@fugood/llama.node 1.3.8 → 1.4.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/lib/binding.js +25 -18
- package/lib/binding.ts +19 -1
- package/lib/index.js +3 -3
- package/lib/index.ts +1 -1
- package/package.json +17 -17
- package/scripts/llama.cpp.patch +53 -4
- package/src/LlamaCompletionWorker.cpp +2 -2
- package/src/LlamaContext.cpp +6 -1
- package/src/llama.cpp/common/arg.cpp +1 -1
- package/src/llama.cpp/common/chat-parser.cpp +968 -0
- package/src/llama.cpp/common/chat.cpp +0 -952
- package/src/llama.cpp/common/json-schema-to-grammar.cpp +2 -2
- package/src/llama.cpp/ggml/CMakeLists.txt +1 -0
- package/src/llama.cpp/ggml/include/ggml-rpc.h +1 -1
- package/src/llama.cpp/ggml/src/CMakeLists.txt +11 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/repack.cpp +336 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/cpu-feats.cpp +11 -8
- package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +22 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +2 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +234 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.h +6 -0
- package/src/llama.cpp/src/CMakeLists.txt +1 -0
- package/src/llama.cpp/src/llama-arch.cpp +48 -3
- package/src/llama.cpp/src/llama-arch.h +2 -0
- package/src/llama.cpp/src/llama-context.cpp +6 -2
- package/src/llama.cpp/src/llama-hparams.h +1 -1
- package/src/llama.cpp/src/llama-model.cpp +102 -5
- package/src/llama.cpp/src/llama-model.h +4 -0
- package/src/llama.cpp/src/llama-quant.cpp +13 -5
- package/src/llama.cpp/src/models/lfm2.cpp +5 -3
- package/src/llama.cpp/src/models/models.h +51 -1
- package/src/llama.cpp/src/models/qwen3next.cpp +1042 -0
|
@@ -0,0 +1,1042 @@
|
|
|
1
|
+
#include "ggml.h"
|
|
2
|
+
#include "models.h"
|
|
3
|
+
|
|
4
|
+
#define CHUNK_SIZE 64
|
|
5
|
+
|
|
6
|
+
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
|
|
7
|
+
llm_graph_context_mamba(params), model(model) {
|
|
8
|
+
ggml_tensor * cur;
|
|
9
|
+
ggml_tensor * inpL;
|
|
10
|
+
|
|
11
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
12
|
+
cb(inpL, "model.embed_tokens", -1);
|
|
13
|
+
|
|
14
|
+
auto * inp = build_inp_mem_hybrid();
|
|
15
|
+
|
|
16
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
17
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
18
|
+
|
|
19
|
+
ggml_tensor * causal_mask =
|
|
20
|
+
ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, ubatch.n_seq_tokens, ubatch.n_seq_tokens), 1.0f),
|
|
21
|
+
GGML_TRI_TYPE_LOWER);
|
|
22
|
+
|
|
23
|
+
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, ubatch.n_seq_tokens), 1.0f));
|
|
24
|
+
|
|
25
|
+
ggml_build_forward_expand(gf, causal_mask);
|
|
26
|
+
ggml_build_forward_expand(gf, identity);
|
|
27
|
+
|
|
28
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
29
|
+
ggml_tensor * inpSA = inpL;
|
|
30
|
+
|
|
31
|
+
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
|
|
32
|
+
cb(cur, "attn_norm", il);
|
|
33
|
+
|
|
34
|
+
// Determine layer type and build appropriate attention mechanism
|
|
35
|
+
if (hparams.is_recurrent(il)) {
|
|
36
|
+
// Linear attention layer (gated delta net)
|
|
37
|
+
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, il);
|
|
38
|
+
} else {
|
|
39
|
+
// Full attention layer
|
|
40
|
+
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, il);
|
|
41
|
+
}
|
|
42
|
+
|
|
43
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
44
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
45
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
// Residual connection
|
|
49
|
+
cur = ggml_add(ctx0, cur, inpSA);
|
|
50
|
+
cb(cur, "attn_residual", il);
|
|
51
|
+
|
|
52
|
+
// Save the tensor before post-attention norm for residual connection
|
|
53
|
+
ggml_tensor * ffn_residual = cur;
|
|
54
|
+
|
|
55
|
+
// Post-attention norm
|
|
56
|
+
ggml_tensor * attn_post_norm = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il);
|
|
57
|
+
cb(attn_post_norm, "attn_post_norm", il);
|
|
58
|
+
|
|
59
|
+
// FFN layer (MoE or dense) - without residual connection
|
|
60
|
+
cur = build_layer_ffn(attn_post_norm, il);
|
|
61
|
+
cb(cur, "ffn_out", il);
|
|
62
|
+
|
|
63
|
+
// Residual connection for FFN - add to the tensor from before post_attention_layernorm
|
|
64
|
+
cur = ggml_add(ctx0, cur, ffn_residual);
|
|
65
|
+
cb(cur, "post_moe", il);
|
|
66
|
+
|
|
67
|
+
// Input for next layer
|
|
68
|
+
inpL = cur;
|
|
69
|
+
}
|
|
70
|
+
cur = inpL;
|
|
71
|
+
|
|
72
|
+
// Final norm
|
|
73
|
+
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
|
|
74
|
+
|
|
75
|
+
cb(cur, "result_norm", -1);
|
|
76
|
+
res->t_embd = cur;
|
|
77
|
+
|
|
78
|
+
// LM head
|
|
79
|
+
cur = build_lora_mm(model.output, cur);
|
|
80
|
+
|
|
81
|
+
cb(cur, "result_output", -1);
|
|
82
|
+
res->t_logits = cur;
|
|
83
|
+
|
|
84
|
+
ggml_build_forward_expand(gf, cur);
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
ggml_tensor * llm_build_qwen3next::build_delta_net_chunking(
|
|
88
|
+
ggml_tensor * q,
|
|
89
|
+
ggml_tensor * k,
|
|
90
|
+
ggml_tensor * v,
|
|
91
|
+
ggml_tensor * g,
|
|
92
|
+
ggml_tensor * beta,
|
|
93
|
+
ggml_tensor * state,
|
|
94
|
+
ggml_tensor * causal_mask,
|
|
95
|
+
ggml_tensor * identity,
|
|
96
|
+
int il) {
|
|
97
|
+
GGML_ASSERT(ggml_is_contiguous(q));
|
|
98
|
+
GGML_ASSERT(ggml_is_contiguous(k));
|
|
99
|
+
GGML_ASSERT(ggml_is_contiguous(v));
|
|
100
|
+
GGML_ASSERT(ggml_is_contiguous(g));
|
|
101
|
+
GGML_ASSERT(ggml_is_contiguous(beta));
|
|
102
|
+
GGML_ASSERT(ggml_is_contiguous(state));
|
|
103
|
+
|
|
104
|
+
const int64_t S_k = q->ne[0];
|
|
105
|
+
const int64_t H_k = q->ne[1];
|
|
106
|
+
const int64_t n_tokens = q->ne[2];
|
|
107
|
+
const int64_t n_seqs = q->ne[3];
|
|
108
|
+
|
|
109
|
+
const int64_t S_v = v->ne[0];
|
|
110
|
+
const int64_t H_v = v->ne[1];
|
|
111
|
+
|
|
112
|
+
GGML_ASSERT(v->ne[2] == n_tokens);
|
|
113
|
+
GGML_ASSERT(k->ne[2] == n_tokens);
|
|
114
|
+
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
|
115
|
+
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
|
116
|
+
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
|
117
|
+
|
|
118
|
+
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
|
119
|
+
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
|
120
|
+
|
|
121
|
+
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
|
122
|
+
|
|
123
|
+
// TODO: can this ever be false?
