
135
|
+
function A(e) {
|
|
136
|
+
const { logits: t, labels: r, dy: a } = e.inputs, o = r.shape[0], s = t.shape[1], n = v(0, o, 1, "int32"), c = T([n, r], 1), b = d([o]), g = I(c, b, [o, s]), k = D(t, g), w = a.reshape([o, 1]);
|
|
137
|
+
return x(k, w);
|
|
138
|
+
}
|
|
139
|
+
const F = {
|
|
140
|
+
kernelName: "EfficientScatterSub",
|
|
141
|
+
backendName: "cpu",
|
|
142
|
+
kernelFunc: A
|
|
143
|
+
};
|
|
144
|
+
p(F);
|
|
145
|
+
function M(e, t, r) {
|
|
146
|
+
return $().runKernel("EfficientScatterSub", { logits: e, labels: t, dy: r }, {});
|
|
147
|
+
}
|
|
148
|
+
export {
|
|
149
|
+
M as scatterSub
|
|
150
|
+
};
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
import { E as e, R as c, o as f, d as u, f as a, P as i } from "./index-D1SlunD-.js";
|
|
2
|
+
/**
|
|
3
|
+
* @license
|
|
4
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
5
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
* you may not use this file except in compliance with the License.
|
|
7
|
+
* You may obtain a copy of the License at
|
|
8
|
+
*
|
|
9
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
*
|
|
11
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
* See the License for the specific language governing permissions and
|
|
15
|
+
* limitations under the License.
|
|
16
|
+
* =============================================================================
|
|
17
|
+
*/
|
|
18
|
+
function g(n, s, t = 1, r = "float32") {
|
|
19
|
+
if (t === 0)
|
|
20
|
+
throw new Error("Cannot have a step of zero");
|
|
21
|
+
const o = { start: n, stop: s, step: t, dtype: r };
|
|
22
|
+
return e.runKernel(c, {}, o);
|
|
23
|
+
}
|
|
24
|
+
/**
|
|
25
|
+
* @license
|
|
26
|
+
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
27
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
28
|
+
* you may not use this file except in compliance with the License.
|
|
29
|
+
* You may obtain a copy of the License at
|
|
30
|
+
*
|
|
31
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
32
|
+
*
|
|
33
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
34
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
35
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
36
|
+
* See the License for the specific language governing permissions and
|
|
37
|
+
* limitations under the License.
|
|
38
|
+
* =============================================================================
|
|
39
|
+
*/
|
|
40
|
+
function k(n, s = 0) {
|
|
41
|
+
const t = u(n, "tensors", "stack", "string_or_numeric");
|
|
42
|
+
a(t.length >= 1, () => "Pass at least one tensor to tf.stack"), t.length > 0 && a(s <= t[0].rank, () => "Axis must be <= rank of the tensor");
|
|
43
|
+
const r = t, o = { axis: s };
|
|
44
|
+
return e.runKernel(i, r, o);
|
|
45
|
+
}
|
|
46
|
+
const h = /* @__PURE__ */ f({ stack_: k });
|
|
47
|
+
export {
|
|
48
|
+
g as r,
|
|
49
|
+
h as s
|
|
50
|
+
};
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
import { o, c as a, E as u, g as p, h as i, S as x } from "./index-D1SlunD-.js";
|
|
2
|
+
/**
|
|
3
|
+
* @license
|
|
4
|
+
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
5
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
* you may not use this file except in compliance with the License.
|
|
7
|
+
* You may obtain a copy of the License at
|
|
8
|
+
*
|
|
9
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
*
|
|
11
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
* See the License for the specific language governing permissions and
|
|
15
|
+
* limitations under the License.
