@fugood/llama.node 1.0.0-beta.5 → 1.0.0-beta.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. package/lib/binding.ts +3 -1
  2. package/lib/index.js +2 -0
  3. package/lib/index.ts +3 -1
  4. package/package.json +14 -14
  5. package/scripts/llama.cpp.patch +27 -26
  6. package/src/EmbeddingWorker.cpp +1 -1
  7. package/src/LlamaCompletionWorker.cpp +28 -7
  8. package/src/LlamaCompletionWorker.h +4 -0
  9. package/src/LlamaContext.cpp +14 -17
  10. package/src/common.hpp +7 -6
  11. package/src/llama.cpp/CMakeLists.txt +15 -4
  12. package/src/llama.cpp/common/CMakeLists.txt +15 -24
  13. package/src/llama.cpp/common/arg.cpp +172 -110
  14. package/src/llama.cpp/common/chat-parser.cpp +385 -0
  15. package/src/llama.cpp/common/chat-parser.h +120 -0
  16. package/src/llama.cpp/common/chat.cpp +726 -596
  17. package/src/llama.cpp/common/chat.h +74 -8
  18. package/src/llama.cpp/common/common.cpp +56 -38
  19. package/src/llama.cpp/common/common.h +9 -3
  20. package/src/llama.cpp/common/json-partial.cpp +256 -0
  21. package/src/llama.cpp/common/json-partial.h +38 -0
  22. package/src/llama.cpp/common/json-schema-to-grammar.cpp +2 -1
  23. package/src/llama.cpp/common/json-schema-to-grammar.h +4 -4
  24. package/src/llama.cpp/common/sampling.cpp +7 -8
  25. package/src/llama.cpp/common/speculative.cpp +6 -4
  26. package/src/llama.cpp/ggml/CMakeLists.txt +48 -3
  27. package/src/llama.cpp/ggml/include/ggml.h +22 -3
  28. package/src/llama.cpp/ggml/src/CMakeLists.txt +81 -22
  29. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +131 -49
  30. package/src/llama.cpp/ggml/src/ggml-cpu/amx/amx.cpp +1 -1
  31. package/src/llama.cpp/ggml/src/ggml-cpu/amx/mmq.cpp +1 -1
  32. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
  33. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +4113 -0
  34. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/repack.cpp +2162 -0
  35. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +2638 -0
  36. package/src/llama.cpp/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
  37. package/src/llama.cpp/ggml/src/ggml-cpu/arch/powerpc/quants.c +2731 -0
  38. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +2068 -0
  39. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/repack.cpp +396 -0
  40. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/quants.c +1299 -0
  41. package/src/llama.cpp/ggml/src/ggml-cpu/arch/wasm/quants.c +1480 -0
  42. package/src/llama.cpp/ggml/src/ggml-cpu/arch/x86/quants.c +4310 -0
  43. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-aarch64.cpp → arch/x86/repack.cpp} +59 -3206
  44. package/src/llama.cpp/ggml/src/ggml-cpu/arch-fallback.h +184 -0
  45. package/src/llama.cpp/ggml/src/ggml-cpu/common.h +1 -1
  46. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +12 -13
  47. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +64 -88
  48. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +8 -8
  49. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-hbm.cpp → hbm.cpp} +1 -1
  50. package/src/llama.cpp/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +1 -1
  51. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.cpp +56 -7
  52. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.h +5 -0
  53. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +282 -100
  54. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +1 -0
  55. package/src/llama.cpp/ggml/src/ggml-cpu/quants.c +1157 -0
  56. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-quants.h → quants.h} +26 -0
  57. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +1570 -0
  58. package/src/llama.cpp/ggml/src/ggml-cpu/repack.h +98 -0
  59. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +119 -5