|
|
124
|
+
const bool use_qk_l2norm = true;
|
|
125
|
+
|
|
126
|
+
if (use_qk_l2norm) {
|
|
127
|
+
const float eps_norm = hparams.f_norm_rms_eps;
|
|
128
|
+
|
|
129
|
+
q = ggml_l2_norm(ctx0, q, eps_norm);
|
|
130
|
+
k = ggml_l2_norm(ctx0, k, eps_norm);
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
const float scale = 1.0f / sqrtf(S_v);
|
|
134
|
+
|
|
135
|
+
q = ggml_scale(ctx0, q, scale);
|
|
136
|
+
|
|
137
|
+
beta = ggml_sigmoid(ctx0, beta);
|
|
138
|
+
|
|
139
|
+
ggml_tensor * causal_diag_mask = ggml_add(ctx0, causal_mask, identity);
|
|
140
|
+
|
|
141
|
+
cb(q, "q_in", il);
|
|
142
|
+
cb(k, "k_in", il);
|
|
143
|
+
cb(v, "v_in", il);
|
|
144
|
+
cb(beta, "beta_in", il);
|
|
145
|
+
cb(g, "g_in", il);
|
|
146
|
+
|
|
147
|
+
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
148
|
+
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
149
|
+
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
150
|
+
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
|
151
|
+
|
|
152
|
+
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
|
153
|
+
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
|
154
|
+
|
|
155
|
+
cb(q, "q_perm", il);
|
|
156
|
+
cb(k, "k_perm", il);
|
|
157
|
+
cb(v, "v_perm", il);
|
|
158
|
+
cb(beta, "beta_perm", il);
|
|
159
|
+
cb(g, "g_perm", il);
|
|
160
|
+
cb(state, "state_in", il);
|
|
161
|
+
|
|
162
|
+
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
|
163
|
+
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
|
164
|
+
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
|
165
|
+
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
|
166
|
+
|
|
167
|
+
// Do padding
|
|
168
|
+
const int64_t chunk_size = CHUNK_SIZE;
|
|
169
|
+
|
|
170
|
+
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
|
171
|
+
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
|
172
|
+
|
|
173
|
+
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
|
174
|
+
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
|
175
|
+
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
|
176
|
+
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
|
177
|
+
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
|
178
|
+
|
|
179
|
+
cb(q, "q_pad", il);
|
|
180
|
+
cb(k, "k_pad", il);
|
|
181
|
+
cb(v, "v_pad", il);
|
|
182
|
+
cb(beta, "beta_pad", il);
|
|
183
|
+
cb(g, "g_pad", il);
|
|
184
|
+
|
|
185
|
+
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
|
186
|
+
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
|
187
|
+
|
|
188
|
+
cb(v_beta, "v_beta", il);
|
|
189
|
+
cb(k_beta, "k_beta", il);
|
|
190
|
+
|
|
191
|
+
ggml_tensor * chunked_mask =
|
|
192
|
+
ggml_view_4d(ctx0, causal_mask, chunk_size,
|
|
193
|
+
chunk_size, causal_mask->ne[2], causal_mask->ne[3],
|
|
194
|
+
causal_mask->nb[1], causal_mask->nb[2], causal_mask->nb[3], 0);
|
|
195
|
+
|
|
196
|
+
ggml_tensor * chunked_diag_mask =
|
|
197
|
+
ggml_view_4d(ctx0, causal_diag_mask, chunk_size,
|
|
198
|
+
chunk_size, causal_diag_mask->ne[2], causal_diag_mask->ne[3],
|
|
199
|
+
causal_diag_mask->nb[1], causal_diag_mask->nb[2], causal_diag_mask->nb[3], 0);
|
|
200
|
+
|
|
201
|
+
ggml_tensor * chunked_identity =
|
|
202
|
+
ggml_view_4d(ctx0, identity, chunk_size,
|
|
203
|
+
chunk_size, identity->ne[2], identity->ne[3],
|
|
204
|
+
identity->nb[1], identity->nb[2], identity->nb[3], 0);
|
|
205
|
+
|
|
206
|
+
q = ggml_cont_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
207
|
+
k = ggml_cont_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
208
|
+
k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
|
209
|
+
v = ggml_cont_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
|
210
|
+
v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
|
211
|
+
|
|
212
|
+
g = ggml_cont_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
|
213
|
+
beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
|
214
|
+
|
|
215
|
+
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
|
216
|
+
|
|
217
|
+
cb(g_cumsum, "g_cumsum", il);
|
|
218
|
+
|
|
219
|
+
ggml_tensor * gcs_i = ggml_cont_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
|
|
220
|
+
ggml_tensor * gcs_j = ggml_cont_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
|
|
221
|
+
|
|
222
|
+
ggml_tensor * gcs_j_broadcast =
|
|
223
|
+
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
|
224
|
+
|
|
225
|
+
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
|
226
|
+
|
|
227
|
+
cb(decay_mask, "decay_mask", il);
|
|
228
|
+
|
|
229
|
+
decay_mask = ggml_mul(ctx0, decay_mask, chunked_diag_mask);
|
|
230
|
+
decay_mask = ggml_exp(ctx0, decay_mask);
|
|
231
|
+
decay_mask = ggml_mul(ctx0, decay_mask, chunked_diag_mask);
|
|
232
|
+
|
|
233
|
+
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
|
234
|
+
|
|
235
|
+
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
|
236
|
+
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, chunked_mask));
|
|
237
|
+
|
|
238
|
+
cb(attn, "attn_pre_solve", il);
|
|
239
|
+
|
|
240
|
+
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, chunked_mask);
|
|
241
|
+
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, chunked_identity, attn_lower), attn_lower);
|
|
242
|
+
|
|
243
|
+
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
|
244
|
+
attn = ggml_mul(ctx0, lin_solve, chunked_mask);
|
|
245
|
+
attn = ggml_add(ctx0, attn, chunked_identity);
|
|
246
|
+
|
|
247
|
+
cb(attn, "attn_solved", il);
|
|
248
|
+
|
|
249
|
+
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
|
250
|
+
|
|
251
|
+
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
|
252
|
+
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
|
253
|
+
|
|
254
|
+
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
|
255
|
+
|
|
256
|
+
cb(kbeta_gexp, "kbeta_gexp", il);
|
|
257
|
+
|
|
258
|
+
ggml_tensor * k_cumdecay =
|
|
259
|
+
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
|
260
|
+
|
|
261
|
+
cb(k_cumdecay, "k_cumdecay", il);
|
|
262
|
+
|
|
263
|
+
ggml_tensor * core_attn_out = nullptr;
|
|
264
|
+
ggml_tensor * new_state = ggml_dup(ctx0, state);
|
|
265
|
+
|
|
266
|
+
cb(new_state, "new_state", il);
|
|
267
|
+
|
|
268
|
+
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
|
269
|
+
