@fugood/llama.node 1.3.2 → 1.3.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. package/CMakeLists.txt +8 -3
  2. package/package.json +14 -14
  3. package/scripts/llama.cpp.patch +5 -5
  4. package/src/LlamaCompletionWorker.cpp +33 -33
  5. package/src/LlamaContext.cpp +17 -16
  6. package/src/llama.cpp/CMakeLists.txt +4 -0
  7. package/src/llama.cpp/common/CMakeLists.txt +6 -37
  8. package/src/llama.cpp/common/common.cpp +1 -5
  9. package/src/llama.cpp/common/download.cpp +47 -29
  10. package/src/llama.cpp/common/log.cpp +6 -0
  11. package/src/llama.cpp/common/log.h +2 -0
  12. package/src/llama.cpp/ggml/include/ggml.h +71 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +16 -0
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +15 -3
  15. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +29 -0
  16. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kernels.cpp +283 -0
  17. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kernels.h +1 -0
  18. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +235 -34
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +289 -277
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +4 -0
  21. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +95 -42
  22. package/src/llama.cpp/ggml/src/ggml-cpu/unary-ops.cpp +16 -0
  23. package/src/llama.cpp/ggml/src/ggml-cpu/unary-ops.h +2 -0
  24. package/src/llama.cpp/ggml/src/ggml-cpu/vec.cpp +17 -0
  25. package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +10 -0
  26. package/src/llama.cpp/src/CMakeLists.txt +6 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +32 -0
  28. package/src/llama.cpp/src/llama-arch.h +2 -0
  29. package/src/llama.cpp/src/llama-graph.cpp +2 -1
  30. package/src/llama.cpp/src/llama-model.cpp +102 -0
  31. package/src/llama.cpp/src/llama-model.h +2 -0
  32. package/src/llama.cpp/src/llama-sampling.cpp +10 -5
  33. package/src/llama.cpp/src/llama-vocab.cpp +16 -1
  34. package/src/llama.cpp/src/llama-vocab.h +1 -0
  35. package/src/llama.cpp/src/models/afmoe.cpp +187 -0
  36. package/src/llama.cpp/src/models/models.h +4 -0
  37. package/src/llama.cpp/src/unicode.cpp +77 -0
@@ -475,6 +475,7 @@ extern "C" {
475
475
  GGML_OP_COS,
476
476
  GGML_OP_SUM,
477
477
  GGML_OP_SUM_ROWS,
478
+ GGML_OP_CUMSUM,
478
479
  GGML_OP_MEAN,
479
480
  GGML_OP_ARGMAX,
480
481
  GGML_OP_COUNT_EQUAL,
@@ -530,6 +531,8 @@ extern "C" {
530
531
  GGML_OP_TIMESTEP_EMBEDDING,
531
532
  GGML_OP_ARGSORT,
532
533
  GGML_OP_LEAKY_RELU,
534
+ GGML_OP_TRI,
535
+ GGML_OP_FILL,
533
536
 
534
537
  GGML_OP_FLASH_ATTN_EXT,
535
538
  GGML_OP_FLASH_ATTN_BACK,
@@ -542,6 +545,7 @@ extern "C" {
542
545
  GGML_OP_RWKV_WKV6,
543
546
  GGML_OP_GATED_LINEAR_ATTN,
544
547
  GGML_OP_RWKV_WKV7,
548
+ GGML_OP_SOLVE_TRI,
545
549
 
546
550
  GGML_OP_UNARY,
547
551
 
@@ -576,6 +580,8 @@ extern "C" {
576
580
  GGML_UNARY_OP_HARDSWISH,
577
581
  GGML_UNARY_OP_HARDSIGMOID,
578
582
  GGML_UNARY_OP_EXP,
583
+ GGML_UNARY_OP_EXPM1,
584
+ GGML_UNARY_OP_SOFTPLUS,
579
585
  GGML_UNARY_OP_GELU_ERF,
580
586
  GGML_UNARY_OP_XIELU,
581
587
  GGML_UNARY_OP_FLOOR,
@@ -620,6 +626,13 @@ extern "C" {
620
626
  GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
621
627
  };
622
628
 