  60. package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-traits.cpp → traits.cpp} +1 -1
  61. package/src/llama.cpp/ggml/src/ggml-cpu/vec.cpp +85 -16
  62. package/src/llama.cpp/ggml/src/ggml-cpu/vec.h +204 -49
  63. package/src/llama.cpp/include/llama.h +145 -40
  64. package/src/llama.cpp/src/CMakeLists.txt +5 -1
  65. package/src/llama.cpp/src/llama-arch.cpp +99 -3
  66. package/src/llama.cpp/src/llama-arch.h +10 -1
  67. package/src/llama.cpp/src/llama-batch.cpp +728 -272
  68. package/src/llama.cpp/src/llama-batch.h +112 -54
  69. package/src/llama.cpp/src/llama-chat.cpp +19 -2
  70. package/src/llama.cpp/src/llama-chat.h +1 -0
  71. package/src/llama.cpp/src/llama-context.cpp +525 -339
  72. package/src/llama.cpp/src/llama-context.h +38 -17
  73. package/src/llama.cpp/src/llama-cparams.cpp +4 -0
  74. package/src/llama.cpp/src/llama-cparams.h +2 -0
  75. package/src/llama.cpp/src/llama-grammar.cpp +12 -2
  76. package/src/llama.cpp/src/llama-graph.cpp +413 -353
  77. package/src/llama.cpp/src/llama-graph.h +112 -56
  78. package/src/llama.cpp/src/llama-hparams.cpp +10 -2
  79. package/src/llama.cpp/src/llama-hparams.h +13 -2
  80. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.cpp +279 -0
  81. package/src/llama.cpp/src/llama-kv-cache-unified-iswa.h +128 -0
  82. package/src/llama.cpp/src/llama-kv-cache-unified.cpp +1815 -0
  83. package/src/llama.cpp/src/llama-kv-cache-unified.h +303 -0
  84. package/src/llama.cpp/src/llama-kv-cells.h +415 -0
  85. package/src/llama.cpp/src/llama-memory-hybrid.cpp +246 -0
  86. package/src/llama.cpp/src/llama-memory-hybrid.h +138 -0
  87. package/src/llama.cpp/src/llama-memory-recurrent.cpp +1112 -0
  88. package/src/llama.cpp/src/llama-memory-recurrent.h +183 -0
  89. package/src/llama.cpp/src/llama-memory.cpp +41 -0
  90. package/src/llama.cpp/src/llama-memory.h +86 -5
  91. package/src/llama.cpp/src/llama-mmap.cpp +1 -1
  92. package/src/llama.cpp/src/llama-model-loader.cpp +42 -17
  93. package/src/llama.cpp/src/llama-model-saver.cpp +1 -0
  94. package/src/llama.cpp/src/llama-model.cpp +1137 -528
  95. package/src/llama.cpp/src/llama-model.h +4 -0
  96. package/src/llama.cpp/src/llama-quant.cpp +2 -1
  97. package/src/llama.cpp/src/llama-sampling.cpp +2 -2
  98. package/src/llama.cpp/src/llama-vocab.cpp +69 -32
  99. package/src/llama.cpp/src/llama-vocab.h +1 -0
  100. package/src/llama.cpp/src/llama.cpp +11 -7
  101. package/src/llama.cpp/src/unicode.cpp +5 -0
  102. package/src/tts_utils.h +1 -1
  103. package/src/llama.cpp/common/json.hpp +0 -24766
  104. package/src/llama.cpp/common/minja/chat-template.hpp +0 -541
  105. package/src/llama.cpp/common/minja/minja.hpp +0 -2974
  106. package/src/llama.cpp/common/stb_image.h +0 -7988
  107. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
  108. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -13326
  109. package/src/llama.cpp/src/llama-kv-cache.cpp +0 -2827
  110. package/src/llama.cpp/src/llama-kv-cache.h +0 -515
  111. /package/src/llama.cpp/ggml/src/ggml-cpu/{cpu-feats-x86.cpp → arch/x86/cpu-feats.cpp} +0 -0
  112. /package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-hbm.h → hbm.h} +0 -0
  113. /package/src/llama.cpp/ggml/src/ggml-cpu/{ggml-cpu-traits.h → traits.h} +0 -0
@@ -0,0 +1,303 @@
1
+ #pragma once
2
+
3
+ #include "llama-batch.h"
4
+ #include "llama-graph.h"
5
+ #include "llama-kv-cells.h"
6
+ #include "llama-memory.h"
7
+
8
+ #include <unordered_map>
9
+ #include <vector>
10
+
11
+ struct llama_cparams;
12
+ struct llama_hparams;
13
+ struct llama_model;
14
+ struct llama_context;
15
+
16
+ //
17
+ // llama_kv_cache_unified
18
+ //
19
+
20
+ class llama_kv_cache_unified : public llama_memory_i {
21
+ public:
