@genai-fi/nanogpt 0.2.11 → 0.3.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/dist/Generator.js +30 -25
  2. package/dist/NanoGPTModel.d.ts +13 -14
  3. package/dist/NanoGPTModel.js +167 -85
  4. package/dist/TeachableLLM.d.ts +3 -5
  5. package/dist/TeachableLLM.js +47 -35
  6. package/dist/Trainer.js +8 -8
  7. package/dist/concat-BIZS_td9.js +33 -0
  8. package/dist/data/parquet.js +1 -1
  9. package/dist/exports_layers-7idKoYqh.js +25 -0
  10. package/dist/{sum-D7fu15XL.js → gather-BPGW8RsB.js} +6 -8
  11. package/dist/index-C4L8Cm77.js +349 -0
  12. package/dist/{index-YPKosni4.js → index-pWA4_lUh.js} +1020 -782
  13. package/dist/layers/CausalSelfAttention.d.ts +11 -11
  14. package/dist/layers/CausalSelfAttention.js +71 -63
  15. package/dist/layers/MLP.d.ts +6 -7
  16. package/dist/layers/MLP.js +18 -16
  17. package/dist/layers/RMSNorm.d.ts +6 -7
  18. package/dist/layers/RMSNorm.js +15 -13
  19. package/dist/layers/RoPECache.d.ts +4 -6
  20. package/dist/layers/RoPECache.js +36 -23
  21. package/dist/layers/TiedEmbedding.d.ts +7 -8
  22. package/dist/layers/TiedEmbedding.js +16 -418
  23. package/dist/layers/TransformerBlock.d.ts +8 -9
  24. package/dist/layers/TransformerBlock.js +12 -12
  25. package/dist/main.d.ts +1 -0
  26. package/dist/main.js +35 -21
  27. package/dist/{mat_mul-Bu7bhLms.js → mat_mul-D7_a4KJn.js} +5 -5
  28. package/dist/moments-DfcpfwKi.js +132 -0
  29. package/dist/ones-Cog-G2ag.js +29 -0
  30. package/dist/ops/appendCache.d.ts +2 -0
  31. package/dist/ops/appendCache.js +9 -0
  32. package/dist/ops/attentionMask.d.ts +1 -1
  33. package/dist/ops/attentionMask.js +7 -85
  34. package/dist/ops/cpu/appendCache.d.ts +2 -0
  35. package/dist/ops/cpu/appendCache.js +28 -0
  36. package/dist/ops/cpu/attentionMask.js +18 -0
  37. package/dist/ops/cpu/gatherSub.d.ts +1 -0
  38. package/dist/ops/cpu/gatherSub.js +34 -0
  39. package/dist/ops/cpu/qkv.d.ts +5 -0
  40. package/dist/ops/cpu/qkv.js +38 -0
  41. package/dist/ops/cpu/rope.d.ts +6 -0
  42. package/dist/ops/cpu/rope.js +38 -0
  43. package/dist/ops/cpu/scatterSub.d.ts +1 -0
  44. package/dist/ops/cpu/scatterSub.js +70 -0
  45. package/dist/ops/gatherSub.d.ts +1 -1
  46. package/dist/ops/gatherSub.js +6 -63
  47. package/dist/ops/grads/attentionMask.d.ts +1 -0
  48. package/dist/ops/grads/attentionMask.js +21 -0
  49. package/dist/ops/grads/qkv.d.ts +1 -0
  50. package/dist/ops/grads/qkv.js +20 -0
  51. package/dist/ops/grads/rope.d.ts +1 -0
  52. package/dist/ops/grads/rope.js +14 -0
  53. package/dist/ops/node/sparseCrossEntropy.js +1 -1
  54. package/dist/ops/qkv.d.ts +1 -6
  55. package/dist/ops/qkv.js +7 -124
  56. package/dist/ops/rope.d.ts +0 -5
  57. package/dist/ops/rope.js +7 -150
  58. package/dist/ops/scatterSub.d.ts +1 -1
  59. package/dist/ops/scatterSub.js +6 -147
  60. package/dist/ops/webgl/appendCache.d.ts +1 -0
  61. package/dist/ops/webgl/appendCache.js +43 -0
  62. package/dist/ops/webgl/attentionMask.d.ts +1 -0
  63. package/dist/ops/webgl/attentionMask.js +43 -0
  64. package/dist/ops/webgl/gatherSub.d.ts +1 -0
  65. package/dist/ops/webgl/gatherSub.js +27 -0
  66. package/dist/ops/webgl/qkv.d.ts +1 -0
  67. package/dist/ops/webgl/qkv.js +46 -0
  68. package/dist/ops/webgl/rope.d.ts +1 -0
  69. package/dist/ops/webgl/rope.js +56 -0
  70. package/dist/ops/webgl/scatterSub.d.ts +1 -0
  71. package/dist/ops/webgl/scatterSub.js +27 -0
  72. package/dist/{parquet-BRl5lE_I.js → parquet-C0Tlmv9c.js} +3045 -3048
  73. package/dist/random_width-PbCt7RXv.js +15489 -0
