@fugood/llama.node 1.1.5 → 1.1.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/lib/binding.ts +4 -0
- package/lib/index.js +6 -1
- package/lib/index.ts +6 -0
- package/lib/version.js +5 -0
- package/lib/version.ts +2 -0
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +19 -15
- package/src/LlamaCompletionWorker.cpp +73 -18
- package/src/LlamaCompletionWorker.h +8 -0
- package/src/llama.cpp/CMakeLists.txt +2 -0
- package/src/llama.cpp/common/arg.cpp +147 -46
- package/src/llama.cpp/common/chat-parser.cpp +9 -1
- package/src/llama.cpp/common/chat.cpp +350 -3
- package/src/llama.cpp/common/chat.h +11 -3
- package/src/llama.cpp/common/common.cpp +54 -0
- package/src/llama.cpp/common/common.h +44 -9
- package/src/llama.cpp/ggml/CMakeLists.txt +5 -2
- package/src/llama.cpp/ggml/include/ggml-opt.h +25 -6
- package/src/llama.cpp/ggml/include/ggml-zdnn.h +16 -0
- package/src/llama.cpp/ggml/include/ggml.h +65 -3
- package/src/llama.cpp/ggml/src/CMakeLists.txt +13 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +1 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +61 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/x86/quants.c +96 -8
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp +1136 -1077
- package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +20 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +20 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +21 -24
- package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +16 -7
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +270 -11
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +3 -8
- package/src/llama.cpp/ggml/src/ggml-cpu/quants.c +35 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/quants.h +8 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +200 -51
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.h +11 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/traits.cpp +2 -2
- package/src/llama.cpp/ggml/src/ggml-cpu/traits.h +1 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +19 -4
- package/src/llama.cpp/include/llama.h +26 -0
- package/src/llama.cpp/src/llama-arch.cpp +65 -0
- package/src/llama.cpp/src/llama-arch.h +10 -0
- package/src/llama.cpp/src/llama-batch.cpp +1 -1
- package/src/llama.cpp/src/llama-chat.cpp +15 -4
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +37 -25
- package/src/llama.cpp/src/llama-context.h +6 -5
- package/src/llama.cpp/src/llama-graph.cpp +118 -9
- package/src/llama.cpp/src/llama-graph.h +38 -0
- package/src/llama.cpp/src/llama-hparams.h +5 -3
- package/src/llama.cpp/src/llama-kv-cache-unified-iswa.cpp +12 -6
- package/src/llama.cpp/src/llama-kv-cache-unified-iswa.h +2 -2
- package/src/llama.cpp/src/llama-kv-cache-unified.cpp +93 -69
- package/src/llama.cpp/src/llama-kv-cache-unified.h +2 -2
- package/src/llama.cpp/src/llama-memory-hybrid.cpp +6 -2
- package/src/llama.cpp/src/llama-memory-hybrid.h +2 -2
