@fugood/llama.node 1.0.1 → 1.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +12 -12
  3. package/src/llama.cpp/CMakeLists.txt +0 -1
  4. package/src/llama.cpp/common/arg.cpp +17 -0
  5. package/src/llama.cpp/common/chat.cpp +37 -20
  6. package/src/llama.cpp/common/chat.h +2 -0
  7. package/src/llama.cpp/common/common.h +4 -0
  8. package/src/llama.cpp/ggml/CMakeLists.txt +7 -2
  9. package/src/llama.cpp/ggml/include/ggml-backend.h +1 -1
  10. package/src/llama.cpp/ggml/include/ggml-cpu.h +1 -0
  11. package/src/llama.cpp/ggml/include/ggml.h +181 -10
  12. package/src/llama.cpp/ggml/src/CMakeLists.txt +0 -1
  13. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +6 -1
  14. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +38 -1
  15. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +1 -0
  16. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +1297 -211
  17. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +7 -0
  18. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +1 -1
  19. package/src/llama.cpp/ggml/src/ggml-cpu/vec.cpp +33 -9
  20. package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +103 -9
  21. package/src/llama.cpp/include/llama.h +1 -0
  22. package/src/llama.cpp/src/llama-arch.cpp +108 -2
  23. package/src/llama.cpp/src/llama-arch.h +7 -0
  24. package/src/llama.cpp/src/llama-batch.cpp +27 -1
  25. package/src/llama.cpp/src/llama-batch.h +8 -1
  26. package/src/llama.cpp/src/llama-chat.cpp +15 -0
  27. package/src/llama.cpp/src/llama-chat.h +1 -0
  28. package/src/llama.cpp/src/llama-graph.cpp +95 -81
  29. package/src/llama.cpp/src/llama-graph.h +43 -16
  30. package/src/llama.cpp/src/llama-hparams.cpp +2 -1
  31. package/src/llama.cpp/src/llama-hparams.h +1 -0
  32. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.cpp +28 -18
  33. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.h +4 -2
  34. package/src/llama.cpp/src/llama-kv-cache-unified.cpp +214 -65
  35. package/src/llama.cpp/src/llama-kv-cache-unified.h +62 -24
  36. package/src/llama.cpp/src/llama-kv-cells.h +62 -10
  37. package/src/llama.cpp/src/llama-memory-hybrid.cpp +9 -4
  38. package/src/llama.cpp/src/llama-memory-hybrid.h +3 -1
  39. package/src/llama.cpp/src/llama-memory-recurrent.cpp +34 -16
  40. package/src/llama.cpp/src/llama-memory.cpp +17 -0
  41. package/src/llama.cpp/src/llama-memory.h +3 -0
  42. package/src/llama.cpp/src/llama-model.cpp +1374 -210
  43. package/src/llama.cpp/src/llama-model.h +3 -0
  44. package/src/llama.cpp/src/llama-vocab.cpp +8 -1
  45. package/src/llama.cpp/ggml/include/ggml-kompute.h +0 -50
@@ -3,6 +3,7 @@
3
3
  #include "ggml-cpu.h"
4
4
  #include "ggml-impl.h"
5
5
  #include "binary-ops.h"
6
+ #include "ggml.h"
6
7
  #include "unary-ops.h"
7
8
  #include "vec.h"
8
9
 
@@ -696,24 +697,8 @@ static void ggml_compute_forward_dup_f32(
696
697
  if (ggml_is_contiguous(dst)) {
697
698
  // TODO: simplify
698
699
  if (nb00 == sizeof(float)) {
699
- if (dst->type == GGML_TYPE_F32) {
700
- size_t id = 0;
701
- const size_t rs = ne00 * nb00;
702
- char * dst_ptr = (char *) dst->data;
703
-
704
- for (int i03 = 0; i03 < ne03; i03++) {
705
- for (int i02 = 0; i02 < ne02; i02++) {
706
- id += rs * ir0;
707
- for (int i01 = ir0; i01 < ir1; i01++) {
708
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
709
- memcpy(dst_ptr + id, src0_ptr, rs);
710
- id += rs;
711
- }
712
- id += rs * (ne01 - ir1);
713
- }
714
- }
715
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
716
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
700
+ if (ggml_get_type_traits_cpu(dst->type)->from_float) {
701
+ ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
717
702
 
718
703
  size_t id = 0;
719
704
  size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
@@ -724,7 +709,7 @@ static void ggml_compute_forward_dup_f32(
724
709
  id += rs * ir0;
725
710
  for (int i01 = ir0; i01 < ir1; i01++) {
726
711
  const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
727
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
712
+ from_float(src0_ptr, dst_ptr + id, ne00);
728
713
  id += rs;
729
714
  }
730
715
  id += rs * (ne01 - ir1);
@@ -2300,6 +2285,12 @@ void ggml_compute_forward_repeat(
2300
2285
  {
2301
2286
  ggml_compute_forward_repeat_f32(params, dst);
2302
2287
  } break;
2288
+ // TODO: templateify the implemenation and support for I64
2289
+ // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
2290
+ //case GGML_TYPE_I64:
2291
+ // {
2292
+ // ggml_compute_forward_repeat_i64(params, dst);
2293
+ // } break;
2303
2294
  default:
2304
2295
  {
2305
2296
  GGML_ABORT("fatal error");
@@ -3061,7 +3052,690 @@ static void ggml_compute_forward_leaky_relu_f16(
3061
3052
  }
3062
3053
  }
3063
3054
 