  74. package/dist/range-CcDl05lo.js +26 -0
  75. package/dist/{reshape-DmnmKT6r.js → reshape-C8CR_Bad.js} +3 -3
  76. package/dist/sin-BJIrfnj7.js +47 -0
  77. package/dist/softmax-Be_lsqUc.js +105 -0
  78. package/dist/{complex-CJ-qCcLB.js → split-DZbvruEP.js} +6 -8
  79. package/dist/stack-BMm-efee.js +27 -0
  80. package/dist/sum-C7Mgy9Bw.js +104 -0
  81. package/dist/tensor-DJVbYhh1.js +24 -0
  82. package/dist/tensor2d-ZuQSh2D-.js +30 -0
  83. package/dist/tokeniser/bpe.d.ts +17 -6
  84. package/dist/tokeniser/bpe.js +88 -60
  85. package/dist/training/AdamExt.js +1 -1
  86. package/dist/training/DatasetBuilder.d.ts +6 -6
  87. package/dist/training/DatasetBuilder.js +1262 -17
  88. package/dist/training/Evaluator.d.ts +3 -2
  89. package/dist/training/FullTrainer.d.ts +9 -8
  90. package/dist/training/FullTrainer.js +26 -25
  91. package/dist/training/LayerTrainer.d.ts +9 -8
  92. package/dist/training/LayerTrainer.js +34 -33
  93. package/dist/training/Trainer.d.ts +22 -21
  94. package/dist/training/Trainer.js +21 -18
  95. package/dist/training/sparseCrossEntropy.js +22 -166
  96. package/dist/utilities/dummy.js +10 -8
  97. package/dist/utilities/generate.js +14 -11
  98. package/dist/utilities/load.d.ts +1 -2
  99. package/dist/utilities/load.js +37 -35
  100. package/dist/utilities/profile.js +1 -1
  101. package/dist/utilities/save.js +14 -9
  102. package/dist/utilities/tokenParse.d.ts +1 -1
  103. package/dist/utilities/tokenParse.js +7 -61
  104. package/dist/utilities/weights.d.ts +3 -3
  105. package/dist/utilities/weights.js +21 -19
  106. package/dist/variable-Dl_ub3pk.js +23 -0
  107. package/dist/{stack-BtKpB0Ry.js → zeros-CCy9C3uU.js} +18 -16
  108. package/package.json +2 -1
  109. package/dist/assets/worker-BYeSPNkq.js +0 -1
  110. package/dist/tokeniser/NodeTokeniser.d.ts +0 -20
  111. package/dist/tokeniser/NodeTokeniser.js +0 -46
  112. package/dist/tokeniser/WebTokeniser.d.ts +0 -18
  113. package/dist/tokeniser/WebTokeniser.js +0 -96
  114. package/dist/tokeniser/worker.js +0 -53
  115. /package/dist/{tokeniser/worker.d.ts → ops/cpu/attentionMask.d.ts} +0 -0
@@ -0,0 +1,132 @@
1
+ import { o as i, h as m, E as y, a2 as A, a0 as E, a3 as o, a4 as h, J as b, f as S, a5 as v, a6 as _, s as k, U as q } from "./index-pWA4_lUh.js";
2
+ import { e as w, s as u, m as l } from "./sum-C7Mgy9Bw.js";
3
+ import { r as c } from "./reshape-C8CR_Bad.js";
4
+ /**
5
+ * @license
6
+ * Copyright 2020 Google Inc. All Rights Reserved.
7
+ * Licensed under the Apache License, Version 2.0 (the "License");
8
+ * you may not use this file except in compliance with the License.
9
+ * You may obtain a copy of the License at
10
+ *
11
+ * http://www.apache.org/licenses/LICENSE-2.0
12
+ *
13
+ * Unless required by applicable law or agreed to in writing, software
14
+ * distributed under the License is distributed on an "AS IS" BASIS,
15
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ * See the License for the specific language governing permissions and
17
+ * limitations under the License.
18
+ * =============================================================================
19
+ */
20
+ function K(r, e = null, n = !1) {
21
+ const t = { x: m(r, "x", "min") }, a = { axis: e, keepDims: n };
22
+ return y.runKernel(A, t, a);
23
+ }
24
+ const d = /* @__PURE__ */ i({ min_: K });
25
+ /**
26
+ * @license
27
+ * Copyright 2018 Google LLC. All Rights Reserved.
28
+ * Licensed under the Apache License, Version 2.0 (the "License");
29
+ * you may not use this file except in compliance with the License.