auto chunkify = [=](ggml_tensor * t) {
|
|
270
|
+
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
|
|
271
|
+
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
|
|
272
|
+
};
|
|
273
|
+
|
|
274
|
+
auto chunkify_g = [=](ggml_tensor * t) {
|
|
275
|
+
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, t->ne[1], 1, t->ne[3],
|
|
276
|
+
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
|
|
277
|
+
};
|
|
278
|
+
|
|
279
|
+
ggml_tensor * k_chunk = chunkify(k);
|
|
280
|
+
ggml_tensor * q_chunk = chunkify(q);
|
|
281
|
+
ggml_tensor * v_chunk = chunkify(v);
|
|
282
|
+
|
|
283
|
+
ggml_tensor * g_cs_chunk = chunkify_g(g_cumsum);
|
|
284
|
+
ggml_tensor * g_cs_chunk_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cs_chunk));
|
|
285
|
+
|
|
286
|
+
ggml_tensor * decay_mask_chunk = chunkify(decay_mask);
|
|
287
|
+
ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
|
|
288
|
+
|
|
289
|
+
ggml_tensor * gexp_chunk = ggml_exp(ctx0, g_cs_chunk_t);
|
|
290
|
+
|
|
291
|
+
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
|
292
|
+
attn = ggml_mul_mat(ctx0, k_chunk, q_chunk);
|
|
293
|
+
attn = ggml_mul(ctx0, attn, decay_mask_chunk);
|
|
294
|
+
attn = ggml_mul(ctx0, attn, ggml_add(ctx0, chunked_identity, chunked_mask));
|
|
295
|
+
|
|
296
|
+
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
|
297
|
+
|
|
298
|
+
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
|
299
|
+
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
|
300
|
+
|
|
301
|
+
// v_new = v_i - v_prime
|
|
302
|
+
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
|
303
|
+
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
|
304
|
+
|
|
305
|
+
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
|
306
|
+
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
|
307
|
+
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
|
308
|
+
|
|
309
|
+
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
|
310
|
+
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn);
|
|
311
|
+
|
|
312
|
+
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
|
313
|
+
|
|
314
|
+
core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
|
|
315
|
+
|
|
316
|
+
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
|
317
|
+
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
|
318
|
+
// key_gdiff = key * g_diff.unsqueeze(-1)
|
|
319
|
+
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
|
320
|
+
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
|
321
|
+
|
|
322
|
+
ggml_tensor * g_cum_last =
|
|
323
|
+
ggml_cont(ctx0, ggml_view_4d(ctx0, g_cs_chunk_t, g_cs_chunk_t->ne[0], 1, g_cs_chunk_t->ne[2], g_cs_chunk_t->ne[3],
|
|
324
|
+
g_cs_chunk_t->nb[1], g_cs_chunk_t->nb[2], g_cs_chunk_t->nb[3],
|
|
325
|
+
g_cs_chunk_t->nb[0] * (g_cs_chunk_t->ne[1] - 1)));
|
|
326
|
+
|
|
327
|
+
ggml_tensor * gexp_last =
|
|
328
|
+
ggml_reshape_4d(ctx0, ggml_exp(ctx0, g_cum_last), 1, 1, g_cum_last->ne[0] * g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
329
|
+
|
|
330
|
+
ggml_tensor * g_cum_last_3d =
|
|
331
|
+
ggml_reshape_3d(ctx0, g_cum_last, g_cum_last->ne[0], g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
332
|
+
|
|
333
|
+
ggml_tensor * g_cumsum_3d = ggml_reshape_3d(ctx0, g_cs_chunk, g_cs_chunk->ne[0], g_cs_chunk->ne[2], g_cs_chunk->ne[3]);
|
|
334
|
+
|
|
335
|
+
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum_3d, g_cum_last_3d));
|
|
336
|
+
|
|
337
|
+
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
|
338
|
+
|
|
339
|
+
ggml_tensor * key_gdiff = ggml_mul(ctx0, k_chunk,
|
|
340
|
+
ggml_reshape_4d(ctx0, g_diff_exp, 1, g_diff_exp->ne[0], g_diff_exp->ne[1],
|
|
341
|
+
g_diff_exp->ne[2] * g_diff_exp->ne[3]));
|
|
342
|
+
|
|
343
|
+
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff)));
|
|
344
|
+
|
|
345
|
+
new_state = ggml_add(ctx0,
|
|
346
|
+
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last, gexp_last->ne[0], gexp_last->ne[1], H_v, n_seqs)),
|
|
347
|
+
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
|
348
|
+
}
|
|
349
|
+
|
|
350
|
+
core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
|
|
351
|
+
|
|
352
|
+
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, S_v, n_tokens, H_v, n_seqs, core_attn_out->nb[1], core_attn_out->nb[2], core_attn_out->nb[3], 0);
|
|
353
|
+
cb(output_tokens, "output_tokens", il);
|
|
354
|
+
|
|
355
|
+
// flatten output
|
|
356
|
+
ggml_tensor * flat_output =
|
|
357
|
+
ggml_cont_1d(ctx0, ggml_permute(ctx0, output_tokens, 0, 2, 1, 3), S_v * H_v * n_tokens * n_seqs);
|
|
358
|
+
|
|
359
|
+
ggml_tensor * flat_state = ggml_cont_1d(ctx0, new_state, S_v * S_v * H_v * n_seqs);
|
|
360
|
+
|
|
361
|
+
return ggml_concat(ctx0, flat_output, flat_state, 0);
|
|
362
|
+
}
|
|
363
|
+
|
|
364
|
+
ggml_tensor * llm_build_qwen3next::build_delta_net_recurrent(
|
|
365
|
+
ggml_tensor * q,
|
|
366
|
+
ggml_tensor * k,
|
|
367
|
+
ggml_tensor * v,
|
|
368
|
+
ggml_tensor * g,
|
|
369
|
+
ggml_tensor * beta,
|
|
370
|
+
ggml_tensor * state,
|
|
371
|
+
ggml_tensor * causal_mask,
|
|
372
|
+
ggml_tensor * identity,
|
|
373
|
+
int il) {
|
|
374
|
+
GGML_ASSERT(ggml_is_contiguous(q));
|
|
375
|
+
GGML_ASSERT(ggml_is_contiguous(k));
|
|
376
|
+
GGML_ASSERT(ggml_is_contiguous(v));
|
|
377
|
+
GGML_ASSERT(ggml_is_contiguous(g));
|
|
378
|
+
GGML_ASSERT(ggml_is_contiguous(beta));
|
|
379
|
+
GGML_ASSERT(ggml_is_contiguous(state));
|
|
380
|
+
|
|
381
|
+
const int64_t S_k = q->ne[0];
|
|
382
|
+
const int64_t H_k = q->ne[1];
|
|
383
|
+
const int64_t n_tokens = q->ne[2];
|
|
384
|
+
const int64_t n_seqs = q->ne[3];
|
|
385
|
+
|
|
386
|
+
const int64_t S_v = v->ne[0];
|
|
387
|
+
const int64_t H_v = v->ne[1];
|
|
388
|
+
|
|
389
|
+
GGML_ASSERT(v->ne[2] == n_tokens);
|
|
390
|
+
GGML_ASSERT(k->ne[2] == n_tokens);
|
|
391
|
+
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
|
392
|
+
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
|
393
|
+
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
|
394
|
+
|
|
395
|
+
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
|
396
|
+
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
|
397
|
+
|
|
398
|
+
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
|
399
|
+
|
|
400
|
+
// TODO: can this ever be false?