3064
- void ggml_compute_forward_leaky_relu(
3055
+ void ggml_compute_forward_leaky_relu(
3056
+ const ggml_compute_params * params,
3057
+ ggml_tensor * dst) {
3058
+
3059
+ const ggml_tensor * src0 = dst->src[0];
3060
+
3061
+ switch (src0->type) {
3062
+ case GGML_TYPE_F32:
3063
+ {
3064
+ ggml_compute_forward_leaky_relu_f32(params, dst);
3065
+ } break;
3066
+ case GGML_TYPE_F16:
3067
+ {
3068
+ ggml_compute_forward_leaky_relu_f16(params, dst);
3069
+ } break;
3070
+ default:
3071
+ {
3072
+ GGML_ABORT("fatal error");
3073
+ }
3074
+ }
3075
+ }
3076
+
3077
+ // ggml_compute_forward_silu_back
3078
+
3079
+ static void ggml_compute_forward_silu_back_f32(
3080
+ const ggml_compute_params * params,
3081
+ ggml_tensor * dst) {
3082
+
3083
+ const ggml_tensor * grad = dst->src[0];
3084
+ const ggml_tensor * src1 = dst->src[1];
3085
+
3086
+ assert(ggml_is_contiguous_1(grad));
3087
+ assert(ggml_is_contiguous_1(src1));
3088
+ assert(ggml_is_contiguous_1(dst));
3089
+ assert(ggml_are_same_shape(src1, dst));
3090
+ assert(ggml_are_same_shape(src1, grad));
3091
+
3092
+ const int ith = params->ith;
3093
+ const int nth = params->nth;
3094
+
3095
+ const int nc = src1->ne[0];
3096
+ const int nr = ggml_nrows(src1);
3097
+
3098
+ // rows per thread
3099
+ const int dr = (nr + nth - 1)/nth;
3100
+
3101
+ // row range for this thread
3102
+ const int ir0 = dr*ith;
3103
+ const int ir1 = MIN(ir0 + dr, nr);
3104
+
3105
+ for (int i1 = ir0; i1 < ir1; i1++) {
3106
+ ggml_vec_silu_backward_f32(nc,
3107
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
3108
+ (float *) ((char *) src1->data + i1*(src1->nb[1])),
3109
+ (float *) ((char *) grad->data + i1*(grad->nb[1])));
3110
+
3111
+ #ifndef NDEBUG
3112
+ for (int k = 0; k < nc; k++) {
3113
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3114
+ GGML_UNUSED(x);
3115
+ assert(!isnan(x));
3116
+ assert(!isinf(x));
3117
+ }
3118
+ #endif
3119
+ }
3120
+ }
3121
+
3122
+ static void ggml_compute_forward_silu_back_f16(
3123
+ const ggml_compute_params * params,
3124
+ ggml_tensor * dst) {
3125
+
3126
+ const ggml_tensor * grad = dst->src[0];
3127
+ const ggml_tensor * src1 = dst->src[1];
3128
+
3129
+ assert(ggml_is_contiguous_1(grad));
3130
+ assert(ggml_is_contiguous_1(src1));
3131
+ assert(ggml_is_contiguous_1(dst));
3132
+ assert(ggml_are_same_shape(src1, dst));
3133
+ assert(ggml_are_same_shape(src1, grad));
3134
+
3135
+ const int ith = params->ith;
3136
+ const int nth = params->nth;
3137
+
3138
+ const int nc = src1->ne[0];
3139
+ const int nr = ggml_nrows(src1);
3140
+
3141
+ // rows per thread
3142
+ const int dr = (nr + nth - 1)/nth;
3143
+
3144
+ // row range for this thread
3145
+ const int ir0 = dr*ith;
3146
+ const int ir1 = MIN(ir0 + dr, nr);
3147
+
3148
+ for (int i1 = ir0; i1 < ir1; i1++) {
3149
+ ggml_vec_silu_backward_f16(nc,
3150
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
3151
+ (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
3152
+ (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
3153
+
3154
+ #ifndef NDEBUG
3155
+ for (int k = 0; k < nc; k++) {
3156
+ const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3157
+ const float v = GGML_CPU_FP16_TO_FP32(x);
3158
+ GGML_UNUSED(v);
3159
+ assert(!isnan(v));
3160
+ assert(!isinf(v));
3161
+ }
3162
+ #endif
3163
+ }
3164
+ }
3165
+
3166
+ void ggml_compute_forward_silu_back(
3167
+ const ggml_compute_params * params,
3168
+ ggml_tensor * dst) {
3169
+
3170
+ const ggml_tensor * src0 = dst->src[0];
3171
+
3172
+ switch (src0->type) {
3173
+ case GGML_TYPE_F32:
3174
+ {
3175
+ ggml_compute_forward_silu_back_f32(params, dst);
3176
+ } break;
3177
+ case GGML_TYPE_F16:
3178
+ {
3179
+ ggml_compute_forward_silu_back_f16(params, dst);
3180
+ } break;
3181
+ default:
3182
+ {
3183
+ GGML_ABORT("fatal error");
3184
+ }
3185
+ }
3186
+ }
3187
+
3188
+ // ggml_compute_forward_reglu
3189
+
3190
+ static void ggml_compute_forward_reglu_f32(
3191
+ const ggml_compute_params * params,
3192
+ ggml_tensor * dst) {
3193
+
3194
+ const ggml_tensor * src0 = dst->src[0];
3195
+ const ggml_tensor * src1 = dst->src[1];
3196
+ char * src0_d = (char *) src0->data;
3197
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3198
+ const size_t src0_o = src0->nb[1];
3199
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3200
+
3201
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3202
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3203
+
3204
+ if (src1) {
3205
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3206
+ GGML_ASSERT(src0->type == src1->type);
3207
+ }
3208
+
3209
+ const int ith = params->ith;
3210
+ const int nth = params->nth;
3211
+
3212
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3213
+ const int nr = ggml_nrows(src0);
3214
+
3215
+ GGML_ASSERT(dst->ne[0] == nc);
3216
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3217
+
3218
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3219
+
3220
+ // rows per thread
3221
+ const int dr = (nr + nth - 1)/nth;
3222
+
3223
+ // row range for this thread
3224
+ const int ir0 = dr*ith;
3225
+ const int ir1 = MIN(ir0 + dr, nr);
3226
+
3227
+ for (int i1 = ir0; i1 < ir1; i1++) {
3228
+ float * src0_p = (float *) (src0_d + i1*src0_o);
3229
+ float * src1_p = (float *) (src1_d + i1*src1_o);
3230
+
3231
+ if (!src1) {
3232
+ src0_p += swapped ? nc : 0;
3233
+ src1_p += swapped ? 0 : nc;
3234
+ }
3235
+
3236
+ ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3237
+
3238
+ #ifndef NDEBUG
3239
+ for (int k = 0; k < nc; k++) {
3240
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3241
+ GGML_UNUSED(x);
3242
+ assert(!isnan(x));
3243
+ assert(!isinf(x));
3244
+ }
3245
+ #endif
3246
+ }
3247
+ }
3248
+
3249
+ static void ggml_compute_forward_reglu_f16(
3250
+ const ggml_compute_params * params,
3251
+ ggml_tensor * dst) {
3252
+
3253
+ const ggml_tensor * src0 = dst->src[0];
3254
+ const ggml_tensor * src1 = dst->src[1];
3255
+ char * src0_d = (char *) src0->data;
3256
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3257
+ const size_t src0_o = src0->nb[1];
3258
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3259
+
3260
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3261
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3262
+
3263
+ if (src1) {
3264
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3265
+ GGML_ASSERT(src0->type == src1->type);
3266
+ }
3267
+
3268
+ const int ith = params->ith;
3269
+ const int nth = params->nth;
3270
+
3271
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3272
+ const int nr = ggml_nrows(src0);
3273
+
3274
+ GGML_ASSERT(dst->ne[0] == nc);
3275
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3276
+
3277
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3278
+
3279
+ // rows per thread
3280
+ const int dr = (nr + nth - 1)/nth;
3281
+
3282
+ // row range for this thread
3283
+ const int ir0 = dr*ith;
3284
+ const int ir1 = MIN(ir0 + dr, nr);
3285
+
3286
+ for (int i1 = ir0; i1 < ir1; i1++) {
3287
+ ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
3288
+ ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
3289
+
3290
+ if (!src1) {
3291
+ src0_p += swapped ? nc : 0;
3292
+ src1_p += swapped ? 0 : nc;
3293
+ }
3294
+
3295
+ ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3296
+
3297
+ #ifndef NDEBUG
3298
+ for (int k = 0; k < nc; k++) {
3299
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3300
+ const float v = GGML_FP16_TO_FP32(x);
3301
+ GGML_UNUSED(v);
3302
+ assert(!isnan(v));
3303
+ assert(!isinf(v));
3304
+ }
3305
+ #endif
3306
+ }
3307
+ }
3308
+
3309
+ static void ggml_compute_forward_reglu(
3310
+ const ggml_compute_params * params,
3311
+ ggml_tensor * dst) {
3312
+
3313
+ const ggml_tensor * src0 = dst->src[0];
3314
+
3315
+ switch (src0->type) {
3316
+ case GGML_TYPE_F32:
3317
+ {
3318
+ ggml_compute_forward_reglu_f32(params, dst);
3319
+ } break;
3320
+ case GGML_TYPE_F16:
3321
+ {
3322
+ ggml_compute_forward_reglu_f16(params, dst);
3323
+ } break;
3324
+ default:
3325
+ {
3326
+ GGML_ABORT("fatal error");
3327
+ }
3328
+ }
3329
+ }
3330
+
3331
+ // ggml_compute_forward_geglu
3332
+
3333
+ static void ggml_compute_forward_geglu_f32(
3334
+ const ggml_compute_params * params,
3335
+ ggml_tensor * dst) {
3336
+
3337
+ const ggml_tensor * src0 = dst->src[0];
3338
+ const ggml_tensor * src1 = dst->src[1];
3339
+ char * src0_d = (char *) src0->data;
3340
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3341
+ const size_t src0_o = src0->nb[1];
3342
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3343
+
3344
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3345
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3346
+
3347
+ if (src1) {
3348
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3349
+ GGML_ASSERT(src0->type == src1->type);
3350
+ }
3351
+
3352
+ const int ith = params->ith;
3353
+ const int nth = params->nth;
3354
+
3355
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3356
+ const int nr = ggml_nrows(src0);
3357
+
3358
+ GGML_ASSERT(dst->ne[0] == nc);
3359
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3360
+
3361
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3362
+
3363
+ // rows per thread
3364
+ const int dr = (nr + nth - 1)/nth;
3365
+
3366
+ // row range for this thread
3367
+ const int ir0 = dr*ith;
3368
+ const int ir1 = MIN(ir0 + dr, nr);
3369
+
3370
+ for (int i1 = ir0; i1 < ir1; i1++) {
3371
+ float * src0_p = (float *) (src0_d + i1*src0_o);
3372
+ float * src1_p = (float *) (src1_d + i1*src1_o);
3373
+
3374
+ if (!src1) {
3375
+ src0_p += swapped ? nc : 0;
3376
+ src1_p += swapped ? 0 : nc;
3377
+ }
3378
+
3379
+ ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3380
+
3381
+ #ifndef NDEBUG
3382
+ for (int k = 0; k < nc; k++) {
3383
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3384
+ GGML_UNUSED(x);
3385
+ assert(!isnan(x));
3386
+ assert(!isinf(x));
3387
+ }
3388
+ #endif
3389
+ }
3390
+ }
3391
+
3392
+ static void ggml_compute_forward_geglu_f16(
3393
+ const ggml_compute_params * params,
3394
+ ggml_tensor * dst) {
3395
+
3396
+ const ggml_tensor * src0 = dst->src[0];
3397
+ const ggml_tensor * src1 = dst->src[1];
3398
+ char * src0_d = (char *) src0->data;
3399