30
+ * You may obtain a copy of the License at
31
+ *
32
+ * http://www.apache.org/licenses/LICENSE-2.0
33
+ *
34
+ * Unless required by applicable law or agreed to in writing, software
35
+ * distributed under the License is distributed on an "AS IS" BASIS,
36
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37
+ * See the License for the specific language governing permissions and
38
+ * limitations under the License.
39
+ * =============================================================================
40
+ */
41
+ function M(r, e = "euclidean", n = null, s = !1) {
42
+ r = m(r, "x", "norm");
43
+ const t = $(r, e, n);
44
+ let a = t.shape;
45
+ if (s) {
46
+ const f = E(n, r.shape);
47
+ a = w(t.shape, f);
48
+ }
49
+ return c(t, a);
50
+ }
51
+ function $(r, e, n = null) {
52
+ if (r.rank === 0)
53
+ return o(r);
54
+ if (r.rank !== 1 && n === null)
55
+ return $(c(r, [-1]), e, n);
56
+ if (r.rank === 1 || typeof n == "number" || Array.isArray(n) && n.length === 1) {
57
+ if (e === 1)
58
+ return u(o(r), n);
59
+ if (e === 1 / 0)
60
+ return l(o(r), n);
61
+ if (e === -1 / 0)
62
+ return d(o(r), n);
63
+ if (e === "euclidean" || e === 2)
64
+ return h(u(b(o(r), S(2, "int32")), n));
65
+ throw new Error(`Error in norm: invalid ord value: ${e}`);
66
+ }
67
+ if (Array.isArray(n) && n.length === 2) {
68
+ if (e === 1)
69
+ return l(u(o(r), n[0]), n[1] - 1);
70
+ if (e === 1 / 0)
71
+ return l(u(o(r), n[1]), n[0]);
72
+ if (e === -1 / 0)
73
+ return d(u(o(r), n[1]), n[0]);
74
+ if (e === "fro" || e === "euclidean")
75
+ return h(u(v(r), n));
76
+ throw new Error(`Error in norm: invalid ord value: ${e}`);
77
+ }
78
+ throw new Error(`Error in norm: invalid axis: ${n}`);
79
+ }
80
+ const J = /* @__PURE__ */ i({ norm_: M });
81
+ /**
82
+ * @license
83
+ * Copyright 2020 Google Inc. All Rights Reserved.
84
+ * Licensed under the Apache License, Version 2.0 (the "License");
85
+ * you may not use this file except in compliance with the License.
86
+ * You may obtain a copy of the License at
87
+ *
88
+ * http://www.apache.org/licenses/LICENSE-2.0
89
+ *
90
+ * Unless required by applicable law or agreed to in writing, software
91
+ * distributed under the License is distributed on an "AS IS" BASIS,
92
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
93
+ * See the License for the specific language governing permissions and
94
+ * limitations under the License.
95
+ * =============================================================================
96
+ */
97
+ function T(r, e = null, n = !1) {
98
+ const t = { x: m(r, "x", "mean") }, a = { axis: e, keepDims: n };
99
+ return y.runKernel(_, t, a);
100
+ }
101
+ const p = /* @__PURE__ */ i({ mean_: T });
102
+ /**
103
+ * @license
104
+ * Copyright 2020 Google LLC. All Rights Reserved.
105
+ * Licensed under the Apache License, Version 2.0 (the "License");
106
+ * you may not use this file except in compliance with the License.
107
+ * You may obtain a copy of the License at
108
+ *
109
+ * http://www.apache.org/licenses/LICENSE-2.0
110
+ *
111
+ * Unless required by applicable law or agreed to in writing, software
112
+ * distributed under the License is distributed on an "AS IS" BASIS,
113
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
114
+ * See the License for the specific language governing permissions and
115
+ * limitations under the License.
116
+ * =============================================================================
117
+ */
118
+ function g(r, e = null, n = !1) {
119
+ r = m(r, "x", "moments");
120
+ const s = E(e, r.shape), t = p(r, s, n);
121
+ let a = t.shape;
122
+ n || (a = w(t.shape, s));
123
+ const f = v(k(q(r, "float32"), c(t, a))), I = p(f, s, n);
124
+ return { mean: t, variance: I };
125
+ }
126
+ const P = /* @__PURE__ */ i({ moments_: g });
127
+ export {
128
+ P as a,
129
+ d as b,
130
+ p as m,
131
+ J as n
132
+ };
@@ -0,0 +1,29 @@
1
+ import { k as n, l as t, n as m, E as i } from "./index-pWA4_lUh.js";
2
+ import { z as l, c } from "./zeros-CCy9C3uU.js";
3
+ /**
4
+ * @license
5
+ * Copyright 2018 Google LLC. All Rights Reserved.
6
+ * Licensed under the Apache License, Version 2.0 (the "License");
7
+ * you may not use this file except in compliance with the License.
