@fugood/llama.node 1.4.7 → 1.4.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. package/lib/binding.ts +8 -0
  2. package/package.json +15 -15
  3. package/scripts/llama.cpp.patch +22 -23
  4. package/src/LlamaContext.cpp +2 -2
  5. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  6. package/src/llama.cpp/common/arg.cpp +364 -193
  7. package/src/llama.cpp/common/arg.h +43 -2
  8. package/src/llama.cpp/common/chat-peg-parser.cpp +16 -2
  9. package/src/llama.cpp/common/chat.cpp +140 -0
  10. package/src/llama.cpp/common/common.cpp +130 -67
  11. package/src/llama.cpp/common/common.h +40 -16
  12. package/src/llama.cpp/common/console.cpp +98 -18
  13. package/src/llama.cpp/common/console.h +30 -8
  14. package/src/llama.cpp/common/download.cpp +69 -25
  15. package/src/llama.cpp/common/json-schema-to-grammar.cpp +132 -3
  16. package/src/llama.cpp/common/json-schema-to-grammar.h +20 -0
  17. package/src/llama.cpp/common/log.cpp +5 -0
  18. package/src/llama.cpp/common/log.h +1 -0
  19. package/src/llama.cpp/common/peg-parser.cpp +1 -1
  20. package/src/llama.cpp/common/preset.cpp +206 -0
  21. package/src/llama.cpp/common/preset.h +32 -0
  22. package/src/llama.cpp/common/sampling.cpp +91 -92
  23. package/src/llama.cpp/common/sampling.h +11 -6
  24. package/src/llama.cpp/common/speculative.cpp +1 -1
  25. package/src/llama.cpp/ggml/CMakeLists.txt +4 -0
  26. package/src/llama.cpp/ggml/include/ggml-alloc.h +9 -0
  27. package/src/llama.cpp/ggml/include/ggml-backend.h +1 -0
  28. package/src/llama.cpp/ggml/include/ggml-cpu.h +1 -0
  29. package/src/llama.cpp/ggml/include/ggml.h +7 -8
  30. package/src/llama.cpp/ggml/src/CMakeLists.txt +3 -0
  31. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/repack.cpp +2 -0
  32. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +60 -39
  33. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +4 -0
  34. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +2 -1
  35. package/src/llama.cpp/include/llama.h +18 -1
  36. package/src/llama.cpp/src/llama-arch.cpp +1890 -2248
  37. package/src/llama.cpp/src/llama-arch.h +9 -2
  38. package/src/llama.cpp/src/llama-batch.cpp +12 -2
  39. package/src/llama.cpp/src/llama-batch.h +4 -2
  40. package/src/llama.cpp/src/llama-context.cpp +93 -23
  41. package/src/llama.cpp/src/llama-context.h +8 -2
  42. package/src/llama.cpp/src/llama-graph.cpp +84 -16
  43. package/src/llama.cpp/src/llama-graph.h +17 -4
  44. package/src/llama.cpp/src/llama-hparams.cpp +6 -0
  45. package/src/llama.cpp/src/llama-hparams.h +5 -1
  46. package/src/llama.cpp/src/llama-impl.cpp +4 -0
  47. package/src/llama.cpp/src/llama-kv-cache.cpp +90 -42
  48. package/src/llama.cpp/src/llama-kv-cache.h +19 -2
  49. package/src/llama.cpp/src/llama-memory-hybrid.cpp +1 -1
  50. package/src/llama.cpp/src/llama-model-loader.cpp +2 -0
  51. package/src/llama.cpp/src/llama-model-loader.h +2 -0
  52. package/src/llama.cpp/src/llama-model.cpp +103 -44
  53. package/src/llama.cpp/src/llama-model.h +1 -0
  54. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  55. package/src/llama.cpp/src/llama-vocab.cpp +2 -1
  56. package/src/llama.cpp/src/llama.cpp +675 -1
  57. package/src/llama.cpp/src/models/deepseek2.cpp +9 -5
  58. package/src/llama.cpp/src/models/glm4-moe.cpp +28 -11
  59. package/src/llama.cpp/src/models/glm4.cpp +27 -4
  60. package/src/llama.cpp/src/models/models.h +5 -5
  61. package/src/llama.cpp/src/models/nemotron-h.cpp +35 -6
  62. package/src/llama.cpp/src/models/qwen2.cpp +12 -3
  63. package/src/llama.cpp/src/models/qwen3next.cpp +81 -266
@@ -34,6 +34,7 @@ struct llama_hparams_convnext {
34
34
 