- package/src/llama.cpp/src/llama-memory-recurrent.cpp +6 -2
- package/src/llama.cpp/src/llama-memory-recurrent.h +2 -2
- package/src/llama.cpp/src/llama-memory.h +2 -2
- package/src/llama.cpp/src/llama-model-loader.cpp +1 -0
- package/src/llama.cpp/src/llama-model-loader.h +3 -2
- package/src/llama.cpp/src/llama-model.cpp +500 -4
- package/src/llama.cpp/src/llama-model.h +25 -4
- package/src/llama.cpp/src/llama-quant.cpp +37 -1
- package/src/llama.cpp/src/llama-vocab.cpp +43 -0
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
#include "vec.h"
|
|
9
9
|
|
|
10
10
|
#include <float.h>
|
|
11
|
+
#include <algorithm>
|
|
11
12
|
|
|
12
13
|
// ggml_compute_forward_dup
|
|
13
14
|
|
|
@@ -1283,6 +1284,7 @@ void ggml_compute_forward_add(
|
|
|
1283
1284
|
case GGML_TYPE_Q5_0:
|
|
1284
1285
|
case GGML_TYPE_Q5_1:
|
|
1285
1286
|
case GGML_TYPE_Q8_0:
|
|
1287
|
+
case GGML_TYPE_MXFP4:
|
|
1286
1288
|
case GGML_TYPE_Q2_K:
|
|
1287
1289
|
case GGML_TYPE_Q3_K:
|
|
1288
1290
|
case GGML_TYPE_Q4_K:
|
|
@@ -1309,6 +1311,77 @@ void ggml_compute_forward_add(
|
|
|
1309
1311
|
}
|
|
1310
1312
|
}
|
|
1311
1313
|
|
|
1314
|
+
// ggml_compute_forward_add_id
|
|
1315
|
+
|
|
1316
|
+
static void ggml_compute_forward_add_id_f32(
|
|
1317
|
+
const ggml_compute_params * params,
|
|
1318
|
+
ggml_tensor * dst) {
|
|
1319
|
+
|
|
1320
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
1321
|
+
const ggml_tensor * src1 = dst->src[1];
|
|
1322
|
+
const ggml_tensor * src2 = dst->src[2];
|
|
1323
|
+
|
|
1324
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
1325
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
1326
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
1327
|
+
GGML_ASSERT(src2->type == GGML_TYPE_I32);
|
|
1328
|
+
|
|
1329
|
+
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
1330
|
+
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
1331
|
+
|
|
1332
|
+
const int ith = params->ith;
|
|
1333
|
+
const int nth = params->nth;
|
|
1334
|
+
|
|
1335
|
+
const int nr = ggml_nrows(src0);
|
|
1336
|
+
|
|
1337
|
+
GGML_TENSOR_TERNARY_OP_LOCALS
|
|
1338
|
+
|
|
1339
|
+
GGML_ASSERT( nb0 == sizeof(float));
|
|
1340
|
+
GGML_ASSERT(nb10 == sizeof(float));
|
|
1341
|
+
|
|
1342
|
+
// rows per thread
|
|
1343
|
+
const int dr = (nr + nth - 1)/nth;
|
|
1344
|
+
|
|
1345
|
+
// row range for this thread
|
|
1346
|
+
const int ir0 = dr*ith;
|
|
1347
|
+
const int ir1 = MIN(ir0 + dr, nr);
|
|
1348
|
+
|
|
1349
|
+
for (int ir = ir0; ir < ir1; ++ir) {
|
|
1350
|
+
// src0 indices
|
|
1351
|
+
const int i3 = ir/(ne2*ne1);
|
|
1352
|
+
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
1353
|
+
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
1354
|
+
|
|
1355
|
+
// src1 indices
|
|
1356
|
+
const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
|
|
1357
|
+
|
|
1358
|
+
GGML_ASSERT(i11 >= 0 && i11 < ne11);
|
|
1359
|
+
|
|
1360
|
+