8
+ * You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing, software
13
+ * distributed under the License is distributed on an "AS IS" BASIS,
14
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ * See the License for the specific language governing permissions and
16
+ * limitations under the License.
17
+ * =============================================================================
18
+ */
19
+ function f(o, r = "float32") {
20
+ if (n(o), r === "complex64") {
21
+ const s = f(o, "float32"), a = l(o, "float32");
22
+ return c(s, a);
23
+ }
24
+ const e = t(m(o), r);
25
+ return i.makeTensor(e, o, r);
26
+ }
27
+ export {
28
+ f as o
29
+ };
@@ -0,0 +1,2 @@
1
+ import { Tensor } from '@tensorflow/tfjs-core';
2
+ export declare function appendCache(cache: Tensor, item: Tensor, maxSize: number): Tensor;
@@ -0,0 +1,9 @@
1
+ import { e as p } from "../index-pWA4_lUh.js";
2
+ import "./cpu/appendCache.js";
3
+ import "./webgl/appendCache.js";
4
+ function a(e, n, r) {
5
+ return p().runKernel("AppendCache", { cache: e, item: n }, { maxSize: r });
6
+ }
7
+ export {
8
+ a as appendCache
9
+ };
@@ -1,2 +1,2 @@
1
- import { Tensor } from '@tensorflow/tfjs';
1
+ import { Tensor } from '@tensorflow/tfjs-core';
2
2
  export declare function attentionMask(q: Tensor, k: Tensor, mask: Tensor, divisor: number): Tensor;
@@ -1,88 +1,10 @@
1
- import { engine as k } from "@tensorflow/tfjs";
2
- import { r as m, c as d, s as p } from "../index-YPKosni4.js";
3
- import { m as f } from "../mat_mul-Bu7bhLms.js";
4
- class h {
5
- variableNames = ["q", "k", "mask"];
6
- outputShape;
7
- userCode;
8
- // enableShapeUniforms = true;
9
- customUniforms = [{ name: "divisor", type: "float" }];
10
- constructor(e, n, s, a) {
11
- this.outputShape = [e, n, s, s], this.userCode = `
12
- void main() {
13
- ivec4 coords = getOutputCoords(); // [batch, nh, t1, t2]
14
- int b = coords.x;
15
- int h = coords.y;
16
- int t1 = coords.z;
17
- int t2 = coords.w;
18
-
19
- float sum = 0.0;
20
- for (int i = 0; i < ${a}; ++i) {
21
- float qv = getQ(b, h, t1, i);
22
- float kv = getK(b, h, t2, i); // k is transposed on last two dims
23
- sum += qv * kv;
24
- }
25
-
26
- // Scale by divisor
27
- float scaled = sum * divisor;
28
-
29
- // Add mask
30
- float maskVal = getMask(t1, t2); // mask is [T,T]
31
-
32
- setOutput(scaled + maskVal);
33
- }
34
- `;
35
- }
1
+ import { e as o } from "../index-pWA4_lUh.js";
2
+ import "./cpu/attentionMask.js";
3
+ import "./webgl/attentionMask.js";
4
+ import "./grads/attentionMask.js";
5
+ function s(t, n, r, e) {
6
+ return o().runKernel("AttentionMask", { q: t, k: n, mask: r }, { divisor: e });
36
7
  }
37
- function v(t) {
38
- const { q: e, k: n, mask: s } = t.inputs, { divisor: a } = t.attrs, o = t.backend, r = e.shape[0], i = e.shape[2], c = e.shape[1], u = new h(r, c, i, e.shape[3]);
39
- return o.runWebGLProgram(u, [e, n, s], "float32", [[a]]);
40
- }
41
- const b = {
42
- kernelName: "AttentionMask",
43
- backendName: "webgl",
44
- kernelFunc: v
45
- };
46
- m(b);
47
- function l(t) {
48
- const { q: e, k: n, mask: s } = t.inputs, { divisor: a } = t.attrs, o = e.shape[2], i = f(e, n, !1, !0).mul(p(a)), c = s.slice([0, 0], [o, o]).expandDims(0).expandDims(0);
49
- return i.add(c);
50
- }
51
- const M = {
52
- kernelName: "AttentionMask",
53
- backendName: "cpu",
54
- kernelFunc: l