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3400
+ const size_t src0_o = src0->nb[1];
3401
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3402
+
3403
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3404
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3405
+
3406
+ if (src1) {
3407
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3408
+ GGML_ASSERT(src0->type == src1->type);
3409
+ }
3410
+
3411
+ const int ith = params->ith;
3412
+ const int nth = params->nth;
3413
+
3414
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3415
+ const int nr = ggml_nrows(src0);
3416
+
3417
+ GGML_ASSERT(dst->ne[0] == nc);
3418
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3419
+
3420
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3421
+
3422
+ // rows per thread
3423
+ const int dr = (nr + nth - 1)/nth;
3424
+
3425
+ // row range for this thread
3426
+ const int ir0 = dr*ith;
3427
+ const int ir1 = MIN(ir0 + dr, nr);
3428
+
3429
+ for (int i1 = ir0; i1 < ir1; i1++) {
3430
+ ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
3431
+ ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
3432
+
3433
+ if (!src1) {
3434
+ src0_p += swapped ? nc : 0;
3435
+ src1_p += swapped ? 0 : nc;
3436
+ }
3437
+
3438
+ ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3439
+
3440
+ #ifndef NDEBUG
3441
+ for (int k = 0; k < nc; k++) {
3442
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3443
+ const float v = GGML_FP16_TO_FP32(x);
3444
+ GGML_UNUSED(v);
3445
+ assert(!isnan(v));
3446
+ assert(!isinf(v));
3447
+ }
3448
+ #endif
3449
+ }
3450
+ }
3451
+
3452
+ static void ggml_compute_forward_geglu(
3453
+ const ggml_compute_params * params,
3454
+ ggml_tensor * dst) {
3455
+
3456
+ const ggml_tensor * src0 = dst->src[0];
3457
+
3458
+ switch (src0->type) {
3459
+ case GGML_TYPE_F32:
3460
+ {
3461
+ ggml_compute_forward_geglu_f32(params, dst);
3462
+ } break;
3463
+ case GGML_TYPE_F16:
3464
+ {
3465
+ ggml_compute_forward_geglu_f16(params, dst);
3466
+ } break;
3467
+ default:
3468
+ {
3469
+ GGML_ABORT("fatal error");
3470
+ }
3471
+ }
3472
+ }
3473
+
3474
+ // ggml_compute_forward_swiglu
3475
+
3476
+ static void ggml_compute_forward_swiglu_f32(
3477
+ const ggml_compute_params * params,
3478
+ ggml_tensor * dst) {
3479
+
3480
+ const ggml_tensor * src0 = dst->src[0];
3481
+ const ggml_tensor * src1 = dst->src[1];
3482
+ char * src0_d = (char *) src0->data;
3483
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3484
+ const size_t src0_o = src0->nb[1];
3485
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3486
+
3487
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3488
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3489
+
3490
+ if (src1) {
3491
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3492
+ GGML_ASSERT(src0->type == src1->type);
3493
+ }
3494
+
3495
+ const int ith = params->ith;
3496
+ const int nth = params->nth;
3497
+
3498
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3499
+ const int nr = ggml_nrows(src0);
3500
+
3501
+ GGML_ASSERT(dst->ne[0] == nc);
3502
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3503
+
3504
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3505
+
3506
+ // rows per thread
3507
+ const int dr = (nr + nth - 1)/nth;
3508
+
3509
+ // row range for this thread
3510
+ const int ir0 = dr*ith;
3511
+ const int ir1 = MIN(ir0 + dr, nr);
3512
+
3513
+ for (int i1 = ir0; i1 < ir1; i1++) {
3514
+ float * src0_p = (float *) (src0_d + i1*src0_o);
3515
+ float * src1_p = (float *) (src1_d + i1*src1_o);
3516
+
3517
+ if (!src1) {
3518
+ src0_p += swapped ? nc : 0;
3519
+ src1_p += swapped ? 0 : nc;
3520
+ }
3521
+
3522
+ ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3523
+
3524
+ #ifndef NDEBUG
3525
+ for (int k = 0; k < nc; k++) {
3526
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3527
+ GGML_UNUSED(x);
3528
+ assert(!isnan(x));
3529
+ assert(!isinf(x));
3530
+ }
3531
+ #endif
3532
+ }
3533
+ }
3534
+
3535
+ static void ggml_compute_forward_swiglu_f16(
3536
+ const ggml_compute_params * params,
3537
+ ggml_tensor * dst) {
3538
+
3539
+ const ggml_tensor * src0 = dst->src[0];
3540
+ const ggml_tensor * src1 = dst->src[1];
3541
+ char * src0_d = (char *) src0->data;
3542
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3543
+ const size_t src0_o = src0->nb[1];
3544
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3545
+
3546
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3547
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3548
+
3549
+ if (src1) {
3550
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3551
+ GGML_ASSERT(src0->type == src1->type);
3552
+ }
3553
+
3554
+ const int ith = params->ith;
3555
+ const int nth = params->nth;
3556
+
3557
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3558
+ const int nr = ggml_nrows(src0);
3559
+
3560
+ GGML_ASSERT(dst->ne[0] == nc);
3561
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3562
+
3563
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3564
+
3565
+ // rows per thread
3566
+ const int dr = (nr + nth - 1)/nth;
3567
+
3568
+ // row range for this thread
3569
+ const int ir0 = dr*ith;
3570
+ const int ir1 = MIN(ir0 + dr, nr);
3571
+
3572
+ for (int i1 = ir0; i1 < ir1; i1++) {
3573
+ ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
3574
+ ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
3575
+
3576
+ if (!src1) {
3577
+ src0_p += swapped ? nc : 0;
3578
+ src1_p += swapped ? 0 : nc;
3579
+ }
3580
+
3581
+ ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3582
+
3583
+ #ifndef NDEBUG
3584
+ for (int k = 0; k < nc; k++) {
3585
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3586
+ const float v = GGML_FP16_TO_FP32(x);
3587
+ GGML_UNUSED(v);
3588
+ assert(!isnan(v));
3589
+ assert(!isinf(v));
3590
+ }
3591
+ #endif
3592
+ }
3593
+ }
3594
+
3595
+ static void ggml_compute_forward_swiglu(
3596
+ const ggml_compute_params * params,
3597
+ ggml_tensor * dst) {
3598
+
3599
+ const ggml_tensor * src0 = dst->src[0];
3600
+
3601
+ switch (src0->type) {
3602
+ case GGML_TYPE_F32:
3603
+ {
3604
+ ggml_compute_forward_swiglu_f32(params, dst);
3605
+ } break;
3606
+ case GGML_TYPE_F16:
3607
+ {
3608
+ ggml_compute_forward_swiglu_f16(params, dst);
3609
+ } break;
3610
+ default:
3611
+ {
3612
+ GGML_ABORT("fatal error");
3613
+ }
3614
+ }
3615
+ }
3616
+
3617
+ // ggml_compute_forward_geglu_erf
3618
+
3619
+ static void ggml_compute_forward_geglu_erf_f32(
3620
+ const ggml_compute_params * params,
3621
+ ggml_tensor * dst) {
3622
+
3623
+ const ggml_tensor * src0 = dst->src[0];
3624
+ const ggml_tensor * src1 = dst->src[1];
3625
+ char * src0_d = (char *) src0->data;
3626
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3627
+ const size_t src0_o = src0->nb[1];
3628
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3629
+
3630
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3631
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3632
+
3633
+ if (src1) {
3634
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3635
+ GGML_ASSERT(src0->type == src1->type);
3636
+ }
3637
+
3638
+ const int ith = params->ith;
3639
+ const int nth = params->nth;
3640
+
3641
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3642
+ const int nr = ggml_nrows(src0);
3643
+
3644
+ GGML_ASSERT(dst->ne[0] == nc);
3645
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3646
+
3647
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3648
+
3649
+ // rows per thread
3650
+ const int dr = (nr + nth - 1)/nth;
3651
+
3652
+ // row range for this thread
3653
+ const int ir0 = dr*ith;
3654
+ const int ir1 = MIN(ir0 + dr, nr);
3655
+
3656
+ for (int i1 = ir0; i1 < ir1; i1++) {
3657
+ float * src0_p = (float *) (src0_d + i1*src0_o);
3658
+ float * src1_p = (float *) (src1_d + i1*src1_o);
3659
+
3660
+ if (!src1) {
3661
+ src0_p += swapped ? nc : 0;
3662
+ src1_p += swapped ? 0 : nc;
3663
+ }
3664
+
3665
+ ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3666
+
3667
+ #ifndef NDEBUG
3668
+ for (int k = 0; k < nc; k++) {
3669
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3670
+ GGML_UNUSED(x);
3671
+ assert(!isnan(x));
3672
+ assert(!isinf(x));
3673
+ }
3674
+ #endif
3675
+ }
3676
+ }
3677
+
3678
+ static void ggml_compute_forward_geglu_erf_f16(
3679
+ const ggml_compute_params * params,
3680
+ ggml_tensor * dst) {
3681
+
3682
+ const ggml_tensor * src0 = dst->src[0];
3683
+ const ggml_tensor * src1 = dst->src[1];
3684
+ char * src0_d = (char *) src0->data;
3685
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3686
+ const size_t src0_o = src0->nb[1];
3687
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3688
+
3689
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3690
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3691
+
3692
+ if (src1) {
3693
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3694
+ GGML_ASSERT(src0->type == src1->type);
3695
+ }
3696
+
3697
+ const int ith = params->ith;
3698
+ const int nth = params->nth;
3699
+
3700
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3701
+ const int nr = ggml_nrows(src0);
3702
+
3703
+ GGML_ASSERT(dst->ne[0] == nc);
3704
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3705
+
3706
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3707
+
3708
+ // rows per thread
3709
+ const int dr = (nr + nth - 1)/nth;
3710
+
3711
+ // row range for this thread
3712
+ const int ir0 = dr*ith;
3713
+ const int ir1 = MIN(ir0 + dr, nr);
3714
+
3715
+ for (int i1 = ir0; i1 < ir1; i1++) {
3716
+ ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
3717
+ ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
3718
+
3719
+ if (!src1) {
3720
+ src0_p += swapped ? nc : 0;
3721
+ src1_p += swapped ? 0 : nc;
3722
+ }
3723
+
3724
+ ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3725
+
3726
+ #ifndef NDEBUG
3727
+ for (int k = 0; k < nc; k++) {
3728
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3729
+ const float v = GGML_FP16_TO_FP32(x);
3730
+ GGML_UNUSED(v);
3731
+ assert(!isnan(v));
3732
+ assert(!isinf(v));
3733
+ }
3734
+ #endif
3735
+ }
3736
+ }
3737
+
3738
+ static void ggml_compute_forward_geglu_erf(
3065
3739
  const ggml_compute_params * params,
3066
3740
  ggml_tensor * dst) {
3067
3741
 
