@fugood/llama.node 1.1.5 → 1.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +17 -13
- package/src/LlamaCompletionWorker.cpp +2 -0
- package/src/llama.cpp/common/arg.cpp +28 -11
- package/src/llama.cpp/common/chat.cpp +46 -2
- package/src/llama.cpp/common/chat.h +7 -2
- package/src/llama.cpp/common/common.h +3 -2
- package/src/llama.cpp/ggml/CMakeLists.txt +3 -2
- package/src/llama.cpp/ggml/include/ggml.h +37 -1
- package/src/llama.cpp/ggml/src/CMakeLists.txt +12 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +61 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/x86/quants.c +96 -8
- package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +6 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +14 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +207 -9
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +2 -7
- package/src/llama.cpp/ggml/src/ggml-cpu/quants.c +35 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/quants.h +8 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +19 -4
- package/src/llama.cpp/include/llama.h +1 -0
- package/src/llama.cpp/src/llama-arch.cpp +65 -0
- package/src/llama.cpp/src/llama-arch.h +10 -0
- package/src/llama.cpp/src/llama-chat.cpp +13 -0
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +8 -8
- package/src/llama.cpp/src/llama-graph.cpp +118 -9
- package/src/llama.cpp/src/llama-graph.h +38 -0
- package/src/llama.cpp/src/llama-hparams.h +5 -3
- package/src/llama.cpp/src/llama-kv-cache-unified.cpp +4 -0
- package/src/llama.cpp/src/llama-model-loader.cpp +1 -0
- package/src/llama.cpp/src/llama-model-loader.h +3 -2
- package/src/llama.cpp/src/llama-model.cpp +499 -4
- package/src/llama.cpp/src/llama-model.h +24 -4
- package/src/llama.cpp/src/llama-quant.cpp +37 -1
- package/src/llama.cpp/src/llama-vocab.cpp +42 -0
|
@@ -66,6 +66,12 @@ static inline int hsum_i32_4(const __m128i a) {
|
|
|
66
66
|
}
|
|
67
67
|
|
|
68
68
|
#if defined(__AVX2__) || defined(__AVX512F__)
|
|
69
|
+
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
|
|
70
|
+
const __m256i ax = _mm256_sign_epi8(x, x);
|
|
71
|
+
const __m256i sy = _mm256_sign_epi8(y, x);
|
|
72
|
+
return _mm256_maddubs_epi16(ax, sy);
|
|
73
|
+
}
|
|
74
|
+
|
|
69
75
|
// spread 32 bits to 32 bytes { 0x00, 0xFF }
|
|
70
76
|
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
|
|
71
77
|
uint32_t x32;
|
|
@@ -261,6 +267,11 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
|
|
|
261
267
|
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
|
262
268
|
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
|
263
269
|
}
|
|
270
|
+
|
|
271
|
+
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
|
|
272
|
+
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
|
273
|
+
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
|
274
|
+
}
|
|
264
275
|
#endif
|
|
265
276
|
#elif defined(__SSSE3__)
|
|
266
277
|
// horizontally add 4x4 floats
|
|
@@ -746,6 +757,91 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|
|
746
757
|
#endif
|
|
747
758
|
}
|
|
748
759
|
|
|
760
|
+
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
761
|
+
assert(nrc == 1);
|
|
762
|
+
UNUSED(nrc);
|
|
763
|
+
UNUSED(bx);
|
|
764
|
+
UNUSED(by);
|
|
765
|
+
UNUSED(bs);
|
|
766
|
+
assert(n % QK_MXFP4 == 0);
|
|
767
|
+
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
|
|
768
|
+
|
|
769
|
+
const block_mxfp4 * GGML_RESTRICT x = vx;
|
|
770
|
+
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
771
|
+
|
|
772
|
+
const int nb = n / QK_MXFP4;
|
|
773
|
+
|
|
774
|
+
int ib = 0;
|
|
775
|
+
float sumf = 0;
|
|
776
|
+
|
|
777
|
+
#if defined __AVX2__
|
|
778
|
+
|
|
779
|
+
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
|
|
780
|
+
const __m128i m4b = _mm_set1_epi8(0x0f);
|