55
- };
56
- m(M);
57
- const g = {
58
- kernelName: "AttentionMask",
59
- backendName: "tensorflow",
60
- kernelFunc: l
61
- };
62
- m(g);
63
- function N(t, e, n, s) {
64
- return k().runKernel("AttentionMask", { q: t, k: e, mask: n }, { divisor: s });
65
- }
66
- const A = {
67
- kernelName: "AttentionMask",
68
- inputsToSave: ["q", "k"],
69
- outputsToSave: [],
70
- gradFunc: (t, e, n) => {
71
- if (Array.isArray(t))
72
- throw new Error("Expected dy to be a single Tensor");
73
- const [s, a] = e, { divisor: o } = n;
74
- return {
75
- q: () => t.matMul(a).mul(o),
76
- k: () => s.transpose([0, 1, 3, 2]).matMul(t).mul(o).transpose([0, 1, 3, 2]),
77
- mask: () => t,
78
- divisor: () => {
79
- const r = s.matMul(a, !1, !0);
80
- return t.mul(r).sum();
81
- }
82
- };
83
- }
84
- };
85
- d(A);
86
8
  export {
87
- N as attentionMask
9
+ s as attentionMask
88
10
  };
@@ -0,0 +1,2 @@
1
+ import { Tensor } from '@tensorflow/tfjs-core';
2
+ export declare function appendCache(cache: Tensor, item: Tensor, maxSize: number): Tensor;
@@ -0,0 +1,28 @@
1
+ import { r as a, e as m } from "../../index-pWA4_lUh.js";
2
+ import { c as d } from "../../concat-BIZS_td9.js";
3
+ function r(n) {
4
+ const { cache: c, item: t } = n.inputs, { maxSize: o } = n.attrs, e = d([c, t], 2), s = e.shape[2];
5
+ if (s > o) {
6
+ const p = s - o, i = e.shape[0], l = e.shape[1], h = e.shape[3], u = e.slice([0, 0, p, 0], [i, l, o, h]);
7
+ return e.dispose(), u;
8
+ }
9
+ return e;
10
+ }
11
+ const f = {
12
+ kernelName: "AppendCache",
13
+ backendName: "cpu",
14
+ kernelFunc: r
15
+ };
16
+ a(f);
17
+ const C = {
18
+ kernelName: "AppendCache",
19
+ backendName: "tensorflow",
20
+ kernelFunc: r
21
+ };
22
+ a(C);
23
+ function N(n, c, t) {
24
+ return m().runKernel("AppendCache", { cache: n, item: c }, { maxSize: t });
25
+ }
26
+ export {
27
+ N as appendCache
28
+ };
@@ -0,0 +1,18 @@
1
+ import { r as s, f as i } from "../../index-pWA4_lUh.js";
2
+ import { m as k } from "../../mat_mul-D7_a4KJn.js";
3
+ function a(t) {
4
+ const { q: e, k: o, mask: r } = t.inputs, { divisor: c } = t.attrs, n = e.shape[2], m = k(e, o, !1, !0).mul(i(c)), l = r.slice([0, 0], [n, n]).expandDims(0).expandDims(0);
5
+ return m.add(l);
6
+ }
7
+ const d = {
8
+ kernelName: "AttentionMask",
9
+ backendName: "cpu",
10
+ kernelFunc: a
11
+ };
12
+ s(d);
13
+ const u = {
14
+ kernelName: "AttentionMask",
15
+ backendName: "tensorflow",
16
+ kernelFunc: a
17
+ };
18
+ s(u);
@@ -0,0 +1 @@
1
+ export {};
@@ -0,0 +1,34 @@
1
+ import { o as u, h as c, E as g, H as h, r as m, s as p } from "../../index-pWA4_lUh.js";
2
+ import { r as l } from "../../range-CcDl05lo.js";
3
+ import { s as N } from "../../stack-BMm-efee.js";
4
+ /**
5
+ * @license
6
+ * Copyright 2018 Google LLC. All Rights Reserved.
7
+ * Licensed under the Apache License, Version 2.0 (the "License");
8
+ * you may not use this file except in compliance with the License.
9
+ * You may obtain a copy of the License at
10
+ *
11
+ * http://www.apache.org/licenses/LICENSE-2.0
12
+ *
13
+ * Unless required by applicable law or agreed to in writing, software
14
+ * distributed under the License is distributed on an "AS IS" BASIS,
15
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ * See the License for the specific language governing permissions and
17
+ * limitations under the License.