|
|
401
|
+
const bool use_qk_l2norm = true;
|
|
402
|
+
|
|
403
|
+
if (use_qk_l2norm) {
|
|
404
|
+
const float eps_norm = hparams.f_norm_rms_eps;
|
|
405
|
+
|
|
406
|
+
q = ggml_l2_norm(ctx0, q, eps_norm);
|
|
407
|
+
k = ggml_l2_norm(ctx0, k, eps_norm);
|
|
408
|
+
}
|
|
409
|
+
|
|
410
|
+
const float scale = 1.0f / sqrtf(S_v);
|
|
411
|
+
|
|
412
|
+
q = ggml_scale(ctx0, q, scale);
|
|
413
|
+
|
|
414
|
+
beta = ggml_sigmoid(ctx0, beta);
|
|
415
|
+
|
|
416
|
+
ggml_tensor * causal_diag_mask = ggml_add(ctx0, causal_mask, identity);
|
|
417
|
+
|
|
418
|
+
cb(q, "q_in", il);
|
|
419
|
+
cb(k, "k_in", il);
|
|
420
|
+
cb(v, "v_in", il);
|
|
421
|
+
cb(beta, "beta_in", il);
|
|
422
|
+
cb(g, "g_in", il);
|
|
423
|
+
|
|
424
|
+
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
425
|
+
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
426
|
+
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
|
427
|
+
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
|
428
|
+
|
|
429
|
+
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
|
430
|
+
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
|
431
|
+
|
|
432
|
+
cb(q, "q_perm", il);
|
|
433
|
+
cb(k, "k_perm", il);
|
|
434
|
+
cb(v, "v_perm", il);
|
|
435
|
+
cb(beta, "beta_perm", il);
|
|
436
|
+
cb(g, "g_perm", il);
|
|
437
|
+
cb(state, "state_in", il);
|
|
438
|
+
|
|
439
|
+
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
|
440
|
+
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
|
441
|
+
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
|
442
|
+
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
|
443
|
+
|
|
444
|
+
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
|
445
|
+
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
|
446
|
+
|
|
447
|
+
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
|
448
|
+
|
|
449
|
+
cb(k_beta, "k_beta", il);
|
|
450
|
+
cb(v_beta, "v_beta", il);
|
|
451
|
+
cb(g_cumsum, "g_cumsum", il);
|
|
452
|
+
|
|
453
|
+
ggml_tensor * gcs_i = ggml_cont_4d(ctx0, g_cumsum, n_tokens, 1, H_v, n_seqs); // [chunk_size, 1, n_tokens, n_seqs]
|
|
454
|
+
ggml_tensor * gcs_j = ggml_cont_4d(ctx0, g_cumsum, 1, n_tokens, H_v, n_seqs); // [1, chunk_size, n_tokens, n_seqs]
|
|
455
|
+
|
|
456
|
+
// Broadcast both tensors to [chunk_size, chunk_size, H_v, n_seqs]
|
|
457
|
+
// ggml_tensor * gcs_i_broadcast =
|
|
458
|
+
// ggml_repeat_4d(ctx0, gcs_i, GGML_DELTA_NET_CHUNK, GGML_DELTA_NET_CHUNK, num_chunks * H_v,
|
|
459
|
+
// n_seqs); // [chunk_size, 1, H_v, n_seqs] -> [chunk_size, chunk_size, H_v, n_seqs]
|
|
460
|
+
// Don't need this, this one will get auto-broadcast
|
|
461
|
+
ggml_tensor * gcs_j_broadcast =
|
|
462
|
+
ggml_repeat_4d(ctx0, gcs_j, n_tokens, n_tokens, H_v, n_seqs); // [1, chunk_size, H_v, n_seqs] -> [chunk_size, chunk_size, H_v, n_seqs]
|
|
463
|
+
|
|
464
|
+
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
|
465
|
+
|
|
466
|
+
// Apply lower triangular mask to ensure attention is causal (only past tokens influence current)
|
|
467
|
+
decay_mask = ggml_mul(ctx0, decay_mask, causal_diag_mask);
|
|
468
|
+
// Apply exponential to get the decay mask values
|
|
469
|
+
decay_mask = ggml_exp(ctx0, decay_mask);
|
|
470
|
+
// Apply lower triangular mask again to ensure only lower triangular values remain
|
|
471
|
+
decay_mask = ggml_mul(ctx0, decay_mask, causal_diag_mask);
|
|
472
|
+
|
|
473
|
+
cb(decay_mask, "decay_mask", il);
|
|
474
|
+
|
|
475
|
+
// attn = -((k_beta @ key.transpose(-1, -2)) * decay_mask).masked_fill(mask, 0)
|
|
476
|
+
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
|
477
|
+
|
|
478
|
+
cb(kmulkbeta, "kmulkbeta", il);
|
|
479
|
+
|
|
480
|
+
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
|
481
|
+
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
|
482
|
+
|
|
483
|
+
cb(attn, "attn_pre_rec", il);
|
|
484
|
+
|
|
485
|
+
// for i in range(1, chunk_size):
|
|
486
|
+
// row = attn[..., i, :i].clone()
|
|
487
|
+
// sub = attn[..., :i, :i].clone()
|
|
488
|
+
// attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2)
|
|
489
|
+
// attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device)
|
|
490
|
+
//
|
|
491
|
+
// We reduce this to a linear triangular solve: AX = B, where B = attn, A = I - tril(A)
|
|
492
|
+
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
|
493
|
+
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
|
494
|
+
|
|
495
|
+
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
|
496
|
+
attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
|
497
|
+
attn = ggml_add(ctx0, attn, identity);
|
|
498
|
+
|
|
499
|
+
// value = attn @ v_beta
|
|
500
|
+
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
|
501
|
+
|
|
502
|
+
cb(v, "value_beta", il);
|
|
503
|
+
|
|
504
|
+
// k_cumdecay = attn @ (k_beta * g.exp().unsqueeze(-1))
|
|
505
|
+
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
|
506
|
+
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
|
507
|
+
|
|
508
|
+
cb(gexp, "g_cum_exp", il);
|
|
509
|
+
|
|
510
|
+
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
|
511
|
+
|
|
512
|
+
cb(kbeta_gexp, "kbeta_gexp", il);
|
|
513
|
+
|
|
514
|
+
ggml_tensor * k_cumdecay =
|
|
515
|
+
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
|
516
|
+
|
|
517
|
+
cb(k_cumdecay, "k_cumdecay", il);
|
|
518
|
+
|
|
519
|
+
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
|
520
|
+
attn = ggml_mul_mat(ctx0, k, q);
|
|
521
|
+
attn = ggml_mul(ctx0, attn, decay_mask);
|
|
522
|
+
attn = ggml_mul(ctx0, attn, ggml_add(ctx0, identity, causal_mask));
|
|
523
|
+
|
|
524
|
+
cb(attn, "attn_decay_key", il);
|
|
525
|
+
|
|
526
|
+
ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
|
|
527
|
+
|
|
528
|
+
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
|
529
|
+
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay);
|
|
530
|
+
|
|
531
|
+
cb(v_prime, "v_prime", il);
|
|
532
|
+
|
|
533
|
+
// v_new = v_i - v_prime
|
|
534
|
+
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v, v_prime), v_prime);
|
|
535
|
+
|
|
536
|
+
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
|
537
|
+
|
|
538
|
+
cb(v_new, "v_new", il);
|
|
539
|
+
|
|
540
|
+
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
|
541
|
+
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, gexp);
|
|
542
|
+
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
|
543
|
+
|
|
544
|
+
cb(attn_inter, "attn_inter", il);