@@ -3070,11 +3744,11 @@ void ggml_compute_forward_leaky_relu(
3070
3744
  switch (src0->type) {
3071
3745
  case GGML_TYPE_F32:
3072
3746
  {
3073
- ggml_compute_forward_leaky_relu_f32(params, dst);
3747
+ ggml_compute_forward_geglu_erf_f32(params, dst);
3074
3748
  } break;
3075
3749
  case GGML_TYPE_F16:
3076
3750
  {
3077
- ggml_compute_forward_leaky_relu_f16(params, dst);
3751
+ ggml_compute_forward_geglu_erf_f16(params, dst);
3078
3752
  } break;
3079
3753
  default:
3080
3754
  {
@@ -3083,26 +3757,37 @@ void ggml_compute_forward_leaky_relu(
3083
3757
  }
3084
3758
  }
3085
3759
 
3086
- // ggml_compute_forward_silu_back
3760
+ // ggml_compute_forward_geglu_quick
3087
3761
 
3088
- static void ggml_compute_forward_silu_back_f32(
3762
+ static void ggml_compute_forward_geglu_quick_f32(
3089
3763
  const ggml_compute_params * params,
3090
3764
  ggml_tensor * dst) {
3091
3765
 
3092
- const ggml_tensor * grad = dst->src[0];
3766
+ const ggml_tensor * src0 = dst->src[0];
3093
3767
  const ggml_tensor * src1 = dst->src[1];
3768
+ char * src0_d = (char *) src0->data;
3769
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3770
+ const size_t src0_o = src0->nb[1];
3771
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3094
3772
 
3095
- assert(ggml_is_contiguous_1(grad));
3096
- assert(ggml_is_contiguous_1(src1));
3097
- assert(ggml_is_contiguous_1(dst));
3098
- assert(ggml_are_same_shape(src1, dst));
3099
- assert(ggml_are_same_shape(src1, grad));
3773
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3774
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3775
+
3776
+ if (src1) {
3777
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3778
+ GGML_ASSERT(src0->type == src1->type);
3779
+ }
3100
3780
 
3101
3781
  const int ith = params->ith;
3102
3782
  const int nth = params->nth;
3103
3783
 
3104
- const int nc = src1->ne[0];
3105
- const int nr = ggml_nrows(src1);
3784
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3785
+ const int nr = ggml_nrows(src0);
3786
+
3787
+ GGML_ASSERT(dst->ne[0] == nc);
3788
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3789
+
3790
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3106
3791
 
3107
3792
  // rows per thread
3108
3793
  const int dr = (nr + nth - 1)/nth;
@@ -3112,10 +3797,15 @@ static void ggml_compute_forward_silu_back_f32(
3112
3797
  const int ir1 = MIN(ir0 + dr, nr);
3113
3798
 
3114
3799
  for (int i1 = ir0; i1 < ir1; i1++) {
3115
- ggml_vec_silu_backward_f32(nc,
3116
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
3117
- (float *) ((char *) src1->data + i1*(src1->nb[1])),
3118
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
3800
+ float * src0_p = (float *) (src0_d + i1*src0_o);
3801
+ float * src1_p = (float *) (src1_d + i1*src1_o);
3802
+
3803
+ if (!src1) {
3804
+ src0_p += swapped ? nc : 0;
3805
+ src1_p += swapped ? 0 : nc;
3806
+ }
3807
+
3808
+ ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3119
3809
 
3120
3810
  #ifndef NDEBUG
3121
3811
  for (int k = 0; k < nc; k++) {
@@ -3128,24 +3818,35 @@ static void ggml_compute_forward_silu_back_f32(
3128
3818
  }
3129
3819
  }
3130
3820
 
3131
- static void ggml_compute_forward_silu_back_f16(
3821
+ static void ggml_compute_forward_geglu_quick_f16(
3132
3822
  const ggml_compute_params * params,
3133
3823
  ggml_tensor * dst) {
3134
3824
 
3135
- const ggml_tensor * grad = dst->src[0];
3825
+ const ggml_tensor * src0 = dst->src[0];
3136
3826
  const ggml_tensor * src1 = dst->src[1];
3827
+ char * src0_d = (char *) src0->data;
3828
+ char * src1_d = (char *) (src1 ? src1->data : src0->data);
3829
+ const size_t src0_o = src0->nb[1];
3830
+ const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
3137
3831
 
3138
- assert(ggml_is_contiguous_1(grad));
3139
- assert(ggml_is_contiguous_1(src1));
3140
- assert(ggml_is_contiguous_1(dst));
3141
- assert(ggml_are_same_shape(src1, dst));
3142
- assert(ggml_are_same_shape(src1, grad));
3832
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
3833
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
3834
+
3835
+ if (src1) {
3836
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
3837
+ GGML_ASSERT(src0->type == src1->type);
3838
+ }
3143
3839
 