18
+ * =============================================================================
19
+ */
20
+ function f(e, s) {
21
+ const n = c(s, "indices", "gatherND", "int32"), t = { params: c(e, "x", "gatherND", "string_or_numeric"), indices: n };
22
+ return g.runKernel(h, t);
23
+ }
24
+ const b = /* @__PURE__ */ u({ gatherND_: f });
25
+ function d(e) {
26
+ const { values: s, labels: n, logits: r } = e.inputs, t = n.shape[0], o = l(0, t, 1, "int32"), a = N([o, n], 1), i = b(r, a);
27
+ return p(s, i);
28
+ }
29
+ const k = {
30
+ kernelName: "EfficientGatherSub",
31
+ backendName: "cpu",
32
+ kernelFunc: d
33
+ };
34
+ m(k);
@@ -0,0 +1,5 @@
1
+ import { NamedAttrMap, NamedTensorInfoMap, TensorInfo } from '@tensorflow/tfjs-core';
2
+ export declare function qkvCPU(args: {
3
+ inputs: NamedTensorInfoMap;
4
+ attrs?: NamedAttrMap;
5
+ }): TensorInfo[];
@@ -0,0 +1,38 @@
1
+ import { r as q } from "../../index-pWA4_lUh.js";
2
+ import { r as o } from "../../reshape-C8CR_Bad.js";
3
+ import { s as x } from "../../split-DZbvruEP.js";
4
+ function v(p) {
5
+ const { x: c, kernel: K } = p.inputs, { heads: n } = p.attrs, [s, e, t] = c.shape, a = o(c, [s * e, t]), i = a.dot(K);
6
+ a.dispose();
7
+ const d = o(i, [s, e, 3 * t]);
8
+ i.dispose();
9
+ const [k, l, m] = x(d, 3, -1);
10
+ d.dispose();
11
+ const r = t / n, f = o(k, [s, e, n, r]);
12
+ k.dispose();
13
+ const C = f.transpose([0, 2, 1, 3]);
14
+ f.dispose();
15
+ const h = o(l, [s, e, n, r]);
16
+ l.dispose();
17
+ const N = h.transpose([0, 2, 1, 3]);
18
+ h.dispose();
19
+ const u = o(m, [s, e, n, r]);
20
+ m.dispose();
21
+ const T = u.transpose([0, 2, 1, 3]);
22
+ return u.dispose(), [C, N, T];
23
+ }
24
+ const F = {
25
+ kernelName: "QKV",
26
+ backendName: "cpu",
27
+ kernelFunc: v
28
+ };
29
+ q(F);
30
+ const R = {
31
+ kernelName: "QKV",
32
+ backendName: "tensorflow",
33
+ kernelFunc: v
34
+ };
35
+ q(R);
36
+ export {
37
+ v as qkvCPU
38
+ };
@@ -0,0 +1,6 @@
1
+ import { NamedAttrMap, NamedTensorInfoMap, Tensor, TensorInfo } from '@tensorflow/tfjs-core';
2
+ export declare function applyRoPE(sinCache: Tensor, cosCache: Tensor, rotaryDim: number, q: Tensor, pastLen: number): Tensor;
3
+ export declare function ropeCPU(args: {
4
+ inputs: NamedTensorInfoMap;
5
+ attrs?: NamedAttrMap;
6
+ }): TensorInfo;
@@ -0,0 +1,38 @@
1
+ import { r as S } from "../../index-pWA4_lUh.js";
2
+ import { r as F } from "../../range-CcDl05lo.js";
3
+ import { g as I } from "../../gather-BPGW8RsB.js";
4
+ import { s as E } from "../../stack-BMm-efee.js";
5
+ import { c as T } from "../../concat-BIZS_td9.js";
6
+ function U(t, c, p, o, r) {
7
+ const n = o.shape[3], s = p;
8
+ if (s > n) return o;
9
+ const e = o.shape[2], i = s / 2, a = c.slice([r, 0, 0], [e, i, 1]).reshape([1, 1, e, i]), d = t.slice([r, 0, 0], [e, i, 1]).reshape([1, 1, e, i]), l = o.shape[0], m = o.shape[1], h = F(0, s, 2, "int32"), k = F(1, s, 2, "int32"), D = ((R) => {
10
+ const g = R.slice([0, 0, 0, 0], [l, m, e, s]), v = s < n ? R.slice([0, 0, 0, s], [l, m, e, n - s]) : null, u = I(g, h, 3), f = I(g, k, 3), C = u.mul(a), N = f.mul(d), P = C.sub(N), b = f.mul(a), x = u.mul(d), K = b.add(x);
11
+ u.dispose(), f.dispose(), a.dispose(), d.dispose(), C.dispose(), N.dispose(), b.dispose(), x.dispose();
12
+ const w = E([P, K], -1);
13
+ P.dispose(), K.dispose();
14
+ const y = w.reshape([l, m, e, s]);
15
+ return w.dispose(), v ? T([y, v], 3) : y;
16
+ })(o);
17
+ return h.dispose(), k.dispose(), D;
18
+ }
19
+ function B(t) {
20
+ const { x: c, sin: p, cos: o } = t.inputs, { pastLen: r } = t.attrs, n = c.shape[3];
21
+ return U(p, o, n, c, r);
22
+ }
23
+ const j = {
24
+ kernelName: "Rope",
25
+ backendName: "cpu",
26
+ kernelFunc: B
27
+ };
28
+ S(j);
29
+ const z = {
30
+ kernelName: "Rope",
31
+ backendName: "tensorflow",
32
+ kernelFunc: B
33
+ };
34
+ S(z);
35
+ export {
36
+ U as applyRoPE,
37
+ B as ropeCPU
38
+ };
@@ -0,0 +1 @@
1
+ export {};
@@ -0,0 +1,70 @@
1
+ import { o as l, k, h, E as g, Q as w, r as $, s as d, b as m } from "../../index-pWA4_lUh.js";
2
+ import { r as b } from "../../range-CcDl05lo.js";
3
+ import { s as E } from "../../stack-BMm-efee.js";