629
+ enum ggml_tri_type {
630
+ GGML_TRI_TYPE_UPPER_DIAG = 0,
631
+ GGML_TRI_TYPE_UPPER = 1,
632
+ GGML_TRI_TYPE_LOWER_DIAG = 2,
633
+ GGML_TRI_TYPE_LOWER = 3
634
+ };
635
+
623
636
  struct ggml_init_params {
624
637
  // memory pool
625
638
  size_t mem_size; // bytes
@@ -957,6 +970,22 @@ extern "C" {
957
970
  struct ggml_context * ctx,
958
971
  struct ggml_tensor * a);
959
972
 
973
+ GGML_API struct ggml_tensor * ggml_expm1(
974
+ struct ggml_context * ctx,
975
+ struct ggml_tensor * a);
976
+
977
+ GGML_API struct ggml_tensor * ggml_expm1_inplace(
978
+ struct ggml_context * ctx,
979
+ struct ggml_tensor * a);
980
+
981
+ GGML_API struct ggml_tensor * ggml_softplus(
982
+ struct ggml_context * ctx,
983
+ struct ggml_tensor * a);
984
+
985
+ GGML_API struct ggml_tensor * ggml_softplus_inplace(
986
+ struct ggml_context * ctx,
987
+ struct ggml_tensor * a);
988
+
960
989
  GGML_API struct ggml_tensor * ggml_sin(
961
990
  struct ggml_context * ctx,
962
991
  struct ggml_tensor * a);
@@ -983,6 +1012,10 @@ extern "C" {
983
1012
  struct ggml_context * ctx,
984
1013
  struct ggml_tensor * a);
985
1014
 
1015
+ GGML_API struct ggml_tensor * ggml_cumsum(
1016
+ struct ggml_context * ctx,
1017
+ struct ggml_tensor * a);
1018
+
986
1019
  // mean along rows
987
1020
  GGML_API struct ggml_tensor * ggml_mean(
988
1021
  struct ggml_context * ctx,
@@ -2187,6 +2220,23 @@ extern "C" {
2187
2220
  int shift2,
2188
2221
  int shift3);
2189
2222
 
2223
+ // Convert matrix into a triangular one (upper, strict upper, lower or strict lower) by writing
2224
+ // zeroes everywhere outside the masked area
2225
+ GGML_API struct ggml_tensor * ggml_tri(
2226
+ struct ggml_context * ctx,
2227
+ struct ggml_tensor * a,
2228
+ enum ggml_tri_type type);
2229
+
2230
+ // Fill tensor a with constant c
2231
+ GGML_API struct ggml_tensor * ggml_fill(
2232
+ struct ggml_context * ctx,
2233
+ struct ggml_tensor * a,
2234
+ float c);
2235
+
2236
+ GGML_API struct ggml_tensor * ggml_fill_inplace(
2237
+ struct ggml_context * ctx,
2238
+ struct ggml_tensor * a,
2239
+ float c);
2190
2240
 
2191
2241
  // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
2192
2242
  // timesteps: [N,]
@@ -2356,6 +2406,27 @@ extern "C" {
2356
2406
  struct ggml_tensor * b,
2357
2407
  struct ggml_tensor * state);
2358
2408
 
2409
+ /* Solves a specific equation of the form Ax=B, where A is a triangular matrix
2410
+ * without zeroes on the diagonal (i.e. invertible).
2411
+ * B can have any number of columns, but must have the same number of rows as A
2412
+ * If A is [n, n] and B is [n, m], then the result will be [n, m] as well
2413
+ * Has O(n^3) complexity (unlike most matrix ops out there), so use on cases
2414
+ * where n > 100 sparingly, pre-chunk if necessary.
2415
+ *
2416
+ * If left = false, solves xA=B instead
2417
+ * If lower = false, assumes upper triangular instead
2418
+ * If uni = true, assumes diagonal of A to be all ones (will override actual values)
2419
+ *
2420
+ * TODO: currently only lower, right, non-unitriangular variant is implemented
2421
+ */
2422
+ GGML_API struct ggml_tensor * ggml_solve_tri(
2423
+ struct ggml_context * ctx,
2424
+ struct ggml_tensor * a,
2425
+ struct ggml_tensor * b,
2426
+ bool left,
2427
+ bool lower,
2428
+ bool uni);
2429
+
2359
2430
  // custom operators
2360
2431
 