ggml_vec_add_f32(ne0,
|
|
1361
|
+
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
1362
|
+
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
1363
|
+
(float *) ((char *) src1->data + i11*nb11));
|
|
1364
|
+
}
|
|
1365
|
+
}
|
|
1366
|
+
|
|
1367
|
+
void ggml_compute_forward_add_id(
|
|
1368
|
+
const ggml_compute_params * params,
|
|
1369
|
+
ggml_tensor * dst) {
|
|
1370
|
+
|
|
1371
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
1372
|
+
|
|
1373
|
+
switch (src0->type) {
|
|
1374
|
+
case GGML_TYPE_F32:
|
|
1375
|
+
{
|
|
1376
|
+
ggml_compute_forward_add_id_f32(params, dst);
|
|
1377
|
+
} break;
|
|
1378
|
+
default:
|
|
1379
|
+
{
|
|
1380
|
+
GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
|
|
1381
|
+
}
|
|
1382
|
+
}
|
|
1383
|
+
}
|
|
1384
|
+
|
|
1312
1385
|
// ggml_compute_forward_add1
|
|
1313
1386
|
|
|
1314
1387
|
static void ggml_compute_forward_add1_f32(
|
|
@@ -1660,6 +1733,7 @@ void ggml_compute_forward_add1(
|
|
|
1660
1733
|
case GGML_TYPE_Q5_1:
|
|
1661
1734
|
case GGML_TYPE_Q8_0:
|
|
1662
1735
|
case GGML_TYPE_Q8_1:
|
|
1736
|
+
case GGML_TYPE_MXFP4:
|
|
1663
1737
|
case GGML_TYPE_Q2_K:
|
|
1664
1738
|
case GGML_TYPE_Q3_K:
|
|
1665
1739
|
case GGML_TYPE_Q4_K:
|
|
@@ -1787,6 +1861,7 @@ void ggml_compute_forward_acc(
|
|
|
1787
1861
|
case GGML_TYPE_Q5_1:
|
|
1788
1862
|
case GGML_TYPE_Q8_0:
|
|
1789
1863
|
case GGML_TYPE_Q8_1:
|
|
1864
|
+
case GGML_TYPE_MXFP4:
|
|
1790
1865
|
case GGML_TYPE_Q2_K:
|
|
1791
1866
|
case GGML_TYPE_Q3_K:
|
|
1792
1867
|
case GGML_TYPE_Q4_K:
|
|
@@ -3614,6 +3689,93 @@ static void ggml_compute_forward_swiglu(
|
|
|
3614
3689
|
}
|
|
3615
3690
|
}
|
|
3616
3691
|
|
|
3692
|
+
// ggml_compute_forward_swiglu_oai
|
|
3693
|
+
|
|
3694
|
+
static void ggml_compute_forward_swiglu_oai_f32(
|
|
3695
|
+
const ggml_compute_params * params,
|
|
3696
|
+
ggml_tensor * dst) {
|
|
3697
|
+
|
|
3698
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
3699
|
+
const ggml_tensor * src1 = dst->src[1];
|
|
3700
|
+
char * src0_d = (char *) src0->data;
|
|
3701
|
+
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
|
3702
|
+
const size_t src0_o = src0->nb[1];
|
|
3703
|
+
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
|
3704
|
+
|
|
3705
|
+
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
3706
|
+
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
|
3707
|
+
|
|
3708
|
+
if (src1) {
|
|
3709
|
+
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
|
3710
|
+
GGML_ASSERT(src0->type == src1->type);
|
|
3711
|
+
}
|
|
3712
|
+
|
|
3713
|
+
const int ith = params->ith;
|
|
3714
|
+
const int nth = params->nth;
|
|
3715
|
+
|
|
3716
|
+
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
|
3717
|
+
const int nr = ggml_nrows(src0);
|
|
3718
|
+
|
|
3719
|
+
GGML_ASSERT(dst->ne[0] == nc);
|
|
3720
|
+
GGML_ASSERT(ggml_nrows(dst) == nr);
|
|
3721
|
+
|
|
3722
|
+
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