22
+ static uint32_t get_padding(const llama_cparams & cparams);
23
+
24
+ // this callback is used to filter out layers that should not be included in the cache
25
+ using layer_filter_cb = std::function<bool(int32_t il)>;
26
+
27
+ using ubatch_heads = std::vector<uint32_t>;
28
+
29
+ struct defrag_info {
30
+ bool empty() const {
31
+ return ids.empty();
32
+ }
33
+
34
+ // contains information about which cell moves where:
35
+ // - cell i moves to ids[i]
36
+ // - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved
37
+ std::vector<uint32_t> ids;
38
+ };
39
+
40
+ llama_kv_cache_unified(
41
+ const llama_model & model,
42
+ layer_filter_cb && filter,
43
+ ggml_type type_k,
44
+ ggml_type type_v,
45
+ bool v_trans,
46
+ bool offload,
47
+ uint32_t kv_size,
48
+ uint32_t n_seq_max,
49
+ uint32_t n_pad,
50
+ uint32_t n_swa,
51
+ llama_swa_type swa_type);
52
+
53
+ ~llama_kv_cache_unified() = default;
54
+
55
+ //
56
+ // llama_memory_i
57
+ //
58
+
59
+ llama_memory_context_ptr init_batch(
60
+ llama_batch_allocr & balloc,
61
+ uint32_t n_ubatch,
62
+ bool embd_all) override;
63
+
64
+ llama_memory_context_ptr init_full() override;
65
+
66
+ llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override;
67
+
68
+ bool get_can_shift() const override;
69
+
70
+ void clear(bool data) override;
71
+
72
+ bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
73
+ void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
74
+ void seq_keep(llama_seq_id seq_id) override;
75
+ void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
76
+ void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
77
+
78
+ llama_pos seq_pos_min(llama_seq_id seq_id) const override;
79
+ llama_pos seq_pos_max(llama_seq_id seq_id) const override;
80
+
81
+ // state write/load
82
+
83
+ void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
84
+ void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
85
+
86
+ //
87
+ // llama_kv_cache_unified specific API
88
+ //
89
+
90
+ uint32_t get_size() const;
91
+
92
+ bool get_has_shift() const;
93
+
94
+ //
95
+ // graph_build API
96
+ //
97
+
98
+ uint32_t get_n_kv() const;
99
+
100
+ // get views of the current state of the cache
101
+ ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
102
+ ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
103
+
104
+ // store k_cur and v_cur in the cache based on the provided head location
105
+ ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const;
106
+ ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const;
107
+
108
+ //
109
+ // preparation API
110
+ //
111
+
112
+ // find places for the provided ubatches in the cache, returns the head locations
113
+ // return empty vector on failure
114
+ ubatch_heads prepare(const std::vector<llama_ubatch> & ubatches);
115
+
116
+ bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo);
117
+
118
+ // return the cell position where we can insert the ubatch
119
+ // return -1 on failure to find a contiguous slot of kv cells
120
+ int32_t find_slot(const llama_ubatch & ubatch) const;
121
+
122
+ // emplace the ubatch context into slot: [head_cur, head_cur + ubatch.n_tokens)
123
+ void apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch);
124
+
125
+ //
126
+ // set_input API
127
+ //
128
+
129
+ void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
130
+ void set_input_k_shift (ggml_tensor * dst) const;
131
+ void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
132
+
133
+ private:
134
+ const llama_model & model;
135
+ const llama_hparams & hparams;
136
+
137
+ struct kv_layer {
138
+ // layer index in the model
139
+ // note: can be different from the layer index in the KV cache
140
+ uint32_t il;
141
+
142