3144
3840
  const int ith = params->ith;
3145
3841
  const int nth = params->nth;
3146
3842
 
3147
- const int nc = src1->ne[0];
3148
- const int nr = ggml_nrows(src1);
3843
+ const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
3844
+ const int nr = ggml_nrows(src0);
3845
+
3846
+ GGML_ASSERT(dst->ne[0] == nc);
3847
+ GGML_ASSERT(ggml_nrows(dst) == nr);
3848
+
3849
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
3149
3850
 
3150
3851
  // rows per thread
3151
3852
  const int dr = (nr + nth - 1)/nth;
@@ -3155,24 +3856,29 @@ static void ggml_compute_forward_silu_back_f16(
3155
3856
  const int ir1 = MIN(ir0 + dr, nr);
3156
3857
 
3157
3858
  for (int i1 = ir0; i1 < ir1; i1++) {
3158
- ggml_vec_silu_backward_f16(nc,
3159
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
3160
- (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
3161
- (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
3859
+ ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
3860
+ ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
3162
3861
 
3163
- #ifndef NDEBUG
3862
+ if (!src1) {
3863
+ src0_p += swapped ? nc : 0;
3864
+ src1_p += swapped ? 0 : nc;
3865
+ }
3866
+
3867
+ ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
3868
+
3869
+ #ifndef NDEBUG
3164
3870
  for (int k = 0; k < nc; k++) {
3165
- const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3166
- const float v = GGML_CPU_FP16_TO_FP32(x);
3871
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
3872
+ const float v = GGML_FP16_TO_FP32(x);
3167
3873
  GGML_UNUSED(v);
3168
3874
  assert(!isnan(v));
3169
3875
  assert(!isinf(v));
3170
3876
  }
3171
- #endif
3877
+ #endif
3172
3878
  }
3173
3879
  }
3174
3880
 
3175
- void ggml_compute_forward_silu_back(
3881
+ static void ggml_compute_forward_geglu_quick(
3176
3882
  const ggml_compute_params * params,
3177
3883
  ggml_tensor * dst) {
3178
3884
 
@@ -3181,11 +3887,11 @@ void ggml_compute_forward_silu_back(
3181
3887
  switch (src0->type) {
3182
3888
  case GGML_TYPE_F32:
3183
3889
  {
3184
- ggml_compute_forward_silu_back_f32(params, dst);
3890
+ ggml_compute_forward_geglu_quick_f32(params, dst);
3185
3891
  } break;
3186
3892
  case GGML_TYPE_F16:
3187
3893
  {
3188
- ggml_compute_forward_silu_back_f16(params, dst);
3894
+ ggml_compute_forward_geglu_quick_f16(params, dst);
3189
3895
  } break;
3190
3896
  default:
3191
3897
  {
@@ -4470,6 +5176,74 @@ void ggml_compute_forward_get_rows(
4470
5176
  //}
4471
5177
  }
4472
5178
 
5179
+ static void ggml_compute_forward_set_rows_f32(
5180
+ const ggml_compute_params * params,
5181
+ ggml_tensor * dst) {
5182
+
5183
+ const ggml_tensor * src0 = dst->src[0];
5184
+ const ggml_tensor * src1 = dst->src[1];
5185
+
5186
+ GGML_TENSOR_BINARY_OP_LOCALS
5187
+
5188
+ const int64_t nc = ne00;
5189
+ const int64_t nr = ne01;
5190
+
5191
+ assert(ne0 == nc);
5192
+ assert(ne2 == ne02);
5193
+ assert(ne3 == ne03);
5194
+ assert(src0->type == GGML_TYPE_F32);
5195
+ assert(ne02 % ne11 == 0);
5196
+ assert(ne03 % ne12 == 0);
5197
+
5198
+ const int ith = params->ith;
5199
+ const int nth = params->nth;
5200
+
5201
+ // rows per thread
5202
+ const int64_t dr = (nr + nth - 1)/nth;
5203
+
5204
+ // row range for this thread
5205
+ const int64_t ir0 = dr*ith;
5206
+ const int64_t ir1 = std::min(ir0 + dr, nr);
5207
+
5208
+ ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
5209
+
5210
+ for (int64_t i03 = 0; i03 < ne03; ++i03) {
5211
+ for (int64_t i02 = 0; i02 < ne02; ++i02) {
5212
+ for (int64_t i = ir0; i < ir1; ++i) {
5213
+ const int64_t i12 = i03%ne12;
5214
+ const int64_t i11 = i02%ne11;
5215
+ const int64_t i10 = i;
5216
+
5217
+ const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
5218
+
5219
+ GGML_ASSERT(i1 >= 0 && i1 < ne1);
5220
+
5221
+ from_float(
5222
+ (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
5223
+ ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
5224
+ }
5225
+ }
5226
+ }
5227
+ }
5228
+
5229
+ void ggml_compute_forward_set_rows(
5230
+ const ggml_compute_params * params,
5231
+ ggml_tensor * dst) {
5232
+
5233
+ const ggml_tensor * src0 = dst->src[0];
5234
+
5235
+ switch (src0->type) {
5236
+ case GGML_TYPE_F32:
5237
+ {
5238
+ ggml_compute_forward_set_rows_f32(params, dst);
5239
+ } break;
5240
+ default:
5241
+ {
5242
+ GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
5243
+ }
5244
+ }
5245
+ }
5246
+
4473
5247
  // ggml_compute_forward_get_rows_back
4474
5248
 
4475
5249
  static void ggml_compute_forward_get_rows_back_f32_f16(
@@ -4744,14 +5518,17 @@ static void ggml_compute_forward_soft_max_f32(
4744
5518
  memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
4745
5519
  memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
4746
5520
 
4747
- // TODO: handle transposed/permuted matrices
4748
-
4749
5521
  const int ith = params->ith;
4750
5522
  const int nth = params->nth;
4751
5523
 
4752
5524
  GGML_TENSOR_UNARY_OP_LOCALS
4753
5525
 
4754
- //const int64_t ne11 = src1 ? src1->ne[1] : 1;
5526
+ const int64_t nb11 = src1 ? src1->nb[1] : 1;
5527
+ const int64_t nb12 = src1 ? src1->nb[2] : 1;
5528
+ const int64_t nb13 = src1 ? src1->nb[3] : 1;
5529
+
5530
+ const int64_t ne12 = src1 ? src1->ne[2] : 1;
5531
+ const int64_t ne13 = src1 ? src1->ne[3] : 1;
4755
5532
 
4756
5533
  // TODO: is this supposed to be ceil instead of floor?
4757
5534
  // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
@@ -4761,68 +5538,66 @@ static void ggml_compute_forward_soft_max_f32(
4761
5538
  const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
4762
5539
  const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
4763
5540
 
4764
- const int nc = src0->ne[0];
4765
- const int nr = ggml_nrows(src0);
4766
-
4767
- // rows per thread
4768
- const int dr = (nr + nth - 1)/nth;
4769
-
4770
- // row range for this thread
4771
- const int ir0 = dr*ith;
4772
- const int ir1 = MIN(ir0 + dr, nr);
4773
-
4774
- float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
5541
+ float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
4775
5542
 
4776
5543
  const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
4777
5544
 
4778
- for (int i1 = ir0; i1 < ir1; i1++) {
4779
- // ALiBi
4780
- const uint32_t h = (i1/ne01)%ne02; // head
4781
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
4782
-
4783
- float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
4784
- float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
4785
-
4786
- // broadcast the mask across rows
4787
- ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
4788
- float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
4789
-
4790
- ggml_vec_cpy_f32 (nc, wp, sp);
4791
- ggml_vec_scale_f32(nc, wp, scale);
4792
- if (mp_f32) {
4793
- if (use_f16) {
4794
- for (int i = 0; i < nc; ++i) {
4795
- wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
4796
- }
4797
- } else {
4798
- for (int i = 0; i < nc; ++i) {
4799
- wp[i] += slope*mp_f32[i];
5545
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
5546
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
5547
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
5548
+ const int64_t i11 = i01;
5549
+ const int64_t i12 = i02%ne12;
5550
+ const int64_t i13 = i03%ne13;
5551
+
5552
+ // ALiBi
5553
+ const uint32_t h = i02; // head
5554
+ const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
5555
+
5556
+ float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
5557
+ float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
5558
+
5559
+ // broadcast the mask across rows
5560
+ ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
5561
+ float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
5562
+
5563
+ ggml_vec_cpy_f32 (ne00, wp, sp);
5564
+ ggml_vec_scale_f32(ne00, wp, scale);
5565
+ if (mp_f32) {
5566
+ if (use_f16) {
5567
+ for (int i = 0; i < ne00; ++i) {
5568
+ wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
5569
+ }
5570
+ } else {
5571
+ for (int i = 0; i < ne00; ++i) {
5572
+ wp[i] += slope*mp_f32[i];
5573
+ }
5574
+ }
4800
5575
  }
4801
- }
4802
- }
4803
5576
 