|
|
16
|
+
* =============================================================================
|
|
17
|
+
*/
|
|
18
|
+
function l(n, t) {
|
|
19
|
+
const s = { x: a(n, "x", "reshape", "string_or_numeric") }, r = { shape: t };
|
|
20
|
+
return u.runKernel(p, s, r);
|
|
21
|
+
}
|
|
22
|
+
const h = /* @__PURE__ */ o({ reshape_: l });
|
|
23
|
+
/**
|
|
24
|
+
* @license
|
|
25
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
26
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
27
|
+
* you may not use this file except in compliance with the License.
|
|
28
|
+
* You may obtain a copy of the License at
|
|
29
|
+
*
|
|
30
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
31
|
+
*
|
|
32
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
33
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
34
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
35
|
+
* See the License for the specific language governing permissions and
|
|
36
|
+
* limitations under the License.
|
|
37
|
+
* =============================================================================
|
|
38
|
+
*/
|
|
39
|
+
function m(n, t = null, e = !1) {
|
|
40
|
+
let s = a(n, "x", "sum");
|
|
41
|
+
s.dtype === "bool" && (s = i(s, "int32"));
|
|
42
|
+
const r = { x: s }, c = { axis: t, keepDims: e };
|
|
43
|
+
return u.runKernel(x, r, c);
|
|
44
|
+
}
|
|
45
|
+
const _ = /* @__PURE__ */ o({ sum_: m });
|
|
46
|
+
export {
|
|
47
|
+
h as r,
|
|
48
|
+
_ as s
|
|
49
|
+
};
|
|
@@ -1,57 +1,66 @@
|
|
|
1
|
-
import { E as
|
|
2
|
-
const
|
|
3
|
-
class
|
|
1
|
+
import { E as k } from "../index-Dwqa6Zy2.js";
|
|
2
|
+
const u = ["<eos>", "<unk>"];
|
|
3
|
+
class b extends k {
|
|
4
4
|
vocabSize = 0;
|
|
5
5
|
eosToken = 0;
|
|
6
6
|
unkToken = 0;
|
|
7
7
|
vocab = [];
|
|
8
8
|
cache = /* @__PURE__ */ new Map();
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
9
|
+
_trained = !1;
|
|
10
|
+
constructor(t) {
|
|
11
|
+
if (super(), Array.isArray(t)) {
|
|
12
|
+
if (this.vocab = t, this.vocab.length > 0)
|
|
13
|
+
this.vocabSize = this.vocab.length, this.eosToken = this.vocab.indexOf("<eos>"), this.unkToken = this.vocab.indexOf("<unk>"), this.unkToken === -1 && (this.unkToken = this.vocab.indexOf("<pad>")), this.unkToken === -1 && (this.unkToken = this.vocab.indexOf("_")), this.unkToken === -1 && (this.unkToken = this.vocab.indexOf(" ")), this.unkToken === -1 && (this.unkToken = this.eosToken), this.vocab.forEach((i, n) => {
|
|
14
|
+
this.cache.set(i, n);
|
|
14
15
|
});
|
|
15
16
|
else
|
|
16
17
|
throw new Error("Vocab cannot be empty");
|
|
17
|
-
|
|
18
|
-
|
|
18
|
+
this._trained = !0;
|
|
19
|
+
} else
|
|
20
|
+