35
35
  struct llama_hparams {
36
36
  bool vocab_only;
37
+ bool no_alloc;
37
38
  bool rope_finetuned;
38
39
  bool use_par_res;
39
40
  bool swin_norm;
@@ -107,6 +108,7 @@ struct llama_hparams {
107
108
  float rope_freq_base_train_swa;
108
109
  float rope_freq_scale_train;
109
110
  float rope_freq_scale_train_swa;
111
+
110
112
  uint32_t n_ctx_orig_yarn;
111
113
  float rope_yarn_log_mul = 0.0f;
112
114
 
@@ -164,6 +166,7 @@ struct llama_hparams {
164
166
  uint32_t n_no_rope_layer_step = 4;
165
167
  uint32_t n_attn_temp_floor_scale = 0;
166
168
  float f_attn_temp_scale = 0.0f;
169
+ float f_attn_temp_offset = 0.0f; // offset position index
167
170
 
168
171
  // gemma3n altup
169
172
  uint32_t n_altup = 4; // altup_num_inputs
@@ -267,7 +270,8 @@ struct llama_hparams {
267
270
  // TODO: think of a better place for this function
268
271
  // TODO: pack the SWA params in a struct?
269
272
  static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
273
+
274
+ bool use_mrope() const;
270
275
  };
271
276
 
272
277
  static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
273
-
@@ -25,6 +25,10 @@ time_meas::~time_meas() {
25
25
  }
26
26
  }
27
27
 
28
+ void llama_log_get(ggml_log_callback * log_callback, void ** user_data) {
29
+ ggml_log_get(log_callback, user_data);
30
+ }
31
+
28
32
  void llama_log_set(ggml_log_callback log_callback, void * user_data) {
29
33
  ggml_log_set(log_callback, user_data);
30
34
  g_logger_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
@@ -175,7 +175,15 @@ llama_kv_cache::llama_kv_cache(
175
175
 
176
176
  // allocate tensors and initialize the buffers to avoid NaNs in the padding
177
177
  for (auto & [buft, ctx] : ctx_map) {
178
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
178
+ ggml_backend_buffer_t buf;
179
+ if (model.hparams.no_alloc) {
180
+ buf = ggml_backend_buft_alloc_buffer(buft, /*size =*/ 0); // dummy buffer
181
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
182
+ t->buffer = buf; // set dummy buffer for KV cache so that the backend scheduler won't try to allocate it
183
+ }
184
+ } else {
185
+ buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft); // real buffer
186
+ }
179
187
  if (!buf) {
180
188
  throw std::runtime_error("failed to allocate buffer for kv cache");
181
189
  }
@@ -482,9 +490,18 @@ llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
482
490
 
483
491
  std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
484
492
  std::map<ggml_backend_buffer_type_t, size_t> ret;
485
- for (const auto & [_, buf] : ctxs_bufs) {
486
- ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
493
+ for (const auto & [ctx, buf] : ctxs_bufs) {
494
+ ggml_backend_buffer_type_t buft = ggml_backend_buffer_get_type(buf.get());
495
+
496
+ if (hparams.no_alloc) {
497
+ GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) == nullptr);
498
+ ret[buft] += ggml_backend_alloc_ctx_tensors_from_buft_size(ctx.get(), buft);
499
+ } else {
500
+ // GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) != nullptr); // multi_buffer does not have a defined base
501
+ ret[buft] += ggml_backend_buffer_get_size(buf.get());
502
+ }
487
503
  }
504
+
488
505
  return ret;
489
506
  }
490
507
 