|
3723
|
+
const float alpha = ggml_get_op_params_f32(dst, 2);
|
|
3724
|
+
const float limit = ggml_get_op_params_f32(dst, 3);
|
|
3725
|
+
|
|
3726
|
+
// rows per thread
|
|
3727
|
+
const int dr = (nr + nth - 1)/nth;
|
|
3728
|
+
|
|
3729
|
+
// row range for this thread
|
|
3730
|
+
const int ir0 = dr*ith;
|
|
3731
|
+
const int ir1 = MIN(ir0 + dr, nr);
|
|
3732
|
+
|
|
3733
|
+
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
3734
|
+
float * src0_p = (float *) (src0_d + i1*src0_o);
|
|
3735
|
+
float * src1_p = (float *) (src1_d + i1*src1_o);
|
|
3736
|
+
float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
|
|
3737
|
+
|
|
3738
|
+
if (!src1) {
|
|
3739
|
+
src0_p += swapped ? nc : 0;
|
|
3740
|
+
src1_p += swapped ? 0 : nc;
|
|
3741
|
+
}
|
|
3742
|
+
|
|
3743
|
+
for (int k = 0; k < nc; k++) {
|
|
3744
|
+
const float x = std::min(src0_p[k], limit);
|
|
3745
|
+
const float y = std::clamp(src1_p[k], -limit, limit);
|
|
3746
|
+
const float out_glu = x / (1.f + expf(alpha * (-x)));
|
|
3747
|
+
dst_p[k] = out_glu * (y + 1.f);
|
|
3748
|
+
}
|
|
3749
|
+
|
|
3750
|
+
#ifndef NDEBUG
|
|
3751
|
+
for (int k = 0; k < nc; k++) {
|
|
3752
|
+
const float x = dst_p[k];
|
|
3753
|
+
GGML_UNUSED(x);
|
|
3754
|
+
assert(!isnan(x));
|
|
3755
|
+
assert(!isinf(x));
|
|
3756
|
+
}
|
|
3757
|
+
#endif
|
|
3758
|
+
}
|
|
3759
|
+
}
|
|
3760
|
+
|
|
3761
|
+
static void ggml_compute_forward_swiglu_oai(
|
|
3762
|
+
const ggml_compute_params * params,
|
|
3763
|
+
ggml_tensor * dst) {
|
|
3764
|
+
|
|
3765
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
3766
|
+
|
|
3767
|
+
switch (src0->type) {
|
|
3768
|
+
case GGML_TYPE_F32:
|
|
3769
|
+
{
|
|
3770
|
+
ggml_compute_forward_swiglu_oai_f32(params, dst);
|
|
3771
|
+
} break;
|
|
3772
|
+
default:
|
|
3773
|
+
{
|
|
3774
|
+
GGML_ABORT("fatal error");
|
|
3775
|
+
}
|
|
3776
|
+
}
|
|
3777
|
+
}
|
|
3778
|
+
|
|
3617
3779
|
// ggml_compute_forward_geglu_erf
|
|
3618
3780
|
|
|
3619
3781
|
static void ggml_compute_forward_geglu_erf_f32(
|
|
@@ -4599,6 +4761,7 @@ void ggml_compute_forward_out_prod(
|
|
|
4599
4761
|
case GGML_TYPE_Q5_0:
|
|
4600
4762
|
case GGML_TYPE_Q5_1:
|
|
4601
4763
|
case GGML_TYPE_Q8_0:
|
|
4764
|
+
case GGML_TYPE_MXFP4:
|
|
4602
4765
|
case GGML_TYPE_Q2_K:
|
|
4603
4766
|
case GGML_TYPE_Q3_K:
|
|
4604
4767
|
case GGML_TYPE_Q4_K:
|
|
@@ -4873,6 +5036,7 @@ void ggml_compute_forward_set(
|
|
|
4873
5036
|
case GGML_TYPE_Q5_1:
|
|
4874
5037
|
case GGML_TYPE_Q8_0:
|
|
4875
5038
|
case GGML_TYPE_Q8_1:
|
|
5039
|
+
case GGML_TYPE_MXFP4:
|
|
4876
5040
|
case GGML_TYPE_Q2_K:
|
|
4877
5041
|
case GGML_TYPE_Q3_K:
|
|
4878
5042
|
case GGML_TYPE_Q4_K:
|
|
@@ -5134,6 +5298,7 @@ void ggml_compute_forward_get_rows(
|
|
|
5134
5298
|
case GGML_TYPE_Q5_1:
|
|
5135
5299
|
case GGML_TYPE_Q8_0:
|
|
5136
5300
|
case GGML_TYPE_Q8_1:
|
|
5301
|
+
case GGML_TYPE_MXFP4:
|
|