this.vocabSize = t, this.vocab = new Array(this.vocabSize).fill("<pad>"), this.vocab[0] = "<eos>", this.vocab[1] = "<unk>", this.eosToken = 0, this.unkToken = 1, this.cache.set("<eos>", 0), this.cache.set("<unk>", 1);
|
|
19
21
|
}
|
|
20
22
|
get trained() {
|
|
21
|
-
return this.vocab.length === this.vocabSize;
|
|
23
|
+
return this.vocab.length === this.vocabSize && this._trained;
|
|
22
24
|
}
|
|
23
25
|
destroy() {
|
|
24
26
|
}
|
|
25
|
-
async train(
|
|
26
|
-
const i =
|
|
27
|
-
if (
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
27
|
+
async train(t) {
|
|
28
|
+
const i = t.map((s) => s.split("")).flat(), n = new Set(i), e = Array.from(n), c = this.vocab.indexOf("<pad>"), a = this.vocabSize - u.length;
|
|
29
|
+
if (c === -1)
|
|
30
|
+
return this.vocabSize;
|
|
31
|
+
if (this._trained = !0, e.length > a) {
|
|
32
|
+
const s = /* @__PURE__ */ new Map();
|
|
33
|
+
i.forEach((o) => {
|
|
34
|
+
s.set(o, (s.get(o) || 0) + 1);
|
|
35
|
+
}), e.sort((o, r) => (s.get(o) || 0) - (s.get(r) || 0)), e.splice(0, e.length - a);
|
|
36
|
+
}
|
|
37
|
+
let h = c;
|
|
38
|
+
if (h !== -1) {
|
|
39
|
+
const s = new Set(this.vocab);
|
|
40
|
+
for (const o of e)
|
|
41
|
+
if (!s.has(o) && (this.vocab[h] = o, s.add(o), h = this.vocab.indexOf("<pad>", h + 1), h === -1))
|
|
42
|
+
break;
|
|
43
|
+
}
|
|
44
|
+
return this.cache.clear(), this.vocab.forEach((s, o) => {
|
|
45
|
+
this.cache.set(s, o);
|
|
37
46
|
}), this.emit("trainStatus", "trained"), this.vocabSize;
|
|
38
47
|
}
|
|
39
|
-
async tokenise(
|
|
48
|
+
async tokenise(t, i) {
|
|
40
49
|
if (!this.trained)
|
|
41
50
|
throw new Error("Tokeniser not trained");
|
|
42
|
-
return
|
|
43
|
-
const
|
|
44
|
-
return
|
|
51
|
+
return t.map((e) => i ? e.split("").map((c) => this.cache.get(c) ?? this.unkToken) : e.split("").map((c) => {
|
|
52
|
+
const a = this.cache.get(c);
|
|
53
|
+
return a !== void 0 ? this.vocab[a] : "<unk>";
|
|
45
54
|
}));
|
|
46
55
|
}
|
|
47
|
-
async detokenise(
|
|
48
|
-
return
|
|
56
|
+
async detokenise(t) {
|
|
57
|
+
return t.map((n) => n.map((e) => this.vocab[e]).join(""));
|
|
49
58
|
}
|
|
50
|
-
async encode(
|
|
51
|
-
return (await this.tokenise([
|
|
59
|
+
async encode(t) {
|
|
60
|
+
return (await this.tokenise([t], !0))[0];
|
|
52
61
|
}
|
|
53
|
-
async decode(
|
|
54
|
-
return (await this.detokenise([
|
|
62
|
+
async decode(t) {
|
|
63
|
+
return (await this.detokenise([t]))[0];
|
|
55
64
|
}
|
|
56
65
|
getVocab() {
|
|
57
66
|
return this.vocab;
|
|
@@ -59,13 +68,13 @@ class l extends r {
|
|
|
59
68
|
async getMerges() {
|
|
60
69
|
return [];
|
|
61
70
|
}
|
|
62
|
-
async createTrainingData(
|
|
63
|
-
const
|
|
64
|
-
for (let
|
|
65
|
-
e.push(...