+ ggml_tensor * k;
143
+ ggml_tensor * v;
144
+ };
145
+
146
+ bool v_trans = true; // the value tensor is transposed
147
+
148
+ // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
149
+ // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
150
+ uint32_t head = 0;
151
+
152
+ const uint32_t n_seq_max = 1;
153
+
154
+ // required padding
155
+ const uint32_t n_pad = 1;
156
+
157
+ // SWA
158
+ const uint32_t n_swa = 0;
159
+
160
+ int debug = 0;
161
+
162
+ const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
163
+
164
+ std::vector<ggml_context_ptr> ctxs;
165
+ std::vector<ggml_backend_buffer_ptr> bufs;
166
+
167
+ llama_kv_cells_unified cells;
168
+
169
+ std::vector<kv_layer> layers;
170
+
171
+ // model layer id -> KV cache layer id
172
+ std::unordered_map<int32_t, int32_t> map_layer_ids;
173
+
174
+ // return non-empty vector if cells have been moved
175
+ defrag_info defrag_prepare(int32_t n_max_nodes) const;
176
+
177
+ size_t total_size() const;
178
+
179
+ size_t size_k_bytes() const;
180
+ size_t size_v_bytes() const;
181
+
182
+ bool is_masked_swa(llama_pos p0, llama_pos p1) const;
183
+
184
+ ggml_tensor * build_rope_shift(
185
+ const llama_cparams & cparams,
186
+ ggml_context * ctx,
187
+ ggml_tensor * cur,
188
+ ggml_tensor * shift,
189
+ ggml_tensor * factors,
190
+ float freq_base,
191
+ float freq_scale) const;
192
+
193
+ llm_graph_result_ptr build_graph_shift(
194
+ const llama_cparams & cparams,
195
+ ggml_context * ctx,
196
+ ggml_cgraph * gf) const;
197
+
198
+ llm_graph_result_ptr build_graph_defrag(
199
+ const llama_cparams & cparams,
200
+ ggml_context * ctx,
201
+ ggml_cgraph * gf,
202
+ const defrag_info & dinfo) const;
203
+
204
+ void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
205
+ void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
206
+
207
+ bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
208
+ bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
209
+ };
210
+
211
+ class llama_kv_cache_unified_context : public llama_memory_context_i {
212
+ public:
213
+ // some shorthands
214
+ using ubatch_heads = llama_kv_cache_unified::ubatch_heads;
215
+ using defrag_info = llama_kv_cache_unified::defrag_info;
216
+
217
+ // used for errors
218
+ llama_kv_cache_unified_context(llama_memory_status status);
219
+
220
+ // used to create a full-cache context
221
+ llama_kv_cache_unified_context(
222
+ llama_kv_cache_unified * kv);
223
+
224
+ // used to create an update context
225
+ llama_kv_cache_unified_context(
226
+ llama_kv_cache_unified * kv,
227
+ llama_context * lctx,
228
+ bool do_shift,
229
+ defrag_info dinfo);
230
+
231
+ // used to create a batch procesing context from a batch
232
+ llama_kv_cache_unified_context(
233
+ llama_kv_cache_unified * kv,
234
+ ubatch_heads heads,
235
+ std::vector<llama_ubatch> ubatches);
236
+
237
+ virtual ~llama_kv_cache_unified_context();
238
+
239
+ //
240
+ // llama_memory_context_i
241
+ //
242
+
243
+ bool next() override;
244
+ bool apply() override;
245
+
246
+ llama_memory_status get_status() const override;
247
+ const llama_ubatch & get_ubatch() const override;
248
+
249
+ //
250
+ // llama_kv_cache_unified_context specific API
251
+ //
252
+
253
+ uint32_t get_n_kv() const;
254
+
255
+ // get views of the current state of the cache
256
+ ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
257
+ ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
258
+
259
+ // store k_cur and v_cur in the cache based on the provided head location
260
+ ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const;
261
+ ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const;
262
+
263
+ void set_input_k_shift(ggml_tensor * dst) const;
264
+
265