2361
2432
  typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
@@ -211,6 +211,11 @@ add_library(ggml-base
211
211
  ggml-quants.h
212
212
  gguf.cpp)
213
213
 
214
+ set_target_properties(ggml-base PROPERTIES
215
+ VERSION ${GGML_VERSION}
216
+ SOVERSION ${GGML_VERSION_MAJOR}
217
+ )
218
+
214
219
  target_include_directories(ggml-base PRIVATE .)
215
220
  if (GGML_BACKEND_DL)
216
221
  target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
@@ -220,6 +225,11 @@ add_library(ggml
220
225
  ggml-backend-reg.cpp)
221
226
  add_library(ggml::ggml ALIAS ggml)
222
227
 
228
+ set_target_properties(ggml PROPERTIES
229
+ VERSION ${GGML_VERSION}
230
+ SOVERSION ${GGML_VERSION_MAJOR}
231
+ )
232
+
223
233
  if (GGML_BACKEND_DIR)
224
234
  if (NOT GGML_BACKEND_DL)
225
235
  message(FATAL_ERROR "GGML_BACKEND_DIR requires GGML_BACKEND_DL")
@@ -259,6 +269,12 @@ function(ggml_add_backend_library backend)
259
269
  target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
260
270
  endif()
261
271
 
272
+ # Set versioning properties for all backend libraries
273
+ set_target_properties(${backend} PROPERTIES
274
+ VERSION ${GGML_VERSION}
275
+ SOVERSION ${GGML_VERSION_MAJOR}
276
+ )
277
+
262
278
  if(NOT GGML_AVAILABLE_BACKENDS)
263
279
  set(GGML_AVAILABLE_BACKENDS "${backend}"
264
280
  CACHE INTERNAL "List of backends for cmake package")
@@ -590,6 +590,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
590
590
  ${KLEIDIAI_SRC}/kai/ukernels/
591
591
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/
592
592
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
593
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/
593
594
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/
594
595
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
595
596
 
@@ -608,23 +609,34 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
608
609
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
609
610
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
610
611
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
611
- ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
612
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c
613
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qai8dxp_f32.c
614
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi8cxp_qsi8cx_neon.c)
612
615
 
613
616
  if (NOT DOTPROD_ENABLED MATCHES -1)
614
617
  list(APPEND GGML_KLEIDIAI_SOURCES
615
618
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c
616
619
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c
617
- ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
620
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c
621
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod.c
622
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod.c
623
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod.c)
618
624
  endif()
619
625
 
620
626
  if (NOT I8MM_ENABLED MATCHES -1)
621
- list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.c)
627
+ list(APPEND GGML_KLEIDIAI_SOURCES
628
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.c
629
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm.c)
622
630
  endif()
623
631
 