|
781
|
+
const __m256i mone = _mm256_set1_epi16(1);
|
|
782
|
+
|
|
783
|
+
__m256 accum1 = _mm256_setzero_ps();
|
|
784
|
+
__m256 accum2 = _mm256_setzero_ps();
|
|
785
|
+
for (; ib + 1 < nb; ib += 2) {
|
|
786
|
+
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
|
|
787
|
+
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
|
|
788
|
+
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
|
|
789
|
+
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
|
|
790
|
+
const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
|
|
791
|
+
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
|
|
792
|
+
const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
|
|
793
|
+
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
|
|
794
|
+
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
|
|
795
|
+
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
|
|
796
|
+
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
|
|
797
|
+
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
|
|
798
|
+
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
|
|
799
|
+
_mm256_cvtepi32_ps(p_1), accum1);
|
|
800
|
+
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
|
|
801
|
+
_mm256_cvtepi32_ps(p_2), accum2);
|
|
802
|
+
}
|
|
803
|
+
|
|
804
|
+
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
|
|
805
|
+
|
|
806
|
+
#elif defined __AVX__
|
|
807
|
+
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
|
|
808
|
+
const __m128i m4b = _mm_set1_epi8(0x0f);
|
|
809
|
+
|
|
810
|
+
__m256 accum = _mm256_setzero_ps();
|
|
811
|
+
for (; ib + 1 < nb; ib += 2) {
|
|
812
|
+
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
|
|
813
|
+
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
|
|
814
|
+
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
|
|
815
|
+
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
|
|
816
|
+
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
|
|
817
|
+
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
|
|
818
|
+
|
|
819
|
+
const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
|
|
820
|
+
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
|
|
821
|
+
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
|
|
822
|
+
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
|
|
823
|
+
|
|
824
|
+
const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
|
|
825
|
+
const __m256 deltas = quad_mx_delta_float(x[ib].e, y[ib].d, x[ib + 1].e, y[ib + 1].d);
|
|
826
|
+
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
|
|
827
|
+
}
|
|
828
|
+
|
|
829
|
+
sumf = hsum_float_8(accum);
|
|
830
|
+
|
|
831
|
+
#endif
|
|
832
|
+
for (; ib < nb; ++ib) {
|
|
833
|
+
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
|
|
834
|
+
int sumi1 = 0;
|
|
835
|
+
int sumi2 = 0;
|
|
836
|
+
for (int j = 0; j < QK_MXFP4/2; ++j) {
|
|
837
|
+
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
|
|
838
|
+
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
|
|
839
|
+
}
|
|
840
|
+
sumf += d * (sumi1 + sumi2);
|
|
841
|
+
}
|
|
842
|
+
*s = sumf;
|
|
843
|
+
}
|
|
844
|
+
|
|
749
845
|
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
750
846
|
const int qk = QK8_0;
|
|
751
847
|
const int nb = n / qk;
|
|
@@ -3206,14 +3302,6 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
|
|
3206
3302
|
#endif
|
|
3207
3303
|
}
|
|
3208
3304
|
|
|
3209
|
-
#if defined(__AVX2__)
|
|
3210
|
-
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
|
|
3211
|
-
const __m256i ax = _mm256_sign_epi8(x, x);
|
|
3212
|
-
const __m256i sy = _mm256_sign_epi8(y, x);
|
|
3213
|
-
return _mm256_maddubs_epi16(ax, sy);
|
|
3214
|
-
}
|
|
3215
|
-
#endif
|
|
3216
|
-
|
|
3217
3305
|
void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
3218
3306
|