@@ -1232,8 +1249,7 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
1232
1249
  GGML_ASSERT(n_tokens%n_stream == 0);
1233
1250
 
1234
1251
  // n_tps == n_tokens_per_stream
1235
- const int64_t n_tps = n_tokens/n_stream;
1236
- const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);
1252
+ const int64_t n_tps = n_tokens/n_stream;
1237
1253
 
1238
1254
  std::fill(data, data + ggml_nelements(dst), -INFINITY);
1239
1255
 
@@ -1266,7 +1282,7 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
1266
1282
  const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
1267
1283
  const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
1268
1284
 
1269
- const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
1285
+ const uint64_t idst = n_kv*(h*n_stream*n_tps + s*n_tps + ii);
1270
1286
 
1271
1287
  for (uint32_t j = 0; j < n_kv; ++j) {
1272
1288
  if (cells.is_empty(j)) {
@@ -1370,9 +1386,10 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
1370
1386
  float freq_scale) const {
1371
1387
  const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
1372
1388
 
1373
- const auto & yarn_ext_factor = cparams.yarn_ext_factor;
1374
- const auto & yarn_beta_fast = cparams.yarn_beta_fast;
1375
- const auto & yarn_beta_slow = cparams.yarn_beta_slow;
1389
+ const auto & yarn_ext_factor = cparams.yarn_ext_factor;
1390
+ const auto & yarn_beta_fast = cparams.yarn_beta_fast;
1391
+ const auto & yarn_beta_slow = cparams.yarn_beta_slow;
1392
+ const auto & yarn_attn_factor = cparams.yarn_attn_factor;
1376
1393
 
1377
1394
  const auto & n_rot = hparams.n_rot;
1378
1395
  const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
@@ -1383,12 +1400,6 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
1383
1400
  ? LLAMA_ROPE_TYPE_NEOX
1384
1401
  : hparams.rope_type;
1385
1402
 
1386
- // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
1387
- // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
1388
- const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
1389
- ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
1390
- : cparams.yarn_attn_factor;
1391
-
1392
1403
  ggml_tensor * tmp;
1393
1404
 
1394
1405
  if (ggml_is_quantized(cur->type)) {
@@ -1550,9 +1561,11 @@ void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama
1550
1561
 
1551
1562
  const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
1552
1563
 
1564
+ slot_info sinfo;
1565
+
1553
1566
  bool res = true;
1554
- res = res && state_read_meta(io, strm, cell_count, seq_id);
1555
- res = res && state_read_data(io, strm, cell_count);
1567
+ res = res && state_read_meta(io, strm, cell_count, sinfo, seq_id);
1568
+ res = res && state_read_data(io, strm, cell_count, sinfo);
1556
1569
 
1557
1570
  if (!res) {
1558
1571
  if (seq_id == -1) {
@@ -1691,7 +1704,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
1691
1704
  }
1692
1705
  }
1693
1706
 
1694
- bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
1707
+ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id) {
1695
1708
  auto & cells = v_cells[strm];
1696
1709
  auto & head = v_heads[strm];
1697
1710
 
@@ -1728,7 +1741,7 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
1728
1741
  ubatch.seq_id[i] = &dest_seq_id;
1729
1742
  }
1730
1743
 
1731
- const auto sinfo = find_slot(ubatch, true);
1744
+ sinfo = find_slot(ubatch, false);
1732
1745
  if (sinfo.empty()) {
1733
1746
  LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
1734
1747
  return false;
@@ -1738,20 +1751,16 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
1738
1751
  // see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
1739
1752
  apply_ubatch(sinfo, ubatch);
1740
1753
 