624
632
  if (NOT SME_ENABLED MATCHES -1)
625
633
  list(APPEND GGML_KLEIDIAI_SOURCES
626
634
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
627
635
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
636
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa.c
637
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa_asm.S
638
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot.c
639
+ ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi8cxp/kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot_asm.S
628
640
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
629
641
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa_asm.S
630
642
  ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
@@ -1731,6 +1731,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
1731
1731
  {
1732
1732
  ggml_compute_forward_sum_rows(params, tensor);
1733
1733
  } break;
1734
+ case GGML_OP_CUMSUM:
1735
+ {
1736
+ ggml_compute_forward_cumsum(params, tensor);
1737
+ } break;
1734
1738
  case GGML_OP_MEAN:
1735
1739
  {
1736
1740
  ggml_compute_forward_mean(params, tensor);
@@ -1927,6 +1931,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
1927
1931
  {
1928
1932
  ggml_compute_forward_leaky_relu(params, tensor);
1929
1933
  } break;
1934
+ case GGML_OP_TRI:
1935
+ {
1936
+ ggml_compute_forward_tri(params, tensor);
1937
+ } break;
1938
+ case GGML_OP_FILL:
1939
+ {
1940
+ ggml_compute_forward_fill(params, tensor);
1941
+ } break;
1930
1942
  case GGML_OP_FLASH_ATTN_EXT:
1931
1943
  {
1932
1944
  ggml_compute_forward_flash_attn_ext(params, tensor);
@@ -1982,6 +1994,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
1982
1994
  {
1983
1995
  ggml_compute_forward_rwkv_wkv7(params, tensor);
1984
1996
  } break;
1997
+ case GGML_OP_SOLVE_TRI:
1998
+ {
1999
+ ggml_compute_forward_solve_tri(params, tensor);
2000
+ } break;
1985
2001
  case GGML_OP_MAP_CUSTOM1:
1986
2002
  {
1987
2003
  ggml_compute_forward_map_custom1(params, tensor);
@@ -2140,6 +2156,9 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
2140
2156
  case GGML_OP_ADD_ID:
2141
2157
  case GGML_OP_ADD1:
2142
2158
  case GGML_OP_ACC:
2159
+ case GGML_OP_CUMSUM:
2160
+ case GGML_OP_TRI:
2161
+ case GGML_OP_FILL:
2143
2162
  {
2144
2163
  n_tasks = n_threads;
2145
2164
  } break;
@@ -2157,6 +2176,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
2157
2176
  n_tasks = 1;
2158
2177
  } break;
2159
2178
  case GGML_OP_COUNT_EQUAL:
2179
+ case GGML_OP_SOLVE_TRI:
2160
2180
  {
2161
2181
  n_tasks = n_threads;
2162
2182
  } break;
@@ -2179,6 +2199,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
2179
2199
  case GGML_UNARY_OP_HARDSWISH:
2180
2200
  case GGML_UNARY_OP_HARDSIGMOID:
2181
2201
  case GGML_UNARY_OP_EXP:
2202
+ case GGML_UNARY_OP_SOFTPLUS:
2203
+ case GGML_UNARY_OP_EXPM1:
2182
2204
  case GGML_UNARY_OP_FLOOR:
2183
2205
  case GGML_UNARY_OP_CEIL:
2184
2206
  case GGML_UNARY_OP_ROUND:
@@ -3274,6 +3296,13 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
3274
3296
  __m128 y_vec = _mm_cvtph_ps(x_vec);
3275
3297
  _mm_storeu_ps(y + i, y_vec);
3276
3298
  }
3299
+ #elif defined(__riscv_zvfh)
3300
+ for (int vl; i < n; i += vl) {
3301
+ vl = __riscv_vsetvl_e16m1(n - i);
3302
+ vfloat16m1_t vx = __riscv_vle16_v_f16m1((_Float16 *)&x[i], vl);
3303
+ vfloat32m2_t vy = __riscv_vfwcvt_f_f_v_f32m2(vx, vl);
3304
+ __riscv_vse32_v_f32m2(&y[i], vy, vl);
3305
+ }
3277
3306
  #endif
3278
3307
 
3279
3308
  for (; i < n; ++i) {
@@ -4,6 +4,7 @@
4
4
 
5
5
  // KleidiAI micro-kernels
6
6
  #include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
7
+ #include "kai_matmul_clamp_f32_qai8dxp_qsi8cxp_interface.h"
7
8
  #include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
8
9
  #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
9
10
  #include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
@@ -11,20 +12,31 @@
11
12
  #include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
12
13
  #include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
13
14
  #include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h"
15
+ #include "kai_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa.h"
16
+ #include "kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot.h"
17
+ #include "kai_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod.h"
18
+ #include "kai_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod.h"
19
+ #include "kai_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod.h"
20
+ #include "kai_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm.h"
14
21
 
15
22
  #include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
16
23
  #include "kai_lhs_quant_pack_qsi8d32p_f32.h"
17
24
  #include "kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.h"
18
25
  #include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
26
+ #include "kai_lhs_quant_pack_qai8dxp_f32.h"
19
27
 
20
28
  #include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
21
29
  #include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
22
30
  #include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
31
+ #include "kai_rhs_pack_nxk_qsi8cxp_qsi8cx_neon.h"
23
32
 