assert(n % QK_K == 0);
|
|
3219
3307
|
assert(nrc == 1);
|
|
@@ -13,6 +13,7 @@
|
|
|
13
13
|
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
|
14
14
|
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
|
15
15
|
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
|
|
16
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
16
17
|
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
|
17
18
|
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
|
18
19
|
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
|
@@ -68,6 +69,7 @@
|
|
|
68
69
|
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
|
69
70
|
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
|
70
71
|
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
|
72
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
71
73
|
// repack.cpp
|
|
72
74
|
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
|
73
75
|
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
|
@@ -90,6 +92,7 @@
|
|
|
90
92
|
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
|
91
93
|
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
|
92
94
|
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
|
95
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
93
96
|
// repack.cpp
|
|
94
97
|
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
|
95
98
|
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
|
@@ -120,6 +123,7 @@
|
|
|
120
123
|
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
|
121
124
|
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
|
122
125
|
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
|
126
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
123
127
|
// repack.cpp
|
|
124
128
|
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
|
125
129
|
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
|
@@ -149,6 +153,7 @@
|
|
|
149
153
|
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
|
150
154
|
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
|
151
155
|
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
|
156
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
152
157
|
// repack.cpp
|
|
153
158
|
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
|
154
159
|
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
|
@@ -179,6 +184,7 @@
|
|
|
179
184
|
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
|
180
185
|
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
|
|
181
186
|
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
|
|
187
|
+
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
|
182
188
|
// repack.cpp
|
|
183
189
|
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
|
184
190
|
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
|
@@ -253,6 +253,12 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
|
|
253
253
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
|
254
254
|
.nrows = 1,
|
|
255
255
|
},
|
|
256
|
+
[GGML_TYPE_MXFP4] = {
|
|
257
|
+
.from_float = quantize_row_mxfp4,
|
|
258
|
+
.vec_dot = ggml_vec_dot_mxfp4_q8_0,
|
|
259
|
+
.vec_dot_type = GGML_TYPE_Q8_0,
|
|
260
|
+
.nrows = 1,
|
|
261
|
+
},
|
|
256
262
|
[GGML_TYPE_Q2_K] = {
|
|
257
263
|
.from_float = quantize_row_q2_K,
|
|
258
264
|
.vec_dot = ggml_vec_dot_q2_K_q8_K,
|
|
@@ -1670,6 +1676,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|
|
1670
1676
|
{
|
|
1671
1677
|
ggml_compute_forward_add(params, tensor);
|
|
1672
1678
|
} break;
|
|
1679
|
+
case GGML_OP_ADD_ID:
|
|
1680
|
+
{
|
|
1681
|
+
ggml_compute_forward_add_id(params, tensor);
|
|
1682
|
+
} break;
|
|
1673
1683
|
case GGML_OP_ADD1:
|
|
1674
1684
|
{
|
|
1675
1685
|
ggml_compute_forward_add1(params, tensor);
|
|
@@ -1924,7 +1934,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|
|
1924
1934
|
} break;
|
|