|
|
66
|
-
return [e,
|
|
71
|
+
async createTrainingData(t, i = 5) {
|
|
72
|
+
const n = await this.tokenise(t, !0), e = [], c = [];
|
|
73
|
+
for (let a = 0; a < n.length - i; a++)
|
|
74
|
+
e.push(...n[a].slice(0, i)), c.push(n[a + 1][0]);
|
|
75
|
+
return [e, c];
|
|
67
76
|
}
|
|
68
77
|
}
|
|
69
78
|
export {
|
|
70
|
-
|
|
79
|
+
b as default
|
|
71
80
|
};
|
package/dist/training/AdamExt.js
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
import { A as r, m as c, s as h, a as g, e as o } from "../index-
|
|
1
|
+
import { A as r, m as c, s as h, a as g, e as o } from "../index-D1SlunD-.js";
|
|
2
2
|
class u extends r {
|
|
3
3
|
constructor(t, e, s, a, i) {
|
|
4
4
|
super(t, e, s, a), this.config = i, this.startLearningRate = t;
|
|
@@ -7,7 +7,7 @@ class z {
|
|
|
7
7
|
}
|
|
8
8
|
// Create dataset from text files
|
|
9
9
|
async createTextDataset(s, o = 32, i = 0, c = 1) {
|
|
10
|
-
const
|
|
10
|
+
const r = await Promise.all(s.map((t) => this.tokenizer.encode(t))), h = this.tokenizer.eosToken >= 0, n = r.map((t) => h ? [...t, this.tokenizer.eosToken] : t).flat(), a = n.slice(
|
|
11
11
|
Math.floor(i * n.length),
|
|
12
12
|
c === 1 ? void 0 : Math.floor(c * n.length)
|
|
13
13
|
), l = (function* () {
|
|
@@ -20,7 +20,8 @@ class z {
|
|
|
20
20
|
const e = t;
|
|
21
21
|
return this.tf.tidy(() => ({
|
|
22
22
|
xs: e.xs.cast("int32"),
|
|
23
|
-
ys:
|
|
23
|
+
ys: e.ys.cast("int32")
|
|
24
|
+
// this.tf.oneHot(batchData.ys.cast('int32'), this.tokenizer.vocabSize),
|
|
24
25
|
}));
|
|
25
26
|
}).prefetch(2);
|
|
26
27
|
}
|
package/dist/training/Trainer.js
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
import { DatasetBuilder as d } from "./DatasetBuilder.js";
|
|
2
|
-
import
|
|
2
|
+
import p from "./AdamExt.js";
|
|
3
3
|
class u {
|
|
4
4
|
constructor(t, e, s, i = 1e-3) {
|
|
5
5
|
this.tokenizer = s, this.tf = t, this.model = e, this.learningRate = i, this.resetOptimizer(), this.datasetBuilder = new d(this.tf, s, e.config.blockSize);
|
|
@@ -25,7 +25,7 @@ class u {
|
|
|
25
25
|
}
|
|
26
26
|
resetOptimizer(t = { learningRateFactor: 1, beta1: 0.9, beta2: 0.99, epsilon: 1e-8 }) {
|
|
27
27
|
this.optimizer && this.optimizer.dispose();
|
|
28
|
-
const e = new
|
|
28
|
+
const e = new p(
|
|
29
29
|
t.learningRateFactor * this.learningRate,
|
|
30
30
|
t.beta1,
|
|
31
31
|
t.beta2,
|
|
@@ -55,7 +55,7 @@ class u {
|
|
|
55
55
|
});
|
|
56
56
|
}
|
|
57
57
|
dummyPass() {
|
|
58
|
-
const t = this.tf.zeros([1, this.model.config.blockSize], "int32"), e = this.tf.zeros([1, this.model.config.blockSize,
|
|
58
|
+
const t = this.tf.zeros([1, this.model.config.blockSize], "int32"), e = this.tf.zeros([1, this.model.config.blockSize], "int32");
|
|
59
59
|
try {
|
|
60
60
|
const s = this.trainStep({ xs: t, ys: e }, !0);
|
|
61
61
|
s.dataSync(), s.dispose();
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
import * as tf from '@tensorflow/tfjs-core';
|
|
2
|
+
/**
|
|
3
|
+
* Numerically stable sparse cross-entropy with gradient support
|
|
4
|
+
* This version handles potential numerical issues better
|
|
5
|
+
*/
|
|
6
|
+
export declare function sparseSoftmaxCrossEntropy(logits: tf.Tensor, labels: tf.Tensor): tf.Tensor;
|
|
7
|
+
/**
|
|
8
|
+
* Custom gradient implementation for sparse cross-entropy
|
|
9
|
+
* This ensures proper backpropagation
|
|
10
|
+
*/
|
|
11
|
+
export declare function createSoftmaxCrossEntropyWithGrad(): (...args: tf.Tensor[]) => tf.Tensor<tf.Rank>;
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
import { gatherSub as K } from "../ops/gatherSub.js";
|
|
2
|
+
import { scatterSub as _ } from "../ops/scatterSub.js";
|
|
3
|
+
import { o as l, c as d, E as f, M as G, p as z, L as I, q as N, a as E, t as M, u as T, e as m, v as S, w as $, z as g } from "../index-D1SlunD-.js";
|
|
4
|
+
import { s as F, r as b } from "../sum-02UQ5Eaq.js";
|
|
5
|
+
/**
|
|
6
|
+
* @license
|
|
7
|
+
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
8
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
9
|
+
* you may not use this file except in compliance with the License.