24
33
  #include "kai_common.h"
25
34
 
26
35
  #include "simd-mappings.h"
27
36
 
37
+ #define GGML_COMMON_DECL_CPP
38
+ #include "ggml-common.h"
39
+
28
40
  #include "kernels.h"
29
41
 
30
42
  #define NELEMS(x) sizeof(x) / sizeof(*x)
@@ -55,6 +67,14 @@ static inline void kernel_run_fn10(size_t m, size_t n, size_t k, size_t /*bl*/,
55
67
  Fn(m, n, k, lhs, rhs, dst, dst_stride_row, dst_stride_col, clamp_min, clamp_max);
56
68
  }
57
69
 
70
+ template<void(*Fn)(size_t,size_t,size_t,const void*,const void*,float*,size_t,size_t,float,float)>
71
+ static inline void kernel_run_float_fn10(size_t m, size_t n, size_t k, size_t /*bl*/,
72
+ const void* lhs, const void* rhs, void* dst,
73
+ size_t dst_stride_row, size_t dst_stride_col,
74
+ float clamp_min, float clamp_max) {
75
+ Fn(m, n, k, lhs, rhs, static_cast<float*>(dst), dst_stride_row, dst_stride_col, clamp_min, clamp_max);
76
+ }
77
+
58
78
  template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t)>
59
79
  static inline size_t lhs_ps_fn6(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr) {
60
80
  return Fn(m, k, bl, mr, kr, sr);
@@ -93,6 +113,12 @@ static inline void lhs_pack_void_fn9(size_t m, size_t k, size_t /*bl*/, size_t m
93
113
  Fn(m, k, mr, kr, sr, m_idx_start, lhs, lhs_stride, lhs_packed);
94
114
  }
95
115
 
116
+ template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,const float*,size_t,void*)>
117
+ static inline void lhs_pack_float_fn9_no_bl(size_t m, size_t k, size_t /*bl*/, size_t mr, size_t kr, size_t sr,
118
+ size_t m_idx_start, const void * lhs, size_t lhs_stride, void * lhs_packed) {
119
+ Fn(m, k, mr, kr, sr, m_idx_start, static_cast<const float*>(lhs), lhs_stride, lhs_packed);
120
+ }
121
+
96
122
  template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t)>
97
123
  static inline size_t rhs_ps_fn5(size_t n, size_t k, size_t nr, size_t kr, size_t bl) {
98
124
  return Fn(n, k, nr, kr, bl);
@@ -124,6 +150,18 @@ static inline void rhs_pack_fn12(size_t num_groups, size_t n, size_t k, size_t n
124
150
  static_cast<const kai_rhs_pack_qs4cxs1s0_param*>(params));
125
151
  }
126
152
 
153
+ template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,const int8_t*,const float*,const float*,void*,size_t,const struct kai_rhs_pack_qsi8cx_params*)>
154
+ static inline void rhs_pack_scale_fn12(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t /*bl*/,
155
+ size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* scale,
156
+ void* rhs_packed, size_t extra_bytes, const void* params) {
157
+ Fn(num_groups, n, k, nr, kr, sr,
158
+ static_cast<const int8_t*>(rhs),
159
+ static_cast<const float*>(bias),
160
+ static_cast<const float*>(scale),
161
+ rhs_packed, extra_bytes,
162
+ static_cast<const kai_rhs_pack_qsi8cx_params*>(params));
163
+ }
164
+
127
165
  template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,size_t,const void*,const void*,const void*,void*,size_t,const void*)>
128
166
  static inline void rhs_pack_fn13(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t /*bl*/,
129
167
  size_t rhs_stride, const void* rhs, const void* bias, const void* scale,
@@ -213,6 +251,57 @@ static void dequantize_row_qsi4c32ps1s0scalef16(
213
251
  GGML_UNUSED(kr);
214
252
  }
215
253
 