1925
1935
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
1926
1936
|
{
|
|
1927
|
-
ggml_compute_forward_flash_attn_ext(params, tensor
|
|
1937
|
+
ggml_compute_forward_flash_attn_ext(params, tensor);
|
|
1928
1938
|
} break;
|
|
1929
1939
|
case GGML_OP_FLASH_ATTN_BACK:
|
|
1930
1940
|
{
|
|
@@ -2111,6 +2121,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|
|
2111
2121
|
case GGML_OP_DUP:
|
|
2112
2122
|
case GGML_OP_CONT:
|
|
2113
2123
|
case GGML_OP_ADD:
|
|
2124
|
+
case GGML_OP_ADD_ID:
|
|
2114
2125
|
case GGML_OP_ADD1:
|
|
2115
2126
|
case GGML_OP_ACC:
|
|
2116
2127
|
{
|
|
@@ -2172,6 +2183,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|
|
2172
2183
|
case GGML_GLU_OP_REGLU:
|
|
2173
2184
|
case GGML_GLU_OP_GEGLU:
|
|
2174
2185
|
case GGML_GLU_OP_SWIGLU:
|
|
2186
|
+
case GGML_GLU_OP_SWIGLU_OAI:
|
|
2175
2187
|
case GGML_GLU_OP_GEGLU_ERF:
|
|
2176
2188
|
case GGML_GLU_OP_GEGLU_QUICK:
|
|
2177
2189
|
{
|
|
@@ -2673,6 +2685,7 @@ struct ggml_cplan ggml_graph_plan(
|
|
|
2673
2685
|
}
|
|
2674
2686
|
} break;
|
|
2675
2687
|
case GGML_OP_ADD:
|
|
2688
|
+
case GGML_OP_ADD_ID:
|
|
2676
2689
|
case GGML_OP_ADD1:
|
|
2677
2690
|
{
|
|
2678
2691
|
if (ggml_is_quantized(node->src[0]->type)) {
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
#include "vec.h"
|
|
9
9
|
|
|
10
10
|
#include <float.h>
|
|
11
|
+
#include <algorithm>
|
|
11
12
|
|
|
12
13
|
// ggml_compute_forward_dup
|
|
13
14
|
|
|
@@ -1283,6 +1284,7 @@ void ggml_compute_forward_add(
|
|
|
1283
1284
|
case GGML_TYPE_Q5_0:
|
|
1284
1285
|
case GGML_TYPE_Q5_1:
|
|
1285
1286
|
case GGML_TYPE_Q8_0:
|
|
1287
|
+
case GGML_TYPE_MXFP4:
|
|
1286
1288
|
case GGML_TYPE_Q2_K:
|
|
1287
1289
|
case GGML_TYPE_Q3_K:
|
|
1288
1290
|
case GGML_TYPE_Q4_K:
|
|
@@ -1309,6 +1311,77 @@ void ggml_compute_forward_add(
|
|
|
1309
1311
|
}
|
|
1310
1312
|
}
|
|
1311
1313
|
|
|
1314
|
+
// ggml_compute_forward_add_id
|
|
1315
|
+
|
|
1316
|
+
static void ggml_compute_forward_add_id_f32(
|
|
1317
|
+
const ggml_compute_params * params,
|
|
1318
|
+
ggml_tensor * dst) {
|
|
1319
|
+
|
|
1320
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
1321
|
+
const ggml_tensor * src1 = dst->src[1];
|
|
1322
|
+
const ggml_tensor * src2 = dst->src[2];
|
|
1323
|
+
|
|
1324
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
1325
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
1326
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
1327
|
+
GGML_ASSERT(src2->type == GGML_TYPE_I32);
|
|
1328
|
+
|
|
1329
|
+
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
1330
|
+
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
1331
|
+
|
|
1332
|
+
const int ith = params->ith;
|
|
1333
|
+
const int nth = params->nth;
|
|
1334
|
+
|
|
1335
|
+
const int nr = ggml_nrows(src0);
|
|
1336
|
+
|
|
1337
|
+
GGML_TENSOR_TERNARY_OP_LOCALS
|
|
1338
|
+
|
|
1339
|
+
GGML_ASSERT( nb0 == sizeof(float));
|
|
1340
|
+
GGML_ASSERT(nb10 == sizeof(float));
|
|
1341
|
+
|
|
1342
|
+
// rows per thread
|
|
1343
|
+
const int dr = (nr + nth - 1)/nth;
|
|
1344
|
+
|
|
1345
|
+
// row range for this thread
|
|
1346
|
+
const int ir0 = dr*ith;
|
|
1347
|
+
const int ir1 = MIN(ir0 + dr, nr);
|
|
1348
|
+
|
|
1349
|
+
for (int ir = ir0; ir < ir1; ++ir) {
|
|
1350
|
+
// src0 indices
|
|
1351
|
+
const int i3 = ir/(ne2*ne1);
|
|
1352
|
+
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
1353
|
+
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
1354
|
+
|
|
1355
|
+
// src1 indices
|
|
1356
|
+
const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
|
|
1357
|
+
|
|
1358
|
+
GGML_ASSERT(i11 >= 0 && i11 < ne11);
|
|
1359
|
+
|
|
1360
|
+
ggml_vec_add_f32(ne0,
|
|
1361
|
+
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
1362
|
+