5137
5302
|
case GGML_TYPE_Q2_K:
|
|
5138
5303
|
case GGML_TYPE_Q3_K:
|
|
5139
5304
|
case GGML_TYPE_Q4_K:
|
|
@@ -5523,6 +5688,7 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5523
5688
|
|
|
5524
5689
|
const ggml_tensor * src0 = dst->src[0];
|
|
5525
5690
|
const ggml_tensor * src1 = dst->src[1];
|
|
5691
|
+
const ggml_tensor * src2 = dst->src[2];
|
|
5526
5692
|
|
|
5527
5693
|
assert(ggml_is_contiguous(dst));
|
|
5528
5694
|
assert(ggml_are_same_shape(src0, dst));
|
|
@@ -5557,6 +5723,9 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5557
5723
|
|
|
5558
5724
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
5559
5725
|
|
|
5726
|
+
// sinks
|
|
5727
|
+
const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
|
|
5728
|
+
|
|
5560
5729
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
5561
5730
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
5562
5731
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
@@ -5599,9 +5768,18 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5599
5768
|
float max = -INFINITY;
|
|
5600
5769
|
ggml_vec_max_f32(ne00, &max, wp);
|
|
5601
5770
|
|
|
5771
|
+
// if we have sinks, make a correction as if they were included in the softmax
|
|
5772
|
+
if (sk) {
|
|
5773
|
+
max = MAX(max, sk[i02]);
|
|
5774
|
+
}
|
|
5775
|
+
|
|
5602
5776
|
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
|
|
5603
5777
|
assert(sum > 0.0);
|
|
5604
5778
|
|
|
5779
|
+
if (sk) {
|
|
5780
|
+
sum += (ggml_float) expf(sk[i02] - max);
|
|
5781
|
+
}
|
|
5782
|
+
|
|
5605
5783
|
sum = 1.0/sum;
|
|
5606
5784
|
ggml_vec_scale_f32(ne00, dp, sum);
|
|
5607
5785
|
|
|
@@ -5836,6 +6014,7 @@ void ggml_compute_forward_clamp(
|
|
|
5836
6014
|
case GGML_TYPE_Q5_1:
|
|
5837
6015
|
case GGML_TYPE_Q8_0:
|
|
5838
6016
|
case GGML_TYPE_Q8_1:
|
|
6017
|
+
case GGML_TYPE_MXFP4:
|
|
5839
6018
|
case GGML_TYPE_Q2_K:
|
|
5840
6019
|
case GGML_TYPE_Q3_K:
|
|
5841
6020
|
case GGML_TYPE_Q4_K:
|
|
@@ -7989,12 +8168,14 @@ void ggml_compute_forward_argsort(
|
|
|
7989
8168
|
|
|
7990
8169
|
static void ggml_compute_forward_flash_attn_ext_f16(
|
|
7991
8170
|
const ggml_compute_params * params,
|
|
7992
|
-
const ggml_tensor * q,
|
|
7993
|
-
const ggml_tensor * k,
|
|
7994
|
-
const ggml_tensor * v,
|
|
7995
|
-
const ggml_tensor * mask,
|
|
7996
8171
|
ggml_tensor * dst) {
|
|
7997
8172
|
|
|
8173
|
+
const ggml_tensor * q = dst->src[0];
|
|
8174
|
+
const ggml_tensor * k = dst->src[1];
|
|
8175
|
+
const ggml_tensor * v = dst->src[2];
|
|
8176
|
+
const ggml_tensor * mask = dst->src[3];
|
|
8177
|
+
const ggml_tensor * sinks = dst->src[4];
|
|
8178
|
+
|
|
7998
8179
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
7999
8180
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
8000
8181
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
@@ -8189,6 +8370,23 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|
|
8189
8370
|
}