254
+ static void dequantize_row_qsi8cxp(
255
+ const void *packed_data,
256
+ int32_t row_idx,
257
+ int64_t k,
258
+ float *out,
259
+ size_t nr,
260
+ size_t packed_row_stride,
261
+ size_t kr,
262
+ size_t bl,
263
+ size_t num_bytes_multiplier
264
+ ) {
265
+ GGML_UNUSED(bl);
266
+ GGML_UNUSED(num_bytes_multiplier);
267
+
268
+ const size_t k_internal = ((size_t) k + QK8_0 - 1) / QK8_0 * QK8_0;
269
+ const size_t group_idx = row_idx / nr;
270
+ const size_t row_in_group = row_idx % nr;
271
+
272
+ const uint8_t * group_ptr = static_cast<const uint8_t *>(packed_data) + group_idx * packed_row_stride;
273
+ const int8_t * data_base = reinterpret_cast<const int8_t *>(group_ptr);
274
+
275
+ const size_t num_blocks = k_internal / kr;
276
+
277
+ for (size_t block = 0; block < num_blocks; ++block) {
278
+ const int8_t * block_ptr = data_base + (block * nr + row_in_group) * kr;
279
+ for (size_t i = 0; i < kr; ++i) {
280
+ const size_t k_idx = block * kr + i;
281
+ if (k_idx < (size_t) k) {
282
+ out[k_idx] = static_cast<float>(block_ptr[i]);
283
+ }
284
+ }
285
+ }
286
+
287
+ const uint8_t * sums_ptr = group_ptr + nr * k_internal;
288
+ GGML_UNUSED(sums_ptr);
289
+
290
+ const float * scale_ptr = reinterpret_cast<const float *>(sums_ptr + nr * sizeof(int32_t));
291
+ const float scale = scale_ptr[row_in_group];
292
+
293
+ if (scale == 0.0f) {
294
+ for (size_t i = 0; i < (size_t) k; ++i) {
295
+ out[i] = 0.0f;
296
+ }
297
+ return;
298
+ }
299
+
300
+ for (size_t i = 0; i < (size_t) k; ++i) {
301
+ out[i] *= scale;
302
+ }
303
+ }
304
+
216
305
  static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
217
306
  #if defined(__ARM_FEATURE_SME)
218
307
  {
@@ -548,6 +637,174 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
548
637
  #endif
549
638
  };
550
639
 