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
1363
|
+
(float *) ((char *) src1->data + i11*nb11));
|
|
1364
|
+
}
|
|
1365
|
+
}
|
|
1366
|
+
|
|
1367
|
+
void ggml_compute_forward_add_id(
|
|
1368
|
+
const ggml_compute_params * params,
|
|
1369
|
+
ggml_tensor * dst) {
|
|
1370
|
+
|
|
1371
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
1372
|
+
|
|
1373
|
+
switch (src0->type) {
|
|
1374
|
+
case GGML_TYPE_F32:
|
|
1375
|
+
{
|
|
1376
|
+
ggml_compute_forward_add_id_f32(params, dst);
|
|
1377
|
+
} break;
|
|
1378
|
+
default:
|
|
1379
|
+
{
|
|
1380
|
+
GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
|
|
1381
|
+
}
|
|
1382
|
+
}
|
|
1383
|
+
}
|
|
1384
|
+
|
|
1312
1385
|
// ggml_compute_forward_add1
|
|
1313
1386
|
|
|
1314
1387
|
static void ggml_compute_forward_add1_f32(
|
|
@@ -1660,6 +1733,7 @@ void ggml_compute_forward_add1(
|
|
|
1660
1733
|
case GGML_TYPE_Q5_1:
|
|
1661
1734
|
case GGML_TYPE_Q8_0:
|
|
1662
1735
|
case GGML_TYPE_Q8_1:
|
|
1736
|
+
case GGML_TYPE_MXFP4:
|
|
1663
1737
|
case GGML_TYPE_Q2_K:
|
|
1664
1738
|
case GGML_TYPE_Q3_K:
|
|
1665
1739
|
case GGML_TYPE_Q4_K:
|
|
@@ -1787,6 +1861,7 @@ void ggml_compute_forward_acc(
|
|
|
1787
1861
|
case GGML_TYPE_Q5_1:
|
|
1788
1862
|
case GGML_TYPE_Q8_0:
|
|
1789
1863
|
case GGML_TYPE_Q8_1:
|
|
1864
|
+
case GGML_TYPE_MXFP4:
|
|
1790
1865
|
case GGML_TYPE_Q2_K:
|
|
1791
1866
|
case GGML_TYPE_Q3_K:
|
|
1792
1867
|
case GGML_TYPE_Q4_K:
|
|
@@ -3614,6 +3689,93 @@ static void ggml_compute_forward_swiglu(
|
|
|
3614
3689
|
}
|
|
3615
3690
|
}
|
|
3616
3691
|
|
|
3692
|
+
// ggml_compute_forward_swiglu_oai
|
|
3693
|
+
|
|
3694
|
+
static void ggml_compute_forward_swiglu_oai_f32(
|
|
3695
|
+
const ggml_compute_params * params,
|
|
3696
|
+
ggml_tensor * dst) {
|
|
3697
|
+
|
|
3698
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
3699
|
+
const ggml_tensor * src1 = dst->src[1];
|
|
3700
|
+
char * src0_d = (char *) src0->data;
|
|
3701
|
+
char * src1_d = (char *) (src1 ? src1->data : src0->data);
|
|
3702
|
+
const size_t src0_o = src0->nb[1];
|
|
3703
|
+
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
|
|
3704
|
+
|
|
3705
|
+
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
3706
|
+
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
|
3707
|
+
|
|
3708
|
+
if (src1) {
|
|
3709
|
+
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
|
3710
|
+
GGML_ASSERT(src0->type == src1->type);
|
|
3711
|
+
}
|
|
3712
|
+
|
|
3713
|
+
const int ith = params->ith;
|
|
3714
|
+
const int nth = params->nth;
|
|
3715
|
+
|
|
3716
|
+
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
|
|
3717
|
+
const int nr = ggml_nrows(src0);
|
|
3718
|
+
|
|
3719
|
+
GGML_ASSERT(dst->ne[0] == nc);
|
|
3720
|
+
GGML_ASSERT(ggml_nrows(dst) == nr);
|
|
3721
|
+
|
|
3722
|
+
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
|
3723
|
+
const float alpha = ggml_get_op_params_f32(dst, 2);
|
|
3724
|
+
const float limit = ggml_get_op_params_f32(dst, 3);
|
|
3725
|
+
|
|
3726
|
+
// rows per thread
|
|
3727
|
+
const int dr = (nr + nth - 1)/nth;
|
|
3728
|
+
|
|
3729
|
+
// row range for this thread
|
|
3730
|
+
const int ir0 = dr*ith;
|
|
3731
|
+
const int ir1 = MIN(ir0 + dr, nr);
|
|
3732
|
+
|
|
3733
|
+
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
3734
|
+
float * src0_p = (float *) (src0_d + i1*src0_o);
|
|
3735
|
+
float * src1_p = (float *) (src1_d + i1*src1_o);
|
|
3736
|
+
float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
|
|
3737
|
+
|
|
3738
|
+
if (!src1) {
|
|
3739
|
+
src0_p += swapped ? nc : 0;
|
|
3740
|
+
src1_p += swapped ? 0 : nc;
|
|
3741
|
+
}
|
|
3742
|
+
|
|
3743
|
+
for (int k = 0; k < nc; k++) {
|
|
3744
|
+
const float x = std::min(src0_p[k], limit);
|
|
3745
|
+