1741
- const auto head_cur = sinfo.head();
1742
-
1743
- // keep the head at the old position because we will read the KV data into it in state_read_data()
1744
- head = head_cur;
1754
+ LLAMA_LOG_DEBUG("%s: cell_count = %d, dest_seq_id = %d\n", __func__, cell_count, dest_seq_id);
1745
1755
 
1746
- LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
1747
-
1748
- // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
1749
- // Assume that this is one contiguous block of cells
1750
- GGML_ASSERT(head_cur + cell_count <= cells.size());
1751
- GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
1752
- GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
1753
- GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
1754
- GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
1756
+ // DEBUG CHECK: verify that all cells were allocated and have correct seq_id and pos values
1757
+ GGML_ASSERT(sinfo.n_stream() == 1);
1758
+ GGML_ASSERT(sinfo.idxs[0].size() == cell_count);
1759
+ for (uint32_t i = 0; i < cell_count; ++i) {
1760
+ const uint32_t idx = sinfo.idxs[0][i];
1761
+ GGML_ASSERT(cells.pos_get(idx) == ubatch.pos[i]);
1762
+ GGML_ASSERT(cells.seq_has(idx, dest_seq_id));
1763
+ }
1755
1764
  } else {
1756
1765
  // whole KV cache restore
1757
1766
 
@@ -1784,15 +1793,24 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
1784
1793
  }
1785
1794
  }
1786
1795
 
1796
+ // Create contiguous slot_info for whole cache restore
1797
+ sinfo.s0 = strm;
1798
+ sinfo.s1 = strm;
1799
+ sinfo.resize(1);
1800
+ sinfo.strm[0] = strm;
1801
+ sinfo.idxs[0].resize(cell_count);
1802
+ for (uint32_t i = 0; i < cell_count; ++i) {
1803
+ sinfo.idxs[0][i] = i;
1804
+ }
1805
+
1787
1806
  head = 0;
1788
1807
  }
1789
1808
 
1790
1809
  return true;
1791
1810
  }
1792
1811
 
1793
- bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
1812
+ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo) {
1794
1813
  auto & cells = v_cells[strm];
1795
- auto & head = v_heads[strm];
1796
1814
 
1797
1815
  uint32_t v_trans;
1798
1816
  uint32_t n_layer;
@@ -1842,8 +1860,17 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
1842
1860
  }
1843
1861
 
1844
1862
  if (cell_count) {
1845
- // Read and set the keys for the whole cell range
1846
- ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
1863
+ if (sinfo.is_contiguous()) {
1864
+ // Fast path: contiguous cells, single memcpy
1865
+ ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), sinfo.head() * k_size_row, cell_count * k_size_row);
1866
+ } else {
1867
+ // Slow path: scatter to non-contiguous positions
1868
+ const void * src = io.read(cell_count * k_size_row);
1869
+ for (uint32_t i = 0; i < cell_count; ++i) {
1870
+ const size_t dst_offset = sinfo.idxs[0][i] * k_size_row;
1871
+ ggml_backend_tensor_set(k, (const char*)src + i * k_size_row, dst_offset, k_size_row);
1872
+ }
1873
+ }
1847
1874
  }
1848
1875
  }
1849
1876
 
@@ -1874,8 +1901,17 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
1874
1901
  }
1875
1902
 
1876
1903
  if (cell_count) {
1877
- // Read and set the values for the whole cell range
1878
- ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
1904
+ if (sinfo.is_contiguous()) {
1905
+ // Fast path: contiguous cells, single memcpy
1906
+ ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), sinfo.head() * v_size_row, cell_count * v_size_row);
1907
+ } else {
1908
+ // Slow path: scatter to non-contiguous positions
1909
+ const void * src = io.read(cell_count * v_size_row);
1910
+ for (uint32_t i = 0; i < cell_count; ++i) {
1911
+ const size_t dst_offset = sinfo.idxs[0][i] * v_size_row;
1912
+ ggml_backend_tensor_set(v, (const char*)src + i * v_size_row, dst_offset, v_size_row);
1913
+ }
1914
+ }
1879
1915
  }
1880
1916
  }
1881
1917
  } else {
@@ -1914,10 +1950,22 @@ bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32
1914
1950
  }
1915
1951
 