4804
5577
  #ifndef NDEBUG
4805
- for (int i = 0; i < nc; ++i) {
4806
- //printf("p[%d] = %f\n", i, p[i]);
4807
- assert(!isnan(wp[i]));
4808
- }
5578
+ for (int i = 0; i < ne00; ++i) {
5579
+ //printf("p[%d] = %f\n", i, p[i]);
5580
+ assert(!isnan(wp[i]));
5581
+ }
4809
5582
  #endif
4810
5583
 
4811
- float max = -INFINITY;
4812
- ggml_vec_max_f32(nc, &max, wp);
5584
+ float max = -INFINITY;
5585
+ ggml_vec_max_f32(ne00, &max, wp);
4813
5586
 
4814
- ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
4815
- assert(sum > 0.0);
5587
+ ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
5588
+ assert(sum > 0.0);
4816
5589
 
4817
- sum = 1.0/sum;
4818
- ggml_vec_scale_f32(nc, dp, sum);
5590
+ sum = 1.0/sum;
5591
+ ggml_vec_scale_f32(ne00, dp, sum);
4819
5592
 
4820
5593
  #ifndef NDEBUG
4821
- for (int i = 0; i < nc; ++i) {
4822
- assert(!isnan(dp[i]));
4823
- assert(!isinf(dp[i]));
4824
- }
5594
+ for (int i = 0; i < ne00; ++i) {
5595
+ assert(!isnan(dp[i]));
5596
+ assert(!isinf(dp[i]));
5597
+ }
4825
5598
  #endif
5599
+ }
5600
+ }
4826
5601
  }
4827
5602
  }
4828
5603
 
@@ -6058,6 +6833,186 @@ void ggml_compute_forward_im2col_back_f32(
6058
6833
  }
6059
6834
  }
6060
6835
 
6836
+ static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
6837
+ void * a, void * b, float * c) {
6838
+ const ggml_type_traits * traits = ggml_get_type_traits(type);
6839
+ struct ggml_tensor src1 = {};
6840
+ src1.type = type;
6841
+ src1.ne[0] = k;
6842
+ src1.ne[1] = m;
6843
+ src1.ne[2] = 1;
6844
+ src1.ne[3] = 1;
6845
+ src1.nb[0] = traits->type_size;
6846
+ src1.nb[1] = k * traits->type_size;
6847
+ src1.nb[2] = src1.nb[1];
6848
+ src1.nb[3] = src1.nb[2];
6849
+ src1.data = a;
6850
+
6851
+ struct ggml_tensor src0 = {};
6852
+ src0.type = type;
6853
+ src0.ne[0] = k;
6854
+ src0.ne[1] = n;
6855
+ src0.ne[2] = 1;
6856
+ src0.ne[3] = 1;
6857
+ src0.nb[0] = traits->type_size;
6858
+ src0.nb[1] = k * traits->type_size;
6859
+ src0.nb[2] = src0.nb[1];
6860
+ src0.nb[3] = src0.nb[2];
6861
+ src0.data = b;
6862
+
6863
+ struct ggml_tensor dst = {};
6864
+ dst.ne[0] = n;
6865
+ dst.ne[1] = m;
6866
+ dst.ne[2] = 1;
6867
+ dst.ne[3] = 1;
6868
+ dst.nb[0] = sizeof(float);
6869
+ dst.nb[1] = n * sizeof(float);
6870
+ dst.nb[2] = dst.nb[1];
6871
+ dst.nb[3] = dst.nb[2];
6872
+ dst.data = c;
6873
+ dst.src[0] = &src0;
6874
+ dst.src[1] = &src1;
6875
+
6876
+ ggml_compute_forward_mul_mat(params, &dst);
6877
+ }
6878
+
6879
+ // ggml_compute_forward_conv_2d
6880
+
6881
+ static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
6882
+ const ggml_tensor * kernel, // [KW, KH, IC, OC]
6883
+ const ggml_tensor * src, // [W, H, C, N]
6884
+ ggml_tensor * dst, // [OW, OH, OC, N]
6885
+ ggml_type kernel_type) {
6886
+
6887
+ GGML_ASSERT(ggml_is_contiguous(kernel));
6888
+ GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
6889
+ GGML_ASSERT(kernel->type == kernel_type);
6890
+
6891
+ const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
6892
+
6893
+ const int32_t stride_x = dst->op_params[0];
6894
+ const int32_t stride_y = dst->op_params[1];
6895
+ const int32_t pad_x = dst->op_params[2];
6896
+ const int32_t pad_y = dst->op_params[3];
6897
+ const int32_t dilation_x = dst->op_params[4];
6898
+ const int32_t dilation_y = dst->op_params[5];
6899
+
6900
+ const int64_t c_in = src->ne[2];
6901
+ const int64_t c_out = kernel->ne[3];
6902
+ GGML_ASSERT(c_in == kernel->ne[2]);
6903
+
6904
+ const int64_t src_w = src->ne[0];
6905
+ const int64_t src_h = src->ne[1];
6906
+ const int64_t knl_w = kernel->ne[0];
6907
+ const int64_t knl_h = kernel->ne[1];
6908
+ const int64_t dst_w = dst->ne[0];
6909
+ const int64_t dst_h = dst->ne[1];
6910
+
6911
+ const float * src_data = (float *) src->data;
6912
+ void * knl_data = kernel->data;
6913
+ float * dst_data = (float *) dst->data;
6914
+
6915
+ const int64_t knl_n = knl_w * knl_h * c_in;
6916
+ const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
6917
+
6918
+ const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
6919
+ const int64_t batch_size = params->wsize / space_per_patch;
6920
+ const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
6921
+ const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
6922
+
6923
+ GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
6924
+
6925
+ void * tmp = params->wdata;
6926
+
6927
+ for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
6928
+
6929
+ const int64_t patch_start_batch = batch_i * patches_per_batch;
6930
+ const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
6931
+ patch_total);
6932
+ const int64_t patch_n = patch_end_batch - patch_start_batch;
6933
+
6934
+ const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
6935
+ const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
6936
+ const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
6937
+
6938
+ //im2col for a patch
6939
+ for (int64_t p = patch_start; p < patch_end; ++p) {
6940
+ const int64_t batch_n = p / (dst_w * dst_h);
6941
+ const int64_t src_x = (p / dst_w) % dst_h;
6942
+ const int64_t src_y = p % dst_w;
6943
+
6944
+ const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
6945
+ char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
6946
+
6947
+ for (int64_t ic = 0; ic < c_in; ++ic) {
6948
+ for (int64_t ky = 0; ky < knl_h; ++ky) {
6949
+ for (int64_t kx = 0; kx < knl_w; ++kx) {
6950
+ const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
6951
+ const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
6952
+
6953
+ int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
6954
+
6955
+ float src_val;
6956
+ if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
6957
+ src_val = 0.0f;
6958
+ } else {
6959
+ const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
6960
+ src_val = *src_ptr;
6961
+ }
6962
+
6963
+ char * element_ptr = dst_row + dst_idx * traits->type_size;
6964
+ if (kernel_type == GGML_TYPE_F32) {
6965
+ *(float *) element_ptr = src_val;
6966
+ } else if (kernel_type == GGML_TYPE_F16) {
6967
+ *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
6968
+ }
6969
+ }
6970
+ }
6971
+ }
6972
+ } // patches handled by this thread
6973
+
6974
+ ggml_barrier(params->threadpool);
6975
+
6976
+ float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
6977
+
6978
+ GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
6979
+
6980
+ // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
6981
+ ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
6982
+
6983
+ ggml_barrier(params->threadpool);
6984
+
6985
+
6986
+ //permute back [OC, N, OH, OW] to [N, OC, OH, OW]
6987
+ const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
6988
+ const int64_t permute_start = params->ith * permute_per_thread;
6989
+ const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
6990
+
6991
+ for (int64_t i = permute_start; i < permute_end; ++i) {
6992
+ const int64_t p = patch_start_batch + i;
6993
+ const int64_t batch_n = p / (dst_w * dst_h);
6994
+ const int64_t dst_y = (p / dst_w) % dst_h;
6995
+ const int64_t dst_x = p % dst_w;
6996
+
6997
+ for (int64_t oc = 0; oc < c_out; ++oc) {
6998
+ const float value = gemm_output[i * c_out + oc];
6999
+ float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
7000
+ *dst_ptr = value;
7001
+ }
7002
+ }
7003
+ }
7004
+ }
7005
+
7006
+ void ggml_compute_forward_conv_2d(
7007
+ const ggml_compute_params * params,
7008
+ ggml_tensor * dst) {
7009
+
7010
+ const ggml_tensor * src0 = dst->src[0];
7011
+ const ggml_tensor * src1 = dst->src[1];
7012
+
7013
+ ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
7014
+ }
7015
+
6061
7016
  // ggml_compute_forward_conv_transpose_2d
6062
7017
 