const float y = std::clamp(src1_p[k], -limit, limit);
|
|
3746
|
+
const float out_glu = x / (1.f + expf(alpha * (-x)));
|
|
3747
|
+
dst_p[k] = out_glu * (y + 1.f);
|
|
3748
|
+
}
|
|
3749
|
+
|
|
3750
|
+
#ifndef NDEBUG
|
|
3751
|
+
for (int k = 0; k < nc; k++) {
|
|
3752
|
+
const float x = dst_p[k];
|
|
3753
|
+
GGML_UNUSED(x);
|
|
3754
|
+
assert(!isnan(x));
|
|
3755
|
+
assert(!isinf(x));
|
|
3756
|
+
}
|
|
3757
|
+
#endif
|
|
3758
|
+
}
|
|
3759
|
+
}
|
|
3760
|
+
|
|
3761
|
+
static void ggml_compute_forward_swiglu_oai(
|
|
3762
|
+
const ggml_compute_params * params,
|
|
3763
|
+
ggml_tensor * dst) {
|
|
3764
|
+
|
|
3765
|
+
const ggml_tensor * src0 = dst->src[0];
|
|
3766
|
+
|
|
3767
|
+
switch (src0->type) {
|
|
3768
|
+
case GGML_TYPE_F32:
|
|
3769
|
+
{
|
|
3770
|
+
ggml_compute_forward_swiglu_oai_f32(params, dst);
|
|
3771
|
+
} break;
|
|
3772
|
+
default:
|
|
3773
|
+
{
|
|
3774
|
+
GGML_ABORT("fatal error");
|
|
3775
|
+
}
|
|
3776
|
+
}
|
|
3777
|
+
}
|
|
3778
|
+
|
|
3617
3779
|
// ggml_compute_forward_geglu_erf
|
|
3618
3780
|
|
|
3619
3781
|
static void ggml_compute_forward_geglu_erf_f32(
|
|
@@ -4599,6 +4761,7 @@ void ggml_compute_forward_out_prod(
|
|
|
4599
4761
|
case GGML_TYPE_Q5_0:
|
|
4600
4762
|
case GGML_TYPE_Q5_1:
|
|
4601
4763
|
case GGML_TYPE_Q8_0:
|
|
4764
|
+
case GGML_TYPE_MXFP4:
|
|
4602
4765
|
case GGML_TYPE_Q2_K:
|
|
4603
4766
|
case GGML_TYPE_Q3_K:
|
|
4604
4767
|
case GGML_TYPE_Q4_K:
|
|
@@ -4873,6 +5036,7 @@ void ggml_compute_forward_set(
|
|
|
4873
5036
|
case GGML_TYPE_Q5_1:
|
|
4874
5037
|
case GGML_TYPE_Q8_0:
|
|
4875
5038
|
case GGML_TYPE_Q8_1:
|
|
5039
|
+
case GGML_TYPE_MXFP4:
|
|
4876
5040
|
case GGML_TYPE_Q2_K:
|
|
4877
5041
|
case GGML_TYPE_Q3_K:
|
|
4878
5042
|
case GGML_TYPE_Q4_K:
|
|
@@ -5134,6 +5298,7 @@ void ggml_compute_forward_get_rows(
|
|
|
5134
5298
|
case GGML_TYPE_Q5_1:
|
|
5135
5299
|
case GGML_TYPE_Q8_0:
|
|
5136
5300
|
case GGML_TYPE_Q8_1:
|
|
5301
|
+
case GGML_TYPE_MXFP4:
|
|
5137
5302
|
case GGML_TYPE_Q2_K:
|
|
5138
5303
|
case GGML_TYPE_Q3_K:
|
|
5139
5304
|
case GGML_TYPE_Q4_K:
|
|
@@ -5523,6 +5688,7 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5523
5688
|
|
|
5524
5689
|
const ggml_tensor * src0 = dst->src[0];
|
|
5525
5690
|
const ggml_tensor * src1 = dst->src[1];
|
|
5691
|
+
const ggml_tensor * src2 = dst->src[2];
|
|
5526
5692
|
|
|
5527
5693
|
assert(ggml_is_contiguous(dst));
|
|
5528
5694
|
assert(ggml_are_same_shape(src0, dst));
|
|
@@ -5557,6 +5723,9 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5557
5723
|
|
|
5558
5724
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
5559
5725
|
|
|
5726
|
+
// sinks
|
|
5727
|
+
const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
|
|
5728
|
+
|
|
5560
5729
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
5561
5730
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
5562
5731
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
@@ -5599,9 +5768,18 @@ static void ggml_compute_forward_soft_max_f32(
|
|
|
5599
5768
|
float max = -INFINITY;
|
|
5600
5769
|
ggml_vec_max_f32(ne00, &max, wp);
|
|
5601
5770
|
|
|
5771
|
+
// if we have sinks, make a correction as if they were included in the softmax
|
|
5772
|
+
if (sk) {
|
|
5773
|
+
max = MAX(max, sk[i02]);
|
|
5774
|
+
}
|
|
5775
|
+
|
|
5602
5776
|
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
|
|
5603
5777
|
assert(sum > 0.0);
|
|
5604
5778
|
|
|
5779
|
+
if (sk) {
|
|
5780
|
+
sum += (ggml_float) expf(sk[i02] - max);
|
|
5781
|
+
}
|
|
5782
|
+
|
|
5605
5783
|
sum = 1.0/sum;
|
|
5606
5784
|
ggml_vec_scale_f32(ne00, dp, sum);
|
|
5607
5785
|
|
|
@@ -5836,6 +6014,7 @@ void ggml_compute_forward_clamp(
|
|
|
5836
6014
|
case GGML_TYPE_Q5_1:
|
|
5837
6015
|
case GGML_TYPE_Q8_0:
|
|
5838