|
|
545
|
+
|
|
546
|
+
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
|
547
|
+
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn);
|
|
548
|
+
|
|
549
|
+
cb(v_attn, "v_attn", il);
|
|
550
|
+
|
|
551
|
+
ggml_tensor * core_attn_out = ggml_add(ctx0, attn_inter, v_attn);
|
|
552
|
+
|
|
553
|
+
cb(core_attn_out, "core_attn_out", il);
|
|
554
|
+
|
|
555
|
+
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
|
556
|
+
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
|
557
|
+
// key_gdiff = key * g_diff.unsqueeze(-1)
|
|
558
|
+
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
|
559
|
+
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
|
560
|
+
|
|
561
|
+
ggml_tensor * g_cum_last =
|
|
562
|
+
ggml_cont(ctx0, ggml_view_4d(ctx0, g_cumsum_t, g_cumsum_t->ne[0], 1, g_cumsum_t->ne[2], g_cumsum_t->ne[3],
|
|
563
|
+
g_cumsum_t->nb[1], g_cumsum_t->nb[2], g_cumsum_t->nb[3],
|
|
564
|
+
g_cumsum_t->nb[0] * (g_cumsum_t->ne[1] - 1)));
|
|
565
|
+
|
|
566
|
+
cb(g_cum_last, "g_cum_last", il);
|
|
567
|
+
|
|
568
|
+
ggml_tensor * gexp_last =
|
|
569
|
+
ggml_reshape_4d(ctx0, ggml_exp(ctx0, g_cum_last), 1, 1, g_cum_last->ne[0] * g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
570
|
+
|
|
571
|
+
cb(gexp_last, "gexp_last", il);
|
|
572
|
+
|
|
573
|
+
ggml_tensor * g_cum_last_3d =
|
|
574
|
+
ggml_reshape_3d(ctx0, g_cum_last, g_cum_last->ne[0], g_cum_last->ne[2], g_cum_last->ne[3]);
|
|
575
|
+
|
|
576
|
+
cb(g_cum_last_3d, "g_cum_last_3d", il);
|
|
577
|
+
|
|
578
|
+
ggml_tensor * g_cumsum_3d = ggml_reshape_3d(ctx0, g_cumsum, g_cumsum->ne[0], g_cumsum->ne[2], g_cumsum->ne[3]);
|
|
579
|
+
|
|
580
|
+
cb(g_cumsum_3d, "g_cumsum_3d", il);
|
|
581
|
+
|
|
582
|
+
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum_3d, g_cum_last_3d));
|
|
583
|
+
|
|
584
|
+
cb(g_diff, "g_diff", il);
|
|
585
|
+
|
|
586
|
+
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
|
587
|
+
|
|
588
|
+
cb(g_diff_exp, "g_diff_exp", il);
|
|
589
|
+
|
|
590
|
+
ggml_tensor * key_gdiff = ggml_mul(ctx0, k,
|
|
591
|
+
ggml_reshape_4d(ctx0, g_diff_exp, 1, g_diff_exp->ne[0], g_diff_exp->ne[1],
|
|
592
|
+
g_diff_exp->ne[2] * g_diff_exp->ne[3]));
|
|
593
|
+
|
|
594
|
+
cb(key_gdiff, "key_gdiff", il);
|
|
595
|
+
|
|
596
|
+
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff)));
|
|
597
|
+
|
|
598
|
+
cb(kgdmulvnew, "kgdmulvnew", il);
|
|
599
|
+
|
|
600
|
+
state = ggml_add(ctx0, ggml_mul(ctx0, state, gexp_last), kgdmulvnew);
|
|
601
|
+
|
|
602
|
+
cb(state, "new_state", il);
|
|
603
|
+
|
|
604
|
+
// flatten output
|
|
605
|
+
ggml_tensor * flat_output =
|
|
606
|
+
ggml_cont_1d(ctx0, ggml_permute(ctx0, core_attn_out, 0, 2, 1, 3), S_v * H_v * n_tokens * n_seqs);
|
|
607
|
+
|
|
608
|
+
ggml_tensor * flat_state = ggml_cont_1d(ctx0, state, S_v * S_v * H_v * n_seqs);
|
|
609
|
+
|
|
610
|
+
return ggml_concat(ctx0, flat_output, flat_state, 0);
|
|
611
|
+
}
|
|
612
|
+
|
|
613
|
+
ggml_tensor * llm_build_qwen3next::build_norm_gated(
|
|
614
|
+
ggml_tensor * input,
|
|
615
|
+
ggml_tensor * weights,
|
|
616
|
+
ggml_tensor * gate,
|
|
617
|
+
int layer) {
|
|
618
|
+
ggml_tensor * normalized = build_norm(input, weights, nullptr, LLM_NORM_RMS, layer);
|
|
619
|
+
ggml_tensor * gated_silu = ggml_silu(ctx0, gate);
|
|
620
|
+
|
|
621
|
+
return ggml_mul(ctx0, normalized, gated_silu);
|
|
622
|
+
}
|
|
623
|
+
|
|
624
|
+
ggml_tensor * llm_build_qwen3next::build_layer_attn(
|
|
625
|
+
llm_graph_input_attn_kv * inp,
|
|
626
|
+
ggml_tensor * cur,
|
|
627
|
+
ggml_tensor * inp_pos,
|
|
628
|
+
int il) {
|
|
629
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
630
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
631
|
+
|
|
632
|
+
// Order: joint QG projection, QG split, Q norm, KV projection, K norm, RoPE, attention
|
|
633
|
+
|
|
634
|
+
// Qwen3Next uses a single Q projection that outputs query + gate
|
|
635
|
+
ggml_tensor * Qcur_full = build_lora_mm(model.layers[il].wq, cur);
|
|
636
|
+
cb(Qcur_full, "Qcur_full", il);
|
|
637
|
+
|
|
638
|
+
Qcur_full = ggml_reshape_4d(ctx0, Qcur_full, n_embd_head * 2, n_head, n_tokens, 1);
|
|
639
|
+
|
|
640
|
+
// Split Q projection into query and gate
|
|
641
|
+
// The split should be along dimension 0 (the feature dimension)
|
|
642
|
+
ggml_tensor * Qcur = ggml_view_4d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens, 1,
|
|
643
|
+
Qcur_full->nb[1], Qcur_full->nb[2], Qcur_full->nb[3], 0);
|
|
644
|
+
ggml_tensor * gate =
|
|
645
|
+
ggml_view_4d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens, 1,
|
|
646
|
+
Qcur_full->nb[1], Qcur_full->nb[2], Qcur_full->nb[3], n_embd_head * ggml_element_size(Qcur_full));
|
|
647
|
+
cb(Qcur, "Qcur", il);
|
|
648
|
+
cb(gate, "gate", il);
|
|
649
|
+
|
|
650
|
+
// Now reshape Qcur to [n_embd_head, n_head, n_tokens] for multi-head attention
|
|
651
|
+
Qcur = ggml_cont_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
652
|
+
cb(Qcur, "Qcur_reshaped", il);
|
|
653
|
+
|
|
654
|
+
// Apply Q normalization
|
|
655
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
|
|
656
|
+
cb(Qcur, "Qcur_normed", il);
|
|
657
|
+
|
|
658
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
659
|
+
cb(Kcur, "Kcur", il);
|
|
660
|
+
|
|
661
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
662
|
+
cb(Vcur, "Vcur", il);
|
|
663
|
+
|
|
664
|
+
// Apply K normalization
|
|
665
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
666
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
|
|
667
|
+
cb(Kcur, "Kcur_normed", il);
|
|
668
|
+
|
|
669
|
+
// Reshape gate to [n_embd, n_tokens] for the sigmoid gating (flatten the heads)
|
|
670
|
+
gate = ggml_cont_2d(ctx0, gate, n_embd_head * n_head, n_tokens);
|
|
671
|
+
cb(gate, "gate_reshaped", il);
|
|
672
|
+
|
|
673
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
674
|
+
|
|
675
|
+
// Apply RoPE
|
|
676
|
+
Qcur = ggml_rope_ext(
|
|
677
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
678
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
679
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
680
|
+
|
|
681
|
+
Kcur = ggml_rope_ext(
|
|
682
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
683
|
+
n_rot, rope_type, n_ctx_orig, freq_base,
|
|
684
|
+
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
|
685
|
+
|
|
686
|
+
cb(Qcur, "Qcur", il);
|
|
687
|
+
cb(Kcur, "Kcur", il);
|
|
688
|
+
cb(Vcur, "Vcur", il);
|
|
689
|
+
|
|
690
|
+