|
|
10
|
+
* You may obtain a copy of the License at
|
|
11
|
+
*
|
|
12
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
13
|
+
*
|
|
14
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
15
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
16
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
17
|
+
* See the License for the specific language governing permissions and
|
|
18
|
+
* limitations under the License.
|
|
19
|
+
* =============================================================================
|
|
20
|
+
*/
|
|
21
|
+
function P(n, s, t) {
|
|
22
|
+
const a = n.length + s.length, e = [];
|
|
23
|
+
let r = 0, c = 0;
|
|
24
|
+
for (let o = 0; o < a; o++)
|
|
25
|
+
t.indexOf(o) === -1 ? e.push(n[r++]) : e.push(s[c++]);
|
|
26
|
+
return e;
|
|
27
|
+
}
|
|
28
|
+
function q(n, s) {
|
|
29
|
+
const t = s.map((a) => 1);
|
|
30
|
+
return P(n, t, s);
|
|
31
|
+
}
|
|
32
|
+
/**
|
|
33
|
+
* @license
|
|
34
|
+
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
35
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
36
|
+
* you may not use this file except in compliance with the License.
|
|
37
|
+
* You may obtain a copy of the License at
|
|
38
|
+
*
|
|
39
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
40
|
+
*
|
|
41
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
42
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
43
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
44
|
+
* See the License for the specific language governing permissions and
|
|
45
|
+
* limitations under the License.
|
|
46
|
+
* =============================================================================
|
|
47
|
+
*/
|
|
48
|
+
function A(n, s = null, t = !1) {
|
|
49
|
+
const e = { x: d(n, "x", "max") }, r = { reductionIndices: s, keepDims: t };
|
|
50
|
+
return f.runKernel(G, e, r);
|
|
51
|
+
}
|
|
52
|
+
const k = /* @__PURE__ */ l({ max_: A });
|
|
53
|
+
/**
|
|
54
|
+
* @license
|
|
55
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
56
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
57
|
+
* you may not use this file except in compliance with the License.
|
|
58
|
+
* You may obtain a copy of the License at
|
|
59
|
+
*
|
|
60
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
61
|
+
*
|
|
62
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
63
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
64
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
65
|
+
* See the License for the specific language governing permissions and
|
|
66
|
+
* limitations under the License.
|
|
67
|
+
* =============================================================================
|
|
68
|
+
*/
|
|
69
|
+
function D(n) {
|
|
70
|
+
const t = { x: d(n, "x", "exp") };
|
|
71
|
+
return f.runKernel(z, t);
|
|
72
|
+
}
|
|
73
|
+
const O = /* @__PURE__ */ l({ exp_: D });
|
|
74
|
+
/**
|
|
75
|
+
* @license
|
|
76
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
77
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
78
|
+
* you may not use this file except in compliance with the License.
|
|
79
|
+
* You may obtain a copy of the License at
|
|
80
|
+
*
|
|
81
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
82
|
+
*
|
|
83
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
84
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
85
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
86
|
+
* See the License for the specific language governing permissions and
|
|
87
|
+
* limitations under the License.