6016
|
case GGML_TYPE_Q8_1:
|
|
6017
|
+
case GGML_TYPE_MXFP4:
|
|
5839
6018
|
case GGML_TYPE_Q2_K:
|
|
5840
6019
|
case GGML_TYPE_Q3_K:
|
|
5841
6020
|
case GGML_TYPE_Q4_K:
|
|
@@ -7989,12 +8168,14 @@ void ggml_compute_forward_argsort(
|
|
|
7989
8168
|
|
|
7990
8169
|
static void ggml_compute_forward_flash_attn_ext_f16(
|
|
7991
8170
|
const ggml_compute_params * params,
|
|
7992
|
-
const ggml_tensor * q,
|
|
7993
|
-
const ggml_tensor * k,
|
|
7994
|
-
const ggml_tensor * v,
|
|
7995
|
-
const ggml_tensor * mask,
|
|
7996
8171
|
ggml_tensor * dst) {
|
|
7997
8172
|
|
|
8173
|
+
const ggml_tensor * q = dst->src[0];
|
|
8174
|
+
const ggml_tensor * k = dst->src[1];
|
|
8175
|
+
const ggml_tensor * v = dst->src[2];
|
|
8176
|
+
const ggml_tensor * mask = dst->src[3];
|
|
8177
|
+
const ggml_tensor * sinks = dst->src[4];
|
|
8178
|
+
|
|
7998
8179
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
7999
8180
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
8000
8181
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
@@ -8189,6 +8370,23 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|
|
8189
8370
|
}
|
|
8190
8371
|
}
|
|
8191
8372
|
|
|
8373
|
+
// sinks
|
|
8374
|
+
if (sinks) {
|
|
8375
|
+
const float s = ((float *)((char *) sinks->data))[h];
|
|
8376
|
+
|
|
8377
|
+
float ms = 1.0f;
|
|
8378
|
+
float vs = 1.0f;
|
|
8379
|
+
|
|
8380
|
+
if (s > M) {
|
|
8381
|
+
ms = expf(M - s);
|
|
8382
|
+
ggml_vec_scale_f32(DV, VKQ32, ms);
|
|
8383
|
+
} else {
|
|
8384
|
+
vs = expf(s - M);
|
|
8385
|
+
}
|
|
8386
|
+
|
|
8387
|
+
S = S*ms + vs;
|
|
8388
|
+
}
|
|
8389
|
+
|
|
8192
8390
|
// V /= S
|
|
8193
8391
|
const float S_inv = 1.0f/S;
|
|
8194
8392
|
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
|
@@ -8208,17 +8406,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|
|
8208
8406
|
|
|
8209
8407
|
void ggml_compute_forward_flash_attn_ext(
|
|
8210
8408
|
const ggml_compute_params * params,
|
|
8211
|
-
const ggml_tensor * q,
|
|
8212
|
-
const ggml_tensor * k,
|
|
8213
|
-
const ggml_tensor * v,
|
|
8214
|
-
const ggml_tensor * mask,
|
|
8215
8409
|
ggml_tensor * dst) {
|
|
8216
8410
|
switch (dst->op_params[3]) {
|
|
8217
8411
|
case GGML_PREC_DEFAULT:
|
|
8218
8412
|
case GGML_PREC_F32:
|
|
8219
8413
|
{
|
|
8220
8414
|
// uses F32 accumulators
|
|
8221
|
-
ggml_compute_forward_flash_attn_ext_f16(params,
|
|
8415
|
+
ggml_compute_forward_flash_attn_ext_f16(params, dst);
|
|
8222
8416
|
} break;
|
|
8223
8417
|
default:
|
|
8224
8418
|
{
|
|
@@ -9080,6 +9274,10 @@ void ggml_compute_forward_glu(
|
|
|
9080
9274
|
{
|
|
9081
9275
|
ggml_compute_forward_swiglu(params, dst);
|
|
9082
9276
|
} break;
|
|
9277
|
+
case GGML_GLU_OP_SWIGLU_OAI:
|
|
9278
|
+
{
|
|
9279
|
+
ggml_compute_forward_swiglu_oai(params, dst);
|
|
9280
|
+
} break;
|
|
9083
9281
|
case GGML_GLU_OP_GEGLU_ERF:
|
|
9084
9282
|
{
|
|
9085
9283
|
ggml_compute_forward_geglu_erf(params, dst);
|
|
@@ -29,6 +29,7 @@ extern "C" {
|
|
|
29
29
|
|
|
30
30
|
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
31
31
|
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
32
|
+
void ggml_compute_forward_add_id(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
32
33
|
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
33
34
|
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
34
35
|
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
@@ -82,13 +83,7 @@ void ggml_compute_forward_arange(const struct ggml_compute_params * params, stru
|
|
|
82
83
|
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
83
84
|
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
84
85
|
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
85
|
-
void ggml_compute_forward_flash_attn_ext(
|
|
86
|
-