1916
1952
  if (cell_count) {
1917
- // For each row in the transposed matrix, read the values for the whole cell range
1918
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1919
- const size_t dst_offset = (head + j * cells.size()) * v_size_el;
1920
- ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
1953
+ if (sinfo.is_contiguous()) {
1954
+ // Fast path: contiguous cells
1955
+ const uint32_t h = sinfo.head();
1956
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1957
+ const size_t dst_offset = (h + j * cells.size()) * v_size_el;
1958
+ ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
1959
+ }
1960
+ } else {
1961
+ // Slow path: scatter to non-contiguous positions
1962
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1963
+ const void * src = io.read(cell_count * v_size_el);
1964
+ for (uint32_t i = 0; i < cell_count; ++i) {
1965
+ const size_t dst_offset = (sinfo.idxs[0][i] + j * cells.size()) * v_size_el;
1966
+ ggml_backend_tensor_set(v, (const char*)src + i * v_size_el, dst_offset, v_size_el);
1967
+ }
1968
+ }
1921
1969
  }
1922
1970
  }
1923
1971
  }
@@ -72,6 +72,23 @@ public:
72
72
  void clear() {
73
73
  idxs.clear();
74
74
  }
75
+
76
+ // check if indices are contiguous starting from head()
77
+ bool is_contiguous() const {
78
+ if (idxs.empty() || idxs[0].empty()) {
79
+ return true;
80
+ }
81
+ if (idxs.size() > 1) {
82
+ return false;
83
+ }
84
+ const uint32_t h = idxs[0][0];
85
+ for (size_t i = 0; i < idxs[0].size(); ++i) {
86
+ if (idxs[0][i] != h + i) {
87
+ return false;
88
+ }
89
+ }
90
+ return true;
91
+ }
75
92
  };
76
93
 
77
94
  using slot_info_vec_t = std::vector<slot_info>;
@@ -264,8 +281,8 @@ private:
264
281
  void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const;
265
282
  void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const;
266
283
 
267
- bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
268
- bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count);
284
+ bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id = -1);
285
+ bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo);
269
286
  };
270
287
 
271
288
  class llama_kv_cache_context : public llama_memory_context_i {
@@ -222,7 +222,7 @@ llama_memory_hybrid_context::llama_memory_hybrid_context(
222
222
  ubatches(std::move(ubatches)),
223
223
  // note: here we copy the ubatches. not sure if this is ideal
224
224
  ctx_attn(new llama_kv_cache_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
225
- ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
225
+ ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
226
226
  status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
227
227
  }
228
228
 
@@ -473,6 +473,7 @@ llama_model_loader::llama_model_loader(
473
473
  std::vector<std::string> & splits,
474
474
  bool use_mmap,
475
475
  bool check_tensors,
476
+ bool no_alloc,
476
477
  const llama_model_kv_override * param_overrides_p,
477
478
  const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
478
479
  int trace = 0;
@@ -716,6 +717,7 @@ llama_model_loader::llama_model_loader(
716
717
 
717
718
  this->use_mmap = use_mmap;
718
719
  this->check_tensors = check_tensors;
720
+ this->no_alloc = no_alloc;
719
721
  }
720
722
 
721
723
  std::string llama_model_loader::get_arch_name() const {
@@ -71,6 +71,7 @@ struct llama_model_loader {
71
71
 
72
72
  bool use_mmap = false;
73
73
  bool check_tensors;
74
+ bool no_alloc;
74
75
 
75
76
  llama_files files;
76
77
  llama_ftype ftype;
@@ -97,6 +98,7 @@ struct llama_model_loader {
97
98
  std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
98
99
  bool use_mmap,
99
100
  bool check_tensors,
101
+ bool no_alloc,
100
102
  const llama_model_kv_override * param_overrides_p,
101
103
  const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
102
104