+ void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
266
+ void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
267
+
268
+ private:
269
+ llama_memory_status status;
270
+
271
+ llama_kv_cache_unified * kv;
272
+ llama_context * lctx;
273
+
274
+ //
275
+ // update context
276
+ //
277
+
278
+ bool do_shift = false;
279
+
280
+ defrag_info dinfo;
281
+
282
+ //
283
+ // batch processing context
284
+ //
285
+
286
+ // the index of the next ubatch to process
287
+ size_t i_next = 0;
288
+
289
+ ubatch_heads heads;
290
+
291
+ std::vector<llama_ubatch> ubatches;
292
+
293
+ //
294
+ // data needed for building the compute graph for the current ubatch:
295
+ //
296
+
297
+ // a heuristic, to avoid attending the full cache if it is not yet utilized
298
+ // as the cache gets filled, the benefit from this heuristic disappears
299
+ int32_t n_kv;
300
+
301
+ // the beginning of the current slot in which the ubatch will be inserted
302
+ int32_t head;
303
+ };
@@ -0,0 +1,415 @@
1
+ #pragma once
2
+
3
+ #include "llama.h"
4
+ #include "llama-cparams.h"
5
+
6
+ #include <bitset>
7
+ #include <cassert>
8
+ #include <vector>
9
+ #include <set>
10
+
11
+ // meta information about KV cells that can be part of multiple sequences at the same time
12
+ // TODO: add unit tests
13
+ class llama_kv_cells_unified {
14
+ public:
15
+ void reset() {
16
+ for (uint32_t i = 0; i < pos.size(); ++i) {
17
+ pos[i] = -1;
18
+ shift[i] = 0;
19
+ seq[i].reset();
20
+ }
21
+
22
+ has_shift = false;
23
+
24
+ used.clear();
25
+
26
+ for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
27
+ seq_pos[s].clear();
28
+ }
29
+ }
30
+
31
+ void reset_shift() {
32
+ has_shift = false;
33
+
34
+ for (uint32_t i = 0; i < shift.size(); ++i) {
35
+ shift[i] = 0;
36
+ }
37
+ }
38
+
39
+ uint32_t size() const {
40
+ return pos.size();
41
+ }
42
+
43
+ void resize(uint32_t n) {
44
+ pos.resize(n);
45
+ shift.resize(n);
46
+ seq.resize(n);
47
+
48
+ reset();
49
+ }
50
+
51
+ bool is_empty(uint32_t i) const {
52
+ assert(i < pos.size());
53
+ assert((pos[i] < 0 && pos[i] == -1) || pos[i] >= 0);
54
+
55
+ return pos[i] == -1;
56
+ }
57
+
58
+ uint32_t get_used() const {
59
+ return used.size();
60
+ }
61
+
62
+ // the index of the first cell that is used
63
+ // return 0 if no cells are used
64
+ uint32_t used_min() const {
65
+ return used.empty() ? 0 : *used.begin();
66
+ }
67
+
68
+ // the index of the last cell that is used + 1
69
+ // return 0 if no cells are used
70
+ uint32_t used_max_p1() const {
71
+ return used.empty() ? 0 : *used.rbegin() + 1;
72
+ }
73
+
74
+ bool get_has_shift() const {
75
+ return has_shift;
76
+ }
77
+
78
+ // move cell isrc to idst (used during defrag)
79
+ void mv(uint32_t isrc, uint32_t idst) {
80
+ assert(isrc < pos.size());
81
+ assert(idst < pos.size());
82
+
83
+ assert(pos[idst] == -1);
84
+ assert(pos[isrc] != -1);
85
+
86
+ pos [idst] = pos [isrc];
87
+ shift[idst] = shift[isrc];
88
+ seq [idst] = seq [isrc];
89
+
90
+ pos [isrc] = -1;
91
+ shift[isrc] = 0;
92
+ seq [isrc].reset();
93
+
94
+ used.erase (isrc);
95
+ used.insert(idst);
96
+ }
97
+
98
+ // copy the state of cells [i, i + n) (used for save/restore the state of the cells)
99
+ llama_kv_cells_unified cp(uint32_t i, uint32_t n) const {
100
+ assert(i + n <= pos.size());
101
+
102
+ llama_kv_cells_unified res;
103
+
104
+ res.resize(n);
105
+
106
+ for (uint32_t j = 0; j < n; ++j) {
107
+ res.pos[j] = pos[i + j];
108
+ res.seq[j] = seq[i + j];
109
+
110
+ assert(shift[i + j] == 0);
111
+ }
112
+
113
+ return res;
114
+ }
115
+
116
+ // set the state of cells [i, i + other.pos.size()) (used for save/restore the state of the cells)
117
+ void set(uint32_t i, const llama_kv_cells_unified & other) {