|
|
8190
8371
|
}
|
|
8191
8372
|
|
|
8373
|
+
// sinks
|
|
8374
|
+
if (sinks) {
|
|
8375
|
+
const float s = ((float *)((char *) sinks->data))[h];
|
|
8376
|
+
|
|
8377
|
+
float ms = 1.0f;
|
|
8378
|
+
float vs = 1.0f;
|
|
8379
|
+
|
|
8380
|
+
if (s > M) {
|
|
8381
|
+
ms = expf(M - s);
|
|
8382
|
+
ggml_vec_scale_f32(DV, VKQ32, ms);
|
|
8383
|
+
} else {
|
|
8384
|
+
vs = expf(s - M);
|
|
8385
|
+
}
|
|
8386
|
+
|
|
8387
|
+
S = S*ms + vs;
|
|
8388
|
+
}
|
|
8389
|
+
|
|
8192
8390
|
// V /= S
|
|
8193
8391
|
const float S_inv = 1.0f/S;
|
|
8194
8392
|
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
|
@@ -8208,17 +8406,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|
|
8208
8406
|
|
|
8209
8407
|
void ggml_compute_forward_flash_attn_ext(
|
|
8210
8408
|
const ggml_compute_params * params,
|
|
8211
|
-
const ggml_tensor * q,
|
|
8212
|
-
const ggml_tensor * k,
|
|
8213
|
-
const ggml_tensor * v,
|
|
8214
|
-
const ggml_tensor * mask,
|
|
8215
8409
|
ggml_tensor * dst) {
|
|
8216
8410
|
switch (dst->op_params[3]) {
|
|
8217
8411
|
case GGML_PREC_DEFAULT:
|
|
8218
8412
|
case GGML_PREC_F32:
|
|
8219
8413
|
{
|
|
8220
8414
|
// uses F32 accumulators
|
|
8221
|
-
ggml_compute_forward_flash_attn_ext_f16(params,
|
|
8415
|
+
ggml_compute_forward_flash_attn_ext_f16(params, dst);
|
|
8222
8416
|
} break;
|
|
8223
8417
|
default:
|
|
8224
8418
|
{
|
|
@@ -9080,6 +9274,10 @@ void ggml_compute_forward_glu(
|
|
|
9080
9274
|
{
|
|
9081
9275
|
ggml_compute_forward_swiglu(params, dst);
|
|
9082
9276
|
} break;
|
|
9277
|
+
case GGML_GLU_OP_SWIGLU_OAI:
|
|
9278
|
+
{
|
|
9279
|
+
ggml_compute_forward_swiglu_oai(params, dst);
|
|
9280
|
+
} break;
|
|
9083
9281
|
case GGML_GLU_OP_GEGLU_ERF:
|
|
9084
9282
|
{
|
|
9085
9283
|
ggml_compute_forward_geglu_erf(params, dst);
|
|
@@ -10132,6 +10330,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
|
|
10132
10330
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
10133
10331
|
|
|
10134
10332
|
const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
|
|
10333
|
+
|
|
10135
10334
|
const float alpha = adamw_params_ptr[0];
|
|
10136
10335
|
const float beta1 = adamw_params_ptr[1];
|
|
10137
10336
|
const float beta2 = adamw_params_ptr[2];
|
|
@@ -10139,7 +10338,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
|
|
10139
10338
|
const float wd = adamw_params_ptr[4];
|
|
10140
10339
|
const float beta1h = adamw_params_ptr[5];
|
|
10141
10340
|
const float beta2h = adamw_params_ptr[6];
|
|
10142
|
-
|
|
10341
|
+
const float keep = 1.f - alpha * wd;
|
|
10143
10342
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
10144
10343
|
const int64_t i03 = ir/(ne02*ne01);
|
|
10145
10344
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
|
@@ -10162,7 +10361,7 @@ static void ggml_compute_forward_opt_step_adamw_f32(
|
|
|
10162
10361
|
// The weight decay is applied independently of the Adam momenta m and v.
