@fugood/llama.node 1.3.7 → 1.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/lib/binding.js +18 -1
- package/lib/binding.ts +19 -1
- package/lib/index.js +3 -3
- package/lib/index.ts +1 -1
- package/package.json +15 -15
- package/scripts/llama.cpp.patch +7 -7
- package/src/LlamaCompletionWorker.cpp +2 -2
- package/src/llama.cpp/common/arg.cpp +27 -2
- package/src/llama.cpp/common/chat-parser.cpp +968 -0
- package/src/llama.cpp/common/chat.cpp +0 -952
- package/src/llama.cpp/common/common.cpp +55 -0
- package/src/llama.cpp/common/common.h +18 -0
- package/src/llama.cpp/common/json-schema-to-grammar.cpp +2 -2
- package/src/llama.cpp/ggml/CMakeLists.txt +6 -4
- package/src/llama.cpp/ggml/include/ggml-rpc.h +1 -1
- package/src/llama.cpp/ggml/include/ggml.h +12 -4
- package/src/llama.cpp/ggml/src/CMakeLists.txt +26 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -15
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/repack.cpp +721 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/cpu-feats.cpp +38 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +22 -2
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +9 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +71 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +1 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +243 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.h +6 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +84 -85
- package/src/llama.cpp/include/llama.h +18 -0
- package/src/llama.cpp/src/CMakeLists.txt +2 -0
- package/src/llama.cpp/src/llama-arch.cpp +95 -16
- package/src/llama.cpp/src/llama-arch.h +15 -0
- package/src/llama.cpp/src/llama-context.cpp +7 -3
- package/src/llama.cpp/src/llama-graph.cpp +3 -3
- package/src/llama.cpp/src/llama-hparams.h +1 -1
- package/src/llama.cpp/src/llama-model.cpp +141 -6
- package/src/llama.cpp/src/llama-model.h +4 -0
- package/src/llama.cpp/src/llama-quant.cpp +13 -5
- package/src/llama.cpp/src/models/lfm2.cpp +5 -3
- package/src/llama.cpp/src/models/models.h +55 -1
- package/src/llama.cpp/src/models/qwen3next.cpp +1042 -0
- package/src/llama.cpp/src/models/rnd1.cpp +126 -0
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
// RND1 is a Qwen3Moe AR model converted to diffusion model.
|
|
4
|
+
llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
5
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
6
|
+
|
|
7
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
8
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
9
|
+
|
|
10
|
+
ggml_tensor * cur;
|
|
11
|
+
ggml_tensor * inpL;
|
|
12
|
+
|
|
13
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
14
|
+
|
|
15
|
+
// inp_pos - contains the positions
|
|
16
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
17
|
+
|
|
18
|
+
// Non-causal attention for diffusion
|
|
19
|
+
auto * inp_attn = build_attn_inp_no_cache();
|
|
20
|
+
|
|
21
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
22
|
+
|
|
23
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
24
|
+
ggml_tensor * inpSA = inpL;
|
|
25
|
+
|
|
26
|
+
// norm
|
|
27
|
+
cur = build_norm(inpL,
|
|
28
|
+
model.layers[il].attn_norm, NULL,
|
|
29
|
+
LLM_NORM_RMS, il);
|
|
30
|
+
cb(cur, "attn_norm", il);
|
|
31
|
+
|
|
32
|
+
// self_attention
|
|
33
|
+
{
|
|
34
|
+
// compute Q and K and RoPE them
|
|
35
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
36
|
+
cb(Qcur, "Qcur", il);
|
|
37
|
+
|
|
38
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
39
|
+
cb(Kcur, "Kcur", il);
|
|
40
|
+
|
|
41
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
42
|
+
cb(Vcur, "Vcur", il);
|
|
43
|
+
|
|
44
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
45
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
46
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
47
|
+
|
|
48
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
49
|
+
cb(Qcur, "Qcur_normed", il);
|
|
50
|
+
|
|
51
|
+
Qcur = ggml_rope_ext(
|
|
52
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
53
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
54
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
55
|
+
);
|
|
56
|
+
|
|
57
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
58
|
+
cb(Kcur, "Kcur_normed", il);
|
|
59
|
+
|
|
60
|
+
Kcur = ggml_rope_ext(
|
|
61
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
62
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
63
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
64
|
+
);
|
|
65
|
+
|
|
66
|
+
cb(Qcur, "Qcur", il);
|
|
67
|
+
cb(Kcur, "Kcur", il);
|
|
68
|
+
cb(Vcur, "Vcur", il);
|
|
69
|
+
|
|
70
|
+
cur = build_attn(inp_attn,
|
|
71
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
72
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
73
|
+
}
|
|
74
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
75
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
76
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
77
|
+
}
|
|
78
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
79
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
80
|
+
|
|
81
|
+
// MoE branch
|
|
82
|
+
cur = build_norm(ffn_inp,
|
|
83
|
+
model.layers[il].ffn_norm, NULL,
|
|
84
|
+
LLM_NORM_RMS, il);
|
|
85
|
+
cb(cur, "ffn_norm", il);
|
|
86
|
+
|
|
87
|
+
ggml_tensor * moe_out =
|
|
88
|
+
build_moe_ffn(cur,
|
|
89
|
+
model.layers[il].ffn_gate_inp,
|
|
90
|
+
model.layers[il].ffn_up_exps,
|
|
91
|
+
model.layers[il].ffn_gate_exps,
|
|
92
|
+
model.layers[il].ffn_down_exps,
|
|
93
|
+
nullptr,
|
|
94
|
+
n_expert, n_expert_used,
|
|
95
|
+
LLM_FFN_SILU, true,
|
|
96
|
+
false, 0.0,
|
|
97
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
98
|
+
il);
|
|
99
|
+
cb(moe_out, "ffn_moe_out", il);
|
|
100
|
+
cur = moe_out;
|
|
101
|
+
|
|
102
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
103
|
+
|
|
104
|
+
cur = build_cvec(cur, il);
|
|
105
|
+
cb(cur, "l_out", il);
|
|
106
|
+
|
|
107
|
+
// input for next layer
|
|
108
|
+
inpL = cur;
|
|
109
|
+
}
|
|
110
|
+
cur = inpL;
|
|
111
|
+
|
|
112
|
+
cur = build_norm(cur,
|
|
113
|
+
model.output_norm, NULL,
|
|
114
|
+
LLM_NORM_RMS, -1);
|
|
115
|
+
|
|
116
|
+
cb(cur, "result_norm", -1);
|
|
117
|
+
res->t_embd = cur;
|
|
118
|
+
|
|
119
|
+
// lm_head
|
|
120
|
+
cur = build_lora_mm(model.output, cur);
|
|
121
|
+
|
|
122
|
+
cb(cur, "result_output", -1);
|
|
123
|
+
res->t_logits = cur;
|
|
124
|
+
|
|
125
|
+
ggml_build_forward_expand(gf, cur);
|
|
126
|
+
}
|