6063
7018
  void ggml_compute_forward_conv_transpose_2d(
@@ -6608,12 +7563,13 @@ static void ggml_compute_forward_upscale_f32(
6608
7563
 
6609
7564
  GGML_TENSOR_UNARY_OP_LOCALS
6610
7565
 
6611
- const float sf0 = (float)ne0/src0->ne[0];
6612
- const float sf1 = (float)ne1/src0->ne[1];
6613
- const float sf2 = (float)ne2/src0->ne[2];
6614
- const float sf3 = (float)ne3/src0->ne[3];
7566
+ float sf0 = (float)ne0/src0->ne[0];
7567
+ float sf1 = (float)ne1/src0->ne[1];
7568
+ float sf2 = (float)ne2/src0->ne[2];
7569
+ float sf3 = (float)ne3/src0->ne[3];
6615
7570
 
6616
- const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
7571
+ const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
7572
+ const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
6617
7573
 
6618
7574
  if (mode == GGML_SCALE_MODE_NEAREST) {
6619
7575
  for (int64_t i3 = 0; i3 < ne3; i3++) {
@@ -6634,8 +7590,12 @@ static void ggml_compute_forward_upscale_f32(
6634
7590
  }
6635
7591
  }
6636
7592
  } else if (mode == GGML_SCALE_MODE_BILINEAR) {
6637
- // setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
6638
- const float pixel_offset = 0.5f;
7593
+ float pixel_offset = 0.5f;
7594
+ if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
7595
+ pixel_offset = 0.0f;
7596
+ sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
7597
+ sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
7598
+ }
6639
7599
 
6640
7600
  for (int64_t i3 = 0; i3 < ne3; i3++) {
6641
7601
  const int64_t i03 = i3 / sf3;
@@ -7093,7 +8053,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
7093
8053
  const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
7094
8054
  const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
7095
8055
 
7096
- ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
8056
+ ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
7097
8057
  ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
7098
8058
  ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
7099
8059
  ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
@@ -7125,7 +8085,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
7125
8085
  memset(VKQ32, 0, DV*sizeof(float));
7126
8086
  }
7127
8087
 
7128
- const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
8088
+ const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL;
7129
8089
 
7130
8090
  // k indices
7131
8091
  const int ik3 = iq3 / rk3;
@@ -7663,120 +8623,210 @@ void ggml_compute_forward_ssm_conv(
7663
8623
  static void ggml_compute_forward_ssm_scan_f32(
7664
8624
  const ggml_compute_params * params,
7665
8625
  ggml_tensor * dst) {
7666
- const ggml_tensor * src0 = dst->src[0]; // s
7667
- const ggml_tensor * src1 = dst->src[1]; // x
7668
- const ggml_tensor * src2 = dst->src[2]; // dt
7669
- const ggml_tensor * src3 = dst->src[3]; // A
7670
- const ggml_tensor * src4 = dst->src[4]; // B
7671
- const ggml_tensor * src5 = dst->src[5]; // C
8626
+ const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
8627
+ const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
8628
+ const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
8629
+ const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
8630
+ const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
8631
+ const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
8632
+ const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
7672
8633
 
7673
8634
  const int ith = params->ith;
7674
8635
  const int nth = params->nth;
7675
8636
 
7676
- const int64_t nc = src0->ne[0]; // d_state
7677
- const int64_t nr = src0->ne[1]; // d_inner
7678
- const int64_t n_t = src1->ne[1]; // number of tokens per sequence
7679
- const int64_t n_s = src0->ne[2]; // number of sequences in the batch
8637
+ const int64_t nc = src0->ne[0]; // d_state
8638
+ const int64_t nr = src0->ne[1]; // dim
8639
+ const int64_t nh = src1->ne[1]; // n_head
8640
+ const int64_t ng = src4->ne[1];
8641
+ const int64_t nt = src1->ne[2]; // number of tokens per sequence
8642
+ const int64_t ns = src1->ne[3]; // number of sequences in the batch
8643
+
8644
+ // can't use ggml_nbytes because src1 is not necessarily contiguous
8645
+ const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
7680
8646
 
7681
- GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
8647
+ GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
7682
8648
  GGML_ASSERT(src0->nb[0] == sizeof(float));
7683
8649
  GGML_ASSERT(src1->nb[0] == sizeof(float));
7684
8650
  GGML_ASSERT(src2->nb[0] == sizeof(float));
7685
8651
  GGML_ASSERT(src3->nb[0] == sizeof(float));
7686
8652
  GGML_ASSERT(src4->nb[0] == sizeof(float));
7687
8653
  GGML_ASSERT(src5->nb[0] == sizeof(float));
7688
- // required for the dot product between s and C
7689
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
7690
- // required for per-sequence offsets for states
7691
- GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
7692
- // required to get correct offset for state destination (i.e. src1->nb[3])
7693
- GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
8654
+ GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
8655
+ // allows optimizing the modulo since n_group should be a power of 2
8656
+ GGML_ASSERT((ng & -ng) == ng);
7694
8657
 
7695
- // rows per thread
7696
- const int dr = (nr + nth - 1)/nth;
8658
+ // heads per thread
8659
+ const int dh = (nh + nth - 1)/nth;
7697
8660
 
7698
- // row range for this thread
7699
- const int ir0 = dr*ith;
7700
- const int ir1 = MIN(ir0 + dr, nr);
7701
- const int ir = ir1 - ir0;
8661
+ // head range for this thread
8662
+ const int ih0 = dh*ith;
8663
+ const int ih1 = MIN(ih0 + dh, nh);
8664
+
8665
+ const int32_t * ids = (const int32_t *) src6->data;
7702
8666
 