|
|
88
|
+
* =============================================================================
|
|
89
|
+
*/
|
|
90
|
+
function W(n) {
|
|
91
|
+
const t = { x: d(n, "x", "log", "float32") };
|
|
92
|
+
return f.runKernel(I, t);
|
|
93
|
+
}
|
|
94
|
+
const j = /* @__PURE__ */ l({ log_: W });
|
|
95
|
+
/**
|
|
96
|
+
* @license
|
|
97
|
+
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
98
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
99
|
+
* you may not use this file except in compliance with the License.
|
|
100
|
+
* You may obtain a copy of the License at
|
|
101
|
+
*
|
|
102
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
103
|
+
*
|
|
104
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
105
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
106
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
107
|
+
* See the License for the specific language governing permissions and
|
|
108
|
+
* limitations under the License.
|
|
109
|
+
* =============================================================================
|
|
110
|
+
*/
|
|
111
|
+
function B(n, s = null, t = !1) {
|
|
112
|
+
const a = d(n, "x", "logSumExp"), e = N(s, a.shape), r = k(
|
|
113
|
+
a,
|
|
114
|
+
e,
|
|
115
|
+
!0
|
|
116
|
+
/* keepDims */
|
|
117
|
+
), c = E(a, r), o = O(c), p = F(o, e), u = j(p), i = M(b(r, u.shape), u);
|
|
118
|
+
if (t) {
|
|
119
|
+
const h = q(i.shape, e);
|
|
120
|
+
return b(i, h);
|
|
121
|
+
}
|
|
122
|
+
return i;
|
|
123
|
+
}
|
|
124
|
+
const H = /* @__PURE__ */ l({ logSumExp_: B });
|
|
125
|
+
/**
|
|
126
|
+
* @license
|
|
127
|
+
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
128
|
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
129
|
+
* you may not use this file except in compliance with the License.
|
|
130
|
+
* You may obtain a copy of the License at
|
|
131
|
+
*
|
|
132
|
+
* http://www.apache.org/licenses/LICENSE-2.0
|
|
133
|
+
*
|
|
134
|
+
* Unless required by applicable law or agreed to in writing, software
|
|
135
|
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
136
|
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
137
|
+
* See the License for the specific language governing permissions and
|
|
138
|
+
* limitations under the License.
|
|
139
|
+
* =============================================================================
|
|
140
|
+
*/
|
|
141
|
+
function J(n, s = -1) {
|
|
142
|
+
const t = d(n, "logits", "softmax", "float32");
|
|
143
|
+
if (s === -1 && (s = t.rank - 1), s !== t.rank - 1)
|
|
144
|
+
throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${s}`);
|
|
145
|
+
const a = { logits: t }, e = { dim: s };
|
|
146
|
+
return f.runKernel(T, a, e);
|
|
147
|
+
}
|
|
148
|
+
const Q = /* @__PURE__ */ l({ softmax_: J });
|
|
149
|
+
function R(n, s) {
|
|
150
|
+
return $(() => {
|
|
151
|
+
const t = n.shape[n.shape.length - 1], e = n.shape.slice(0, -1).reduce((h, x) => h * x, 1), r = n.shape.length > 2 ? n.reshape([e, t]) : n, c = s.shape.length > 1 ? s.reshape([e]).cast("int32") : s.cast("int32"), o = k(r, -1, !0), p = E(r, o), u = H(p, -1);
|
|
152
|
+
return K(u, c, p);
|
|
153
|
+
});