118
+ assert(i + other.pos.size() <= pos.size());
119
+
120
+ for (uint32_t j = 0; j < other.pos.size(); ++j) {
121
+ if (pos[i + j] == -1 && other.pos[j] != -1) {
122
+ used.insert(i + j);
123
+ }
124
+
125
+ if (pos[i + j] != -1 && other.pos[j] == -1) {
126
+ used.erase(i + j);
127
+ }
128
+
129
+ if (pos[i + j] != -1) {
130
+ seq_pos_rm(i + j);
131
+ }
132
+
133
+ pos[i + j] = other.pos[j];
134
+ seq[i + j] = other.seq[j];
135
+
136
+ if (pos[i + j] != -1) {
137
+ seq_pos_add(i + j);
138
+ }
139
+
140
+ assert(shift[i + j] == 0);
141
+ }
142
+ }
143
+
144
+ // clear a non-empty cell
145
+ void rm(uint32_t i) {
146
+ assert(i < pos.size());
147
+ assert(pos[i] != -1);
148
+
149
+ seq_pos_rm(i);
150
+ seq[i].reset();
151
+
152
+ pos[i] = -1;
153
+ shift[i] = 0;
154
+
155
+ used.erase(i);
156
+ }
157
+
158
+ // note: call only if the cell has seq_id
159
+ // return true if the cell becomes empty
160
+ bool seq_rm(uint32_t i, llama_seq_id seq_id) {
161
+ assert(i < pos.size());
162
+ assert(seq[i].test(seq_id));
163
+ assert(pos[i] != -1);
164
+ assert(seq_id >= 0);
165
+
166
+ seq[i].reset(seq_id);
167
+ seq_pos[seq_id].erase(pos[i]);
168
+
169
+ if (seq[i].none()) {
170
+ pos[i] = -1;
171
+ shift[i] = 0;
172
+
173
+ used.erase(i);
174
+
175
+ return true;
176
+ }
177
+
178
+ return false;
179
+ }
180
+
181
+ // return true if the cell becomes empty (i.e. it did not contain seq_id before the call)
182
+ bool seq_keep(uint32_t i, llama_seq_id seq_id) {
183
+ assert(i < pos.size());
184
+
185
+ if (seq[i].test(seq_id)) {
186
+ seq_pos_rm(i);
187
+ seq[i].reset();
188
+
189
+ seq[i].set(seq_id);
190
+ seq_pos[seq_id].insert(pos[i]);
191
+
192
+ return false;
193
+ }
194
+
195
+ if (seq[i].any()) {
196
+ seq_pos_rm(i);
197
+ seq[i].reset();
198
+
199
+ pos[i] = -1;
200
+ shift[i] = 0;
201
+
202
+ used.erase(i);
203
+
204
+ return true;
205
+ }
206
+
207
+ assert(pos[i] == -1);
208
+
209
+ return false;
210
+ }
211
+
212
+ // number of different sequences in the cell
213
+ int seq_count(uint32_t i) const {
214
+ assert(i < pos.size());
215
+ assert(pos[i] != -1);
216
+
217
+ return seq[i].count();
218
+ }
219
+
220
+ // check if the cell contains seq_id
221
+ bool seq_has(uint32_t i, llama_seq_id seq_id) const {
222
+ assert(i < pos.size());
223
+ assert(seq_id >= 0);
224
+
225
+ return seq[i].test(seq_id);
226
+ }
227
+
228
+ // note: call only if the cell is not empty and the seq_id is not in the cell
229
+ void seq_add(uint32_t i, llama_seq_id seq_id) {
230
+ assert(i < pos.size());
231
+ assert(pos[i] != -1);
232
+ assert(!seq[i].test(seq_id));
233
+
234
+ seq[i].set(seq_id);
235
+ seq_pos[seq_id].insert(pos[i]);
236
+ }
237
+
238
+ // return the sequence id of this cell
239
+ // note: call only for cells with exactly one sequence
240
+ llama_seq_id seq_get(uint32_t i) const {
241
+ assert(seq[i].count() == 1);
242
+
243
+ for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
244
+ if (seq[i].test(s)) {
245
+ return s;
246
+ }
247
+ }
248
+
249
+ return -1;
250
+ }
251
+
252
+ // the minimum position of sequence seq_id currently present in any of the cells
253
+ // return -1 if the sequence is not present
254
+ llama_pos seq_pos_min(llama_seq_id seq_id) const {
255
+ assert(seq_id >= 0);
256
+ assert(seq_id < LLAMA_MAX_SEQ);
257
+
258
+ if (seq_pos[seq_id].empty()) {
259
+ return -1;
260
+ }
261
+
262
+ return *seq_pos[seq_id].begin();
263
+ }
264
+
265
+ // the maximum position of sequence seq_id currently present in any of the cells
266
+ // return -1 if the sequence is not present
267
+ llama_pos seq_pos_max(llama_seq_id seq_id) const {
268
+ assert(seq_id >= 0);
269
+ assert(seq_id < LLAMA_MAX_SEQ);
270
+
271