// Attention computation
|
|
691
|
+
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
692
|
+
|
|
693
|
+
cur = build_attn(inp,
|
|
694
|
+
nullptr, nullptr,
|
|
695
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
|
696
|
+
cb(cur, "attn_pregate", il);
|
|
697
|
+
|
|
698
|
+
ggml_tensor * gate_sigmoid = ggml_sigmoid(ctx0, gate);
|
|
699
|
+
cb(gate_sigmoid, "gate_sigmoid", il);
|
|
700
|
+
|
|
701
|
+
cur = ggml_mul(ctx0, cur, gate_sigmoid);
|
|
702
|
+
cb(cur, "attn_gated", il);
|
|
703
|
+
|
|
704
|
+
cur = build_lora_mm(model.layers[il].wo, cur);
|
|
705
|
+
cb(cur, "attn_output", il);
|
|
706
|
+
|
|
707
|
+
return cur;
|
|
708
|
+
}
|
|
709
|
+
|
|
710
|
+
ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
|
711
|
+
llm_graph_input_rs * inp,
|
|
712
|
+
ggml_tensor * cur,
|
|
713
|
+
ggml_tensor * causal_mask,
|
|
714
|
+
ggml_tensor * identity,
|
|
715
|
+
int il) {
|
|
716
|
+
const auto * mctx_cur = inp->mctx;
|
|
717
|
+
|
|
718
|
+
const int64_t d_inner = hparams.ssm_d_inner;
|
|
719
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
|
720
|
+
const int64_t head_k_dim = hparams.ssm_d_state;
|
|
721
|
+
const int64_t num_k_heads = hparams.ssm_n_group;
|
|
722
|
+
const int64_t num_v_heads = hparams.ssm_dt_rank;
|
|
723
|
+
const int64_t head_v_dim = d_inner / num_v_heads;
|
|
724
|
+
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
725
|
+
|
|
726
|
+
const auto kv_head = mctx_cur->get_head();
|
|
727
|
+
|
|
728
|
+
GGML_ASSERT(n_seqs != 0);
|
|
729
|
+
GGML_ASSERT(ubatch.equal_seqs());
|
|
730
|
+
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
731
|
+
|
|
732
|
+
// Input projections
|
|
733
|
+
ggml_tensor * mixed_qkvz = build_lora_mm(model.layers[il].ssm_in, cur);
|
|
734
|
+
cb(mixed_qkvz, "linear_attn_mixed_qkvz", il);
|
|
735
|
+
|
|
736
|
+
ggml_tensor * mixed_ba = build_lora_mm(model.layers[il].ssm_beta_alpha, cur);
|
|
737
|
+
cb(mixed_ba, "linear_attn_mixed_ba", il);
|
|
738
|
+
|
|
739
|
+
int64_t qkvz_new_dim = 2 * head_k_dim + 2 * head_v_dim * (num_v_heads / num_k_heads);
|
|
740
|
+
ggml_tensor * mixed_qkvz_reshaped = ggml_cont_4d(ctx0, mixed_qkvz, qkvz_new_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
741
|
+
|
|
742
|
+
// Reshape mixed_ba: [batch, seq_len, hidden_size] -> [batch, seq_len, num_k_heads, 2*num_v_heads/num_k_heads]
|
|
743
|
+
int64_t ba_new_dim = 2 * num_v_heads / num_k_heads;
|
|
744
|
+
ggml_tensor * mixed_ba_reshaped = ggml_cont_4d(ctx0, mixed_ba, ba_new_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
745
|
+
|
|
746
|
+
// Split mixed_ba into b and a (beta and alpha parameters)
|
|
747
|
+
int64_t split_sizes_ba[2] = {
|
|
748
|
+
num_v_heads / num_k_heads, // beta size
|
|
749
|
+
num_v_heads / num_k_heads // alpha size
|
|
750
|
+
};
|
|
751
|
+
|
|
752
|
+
ggml_tensor * b = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[0], num_k_heads, n_seq_tokens, n_seqs,
|
|
753
|
+
mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3], 0);
|
|
754
|
+
cb(b, "b", il);
|
|
755
|
+
|
|
756
|
+
ggml_tensor * a = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[1], num_k_heads, n_seq_tokens, n_seqs,
|
|
757
|
+
mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3],
|
|
758
|
+
split_sizes_ba[0] * ggml_element_size(mixed_ba_reshaped));
|
|
759
|
+
cb(a, "a", il);
|
|
760
|
+
|
|
761
|
+
// Reshape b and a to merge head dimensions: [batch, seq_len, num_k_heads, num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads]
|
|
762
|
+
ggml_tensor * beta = ggml_cont_3d(ctx0, b, num_v_heads, n_seq_tokens, n_seqs);
|
|
763
|
+
ggml_tensor * alpha = ggml_cont_3d(ctx0, a, num_v_heads, n_seq_tokens, n_seqs);
|
|
764
|
+
|
|
765
|
+
GGML_ASSERT(ggml_nelements(beta) + ggml_nelements(alpha) == ggml_nelements(mixed_ba));
|
|
766
|
+
|
|
767
|
+
ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, model.layers[il].ssm_dt);
|
|
768
|
+
ggml_tensor * alpha_softplus = ggml_softplus(ctx0, alpha_biased);
|
|
769
|
+
cb(alpha_softplus, "a_softplus", il);
|
|
770
|
+
ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a); // -A_log.exp() * softplus
|
|
771
|
+
cb(gate, "gate", il);
|
|
772
|
+
|
|
773
|
+
// Split mixed_qkvz into query, key, value, z
|
|
774
|
+
int64_t split_sizes_qkvz[4] = {
|
|
775
|
+
head_k_dim, // query size
|
|
776
|
+
head_k_dim, // key size
|
|
777
|
+
head_v_dim * num_v_heads / num_k_heads, // value size
|
|
778
|
+
head_v_dim * num_v_heads / num_k_heads // z size
|
|
779
|
+
};
|
|
780
|
+
|
|
781
|
+
ggml_tensor * query =
|
|
782
|
+
ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[0], num_k_heads, n_seq_tokens, n_seqs,
|
|
783
|
+
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], 0);
|
|
784
|
+
cb(query, "q", il);
|
|
785
|
+
|
|
786
|
+
ggml_tensor * key = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[1], num_k_heads, n_seq_tokens, n_seqs,
|
|
787
|
+
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
|
788
|
+
split_sizes_qkvz[0] * sizeof(float));
|
|
789
|
+
cb(key, "k", il);
|
|
790
|
+
|
|
791
|
+
ggml_tensor * value =
|
|
792
|
+
ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[2], num_k_heads, n_seq_tokens, n_seqs,
|
|
793
|
+
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
|
794
|
+
(split_sizes_qkvz[0] + split_sizes_qkvz[1]) * sizeof(float));
|
|
795
|
+
cb(value, "v", il);
|
|
796
|
+
|
|
797
|
+
ggml_tensor * z = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[3], num_k_heads, n_seq_tokens, n_seqs,
|
|
798
|
+
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
|
799
|
+
(split_sizes_qkvz[0] + split_sizes_qkvz[1] + split_sizes_qkvz[2]) * sizeof(float));
|
|
800
|
+
cb(z, "z", il);
|
|
801
|
+
|
|
802
|
+
GGML_ASSERT(ggml_nelements(query) + ggml_nelements(key) + ggml_nelements(value) + ggml_nelements(z) ==
|
|
803
|
+
ggml_nelements(mixed_qkvz));
|
|
804
|
+
|
|
805
|
+
// After creating query, key, and value_reshaped, reshape each to flatten the head dimensions
|
|
806
|
+
// query: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs]
|
|
807
|
+
ggml_tensor * query_flat = ggml_cont_3d(ctx0, query, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
|
|
808
|
+
cb(query_flat, "query_flat", il);
|
|
809
|
+
|
|
810
|
+
// key: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs]
|
|
811
|
+
ggml_tensor * key_flat = ggml_cont_3d(ctx0, key, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
|
|
812
|
+
cb(key_flat, "key_flat", il);
|
|
813
|
+
|
|
814
|
+