7703
- #ifdef __ARM_FEATURE_SVE
7704
- for (int i3 = 0; i3 < n_s; ++i3) {
7705
- for (int i2 = 0; i2 < n_t; ++i2) {
7706
- const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
7707
- const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7708
- const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
7709
- const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
7710
- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
7711
- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
7712
- float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7713
- float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
7714
-
7715
- // use the output as the source for the next token-wise iterations
7716
- if (i2 > 0) { s0 = s; }
7717
-
7718
- // d_inner
7719
- for (int i1 = 0; i1 < ir; ++i1) {
7720
- float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
7721
- float x_dt = x[i1] * dt_soft_plus;
7722
- svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
7723
- svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
7724
- svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
7725
-
7726
- for (int64_t k = 0; k < nc; k += svcntw()) {
7727
- svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
7728
- svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
7729
- svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
7730
- svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
7731
-
7732
- svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
7733
- t1 = exp_ps_sve(svptrue_b32(), t1);
7734
- svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
7735
-
7736
- vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
7737
- r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
7738
-
7739
- GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
8667
+ for (int i3 = 0; i3 < ns; ++i3) {
8668
+ const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
8669
+ float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
8670
+
8671
+ for (int i2 = 0; i2 < nt; ++i2) {
8672
+ const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
8673
+ const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
8674
+ const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
8675
+ const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
8676
+ const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
8677
+ float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
8678
+
8679
+ if (src3->ne[0] == 1) {
8680
+ // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
8681
+
8682
+ // n_head
8683
+ for (int h = ih0; h < ih1; ++h) {
8684
+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
8685
+ const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
8686
+ const float dA = expf(dt_soft_plus * A[h]);
8687
+
8688
+ // dim
8689
+ for (int i1 = 0; i1 < nr; ++i1) {
8690
+ const int ii = i1 + h*nr;
8691
+ const float x_dt = x[ii] * dt_soft_plus;
8692
+ float sumf = 0.0f;
8693
+ #if defined(GGML_SIMD)
8694
+ #if defined(__ARM_FEATURE_SVE)
8695
+ const int ggml_f32_epr = svcntw();
8696
+ const int ggml_f32_step = 1 * ggml_f32_epr;
8697
+
8698
+ const int np = (nc & ~(ggml_f32_step - 1));
8699
+
8700
+ GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
8701
+
8702
+ GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
8703
+ GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
8704
+
8705
+ for (int i = 0; i < np; i += ggml_f32_step) {
8706
+ // TODO: maybe unroll more?
8707
+ for (int j = 0; j < 1; j++) {
8708
+ GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
8709
+ GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
8710
+ GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
8711
+
8712
+ t0 = GGML_F32_VEC_MUL(t0, adA);
8713
+ t1 = GGML_F32_VEC_MUL(t1, axdt);
8714
+
8715
+ t0 = GGML_F32_VEC_ADD(t0, t1);
8716
+
8717
+ sum = GGML_F32_VEC_FMA(sum, t0, t2);
8718
+
8719
+ GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
8720
+ }
8721
+ }
8722
+
8723
+ sumf = GGML_F32xt_REDUCE_ONE(sum);
8724
+ #else
8725
+ const int np = (nc & ~(GGML_F32_STEP - 1));
8726
+
8727
+ GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
8728
+
8729
+ GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
8730
+ GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
8731
+
8732
+ GGML_F32_VEC ax[GGML_F32_ARR];
8733
+ GGML_F32_VEC ay[GGML_F32_ARR];
8734
+ GGML_F32_VEC az[GGML_F32_ARR];
8735
+
8736
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
8737
+ for (int j = 0; j < GGML_F32_ARR; j++) {
8738
+ ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
8739
+ ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
8740
+ az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
8741
+
8742
+ ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
8743
+ ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
8744
+
8745
+ ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
8746
+
8747
+ sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
8748
+
8749
+ GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
8750
+ }
8751
+ }
8752
+
8753
+ // reduce sum0..sum3 to sum0
8754
+ GGML_F32_VEC_REDUCE(sumf, sum);
8755
+ #endif
8756
+ #else
8757
+ const int np = 0;
8758
+ #endif
8759
+ // d_state
8760
+ for (int i0 = np; i0 < nc; ++i0) {
8761
+ const int i = i0 + ii*nc;
8762
+ const int ig = i0 + (h & (ng - 1))*nc;
8763
+ // state = prev_state * dA + dB * x
8764
+ const float state = (s0[i] * dA) + (B[ig] * x_dt);
8765
+ // y = rowwise_dotprod(state, C)
8766
+ sumf += state * C[ig];
8767
+ s[i] = state;
8768
+ }
8769
+ y[ii] = sumf;
7740
8770
  }
7741
- y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
7742
8771
  }
7743
- }
7744
- }
7745
- #else
7746
- for (int i3 = 0; i3 < n_s; ++i3) {
7747
- for (int i2 = 0; i2 < n_t; ++i2) {
7748
- const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
7749
- const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7750
- const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
7751
- const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
7752
- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
7753
- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
7754
- float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7755
- float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
7756
-
7757
- // use the output as the source for the next token-wise iterations
7758
- if (i2 > 0) { s0 = s; }
7759
-
7760
- // d_inner
7761
- for (int i1 = 0; i1 < ir; ++i1) {
7762
- // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
7763
- float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
7764
- float x_dt = x[i1] * dt_soft_plus;
7765
- float sumf = 0.0f;
7766
- // d_state
7767
- for (int i0 = 0; i0 < nc; ++i0) {
7768
- int i = i0 + i1*nc;
7769
- // state = prev_state * dA + dB * x
7770
- float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
7771
- // y = rowwise_dotprod(state, C)
7772
- sumf += state * C[i0];
7773
- s[i] = state;
8772
+ } else {
8773
+ // Mamba-1 has an element-wise decay factor for the states
8774
+
8775
+ // n_head
8776
+ for (int h = ih0; h < ih1; ++h) {
8777
+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
8778
+ const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
8779
+
8780
+ // dim
8781
+ for (int i1 = 0; i1 < nr; ++i1) {
8782
+ const int ii = i1 + h*nr;
8783
+ const float x_dt = x[ii] * dt_soft_plus;
8784
+ #if defined(__ARM_FEATURE_SVE)
8785
+ svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
8786
+ svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
8787
+ svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
8788
+
8789
+ // d_state
8790
+ // TODO: what happens when (d_state % svcntw()) != 0?
8791
+ for (int64_t k = 0; k < nc; k += svcntw()) {
8792
+ svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
8793
+ svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
8794
+ svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
8795
+ svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
8796
+
8797
+ svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
8798
+ t1 = exp_ps_sve(svptrue_b32(), t1);
8799
+ svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
8800
+
8801
+ vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
8802
+ r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
8803
+
8804
+ GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
8805
+ }
8806
+ y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
8807
+ #else
8808
+ float sumf = 0.0f;
8809
+ // NOTE: can't really use GGML_SIMD here because d_state is usually 16
8810
+ // and also because expf is used within the loop.
8811
+ // d_state
8812
+ for (int i0 = 0; i0 < nc; ++i0) {
8813
+ const int i = i0 + ii*nc;
8814
+ const int ig = i0 + (h & (ng - 1))*nc;
8815
+ // state = prev_state * dA + dB * x
8816
+ const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
8817
+ // y = rowwise_dotprod(state, C)
8818
+ sumf += state * C[ig];
8819
+ s[i] = state;
8820
+ }
8821
+ y[ii] = sumf;
8822
+ #endif
7774
8823
  }
7775
- y[i1] = sumf;
7776
8824
  }
7777
8825
  }
8826
+ // use the output as the source when it's not the first token-wise iteration
8827
+ s0 = s;
7778
8828
  }
7779
- #endif
8829
+ }
7780
8830
  }
7781
8831
 
7782
8832
  void ggml_compute_forward_ssm_scan(
@@ -7994,6 +9044,42 @@ void ggml_compute_forward_unary(
7994
9044
  }
7995
9045
  }
7996
9046
 
9047
+ //ggml_compute_forward_glu
9048
+
9049
+ void ggml_compute_forward_glu(
9050
+ const ggml_compute_params * params,
9051
+ ggml_tensor * dst) {
9052
+
9053
+ const ggml_glu_op op = ggml_get_glu_op(dst);
9054
+
9055
+ switch (op) {
9056
+ case GGML_GLU_OP_REGLU:
9057
+ {
9058
+ ggml_compute_forward_reglu(params, dst);
9059
+ } break;
9060
+ case GGML_GLU_OP_GEGLU:
9061
+ {
9062
+ ggml_compute_forward_geglu(params, dst);
9063
+ } break;
9064
+ case GGML_GLU_OP_SWIGLU:
9065
+ {
9066
+ ggml_compute_forward_swiglu(params, dst);
9067
+ } break;
9068
+ case GGML_GLU_OP_GEGLU_ERF:
9069
+ {
9070
+ ggml_compute_forward_geglu_erf(params, dst);
9071
+ } break;
9072
+ case GGML_GLU_OP_GEGLU_QUICK:
9073
+ {
9074
+ ggml_compute_forward_geglu_quick(params, dst);
9075
+ } break;
9076
+ default:
9077
+ {
9078
+ GGML_ABORT("fatal error");
9079
+ }
9080
+ }
9081
+ }
9082
+
7997
9083
  // ggml_compute_forward_get_rel_pos
7998
9084
 
7999
9085
  static void ggml_compute_forward_get_rel_pos_f16(