|
|
10163
10362
|
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
|
|
10164
10363
|
// See: https://arxiv.org/pdf/1711.05101v3.pdf
|
|
10165
|
-
w[i00] = w[i00]*
|
|
10364
|
+
w[i00] = w[i00] * keep - alpha * mh / vh;
|
|
10166
10365
|
}
|
|
10167
10366
|
}
|
|
10168
10367
|
}
|
|
@@ -10184,3 +10383,63 @@ void ggml_compute_forward_opt_step_adamw(
|
|
|
10184
10383
|
}
|
|
10185
10384
|
}
|
|
10186
10385
|
}
|
|
10386
|
+
|
|
10387
|
+
static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
|
|
10388
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
10389
|
+
const ggml_tensor * src0_grad = dst->src[1];
|
|
10390
|
+
const ggml_tensor * sgd_params = dst->src[2];
|
|
10391
|
+
|
|
10392
|
+
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
|
10393
|
+
GGML_ASSERT(ggml_nelements(sgd_params) == 2);
|
|
10394
|
+
|
|
10395
|
+
const int ith = params->ith;
|
|
10396
|
+
const int nth = params->nth;
|
|
10397
|
+
|
|
10398
|
+
const int nr = ggml_nrows(src0);
|
|
10399
|
+
|
|
10400
|
+
GGML_TENSOR_UNARY_OP_LOCALS
|
|
10401
|
+
GGML_ASSERT(nb00 == sizeof(float));
|
|
10402
|
+
|
|
10403
|
+
// rows per thread
|
|
10404
|
+
const int dr = (nr + nth - 1) / nth;
|
|
10405
|
+
|
|
10406
|
+
// row range for this thread
|
|
10407
|
+
const int ir0 = dr * ith;
|
|
10408
|
+
const int ir1 = MIN(ir0 + dr, nr);
|
|
10409
|
+
|
|
10410
|
+
// using adamw param subset we care about - alpha, wd - could have a separate struct
|
|
10411
|
+
const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
|
|
10412
|
+
const float alpha = sgd_params_ptr[0];
|
|
10413
|
+
const float keep = 1.f - alpha * sgd_params_ptr[1];
|
|
10414
|
+
|
|
10415
|
+
for (int ir = ir0; ir < ir1; ++ir) {
|
|
10416
|
+
const int64_t i03 = ir / (ne02 * ne01);
|
|
10417
|
+
const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
|
|
10418
|
+
const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
|
|
10419
|
+
|
|
10420
|
+
const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
|
|
10421
|
+
|
|
10422
|
+
float * w = (float *) ((char *) src0->data + offset); // weight
|
|
10423
|
+
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
|
|
10424
|
+
|
|
10425
|
+
for (int i00 = 0; i00 < ne00; ++i00) {
|
|
10426
|
+
w[i00] = w[i00] * keep - alpha * g[i00];
|
|
10427
|
+
}
|
|
10428
|
+
}
|
|
10429
|
+
}
|
|
10430
|
+
|
|
10431
|
+
void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
|
|
10432
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
10433
|
+
|
|
10434
|
+
switch (src0->type) {
|
|
10435
|
+
case GGML_TYPE_F32:
|
|
10436
|
+
{
|
|
10437
|
+
ggml_compute_forward_opt_step_sgd_f32(params, dst);
|
|
10438
|
+
}
|
|
10439
|
+
break;
|
|
10440
|
+
default:
|
|
10441
|
+
{
|
|
10442
|
+
GGML_ABORT("fatal error - sgd is F32 only");
|
|
10443
|
+
}
|
|
10444
|
+
}
|
|
10445
|
+
}
|
|
@@ -29,6 +29,7 @@ extern "C" {
|
|
|
29
29
|
|
|
30
30
|
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
31
31
|
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
32
|
+
void ggml_compute_forward_add_id(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
32
33
|
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
33
34
|
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
34
35
|
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
@@ -82,13 +83,7 @@ void ggml_compute_forward_arange(const struct ggml_compute_params * params, stru
|
|
|
82
83
|
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
83
84
|
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
84
85
|
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
85
|
-
void ggml_compute_forward_flash_attn_ext(
|
|
86
|
-
const struct ggml_compute_params * params,
|
|
87
|
-
const struct ggml_tensor * q,
|
|
88
|
-
const struct ggml_tensor * k,
|
|
89
|
-
const struct ggml_tensor * v,
|
|
90
|
-
const struct ggml_tensor * mask,
|
|
91
|
-
struct ggml_tensor * dst);
|
|
86
|
+
void ggml_compute_forward_flash_attn_ext(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