|
|
154
|
+
}
|
|
155
|
+
function Z() {
|
|
156
|
+
return m().backendName === "tensorflow" ? S((s, t, a) => {
|
|
157
|
+
const e = s.shape.length > 2 ? s.reshape([-1, s.shape[s.shape.length - 1]]) : s, r = t.shape.length > 1 ? t.reshape([-1]).cast("int32") : t.cast("int32"), [c, o] = m().runKernel(
|
|
158
|
+
"NativeSparseSoftmaxCrossEntropy",
|
|
159
|
+
{ logits: e, labels: r },
|
|
160
|
+
{}
|
|
161
|
+
);
|
|
162
|
+
return a([o.reshape(s.shape)]), { value: c, gradFunc: (p, u) => [u[0], g(t)] };
|
|
163
|
+
}) : S(
|
|
164
|
+
// @ts-expect-error Invalid params
|
|
165
|
+
(s, t, a) => {
|
|
166
|
+
const e = s.shape[s.shape.length - 1], c = s.shape.slice(0, -1).reduce((h, x) => h * x, 1), o = s.reshape([c, e]), p = t.reshape([c]).cast("int32"), u = R(o, p);
|
|
167
|
+
return a([o, p]), o.dispose(), p.dispose(), { value: u, gradFunc: (h, x) => $(() => {
|
|
168
|
+
const y = x[0], C = x[1], L = Q(y), v = _(L, C, h), w = g(t);
|
|
169
|
+
return [v, w];
|
|
170
|
+
}) };
|
|
171
|
+
}
|
|
172
|
+
);
|
|
173
|
+
}
|
|
174
|
+
export {
|
|
175
|
+
Z as createSoftmaxCrossEntropyWithGrad,
|
|
176
|
+
R as sparseSoftmaxCrossEntropy
|
|
177
|
+
};
|
package/dist/utilities/load.js
CHANGED
|
@@ -1,16 +1,16 @@
|
|
|
1
|
-
import {
|
|
1
|
+
import { j as u } from "../jszip.min-CjP2V1VV.js";
|
|
2
2
|
import { importWeights as F } from "./weights.js";
|
|
3
3
|
import k from "../tokeniser/CharTokeniser.js";
|
|
4
4
|
import j from "../NanoGPTModel.js";
|
|
5
|
-
import { dummyPassAsync as
|
|
6
|
-
async function
|
|
5
|
+
import { dummyPassAsync as A } from "./dummy.js";
|
|
6
|
+
async function E(o) {
|
|
7
7
|
const e = await fetch(o);
|
|
8
8
|
if (!e.ok)
|
|
9
9
|
throw new Error(`Failed to fetch ${o}: ${e.statusText}`);
|
|
10
10
|
return e.arrayBuffer();
|
|
11
11
|
}
|
|
12
12
|
async function T(o, e) {
|
|
13
|
-
const m = typeof e == "string" ? await
|
|
13
|
+
const m = typeof e == "string" ? await E(e) : e, n = await u.loadAsync(m), s = /* @__PURE__ */ new Map(), c = await n.file("manifest.json")?.async("string");
|
|
14
14
|
if (!c)
|
|
15
15
|
throw new Error("Manifest file not found in the zip archive");
|
|
16
16
|
const f = JSON.parse(c);
|
|
@@ -29,7 +29,7 @@ async function T(o, e) {
|
|
|
29
29
|
}
|
|
30
30
|
o.disposeVariables();
|
|
31
31
|
const a = new j(o, f.config);
|
|
32
|
-
await
|
|
32
|
+
await A(a), a.loadWeights(p);
|
|
33
33
|
const w = await n.file("log.json")?.async("string");
|
|
34
34
|
if (w)
|
|
35
35
|
try {
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
import { GPTConfig } from '../config';
|
|
2
|
+
export declare function estimateParameterCount(config: GPTConfig): number;
|
|
3
|
+
export declare function estimateMemoryUsage(config: GPTConfig): number;
|
|
4
|
+
export declare function estimateTrainingMemoryUsage(config: GPTConfig, batchSize: number): number;
|
|
5
|
+
export declare function estimateResources(config: GPTConfig, batchSize: number): {
|
|
6
|
+
numParams: number;
|
|
7
|
+
modelMemoryMB: number;
|
|
8
|
+
trainingMemoryMB: number;
|
|
9
|
+
};
|
|
10
|
+
export declare function validateConfig(config: GPTConfig): void;
|