// value_reshaped: [head_v_dim, num_v_heads, n_tokens, n_seqs] -> [head_v_dim * num_v_heads, n_tokens, n_seqs]
|
|
815
|
+
ggml_tensor * value_flat = ggml_cont_3d(ctx0, value, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
|
816
|
+
cb(value_flat, "value_flat", il);
|
|
817
|
+
|
|
818
|
+
// Get convolution states from cache
|
|
819
|
+
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
|
820
|
+
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
|
821
|
+
|
|
822
|
+
// bool use_precomputed_states = n_seq_tokens == 1 && mctx_cur->has_previous_state();
|
|
823
|
+
|
|
824
|
+
// Build the convolution states tensor
|
|
825
|
+
ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
|
826
|
+
cb(conv_states, "conv_states", il);
|
|
827
|
+
|
|
828
|
+
// Now concatenate along the feature dimension (dim 0) to get [conv_dim, n_tokens, n_seqs]
|
|
829
|
+
ggml_tensor * qkv_mixed = ggml_concat(ctx0, query_flat, key_flat, 0);
|
|
830
|
+
qkv_mixed = ggml_concat(ctx0, qkv_mixed, value_flat, 0);
|
|
831
|
+
cb(qkv_mixed, "qkv_mixed", il);
|
|
832
|
+
|
|
833
|
+
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
|
834
|
+
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
|
835
|
+
|
|
836
|
+
// Calculate the total conv dimension
|
|
837
|
+
int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
|
|
838
|
+
|
|
839
|
+
// Calculate convolution kernel size
|
|
840
|
+
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
|
841
|
+
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
|
842
|
+
const int64_t conv_channels = d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state;
|
|
843
|
+
conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, conv_channels, n_seqs);
|
|
844
|
+
cb(conv_states, "conv_states_reshaped", il);
|
|
845
|
+
|
|
846
|
+
ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0);
|
|
847
|
+
cb(conv_input, "conv_input", il);
|
|
848
|
+
|
|
849
|
+
// Update convolution state cache
|
|
850
|
+
// Extract the last (conv_kernel_size - 1) states from conv_input
|
|
851
|
+
ggml_tensor * last_conv_states =
|
|
852
|
+
ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, conv_channels, n_seqs, conv_input->nb[1],
|
|
853
|
+
conv_input->nb[2], (conv_input->ne[0] - conv_states->ne[0]) * ggml_element_size(conv_input));
|
|
854
|
+
cb(last_conv_states, "last_conv_states", il);
|
|
855
|
+
|
|
856
|
+
ggml_tensor * state_update_target =
|
|
857
|
+
ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * conv_channels * n_seqs,
|
|
858
|
+
kv_head * (conv_kernel_size - 1) * conv_channels * ggml_element_size(conv_states_all));
|
|
859
|
+
cb(state_update_target, "state_update_target", il);
|
|
860
|
+
|
|
861
|
+
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, state_update_target));
|
|
862
|
+
cb(conv_states_all, "conv_states_updated", il);
|
|
863
|
+
|
|
864
|
+
// Apply SSM convolution
|
|
865
|
+
ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
|
866
|
+
cb(conv_output_proper, "conv_output_raw", il);
|
|
867
|
+
|
|
868
|
+
conv_output_proper = ggml_cont(ctx0, ggml_transpose(ctx0, conv_output_proper));
|
|
869
|
+
cb(conv_output_proper, "conv_output_pre_silu", il);
|
|
870
|
+
|
|
871
|
+
ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
|
|
872
|
+
cb(conv_output_silu, "conv_output_silu", il);
|
|
873
|
+
|
|
874
|
+
ggml_tensor * conv_qkv_mix =
|
|
875
|
+
ggml_cont_2d(ctx0, ggml_transpose(ctx0, conv_output_silu), qkv_dim, n_seq_tokens * n_seqs);
|
|
876
|
+
cb(conv_qkv_mix, "conv_qkv_mix", il);
|
|
877
|
+
|
|
878
|
+
// Extract the convolved Q, K, V from conv_output
|
|
879
|
+
ggml_tensor * q_conv =
|
|
880
|
+
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1], 0);
|
|
881
|
+
cb(q_conv, "q_conv", il);
|
|
882
|
+
ggml_tensor * k_conv =
|
|
883
|
+
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
|
|
884
|
+
head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
|
885
|
+
cb(k_conv, "k_conv", il);
|
|
886
|
+
ggml_tensor * v_conv =
|
|
887
|
+
ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
|
|
888
|
+
2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
|
889
|
+
cb(v_conv, "v_conv", il);
|
|
890
|
+
|
|
891
|
+
// Unsqueeze them
|
|
892
|
+
q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
893
|
+
k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
|
894
|
+
v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
|
895
|
+
|
|
896
|
+
beta = ggml_cont_4d(ctx0, b, num_v_heads, 1, n_seq_tokens, n_seqs);
|
|
897
|
+
|
|
898
|
+
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
|
899
|
+
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs);
|
|
900
|
+
cb(state, "state_predelta", il);
|
|
901
|
+
|
|
902
|
+
// if head keys and value keys are different, repeat to force tensors into matching shapes
|
|
903
|
+
if (num_k_heads != num_v_heads) {
|
|
904
|
+
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
|
905
|
+
int64_t repeat_factor = num_v_heads / num_k_heads;
|
|
906
|
+
|
|
907
|
+
// repeat interleave: reshape to (repeat part, 1, remaining part), do repeat, then reshape back
|
|
908
|
+
ggml_tensor * q_reshaped = ggml_reshape_3d(ctx0, q_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
909
|
+
ggml_tensor * k_reshaped = ggml_reshape_3d(ctx0, k_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
|
910
|
+
|
|
911
|
+
// Repeat along the third dimension (the new dimension with size 1)
|
|
912
|
+
ggml_tensor * q_repeated =
|
|
913
|
+
ggml_repeat_4d(ctx0, q_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
|
|
914
|
+
ggml_tensor * k_repeated =
|
|
915
|
+
ggml_repeat_4d(ctx0, k_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
|
|
916
|
+
|
|
917
|
+
// Reshape back to merge the head and repeat dimensions
|
|
918
|
+
// From [head_dim, num_k_heads, repeat_factor, n_seq_tokens * n_seqs]
|
|
919
|
+
// Back to [head_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs]
|
|
920
|
+
q_conv = ggml_reshape_4d(ctx0, q_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
|
|
921
|
+
k_conv = ggml_reshape_4d(ctx0, k_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
|
|
922
|
+
}
|
|
923
|
+
|
|
924
|
+
cb(q_conv, "q_conv_predelta", il);
|
|
925
|
+
cb(k_conv, "k_conv_predelta", il);
|
|
926
|
+
cb(v_conv, "v_conv_predelta", il);
|
|
927
|
+
|
|
928
|
+
// Choose between build_delta_net_chunking and build_delta_net_recurrent based on n_tokens
|
|
929
|
+
ggml_tensor * attn_out = n_seq_tokens > CHUNK_SIZE ?