4
+ import { o as D } from "../../ones-Cog-G2ag.js";
5
+ function N(a, r, t) {
6
+ const s = r.rank > 1 ? r.shape[r.rank - 1] : 1, e = r.rank > 1 ? r.rank - 1 : 1, o = `Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${r.shape}, shape: ${a}, sliceDim: ${s}, and batchDim: ${e}.`;
7
+ if (t.rank < e)
8
+ throw new Error(o + ` update.rank < ${e}. `);
9
+ if (a.length < s + (t.rank - e))
10
+ throw new Error(o + ` Output shape length < ${s + (t.rank - e)}`);
11
+ if (t.rank !== e + a.length - s)
12
+ throw new Error(o + ` update.rank != ${e + a.length - s}`);
13
+ for (let n = 0; n < e; ++n)
14
+ if (t.shape[n] !== r.shape[n])
15
+ throw new Error(o + ` updates.shape[${n}] (${t.shape[n]}) != indices.shape[${n}] (${r.shape[n]}).`);
16
+ for (let n = 0; n < t.rank - e; ++n)
17
+ if (t.shape[n + e] !== a[n + s])
18
+ throw new Error(o + ` updates.shape[${n + e}] (${t.shape[n + e]}) != shape[${n + e}] (${a[n + e]})`);
19
+ }
20
+ function S(a, r, t) {
21
+ if (r.rank < 1)
22
+ throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${r.rank}.`);
23
+ if (a.rank < 1)
24
+ throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${a.rank}.`);
25
+ if (r.dtype !== "int32")
26
+ throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${r.dtype}`);
27
+ if (t.length < 1)
28
+ throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);
29
+ if (t.length === 0) {
30
+ if (r.size === 0)
31
+ throw new Error(`Indices specified for empty output. indices shape: ${r.shape}`);
32
+ if (a.size === 0)
33
+ throw new Error(`Updates specified for empty output. updates shape: ${a.shape}`);
34
+ }
35
+ N(t, r, a);
36
+ }
37
+ /**
38
+ * @license
39
+ * Copyright 2018 Google LLC. All Rights Reserved.
40
+ * Licensed under the Apache License, Version 2.0 (the "License");
41
+ * you may not use this file except in compliance with the License.
42
+ * You may obtain a copy of the License at
43
+ *
44
+ * http://www.apache.org/licenses/LICENSE-2.0
45
+ *
46
+ * Unless required by applicable law or agreed to in writing, software
47
+ * distributed under the License is distributed on an "AS IS" BASIS,
48
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
49
+ * See the License for the specific language governing permissions and
50
+ * limitations under the License.
51
+ * =============================================================================
52
+ */
53
+ function y(a, r, t) {
54
+ k(t);
55
+ const s = h(a, "indices", "scatterND", "int32"), e = h(r, "updates", "scatterND");
56
+ S(e, s, t);
57
+ const o = { indices: s, updates: e }, n = { shape: t };
58
+ return g.runKernel(w, o, n);
59
+ }
60
+ const v = /* @__PURE__ */ l({ scatterND_: y });
61
+ function I(a) {
62
+ const { logits: r, labels: t, dy: s } = a.inputs, e = t.shape[0], o = r.shape[1], n = b(0, e, 1, "int32"), i = E([n, t], 1), c = D([e]), p = v(i, c, [e, o]), f = d(r, p), u = s.reshape([e, 1]);
63
+ return m(f, u);
64
+ }
65
+ const T = {
66
+ kernelName: "EfficientScatterSub",
67
+ backendName: "cpu",
68
+ kernelFunc: I
69
+ };
70
+ $(T);
@@ -1,2 +1,2 @@
1
- import { Tensor } from '@tensorflow/tfjs';
1
+ import { Tensor } from '@tensorflow/tfjs-core';
2
2
  export declare function gatherSub(values: Tensor, labels: Tensor, logits: Tensor): Tensor;
@@ -1,66 +1,9 @@
1
- import { engine as l } from "@tensorflow/tfjs";
2
- import { o as g, d as i, E as b, G as d, r as c, b as h } from "../index-YPKosni4.js";
3
- import { r as p, s as f } from "../stack-BtKpB0Ry.js";
4
- /**
5
- * @license
6
- * Copyright 2018 Google LLC. All Rights Reserved.
7
- * Licensed under the Apache License, Version 2.0 (the "License");
8
- * you may not use this file except in compliance with the License.
9
- * You may obtain a copy of the License at
10
- *
11
- * http://www.apache.org/licenses/LICENSE-2.0
12
- *
13
- * Unless required by applicable law or agreed to in writing, software
14
- * distributed under the License is distributed on an "AS IS" BASIS,
15
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
- * See the License for the specific language governing permissions and
17
- * limitations under the License.