640
+ static ggml_kleidiai_kernels gemm_gemv_kernels_q8[] = {
641
+ #if defined(__ARM_FEATURE_SME)
642
+ {
643
+ /* SME GEMM */
644
+ {
645
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
646
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
647
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
648
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
649
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
650
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
651
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
652
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa,
653
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa>,
654
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa>,
655
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp1vlx4_qsi8cxp4vlx4_1vlx4vl_sme2_mopa>,
656
+ },
657
+ /* .gemm_lhs_info = */ {
658
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
659
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
660
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
661
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
662
+ },
663
+ /* SME GEMV */
664
+ {
665
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
666
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
667
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
668
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
669
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
670
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
671
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
672
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot,
673
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot>,
674
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot>,
675
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4vlx4_1x4vl_sme2_dot>,
676
+ },
677
+ /* .gemv_lhs_info = */ {
678
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
679
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
680
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
681
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
682
+ },
683
+ /* .rhs_info = */ {
684
+ /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon,
685
+ /* .to_float = */ dequantize_row_qsi8cxp,
686
+ /* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
687
+ /* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
688
+ /* .pack_func_ex = */ &rhs_pack_scale_fn12<kai_run_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
689
+ },
690
+ /* .required_cpu = */ CPU_FEATURE_SME,
691
+ /* .lhs_type = */ GGML_TYPE_F32,
692
+ /* .rhs_type = */ GGML_TYPE_Q8_0,
693
+ /* .op_type = */ GGML_TYPE_F32,
694
+ },
695
+ #endif
696
+ #if defined(__ARM_FEATURE_MATMUL_INT8)
697
+ {
698
+ /* I8MM GEMM */
699
+ {
700
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
701
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
702
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
703
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
704
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
705
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
706
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
707
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm,
708
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm>,
709
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm>,
710
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp4x8_qsi8cxp4x8_16x4_neon_i8mm>,
711
+ },
712
+ /* .gemm_lhs_info = */ {
713
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
714
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
715
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
716
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
717
+ },
718
+ /* I8MM GEMV (dotprod fallback) */
719
+ {
720
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
721
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
722
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
723
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
724
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
725
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
726
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
727
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod,
728
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod>,
729
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod>,
730
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp1x8_qsi8cxp4x8_1x4_neon_dotprod>,
731
+ },
732
+ /* .gemv_lhs_info = */ {
733
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
734
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
735
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
736
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
737
+ },
738
+ /* .rhs_info = */ {
739
+ /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon,
740
+ /* .to_float = */ dequantize_row_qsi8cxp,
741
+ /* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
742
+ /* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
743
+ /* .pack_func_ex = */ &rhs_pack_scale_fn12<kai_run_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
744
+ },
745
+ /* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
746
+ /* .lhs_type = */ GGML_TYPE_F32,
747
+ /* .rhs_type = */ GGML_TYPE_Q8_0,
748
+ /* .op_type = */ GGML_TYPE_F32,
749
+ },
750
+ #endif
751
+ #if defined(__ARM_FEATURE_DOTPROD)
752
+ {
753
+ /* DOTPROD GEMM */
754
+ {
755
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
756
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
757
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
758
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
759
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
760
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
761
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
762
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod,
763
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod>,
764
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod>,
765
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp4x4_qsi8cxp4x4_16x4_neon_dotprod>,
766
+ },
767
+ /* .gemm_lhs_info = */ {
768
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
769
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
770
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
771
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
772
+ },
773
+ /* DOTPROD GEMV */
774
+ {
775
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
776
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
777
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
778
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
779
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
780
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
781
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
782
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod,
783
+ /* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod>,
784
+ /* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod>,
785
+ /* .run_kernel_ex = */ &kernel_run_float_fn10<kai_run_matmul_clamp_f32_qai8dxp1x4_qsi8cxp4x4_1x4_neon_dotprod>,
786
+ },
787
+ /* .gemv_lhs_info = */ {
788
+ /* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qai8dxp_f32,
789
+ /* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32>,
790
+ /* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_f32>,
791
+ /* .pack_func_ex = */ &lhs_pack_float_fn9_no_bl<kai_run_lhs_quant_pack_qai8dxp_f32>,
792
+ },
793
+ /* .rhs_info = */ {
794
+ /* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon,
795
+ /* .to_float = */ dequantize_row_qsi8cxp,
796
+ /* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
797
+ /* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
798
+ /* .pack_func_ex = */ &rhs_pack_scale_fn12<kai_run_rhs_pack_nxk_qsi8cxp_qsi8cx_neon>,
799
+ },
800
+ /* .required_cpu = */ CPU_FEATURE_DOTPROD,
801
+ /* .lhs_type = */ GGML_TYPE_F32,
802
+ /* .rhs_type = */ GGML_TYPE_Q8_0,
803
+ /* .op_type = */ GGML_TYPE_F32,
804
+ },
805
+ #endif
806
+ };
807
+
551
808
  ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
552
809
  ggml_kleidiai_kernels * kernel = nullptr;
553
810
 
@@ -562,6 +819,17 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
562
819
  break;
563
820
  }
564
821
  }
822
+ if (!kernel) {
823
+ for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8); ++i) {
824
+ if ((cpu_features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu &&
825
+ gemm_gemv_kernels_q8[i].lhs_type == tensor->src[1]->type &&
826
+ gemm_gemv_kernels_q8[i].rhs_type == tensor->src[0]->type &&
827
+ gemm_gemv_kernels_q8[i].op_type == tensor->type) {
828
+ kernel = &gemm_gemv_kernels_q8[i];
829
+ break;
830
+ }
831
+ }
832
+ }
565
833
  #endif
566
834
  }
567
835
 
@@ -582,3 +850,18 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features)
582
850
 
583
851
  return kernels;
584
852
  }
853
+
854
+ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q8_0(cpu_feature features) {
855
+ ggml_kleidiai_kernels * kernels = nullptr;
856
+
857
+ #if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
858
+ for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8); ++i) {
859
+ if ((features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu) {
860
+ kernels = &gemm_gemv_kernels_q8[i];
861
+ break;
862
+ }
863
+ }
864
+ #endif
865
+
866
+ return kernels;
867
+ }
@@ -87,3 +87,4 @@ struct ggml_kleidiai_kernels {
87
87
 
88
88
  ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor);
89
89
  ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features);
90
+ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q8_0(cpu_feature features);