|
|
930
|
+
build_delta_net_chunking (q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, il) :
|
|
931
|
+
build_delta_net_recurrent(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, il);
|
|
932
|
+
cb(attn_out, "attn_out", il);
|
|
933
|
+
|
|
934
|
+
// The tensors were concatenated 1d, so we need to extract them 1d as well
|
|
935
|
+
const int64_t output_flat_size = head_v_dim * num_v_heads * n_seq_tokens * n_seqs;
|
|
936
|
+
ggml_tensor * attn_out_1d = ggml_view_1d(ctx0, attn_out, output_flat_size, 0);
|
|
937
|
+
cb(attn_out_1d, "attn_out_1d", il);
|
|
938
|
+
|
|
939
|
+
ggml_tensor * attn_out_final = ggml_cont_4d(ctx0, attn_out_1d, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
|
940
|
+
cb(attn_out_final, "attn_out_reshaped", il);
|
|
941
|
+
|
|
942
|
+
// Extract the state part (second part of the concatenated tensor)
|
|
943
|
+
// State starts after n_tokens elements along dimension 1
|
|
944
|
+
const int64_t state_flat_size = head_v_dim * head_v_dim * num_v_heads * n_seqs;
|
|
945
|
+
|
|
946
|
+
ggml_tensor * state_1d =
|
|
947
|
+
ggml_view_1d(ctx0, attn_out, state_flat_size, output_flat_size * ggml_element_size(attn_out));
|
|
948
|
+
cb(state_1d, "state_1d", il);
|
|
949
|
+
|
|
950
|
+
// Update the recurrent states
|
|
951
|
+
ggml_build_forward_expand(gf,
|
|
952
|
+
ggml_cpy(ctx0, state_1d,
|
|
953
|
+
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
|
|
954
|
+
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
|
|
955
|
+
|
|
956
|
+
GGML_ASSERT(ggml_nelements(attn_out_1d) + ggml_nelements(state_1d) == ggml_nelements(attn_out));
|
|
957
|
+
|
|
958
|
+
// Reshape both attn_out_final and z to 2D tensors for normalization
|
|
959
|
+
// attn_out_final: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
|
960
|
+
ggml_tensor * attn_out_2d_final =
|
|
961
|
+
ggml_cont_2d(ctx0, attn_out_final, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
|
962
|
+
|
|
963
|
+
// z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
|
|
964
|
+
ggml_tensor * z_2d = ggml_cont_2d(ctx0, z, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
|
965
|
+
|
|
966
|
+
// Apply gated normalization: self.norm(core_attn_out, z)
|
|
967
|
+
ggml_tensor * attn_out_norm = build_norm_gated(attn_out_2d_final, model.layers[il].ssm_norm, z_2d, il);
|
|
968
|
+
|
|
969
|
+
// Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim]
|
|
970
|
+
ggml_tensor * final_output = ggml_reshape_3d(ctx0, attn_out_norm, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
|
971
|
+
cb(final_output, "final_output", il);
|
|
972
|
+
|
|
973
|
+
// Output projection
|
|
974
|
+
cur = build_lora_mm(model.layers[il].ssm_out, final_output);
|
|
975
|
+
cb(cur, "linear_attn_out", il);
|
|
976
|
+
|
|
977
|
+
// Reshape back to original dimensions
|
|
978
|
+
cur = ggml_cont_2d(ctx0, cur, n_embd, n_seq_tokens * n_seqs);
|
|
979
|
+
return cur;
|
|
980
|
+
}
|
|
981
|
+
|
|
982
|
+
ggml_tensor * llm_build_qwen3next::build_layer_ffn(ggml_tensor * cur, const int il) {
|
|
983
|
+
// Check if this is an MoE layer
|
|
984
|
+
if (model.layers[il].ffn_gate_inp != nullptr) {
|
|
985
|
+
// MoE branch
|
|
986
|
+
ggml_tensor * moe_out =
|
|
987
|
+
build_moe_ffn(cur,
|
|
988
|
+
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
|
989
|
+
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
|
990
|
+
nullptr,
|
|
991
|
+
n_expert, n_expert_used, LLM_FFN_SILU,
|
|
992
|
+
true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
|
|
993
|
+
cb(moe_out, "ffn_moe_out", il);
|
|
994
|
+
|
|
995
|
+
// Add shared experts if present - following Qwen3Next reference implementation
|
|
996
|
+
if (model.layers[il].ffn_up_shexp != nullptr) {
|
|
997
|
+
ggml_tensor * ffn_shexp =
|
|
998
|
+
build_ffn(cur,
|
|
999
|
+
model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
1000
|
+
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
1001
|
+
model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
1002
|
+
NULL,
|
|
1003
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
1004
|
+
cb(ffn_shexp, "ffn_shexp", il);
|
|
1005
|
+
|
|
1006
|
+
// Apply shared expert gating as in the reference implementation
|
|
1007
|
+
// The shared expert has its own gate that is sigmoided
|
|
1008
|
+
// Note: ffn_gate_inp_shexp is the shared expert gate (outputs 1 value per token)
|
|
1009
|
+
ggml_tensor * shared_gate = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
|
|
1010
|
+
cb(shared_gate, "shared_expert_gate", il);
|
|
1011
|
+
|
|
1012
|
+
// Apply sigmoid to the gate
|
|
1013
|
+
shared_gate = ggml_sigmoid(ctx0, shared_gate);
|
|
1014
|
+
cb(shared_gate, "shared_expert_gate_sigmoid", il);
|
|
1015
|
+
|
|
1016
|
+
// The gate needs to be broadcast to match the dimensions of ffn_shexp
|
|
1017
|
+
// ffn_shexp is [n_embd, n_tokens, 1, 1] and shared_gate is [1, n_tokens, 1, 1]
|
|
1018
|
+
// We need to repeat the gate along the feature dimension
|
|
1019
|
+
shared_gate = ggml_repeat(ctx0, shared_gate, ffn_shexp);
|
|
1020
|
+
cb(shared_gate, "shared_expert_gate_broadcast", il);
|
|
1021
|
+
|
|
1022
|
+
// Apply the gate to the shared expert output
|
|
1023
|
+
ffn_shexp = ggml_mul(ctx0, ffn_shexp, shared_gate);
|
|
1024
|
+
cb(ffn_shexp, "ffn_shexp_gated", il);
|
|
1025
|
+
|
|
1026
|
+
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
|
1027
|
+
cb(cur, "ffn_out", il);
|
|
1028
|
+
} else {
|
|
1029
|
+
cur = moe_out;
|
|
1030
|
+
}
|
|
1031
|
+
} else {
|
|
1032
|
+
// Dense FFN branch (not currently used I believe)
|
|
1033
|
+
cur = build_ffn(cur,
|
|
1034
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
1035
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
1036
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
1037
|
+
NULL,
|
|
1038
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
1039
|
+
cb(cur, "ffn_out", il);
|
|
1040
|
+
}
|
|
1041
|
+
return cur;
|
|
1042
|
+
}
|