const struct ggml_compute_params * params,
|
|
87
|
-
const struct ggml_tensor * q,
|
|
88
|
-
const struct ggml_tensor * k,
|
|
89
|
-
const struct ggml_tensor * v,
|
|
90
|
-
const struct ggml_tensor * mask,
|
|
91
|
-
struct ggml_tensor * dst);
|
|
86
|
+
void ggml_compute_forward_flash_attn_ext(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
92
87
|
void ggml_compute_forward_flash_attn_back(
|
|
93
88
|
const struct ggml_compute_params * params,
|
|
94
89
|
const bool masked,
|
|
@@ -46,6 +46,10 @@ void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRI
|
|
|
46
46
|
quantize_row_q8_1_ref(x, y, k);
|
|
47
47
|
}
|
|
48
48
|
|
|
49
|
+
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
|
50
|
+
quantize_row_mxfp4_ref(x, y, k);
|
|
51
|
+
}
|
|
52
|
+
|
|
49
53
|
//
|
|
50
54
|
// 2-6 bit quantization in super-blocks
|
|
51
55
|
//
|
|
@@ -181,6 +185,37 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
|
|
181
185
|
*s = sumf;
|
|
182
186
|
}
|
|
183
187
|
|
|
188
|
+
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
189
|
+
assert(nrc == 1);
|
|
190
|
+
UNUSED(nrc);
|
|
191
|
+
UNUSED(bx);
|
|
192
|
+
UNUSED(by);
|
|
193
|
+
UNUSED(bs);
|
|
194
|
+
assert(n % QK_MXFP4 == 0);
|
|
195
|
+
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
|
|
196
|
+
|
|
197
|
+
const block_mxfp4 * GGML_RESTRICT x = vx;
|
|
198
|
+
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
199
|
+
|
|
200
|
+
const int nb = n / QK_MXFP4;
|
|
201
|
+
|
|
202
|
+
int ib = 0;
|
|
203
|
+
float sumf = 0;
|
|
204
|
+
|
|
205
|
+
for (; ib < nb; ++ib) {
|
|
206
|
+
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
|
|
207
|
+
|
|
208
|
+
int sumi1 = 0;
|
|
209
|
+
int sumi2 = 0;
|
|
210
|
+
for (int j = 0; j < QK_MXFP4/2; ++j) {
|
|
211
|
+
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
|
|
212
|
+
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
|
|
213
|
+
}
|
|
214
|
+
sumf += d * (sumi1 + sumi2);
|
|
215
|
+
}
|
|
216
|
+
*s = sumf;
|
|
217
|
+
}
|
|
218
|
+
|
|
184
219
|
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
185
220
|
const int qk = QK8_0;
|
|
186
221
|
const int nb = n / qk;
|
|
@@ -19,6 +19,8 @@ void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
|
|
19
19
|
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
20
20
|
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
21
21
|
|
|
22
|
+
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
23
|
+
|
|
22
24
|
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
23
25
|
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
24
26
|
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
@@ -39,6 +41,8 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
|
|
39
41
|
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
40
42
|
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
41
43
|
|
|
44
|
+
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
45
|
+
|
|
42
46
|
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
43
47
|
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
44
48
|
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
@@ -67,8 +71,12 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
|
|
|
67
71
|
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
68
72
|
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
69
73
|
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
74
|
+
|
|
75
|
+
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
76
|
+
|
|
70
77
|
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
71
78
|
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
79
|
+
|
|
72
80
|
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
73
81
|
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
|
74
82
|
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|