92
87
|
void ggml_compute_forward_flash_attn_back(
|
|
93
88
|
const struct ggml_compute_params * params,
|
|
94
89
|
const bool masked,
|
|
@@ -112,7 +107,7 @@ void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params *
|
|
|
112
107
|
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
113
108
|
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
114
109
|
void ggml_compute_forward_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
115
|
-
|
|
110
|
+
void ggml_compute_forward_opt_step_sgd(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
116
111
|
#ifdef __cplusplus
|
|
117
112
|
}
|
|
118
113
|
#endif
|
|
@@ -46,6 +46,10 @@ void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRI
|
|
|
46
46
|
quantize_row_q8_1_ref(x, y, k);
|
|
47
47
|
}
|
|
48
48
|
|
|
49
|
+
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
|
50
|
+
quantize_row_mxfp4_ref(x, y, k);
|
|
51
|
+
}
|
|
52
|
+
|
|
49
53
|
//
|
|
50
54
|
// 2-6 bit quantization in super-blocks
|
|
51
55
|
//
|
|
@@ -181,6 +185,37 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
|
|
181
185
|
*s = sumf;
|
|
182
186
|
}
|
|
183
187
|
|
|
188
|
+
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
189
|
+
assert(nrc == 1);
|
|
190
|
+
UNUSED(nrc);
|
|
191
|
+
UNUSED(bx);
|
|
192
|
+
UNUSED(by);
|
|
193
|
+
UNUSED(bs);
|
|
194
|
+
assert(n % QK_MXFP4 == 0);
|
|
195
|
+
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
|
|
196
|
+
|
|
197
|
+
const block_mxfp4 * GGML_RESTRICT x = vx;
|
|
198
|
+
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
199
|
+
|
|
200
|
+
const int nb = n / QK_MXFP4;
|
|
201
|
+
|
|
202
|
+
int ib = 0;
|
|
203
|
+
float sumf = 0;
|
|
204
|
+
|
|
205
|
+
for (; ib < nb; ++ib) {
|
|
206
|
+
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
|
|
207
|
+
|
|
208
|
+
int sumi1 = 0;
|
|
209
|
+
int sumi2 = 0;
|
|
210
|
+
for (int j = 0; j < QK_MXFP4/2; ++j) {
|
|
211
|
+
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
|
|
212
|
+
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
|
|
213
|
+
}
|
|
214
|
+
sumf += d * (sumi1 + sumi2);
|
|
215
|
+
}
|
|
216
|
+
*s = sumf;
|
|
217
|
+
}
|
|
218
|
+
|
|
184
219
|
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
185
220
|
const int qk = QK8_0;
|
|
186
221
|
const int nb = n / qk;
|
|
@@ -19,6 +19,8 @@ void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
|
|
19
19
|
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
20
20
|
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
21
21
|
|
|
22
|
+
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
23
|
+
|
|
22
24
|
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
23
25
|
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
24
26
|
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
@@ -39,6 +41,8 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|
|
39
41
|
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
40
42
|
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
41
43
|
|
|
44
|
+
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
45
|
+
|
|
42
46
|
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
43
47
|
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
44
48
|
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
@@ -67,8 +71,12 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
|
|
67
71
|
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
68
72
|
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
69
73
|
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
74
|
+
|
|
75
|
+
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
76
|
+
|
|
70
77
|
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
71
78
|
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
79
|
+
|
|
72
80
|
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
73
81
|
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
74
82
|
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|