+ if (seq_pos[seq_id].empty()) {
272
+ return -1;
273
+ }
274
+
275
+ return *seq_pos[seq_id].rbegin();
276
+ }
277
+
278
+ // note: call only if the cell is not empty
279
+ llama_pos pos_get(uint32_t i) const {
280
+ assert(i < pos.size());
281
+ assert(pos[i] != -1);
282
+
283
+ return pos[i];
284
+ }
285
+
286
+ // note: call only if the cell is not empty
287
+ llama_pos get_shift(uint32_t i) const {
288
+ assert(i < pos.size());
289
+ assert(pos[i] != -1);
290
+
291
+ return shift[i];
292
+ }
293
+
294
+ // check if a cell is not empty and its position is within [p0, p1)
295
+ bool pos_in(uint32_t i, llama_pos p0, llama_pos p1) const {
296
+ assert(i < pos.size());
297
+
298
+ return pos[i] >= p0 && pos[i] < p1;
299
+ }
300
+
301
+ // set the position of an empty cell
302
+ // does not modify "has_shift"
303
+ // note: call only if the cell is empty
304
+ void pos_set(uint32_t i, llama_pos p) {
305
+ assert(i < pos.size());
306
+ assert(pos[i] == -1);
307
+ assert(seq[i].none());
308
+
309
+ pos[i] = p;
310
+
311
+ used.insert(i);
312
+ }
313
+
314
+ // pos[i] = pos[i] + d
315
+ // sets "has_shift" to true
316
+ // note: call only if the cell is not empty
317
+ bool pos_add(uint32_t i, llama_pos d) {
318
+ assert(i < pos.size());
319
+ assert(pos[i] != -1);
320
+
321
+ seq_pos_rm(i);
322
+
323
+ pos[i] += d;
324
+ shift[i] += d;
325
+
326
+ has_shift = true;
327
+
328
+ if (pos[i] < 0) {
329
+ seq[i].reset();
330
+ pos[i] = -1;
331
+ shift[i] = 0;
332
+
333
+ used.erase(i);
334
+
335
+ return true;
336
+ }
337
+
338
+ seq_pos_add(i);
339
+
340
+ return false;
341
+ }
342
+
343
+ // pos[i] = pos[i] / d
344
+ // sets "has_shift" to true
345
+ // note: call only if the cell is not empty
346
+ void pos_div(uint32_t i, int d) {
347
+ assert(i < pos.size());
348
+ assert(pos[i] != -1);
349
+
350
+ const llama_pos p_old = pos[i];
351
+
352
+ seq_pos_rm(i);
353
+
354
+ pos[i] /= d;
355
+ shift[i] += p_old - pos[i];
356
+
357
+ seq_pos_add(i);
358
+
359
+ has_shift = true;
360
+ }
361
+
362
+ private:
363
+ bool has_shift = false;
364
+
365
+ // set of indices of used cells (i.e. pos[i] != -1, allowed to not have any seq_id)
366
+ std::set<uint32_t> used;
367
+
368
+ std::vector<llama_pos> pos;
369
+
370
+ // this array accumulates any applied shifts to the pos array since the last reset_shift() call
371
+ // this is used to queue multiple updates to the pos array, which in the end can be applied in one go:
372
+ //
373
+ // cells.pos_add(x, shift_x);
374
+ // cells.pos_div(y, shift_y);
375
+ // ...
376
+ //
377
+ // if (cells.has_shift()) {
378
+ // for (int i = 0; i < n; ++i) {
379
+ // auto shift_i = cells.get_shift(i);
380
+ // ...
381
+ // }
382
+ // cells.reset_shift();
383
+ // }
384
+ //
385
+ std::vector<llama_pos> shift;
386
+
387
+ using seq_set_t = std::bitset<LLAMA_MAX_SEQ>;
388
+
389
+ // the bitset seq[i] tells us which sequences are currently occupying the i-th cell
390
+ std::vector<seq_set_t> seq;
391
+
392
+ // the set seq_pos[s] tells us which positions are currently present for sequence s
393
+ // this way seq_pos[s].begin() and seq_pos[s].rbegin() give us the min/max positions currently in the cache
394
+ std::set<llama_pos> seq_pos[LLAMA_MAX_SEQ];
395
+
396
+ // helper functions for updating `seq_pos`, once cell at a time:
397
+
398
+ // remove cell i
399
+ void seq_pos_rm(uint32_t i) {
400
+ for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
401
+ if (seq[i].test(s)) {
402
+ seq_pos[s].erase(pos[i]);
403
+ }
404
+ }
405
+ }
406
+
407
+ // add cell i
408
+ void seq_pos_add(uint32_t i) {
409
+ for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
410
+ if (seq[i].test(s)) {
411
+ seq_pos[s].insert(pos[i]);
412
+ }
413
+ }
414
+ }
415
+ };