18
- * =============================================================================
19
- */
20
- function m(e, t) {
21
- const n = i(t, "indices", "gatherND", "int32"), r = { params: i(e, "x", "gatherND", "string_or_numeric"), indices: n };
22
- return b.runKernel(d, r);
23
- }
24
- const N = /* @__PURE__ */ g({ gatherND_: m });
25
- class S {
26
- variableNames = ["labels", "logits", "values"];
27
- outputShape;
28
- userCode;
29
- constructor(t) {
30
- this.outputShape = [t], this.userCode = `
31
- void main() {
32
- int coords = getOutputCoords();
33
- int index = int(getLabelsAtOutCoords());
34
- float val = getValuesAtOutCoords();
35
- float logit = getLogits(coords, index);
36
- setOutput(val - logit);
37
- }
38
- `;
39
- }
40
- }
41
- function k(e) {
42
- const { logits: t, labels: n, values: s } = e.inputs, r = e.backend, o = n.shape[0], a = new S(o);
43
- return r.runWebGLProgram(a, [n, t, s], "float32");
44
- }
45
- const G = {
46
- kernelName: "EfficientGatherSub",
47
- backendName: "webgl",
48
- kernelFunc: k
49
- };
50
- c(G);
51
- function v(e) {
52
- const { values: t, labels: n, logits: s } = e.inputs, r = n.shape[0], o = p(0, r, 1, "int32"), a = f([o, n], 1), u = N(s, a);
53
- return h(t, u);
54
- }
55
- const C = {
56
- kernelName: "EfficientGatherSub",
57
- backendName: "cpu",
58
- kernelFunc: v
59
- };
60
- c(C);
61
- function K(e, t, n) {
62
- return l().runKernel("EfficientGatherSub", { logits: n, labels: t, values: e }, {});
1
+ import { e as n } from "../index-pWA4_lUh.js";
2
+ import "./cpu/gatherSub.js";
3
+ import "./webgl/gatherSub.js";
4
+ function f(r, e, t) {
5
+ return n().runKernel("EfficientGatherSub", { logits: t, labels: e, values: r }, {});
63
6
  }
64
7
  export {
65
- K as gatherSub
8
+ f as gatherSub
66
9
  };
@@ -0,0 +1 @@
1
+ export {};
@@ -0,0 +1,21 @@
1
+ import { g as i } from "../../index-pWA4_lUh.js";
2
+ const u = {
3
+ kernelName: "AttentionMask",
4
+ inputsToSave: ["q", "k"],
5
+ outputsToSave: [],
6
+ gradFunc: (t, a, n) => {
7
+ if (Array.isArray(t))
8
+ throw new Error("Expected dy to be a single Tensor");
9
+ const [r, e] = a, { divisor: s } = n;
10
+ return {
11
+ q: () => t.matMul(e).mul(s),
12
+ k: () => r.transpose([0, 1, 3, 2]).matMul(t).mul(s).transpose([0, 1, 3, 2]),
13
+ mask: () => t,
14
+ divisor: () => {
15
+ const o = r.matMul(e, !1, !0);
16
+ return t.mul(o).sum();
17
+ }
18
+ };
19
+ }
20
+ };
21
+ i(u);
@@ -0,0 +1 @@
1
+ export {};
@@ -0,0 +1,20 @@
1
+ import { g as v } from "../../index-pWA4_lUh.js";
2
+ const g = {
3
+ kernelName: "QKV",
4
+ inputsToSave: ["x", "kernel"],
5
+ outputsToSave: [],
6
+ gradFunc: (k, m) => {
7
+ const [x, K, f] = k, [c, r] = m, [t, s, e] = c.shape, d = x.transpose([0, 2, 1, 3]).reshape([t * s, e]), l = K.transpose([0, 2, 1, 3]).reshape([t * s, e]), u = f.transpose([0, 2, 1, 3]).reshape([t * s, e]), i = r.slice([0, 0], [e, e]), h = r.slice([0, e], [e, e]), M = r.slice([0, 2 * e], [e, e]);
8
+ return {
9
+ x: () => {
10
+ const n = d.matMul(i, !1, !0), a = l.matMul(h, !1, !0), o = u.matMul(M, !1, !0);
11
+ return n.add(a).add(o).reshape([t, s, e]);
12
+ },
13
+ kernel: () => {
14
+ const n = c.reshape([t * s, e]), a = n.matMul(d, !0, !1), o = n.matMul(l, !0, !1), p = n.matMul(u, !0, !1);
15
+ return a.concat(o, 1).concat(p, 1);
16
+ }
17
+ };
18
+ }
19
+ };
20
+ v(g);
@@ -0,0 +1 @@
1
+ export {};